
 Open access Journal Article DOI:10.1145/3282517.3282545

The ALI Architecture Description Language — Source link

Umaima Haider, John D. McGregor, Rabih Bashroush

Institutions: University of East London, Clemson University

Published on: 02 Jan 2019 - ACM Sigsoft Software Engineering Notes (Association for Computing Machinery)

Topics: Architecture description language, Software architecture description, View model, Requirements traceability and
Information system

Related papers:

 The view glue

 Understanding tradeoffs among different architectural modeling approaches

 Modeling Software Architectures in UML

 Advances in architectural concepts to support distributed systems design

 A comparative study of architecture knowledge management tools

Share this paper:

View more about this paper here: https://typeset.io/papers/the-ali-architecture-description-language-
3vbd9qwthg

https://typeset.io/
https://www.doi.org/10.1145/3282517.3282545
https://typeset.io/papers/the-ali-architecture-description-language-3vbd9qwthg
https://typeset.io/authors/umaima-haider-2ac6a054fh
https://typeset.io/authors/john-d-mcgregor-1tcgjr71aj
https://typeset.io/authors/rabih-bashroush-43x2rhp3mk
https://typeset.io/institutions/university-of-east-london-218hqmfp
https://typeset.io/institutions/clemson-university-1q0prrem
https://typeset.io/journals/acm-sigsoft-software-engineering-notes-374geqr6
https://typeset.io/topics/architecture-description-language-uxw35ls2
https://typeset.io/topics/software-architecture-description-3rrlj4o4
https://typeset.io/topics/view-model-1av3tihj
https://typeset.io/topics/requirements-traceability-2doylo6f
https://typeset.io/topics/information-system-2li95yxn
https://typeset.io/papers/the-view-glue-12rtlmhheg
https://typeset.io/papers/understanding-tradeoffs-among-different-architectural-3y33s2ts0d
https://typeset.io/papers/modeling-software-architectures-in-uml-1hlc09j12e
https://typeset.io/papers/advances-in-architectural-concepts-to-support-distributed-1sbgqtgywi
https://typeset.io/papers/a-comparative-study-of-architecture-knowledge-management-3nrllh26fr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-ali-architecture-description-language-3vbd9qwthg
https://twitter.com/intent/tweet?text=The%20ALI%20Architecture%20Description%20Language&url=https://typeset.io/papers/the-ali-architecture-description-language-3vbd9qwthg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-ali-architecture-description-language-3vbd9qwthg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-ali-architecture-description-language-3vbd9qwthg
https://typeset.io/papers/the-ali-architecture-description-language-3vbd9qwthg

The ALI Architecture Description Language

Umaima Haider
Dept. of Engineering & Computing
University of East London

London
UK

uhaider@clemson.edu

John D. McGregor
School of Computing
Clemson University
South Carolina

USA

johnmc@clemson.edu

Rabih Bashroush
Dept. of Engineering & Computing
University of East London

London
UK

r.bashroush@qub.ac.uk

Abstract

Architecture Description Languages (ADLs) have emerged over the

past two decades as a means to abstract details of large-scale systems

in order to enable better intellectual control over the complete systems.

Recently, there has been an explosion in the number of ADLs created

in the research community. However, industrial adoption of these ADLs

has been rather limited. This has been attributed to various reasons,

including the lack of support of some ADLs for: variability management,

requirements traceability, architectural artefact reusability and multiple

architectural views. To overcome these limitations, this paper is a

report on ALI, an ADL that was designed to complement existing work

by adding mechanisms to address the aforementioned limitations. The

ALI design principles, concepts, notations and formal semantics are

presented in this paper. The notation is illustrated using two distinct

case studies, one from the information systems domain – an Asset

Management System (AMS); and another from the embedded systems

domain - a Wheel Brake System (WBS).

Categories and Subject Descriptors

D.3.3 [Software and its engineering]: Software system structures –

software architectures

General Terms

Design, Language.

Keywords: Software architecture, Architecture description languages

1. INTRODUCTION AND MOTIVATION

Within the software engineering community, the concept
of software architecture started to emerge as a distinct
discipline in 1990 [1] which led to an explosion of interest
during the 1990s and 2000s, referred to as the “Golden Age
of Software Architecture” [2]. Today, software architecture
is growing from its adolescence in research laboratories to
the responsibilities of maturity, which was predicted by
Shaw [3] over a decade ago. But that does not mean that
the time for research, innovation, and enhancement is past.
In fact, it brings an additional responsibility to show not
just that ideas are promising (adequate grounds to
continue research) but also that they are effective
(indispensable grounds to move into practice) [3]. In other
words, it is a coupling between ongoing research and

actual application to make new ideas practical. For this
reason, software architecture has drawn considerable
attention from both academia and industry.
The increasing complexity of software and the critical

nature of its use are driving a rapid maturation of the field
of software architecture. According to Garlan [4], a critical
issue in the design and construction of any complex
software system is its architecture; that is, its organization
as a collection of interacting elements – modules,
components, services, etc. Thus, a well-designed
architecture ensures the quality and longevity of a
software system. A number of approaches exist that can
describe a software architecture, ranging from formal
notations (e.g. ADLs), semi-formal (e.g. UML) and
informal (e.g. boxes and lines, videos, etc.).
Architecture Description Languages (ADLs) are

currently considered to be viable tools for formally
representing the architectures of systems at a reasonably
high level of abstraction to enable better intellectual control
over the systems [5]. An ideal ADL is considered to be both
human-readable and machine-readable. An ADL must be
simple, understandable, encompassed by multiple
architectural views and syntactically flexible. With regards
to this, Lago et al. [6] presented a general framework of
requirements for the next generation architectural
languages by taking into account current architectural
needs of both the academic and industrial worlds.
Over the past two decades, a number of ADLs [7] have

been developed as compared to the number of ADLs
reported in [8], [9] but the majority of the problems have
not been resolved. Among those, a frequent problem is that
ADLs have gained wide acceptance in the research
community as a means of describing system designs but
their current industrial adoption level is still reported to be
as low as before with some exceptions, for example, in the
embedded systems domain [10-13]. This could be due to a
number of reasons identified in [14-16], including the
mismatch between their strengths and the needs of
practitioners.
Many existing ADLs tend to focus on a specific aspect

of a system (e.g. system structure), or be geared towards a

particular application domain (e.g. embedded systems).
While domain specific notations can be well tailored to
serve particular application area needs, today’s systems
(and system-of-systems) cross traditional design
boundaries, where software persists across various layers
(e.g. Cyber-physical systems, Smart Cities systems, etc.).
Thus, to be able to use an ADL in such domains, it would
need to have the flexibility and expressiveness that allows
it to stretch beyond a single application domain.
There has recently been an increase in the usage of

variability mechanisms at the architectural level (e.g. to
represent product families or runtime system adaptation).
Variability management allows a) the development and
evolution of different versions of software and product
variants, b) planned reuse of software artefacts, and c)
well-organized instantiation and assessment of
architecture variants [17]. An ADL with the capability to
capture and express such complex variability exhibited in
software systems would empower architects to build and
model more sophisticated systems.
To overcome these aforementioned limitations, we

propose ALI - an Architecture Description Language for
Industrial Applications [18]. ALI has been designed to be a
comprehensive language, suited for different types of
systems, from individual systems, to product lines, and
system-of-systems. A major goal of ALI is to provide a
blend of flexibility and formalism. Flexibility means it is
easier to use and informative enough to convey the needed
information to the stakeholders involved in the
architecting phase. Formalism, on the other hand, paves
the way for developing better tool support and automated
analysis. ALI is designed to be highly customisable to
provide support for a wide range of application domains.
ALI is built on existing literature, and takes into
consideration the latest recommended guidelines [4, 6, 16]
and characteristics [14].
The remainder of this article is organised as follows:

Section 2 discusses the current literature while
highlighting the limitations of existing work. Section 3
presents the design principles behind ALI and the high-
level (abstract) description of ALI in the form of a
conceptual model. Section 4 covers the details of the
language, visiting the different constructs in the ALI
notation. Section 5 describes ALI structural and
behavioural semantics. Section 6 illustrates, through two
case studies, the ALI ADL. Evaluation of the case studies
and the analysis are then discussed in Section 7. Section 8
discusses the study limitations. Finally, Section 9
concludes the paper by summarizing the important points
and outlining future research directions.

2. LITERATURE REVIEW

Several ADLs [7] have been developed over the past two

decades. Existing literature is critically analysed in the next

subsection, with limitations discussed in the following

one.

2.1 Critical Appraisal of Existing Work
Since the early 90’s, a thread of research on formal
architecture description languages (ADLs) has evolved.
Many different ADLs have been proposed in the literature
for modelling architectures both within a particular
domain, and as general-purpose architecture modelling
notations.
All the classical ADLs (also considered first generation

ADLs [19]) compared and analysed by Medvidovic and
Taylor [8] were conceptually based on structural
architecture modelling features (components, connectors,
interfaces and architectural configuration). Another ADL
survey was conducted by Clements [9] in the same era.
Some of the second generation ADLs have been compared
in [20] but it covers a very limited number of characteristics
of the languages.
Reflecting on existing literature, it is interesting to note

that very few ADLs were originated in industry. Described
below are the three widely cited ones.
AADL [10] (Architecture Analysis & Design Language)

derived from the MetaH [21] ADL, is a SAE standard
formal modelling language for describing software and
hardware system architectures and uses a component-
based notation for the specification of task and
communication. It provides precise execution semantics
for system components, such as threads, processes,
memory, and buses. All external interaction points of a
component are defined as features. Data and events flow
through and across multiple components. The AADL
Behavioural annex describes nominal component behaviour
and the Error annex describes flows in the presence of
errors.
Koala [12] is a component oriented ADL based on key

concepts from Darwin [22]. Basically, it was designed with
the aim of achieving a strict separation between
component and configuration development in order to
reuse software components in many different
configurations for different product variants, while
controlling cost and complexity.
EAST-ADL [11] defines an approach for describing

automotive electronic systems through an information
model that captures engineering information in a
standardized form, provides separation of concerns and
embraces the de-facto architecture of automotive software
– AUTOSAR [23]. It covers a variety of aspects -functions,
requirements, variability, software components, hardware
components and communication.

Although these ADLs come from different industries,
they all relate to the embedded systems domain. AADL
and EAST-ADL emerged from the avionics and
automotive industries and are currently widely used in
their respective domains. Koala, on the other hand, was
developed within the consumer electronics domain,
though its use has not seen the same proliferation as the
previous two. These industrial ADLs, that are limited
(perhaps by design) to the embedded systems application
domain, would not be suitable to model cross-domain
applications (e.g. Cyber-Physical applications
encompassing embedded as well as Information systems).
On the academic side, a large number of ADLs have

been proposed, each characterised by slightly different
conceptual architectural elements; different syntax or
semantics; varying emphasis on a single view (structural
or behavioural) or operational domain such as embedded
system; or for specific analysis techniques.
Below are some of the ADLs developed in academia:

• ACME [24] is a general purpose ADL proposed as

an architectural interchange language.

• Darwin is a declarative ADL which is intended to be

a general purpose notation for specifying the

structure of distributed systems composed from

diverse component types using diverse interaction

mechanisms [22].

• UniCon [25] creates a useful, pragmatic and

extensible test-bed that would allow the

architectural abstractions used by practitioners

(such as pipes, filters, objects, clients and servers) to

be captured and reasoned about in a systematic

manner.

• xADL[26], an XML based architecture description

language, is defined as a set of XML schemas and

has been designed to use the standard XML

infrastructure and to be easily extensible using

standard XML-Schema extension mechanisms.

• C2 is a component- and message-based ADL which

simplifies the definition of architectures following

the Chiron-2 (“C2”) style [27].

• Rapide [28] is an event-based concurrent object-

oriented language specifically designed for

prototyping architectures of distributed systems.

• WRIGHT [29] is designed with an emphasis on

analysis of communication protocols and provides

formal semantics for an entire architectural

description by extending Communicating

Sequential Processes (CSP) [30]. Wright has been

extended, termed Dynamic WRIGHT [31], with the

ability to handle foreseen dynamic reconfiguration

aspects of architecture.

According to the ANSI/IEEE 1471-2000 standard,
structural and behavioural viewpoints are the two most
important and frequently used viewpoints for
architectural description. The specification of each
viewpoint with their entities is elucidated in [19, 32]. A
great challenge for an ADL is being able to describe static
and dynamic software architectures from structural and
behavioural perspectives.
ADLs like ACME [24], Aesop [33], Aspectual-ACME

[34], Darwin [22], Koala [12], MontiArcHV [35], UniCon [25],
Weaves [36] and xADL [26] were focused largely on the
structural concerns of software architecture. On the other
hand, some ADLs covered both behavioural and structural
specifications, including: AADL [10], ABC/ADL [37],
ADLARS [13], ADML [38], C2 [27], CBabel [39], EAST-
ADL [11], LEDA [40], MetaH [21], PrimitiveC [41],
PRISMA [42], Rapide [28], SOADL [43], xADL [26],
XYZ/ADL [44], vADL [45], WRIGHT [29, 31], Zeta [46], π-
ADL [19] and π-SPACE [47]. Only a few ADLs cover
behavioural aspects, such as Monterey Phoenix [48], yet,
these ADLs do not treat behaviour as a first class citizen
(tend to be merged with structural description).
Additionally, most of these languages (except [22, 29])

define structural elements using their own bespoke
notation. Some ADLs (such as AADL) have a core language
that contains constructs for representing structural and
behavioural aspects of the architecture. Some used
different processes to define the behavioural description.
For example, Rapide describes behaviour through
partially ordered event sets (or “posets”); Wright uses CSP
with minor extensions; LEDA, PRISMA, SOADL, vADL,
π-ADL and π-SPACE use the π-calculus.
Generally, the overall architectural structure of ADLs

focuses on the basic component, connector and system
paradigm. All ADLs that have been analysed so far treat
components as first class citizens, but in some languages
[10, 12, 13, 21, 22, 28, 35, 40, 45, 49-54] there is no notion of
connectors as first class citizens. Connectors are not even
defined. This does not mean that we cannot create a useful
language without first class connectors. There are viable
and potentially useful architectural languages that have
been created without them, like [10, 12, 22, 28]. [36, 38, 40,
45, 46, 51, 52, 55, 56] do not support an architectural
configuration as a first class element. Neither connector
nor architectural configuration was considered first class
citizens in [40, 45, 51, 52]. Both types of ADLs, the ones that
support connectors, and the ones that do not support
connectors, tend to impose architectural decisions on the
architect (by forcing the architect to have a connector or
not). The need here is for more flexibility to allow
architects to decide whether a connector is need or not

based on the system under development (rather than an
ADL restriction).
There are few second generation academic ADLs that

focus mainly on the behavioural modelling in a slightly
different way as compared to traditional ADLs. Monterey
Phoenix [48] is an ADL in which behaviour of the system
is defined as a set of events (event traces) with two basic
relations: precedence and inclusion. Different types of
patterns (such as alternative, optional, etc.) are defined in
the form of an event trace that occurs in a transaction. But
they lack the unique visual notation for each of these event
patterns. A schema is defined as a set of transactions that
includes all possible event traces. It can be tedious to
understand (especially visually) and sometimes becomes
more complicated when it is encapsulated with several
pattern types in a single schema, particularly, in the case of
large-scale and complex systems.
PrimitiveC-ADL [41] is a component-based language

that modifies the application architecture by subdividing
components into subsystems of static and dynamic
elements. A design pattern typically shows relationships
and interactions between components’ dynamic behaviour
parts. The decision policy proposes the use of a design pattern
and the application of the decision policy depends on a
scenario. The main problem in [41] and other ADLs [19, 45]
is that while they define the behaviour of the system within
a component or in their configuration, behavioural
elements are not explicitly defined. In other words, it
provides a single view of the system which is not suitable
for a large-scale industrial system where component
behaviour varies enormously. In that case, component
definition becomes complex and it is difficult to
differentiate static and dynamic parts.
AspectLEDA [57] is an ADL that provides behavioural

specification of the system using the UML use case and
activity diagrams by adopting the Aspect-Oriented (AO)
approach. Each use case diagram represents a component
that constitutes the system and its interactions are
expressed in the form of sequence diagrams. Subsequently,
a sequence diagram for every use case contains by default
an aspect component as each use case is extended with an
aspect. In other words, it describes the interactions among
components visually via a UML sequence diagram with its
dependency on an AO approach. Looking at this,
component interactions need to be more elaborative in a
sense by considering component interfaces (or ports) that
are involved in the interaction which would be helpful to
design complex systems.
Another major element that needs attention with

regards to ADLs, is the concept of variability. This is a very
important and critical area when it comes to its use in the
architectural description, especially in large-scale
industrial applications [13, 58]. Variability is the ability to
design for a planned set of changes for deployment in

specific contexts [17]. It facilitates the development of
different variants of a system architecture. Variability is
largely taken into account in the architecture and design
phase of software engineering [59]. Although there are
several ADLs where variability has been studied, variation
is specific to describing a set of related products as in a
software product line (SPL). Among the ADLs are: PL-
AspectualACME [60], ADLARS, EAADL [61], LightPL-
ACME [62], vADL, and DSOPL [63]. Other ADLs
that consider variability as a separate entity are:
MontiArcHV and ∆-MontiArc [64].
Software architecture typically plays a key role as a

bridge between requirements and implementation [4]. In
terms of ADLs, a challenge in bridging this gap is how to
trace feature (requirements) into the architecture
description particularly, into each architectural element.
So far, in the research literature, ADLARS and LightPL-
ACME are the only two ADLs that made an attempt to
capture the relationship between the system's
features and the architectural structures. Both
assumed a feature model as a precursor to the
architecture design process and were limited to specifying
a product line.
It is worth mentioning that there are few ADLs that try

to represent different aspects and domains in the
architecture by presenting it in the form of different
versions. Each focuses on a particular aspect/domain. For
instance, ACME has been extended to AspectualACME
with its descendant PL-AspectualACME, LightPL-ACME,
Cloud-ADL [65] and ADML; MontiArc [66] to MontiArcHV,
∆-MontiArc and MontiArcAutomaton [67].
There is a framework known as ByADL (Build Your

ADL) [68] that supports a software architecture team in
defining their own ADL by allowing software architects to
(i) extend existing ADLs with domain specificities, new
architectural views, or analysis aspects, (ii) integrate an
ADL with development processes and methodologies, and
(iii) customise an ADL. Basically, it takes the meta-model
of the ADL to be extended as an input.
Overall, a common pitfall for the discussed ADLs is

their limited ability to support large-scale real-life
applications. Some possible reasons behind this are
discussed in [14, 16]. Limitations are further discussed in
the next section.

2.2 Limitations within Existing ADLs
After critically analysing the existing ADL literature,
particularly around scalability and uptake (industrial
adoption), it was evident that only ADLs that were
originated in industry saw some level of industrial
adoption. This has been attributed to potential
misalignment between practitioner needs and the
academic focus [16].
Below, we summarise some of the main limitations

identified in ADLs that emerged from academic research,
but failed to achieve any notable industrial adoption:

L1: Limited support for variability management
To manage the size and complexity of industrial systems,
and with the current trend of delaying architectural
decisions as much as economically feasible (and the shift
of variability from hardware to software), it is valuable to
have the capability of modelling variability adequately in
the architecture design.

L2: No explicit mechanism to link requirements to
architectural artefacts
Requirements traceability has emerged as a main objective
in industry. Yet, without the support for capturing such
relationships at the architecture description stage, the link
between requirements and implementation becomes
difficult to establish and maintain. For example, although
AADL does not support modelling such relationships
natively, tools such as AADL’s OSATE provide such
mechanisms outside the core ADL.

L3: Application domain dependency
As can be seen from the previous section, many ADLs are
tailored for a particular application domain, with
embedded systems having the majority of such systems.
However, given the way today’s systems are evolving with
the rise of the Internet of Things (IoT), Cyber-Physical
Systems (CPS), and Smart Cities to name a few, for an ADL
to be capable of modelling a complete solution, it needs to
cross cut multiple application domains.

L4: Restrictive syntax
Many ADLs impose a strict syntax and design principles
on the architect (e.g. layered model, network model, etc.).
Building ADLs in such a way allows the ADL designer to
provide various automated architectural analysis.
However, from a practitioner perspective, the last thing
needed is to be forced to reason about the system in a
specific way.

L5: Lack of support for architectural artefact reusability
Existing ADLs have been designed to support the
abstraction of details; however, support for architectural
artefact reuse across multiple projects is lacking. While
architecture reuse has seen some success in specific
domains, e.g. the automotive domain using AADL [10], the
granularity of reuse remains relatively small. In order to
support large-scale reuse, ADLs would need to provide
mechanisms to capture some degree of variability in the
description of artefacts (and their interfaces) to enable
redeployment in multiple contexts.

L6: Overloaded architectural views
Given that one of the main benefits of having an overall
system architecture description is to use it as a
communication vehicle among the various stakeholders,
not all the information captured within the architecture
relate to every stakeholder. Accordingly, ADLs providing
one or two architectural views tend to suffer from
information overload. The importance of having multiple
architectural views has also been highlighted in [32].

L7: Focus on structure more than behavioural
architectural aspects
The structural description of a system changes less
frequently compared to the behavioural description
because systems can serve different objectives with the
same structural description. In other words, the structural
description can encapsulate more than one behavioural
description. Yet, it can be said that most ADLs still
overlook the importance of behavioural description. While
it is viewed as a major construct in some [10, 28], it is not
covered in many [25, 29, 36], with fewer ADLs supporting
the representation of behavioural architectural knowledge
graphically [69].
In the following sections, we discuss the ALI ADL [18],

which builds on initial work done in [70], to overcome
these limitations.

3. DESIGN PRINCIPLES

Analysing the practitioner’s needs as discussed in [16, 71],

and in the literature review as discussed in Section 2, our

goal is to design a language that is simple enough to be

usable in an industrial setting, yet formal enough to

adequately support automated analysis and other essential

functionalities (extensibility, evolution, traceability etc.),

though the latter is outside the scope of this paper.

To achieve this goal, we present the set of principles,

which were used to drive the development of the ALI

notation in order to address the limitations pointed out in

the previous section. Additionally, this section provides an

overview of ALI’s conceptual model.

3.1 Principles
Six general principles guided the creation of the ALI ADL:

P1: Variability management
Software architects need adequate support for dealing
with variability in designing their system architecture. As
stated in [72], it is essential for the architect to have suitable
methods for handling (i.e., representing, managing and
reasoning about) variability. From an architectural
description perspective, variability is a concern of multiple
stakeholders, and in turn affects other concerns. So,

variability needs to be treated in a similar way to other
essential functionalities of the architectural language.
Our proposed ALI ADL treats variability as a first class

citizen and manages it as an integral part of the language.
It provides the ability to manage variability not only in the
overall system architecture description but also in the
design of individual architectural elements – interfaces,
connectors and components. This is done with the help of
a simple if/else structure concept along with the keywords
“supported” and “unsupported”. Additionally, ALI
supports variability management in its behavioural
description using the same if/else structure (details in
Section 4.1.12).

P2: Requirement traceability
Tracing requirements from the problem space
(specification) into the solution space (implementation)
provides a valuable tool for architects to help validate the
produced system against its set of objectives. However, for
such an end-to-end traceability to work, there needs to be
continuity in capturing relevant information at all
development stages, including architecture.
ALI supports requirements traceability by supporting

the linkage of end-user features (see Section 4.1.2) directly
to architectural elements (components, connectors,
patterns etc.) using first order logic (to allow for complex
dependencies).

Additionally, ALI supports ‘conditioning’ the

behavioural aspects of the system to external parameters

(see Section 4.1.10). Such conditions can also be used to

change the behaviour of the system given various external

requirements.

P3: Cross application domain modelling
With the emergence of new paradigms such as the Internet
of Things (IoT) and Cyber-Physical Systems (CPS),
architecture descriptions are now faced with the challenge
of encompassing multiple application domains. For
example, if we consider the Smart Cities scenario, systems
in this application domain will entail the applications
running sensor platforms (IoT devices), communication
gateways, databases (BigData infrastructure), and
Information Systems that deliver end-user services. While
the architecture of the sensor systems can be modelled
using embedded-system oriented ADLs, these ADLs do
not necessarily lend themselves to representing the
architecture of Information Systems. Thus, there is a need
for new generation ADLs that are capable of modelling
system across traditional design boundaries.
ALI supports cross-application domain modelling by

introducing flexibility in the notation design at different
levels. For example, ALI allows for the creation of custom
interface types using a dedicated notation. The case studies

discussed show ‘port’ like interfaces, as well as ‘WSDL’
interfaces.

P4: Balance formality and flexibility to better support the
design process
During the early stages of the design process, architects
tend to sketch things at a very high level, using mere lines
and boxes. At that stage, for example, it is difficult to start
talking about the details of interfaces between components
or what meta information to capture about each
architectural element.
As the system development process progresses, and as

more details are captured about the system, specific details
in relation to architectural elements can then be discussed
and modelled. Thus, an ADL needs to allow some flexibly
at the initial stages of the design process, and at the same
time, provide the required formality when details are
available.
For example, ALI achieves this balance between

formality and flexibility by allowing architects to work
with undefined interface types. When such informal
interfaces are used, no automated analysis would be
possible. Once the design is mature, and interface types are
created, ALI could then provide an array of verification
checks (as specified in the interface type description).

P5: Increase architectural artefact reusability
Architectural artefacts tend to be tailored to particular
system requirements. Accordingly, very few ADLs discuss
the concept of artefact reusability across multiple systems.
Yet, in real-life, it is more often than not we are faced with
similar architectural challenges that could be solved using
architectural artefacts we have in existing projects. ALI
supports the concept of large-grain reusability by allowing
architectural artefacts to be made configurable based on
selected sets of features.
For example, components in ALI can be customised

based on which features are selected for a particular
component, and the values of these features. Similarly,
connectors and interfaces can also be parameterised using
feature sets. By mapping the feature set of the source
domain (where the component is taken from) and the
feature set of the destination domain (where the
component is going to be deployed), the component can
adapt to the new environment (further details in Section
4.1.6).

P6: Multiple architectural views
As systems increase in size and complexity, and as more
and more stakeholders take interest in system
development (product managers, architects, end-users ‘in
the loop’, etc.), the information captured within an
architecture description is expanding. Accordingly, in

order to minimise information overload, and sacrifice
abstraction for completeness, the need for multiple
architectural views catering for different stakeholders is
becoming an important feature of an ADL.
ALI is designed with the concept of multiple

architectural views, where each view corresponds to a
stakeholder (or stakeholder group) and addresses a
different set of concerns (see Section 4.1 for textual and
Section 4.2 for graphical descriptions).

3.2 Conceptual Model
A conceptual model is a high-level description of how a
system is organized and operates [73]. The aim of a
conceptual model is to express the meaning of terms and
concepts used by domain experts and to find the correct
relationships between different concepts. Several notations
[74-77] exist that are used to describe the conceptual
model. Among those, UML (Unified Modelling Language)
[74] is a widely used and comprehensive notation (ISO/IEC
19501).
Fig. 1 shows the conceptual model of ALI. The reference

architecture represents the overall system description. The
reference architecture is made up of arrangements and
viewpoints. Arrangements represent the structural (static)
description of the system and are composed of components

and connectors, which communicate through interfaces.
Viewpoints are sets of transaction domains that pertain

to a common concern (e.g. car ignition system).
Transaction domains represent the behavioural (dynamic)
aspects of the system, and are composed of sets of
transactions that together serve a particular system feature
(e.g. user/key validation). Transactions are expressed in
terms of sets of events that achieve a system functionality
(e.g. key authorisation). And events are the basic
communication mechanism between components (e.g. key
code update event).
Conditions are parameters that represent external (to the

system) environmental aspects that could impact the
system behaviour. The architecture description is
parameterised using these conditions, which can be either
true or false. Different combinations of conditions and
their values, called scenarios, can be used to test and adapt
the behaviour of the system to various contexts.
Finally, a product architecture can be derived from a

reference architecture using a product configuration.
Product configurations represent desired features, and their
values, for a specific product in a product line.
In the next section, the details of these constructs, along

with the notation used to describe them, are discussed.

Fig. 1. ALI conceptual model

Interface

Connector

Event

Component

Product	
Configuration

Transaction

Transaction	
Domain

Product	
Architecture

Reference	
Architecture

Scenario

Feature Condition

1..*

1

1..*

0..*

1..*

1..*

1..*

1

1

1

applied

appliedparameterise

expressed	by

1

0..*

has

1..*

1..*

used	by

0..*

1..*

consist	of

Arrangement

1

has

1

1..*

1

0..*

represents

11

composed	of

composed	of

Viewpoint
1

1..*

1

1..*

contains

1

1..*

1

2..*

consist	of		

consist	of

sent/received	by

4. CONSTRUCTS AND NOTATIONS

Woods and Bashroush [71] observed that architectural
languages constructed with complex or obscure syntactical
notations are rarely used correctly. Generally, practitioners
avoid adopting complex languages into their development
process especially in large scale systems where it becomes
tedious to handle and understand. Malavolta et al. [16]
conducted an industrial survey which shows that
architectural languages need to be simple and intuitive
enough to communicate the right message to the
stakeholders involved in the architecting phase along with
some formality in order to drive analysis and other
automation tasks. The ALI notation is designed
accordingly, where the syntax (graphical and textual) is
kept simple and flexible, yet formal enough to conduct
automated analysis.
In the following sections, we discuss the main

constructs of the ALI notation. Where applicable, we
demonstrate the concepts using parts of the Asset
Management System (AMS). AMS is used to manage
investment portfolios of financial instruments such as
equities and commodities (see Section 6.1 for further
details).

4.1 ALI Textual Notation
The ALI textual notation is designed based on the
principles defined in Section 3.1. The textual notation is
made up of 14 main constructs as listed in Table 1.

These constructs are discussed in the following
sections.

4.1.1 Meta Types
The meta types section provides a formal syntax for

capturing meta-information of the architectural element

(e.g. components, connectors, etc.). A meta type is defined

by the information it encompasses. The information is

stored in fields, where each field has a name (tag) and a

data type (text, number, etc.). The following example

defines a meta type called	Meta_ServerEquity:		

 meta type Meta_ServerEquity {

 tag creatorID, intention: text;

 tag cost, version*: number;

 tag last_updated: date;

 }

In this example, “meta type” is a keyword which is

used to start a meta type definition. Meta_ServerEquity is

the name of the meta type being specified. Each meta type

contains a set of tags each of which is either textual,

numeric, date, enumeration or character. Five tags are

defined in the above example: two textual, two numeric

and one date. The asterisk “*” on the version tag indicates

that it is an optional tag.

TABLE 1

 ALI CONSTRUCTS

Construct Description

Meta types Provide an extensible mechanism for capturing architectural meta-information

Features The system features are catalogued

Interface templates Specifies a dedicated notation for creating categories of interface types

Interface types Architectural interfaces are defined

Connector types Architectural connectors are defined

Component types Architectural components are defined

Pattern templates Reusable architectural design patterns are defined

Product configurations Provides the feature combinations that characterise individual products

Events The events that flows within a system are defined

Conditions The system behavioural conditions (architecture parameterisation) are catalogued

Scenarios Behavioural scenarios are defined (sets of conditions to represent a runtime scenario)

Transaction domains Provides the behavioural interactions within a particular system domain

Viewpoints Different behavioural viewpoints are defined

System The overall system architecture is described

Once meta types are specified, meta objects conforming

to these types can be created and attached to architectural

elements throughout the architectural description. These

meta objects provide an area for appending additional

information related to these elements.

Below is an example of a meta object that conforms to

the meta type defined in the example above.

 meta: Meta_ServerEquity {

 creatorID: “Martin005”;

 intention: “Acts as a mediator to manage

 equity portfolio”;

 cost: 5,000;

 version: 1.3;

 last_updated: 20-02-2017;

 }

A meta object could also be a combination of more than

one meta type. To enhance the language flexibility, it is also

possible to create meta objects that do not conform to any

meta type. However, little automated analysis can be

performed on such informally described data. The reason

for allowing objects with no type is to enable architects to

sketch what they initially think could be relevant meta-

information, then, once confirmed, they create the

appropriate meta types to ensure conformance.

The formal specification of meta information allows for

easier CASE tool development to harness these meta

objects and conduct automated analyses (e.g. cost/benefit

analysis, project timing/scheduling, etc. depending on

what type of meta information is available). Other meta

information could include: design decisions, component

compatibility, etc. which when extracted and formatted

using proper CASE tools, allow automated architecture

documentation to be achieved on-the-fly.

In general, it is expected that the meta types will be

created once and used repeatedly across the different

systems developed by the same enterprise. In order to

make sure that critical information is always provided

within an architecture description, a project management

team (or any other stakeholder) may first identify the

standard set of information required (tags), and then

provide it to architects for conformance. The flexibility in

the syntax also allows the architects to augment this

information with fields (tags) that they may want to use

internally within the architecture team.

4.1.2 Features
The feature description notation provides a catalogue of
the system features (mandatory, optional or alternative)
used within the system. The feature definition comprises
of:

• alternative names: In many cases, different teams

within the development process address a feature

with different names. This sub-section of the feature

definition keeps track of the different names (if any)

that are used to address the same feature. This

property will keep track of the system features and

reduce redundancy.

• parameters: A feature can carry different types of

parameters -textual, numerical and Boolean.

Though, not all features would be parameterised.

Below is an example of how features are defined in ALI:

features {

 Equity: {

 alternative names: {

 Designer.FI1, Developer.Ey,

 Evaluator.F11;

 }

 parameters: {

 {Equity_Type = text};

 }

 }

 Equity_Derivative: {

 alternative names: {

 Designer.ID1, Developer.SD,

 Evaluator.F14;

 }

 parameters: {

 {Derivative_Type = text,

 Premium_Period = text,

 OTC = boolean};

 }

 }

 // similarly other features can be defined

 }

In the example above, Equity_Derivative was defined
showing that it is referred to as ID1 by the design team, SD
by the development team, and F14 by the evaluation team.
The feature encompasses three parameters, two textual
and one Boolean.
In ALI, system features are defined in a stand-alone

catalogue as shown above. The catalogue serves as an
adapter between any feature modelling technique used
and the architecture description, making ALI independent
of any particular feature modelling technique.

4.1.3 Interface Templates
The interface template notation provides a framework that

allows the description of multiple interface type categories

within a system description. The idea behind this is to

create a set of common interface templates (e.g. WSDL,

RMI, etc.) needed within an application domain once, and

reuse them in different projects. These interface templates

can be used as a specification in defining the interface types

of the system, either explicitly (as explained in the next

section) or in the component type definition (Section 4.1.6).

This template specification can also be reused outside the

defined system depending upon the design requirement as

per principle P5 in Section 3.1.

The interface template definition is divided into three

main sections:

• provider syntax definition: where the syntax of the

provider interface is specified using a subset of the

JavaCC [78] notation. JavaCC (Java Compiler

Compiler) is an open source notation that allows the
definition of grammars using EBNF style syntax

[79]. The JavaCC specification can then be compiled

to produce a parser for a particular interface

definition.

• consumer syntax definition: where the syntax of the

consumer interface is specified using a subset of the

JavaCC notation.

• constraints: where the interface connectivity

constraints are specified. These include:

- Should match: here the terms (identified in the

below syntax definition sections using the JavaCC

notation) that should match between two

interfaces to be considered compatible (allowed to

bind) are identified.

- Binding: comprises of three different fields: 1)
multiple -a Boolean value that states whether
multiple binding is allowed on this interface; 2)
data size -range of the data that can pass through
this interface by providing the maximum and
minimum values; and 3) max connections –
maximum number of simultaneous connections
allowed on the interface.
- Factory: This is a Boolean value that states whether
the interface is a factory or not. A factory interface
means that when a connection request is received
on this interface, a new instance is created to
handle that particular request while the factory
interface continues to listen to new incoming
requests. Example: server socket interfaces in Java
are factories. On the other hand, C++ sockets do
not support factory functionality by default.
- Persistent: This is a Boolean value that indicates a
persistent interface (the internal data of the
interface component is kept unchanged after the
current connection has ended) when set to true
and indicates a transient interface (internal data is
reset to initial values when the current connection
is terminated) when set to false.

An interface template description begins with the

keyword “interface template” followed by the interface

template name such as MethodInterface as in the example

below:

interface template MethodInterface {

 provider syntax definition: {

 "Provider"":"

 "{"

 {"function" <FUNCTION_NAME>

 "{"

 "impLanguage" ":" <LANGUAGE_NAME> ";"

 "invocation" ":" <INVOCATION> ";"

 "parameterlist" ":" "("

 [<PARAMETER_TYPE> {","

 <PARAMETER_TYPE}] ")" ";"

 "return_type" ":" <RETURN_TYPE> ";"

 "}" }

 "}"

 }

 consumer syntax definition: {

 "Consumer"":"

 "{"

 “Call” “:” <INVOCATION> “(“

 [<PARAMETER_TYPE> {","

 <PARAMETER_TYPE}] ”)” “;”

 "}"

 }

 constraints: {

 should match: {INVOCATION_NAME =

 .INVOCATION_NAME,PARAMETER_TYPE}

 binding: {

 multiple: true;

 data_size: [50KB, 500MB];

 max_connections: 5;

 }

 factory: false;

 persistent: false;

 }

 }

}

For further details about the notation used for
specifying the interface template syntax, please refer to
JavaCC [78].

It is important to clarify here that the interface template

definition is not meant to be read by humans, but rather

created once and then read by CASE tools that would

verify the interface descriptions and connections made

throughout the architecture definition.

4.1.4 Interface Types
The interface type notation provides a set of pre-defined
interface types that are created in conformance to the
definition of an interface template, described in the previous
section. Interface types can be (re)used in the design of
architectural elements (components and connectors)
throughout the system description (design principle P5).
An interface type definition begins with the keyword

“interface type” as in the example below:
interface type {

 ArithmeticOperation: MethodInterface {

 Provider: {

 function Addition

 {

 impLanguage: Java;

 invocation: add;

 parameterlist: (int);

 return_type: void;

 }

 function Subtraction {…}

 function Multiplication {…}

 }

 Consumer: {

 Call: getValue (long_int);

 }

}

 AverageOperation: MethodInterface {

 Provider: {

 function Average

 {

 impLanguage: Java;

 invocation: average;

 parameterlist: (int);

 return_type: void;

 }

 }

 Consumer: {//nothing consumed}

 }

 NumericOperation: MethodInterface {

 Provider: {

 function GetValue

 {

 impLanguage: Java;

 invocation: getValue;

 parameterlist: (void);

 return_type: long_int;

 }

 }

 Consumer: {

 Call: add (long_int);

 Call: subtract (long_int);

 Call: multiply (long_int);

 Call: average (long_int);

 }

 }

 … //similarly other interface types can be
defined

}

Each interface type is defined by a unique name
followed by the interface template name, to which it
conforms. In the example above, ArithmeticOperation
performs basic mathematical operations to calculate the
portfolio value based on the value it consumed and
AverageOperation calculates the portfolio value by using
the average formula strategy. The interface type
NumericOperation consumes values returned from these
interface types and provides them to the other interface.
They all conform to the interface template
MethodInterface defined in the previous section. We can
also define other interface types that conform to other
interface templates such as WSDL, RMI, etc.

4.1.5 Connector Types
Like many other ADLs, such as ACME [24], Aesop [33],

CBabel [39], EAST-ADL [11], UniCon [25], WRIGHT [31]

and π-ADL [19], to name a few, connectors are considered

first class citizens in ALI.

A connector type definition begins with the keyword

“connector type” followed by the connector type name and

is divided into three sections.

connector type Calculator_Equity

 {

 features: {

 MTM_Price_Method: “Share prices matched

 with market price”,

 Company_Price_Method: “Unlisted share price

 of an individual company”,

 Weighted_Average_Method:

 “Portfolio Valuation is done on the

 basis of average share price”;

 }

 interfaces: {

 valueport1: ValueOperation;

 valueport2: ArithmeticOperation;

 valueport3: AverageOperation;

 valueport4: NumericOperation;

 }

 layout: {

 connect valueport4 and valueport1;

 if (supported(MTM_Price_Method ||

 Company_Price_Method))

 {connect valueport1 to valueport2;

 connect valueport2 to valueport4;}

else if (supported(Weighted_Average_Method))

 connect valueport3 to valueport4;

 }

 }

• features: a set of optional/alternative features used to

parameterise a connector type. By changing feature

values, a connector can be reconfigured to be

deployed in different products (based on feature

availability and parameter values). The

configuration is achieved using if/else structures

and the keywords “supported/unsupported” to

link features to the connector definition.

• interfaces: where the connector interfaces are

defined along with their interface types. These

resemble the input/output ports of the connector.

Basically, interfaces are instances of interface types

that are defined in accordance to interface templates.

• layout: The layout section describes the internal

configuration (structure/arrangement) of the

connector. It demonstrates how the connector

interfaces are connected internally, that is, how the

traffic (information) travels internally from one

interface to another. This syntax introduces a high

level of configurability to the connector definition

which provides better support for defining

configurable product and product line

architectures. Two types of configurations are

allowed between connector interfaces, namely:

- uni-directional connections (to): which specify that

the data from one interface goes to another

interface. This is done using the keywords:

“connect” and “to”. Example: connect valueport1

to valueport2 in Calculator_Equity outputs the

data on the valueport1 interface to the valueport2

interface.

- bi-directional connection (and): which specify that

the data can travel in both directions between two

interfaces. This is done using the keywords:

“connect” and “and”. Example: connect

valueport4 and valueport1 in

Calculator_Equity outputs the data on the

valueport4 interface to the valueport1 interface

and vice versa.

Additionally, the keyword “all” can be used to connect
a connector interface to all other interfaces of the connector
using a bi-directional or unidirectional communication.
For example, “connect all to all” can be used to create
bi-directional connections among all ports. We can also

have “connect valueport1 to all” which makes the input
on interface valueport1 available as output on all other
interfaces of the connector.

Lastly, meta objects can be attached to connector types

by simply defining the meta object (as explained in Section

4.1.1) inside the connector type definition (anywhere

between the start and end brackets.

4.1.6 Component Types
The component type definition is divided into three main
sections:

• features: a set of optional/alternative features that

make up a component type. The purpose and

definition of this section is exactly similar to the

concept of features defined in the connector type (see

Section 4.1.5). That is, it provides the capability to

reuse components in multiple products and systems

by varying feature values (product configurations).

• interfaces: which specify the different interfaces used

by the component. The interfaces section is divided

into two sections, definition where new interfaces

can be created from scratch; and implements where

already defined interfaces can be reused (interfaces

implemented here are instances of interface types).

• sub-system: where the internal structure (sub-

system) of the component is described. The sub-

system section is divided into three sections:

- components: where the different sub-components

included within the component are defined.

- connectors: where the different connectors used in

connecting sub-components are defined.

- arrangement: where the way in which sub-

components are connected is described. To allow

flexibility, ALI provides three different methods

that can be used to connect components:

a. Using connectors: where a connector mediates

the connection between two or more

components. This is done using the

keywords: “connect”.

Example: connect component.interface1
with connector.interface1.

b. Direct binding: where component interfaces

are bound directly without the use of a

connector. This is done using the keywords:

“bind”. For example: bind
component1.interface1 with
component2.interface1.

c. Using patterns: where predefined connection

patterns can be used to connect a set of

components according to a selected

architectural pattern (see Section 4.1.7).

For example, a component type description for a
portfolio equity valuator (which calculates the portfolio
value based on the valuation method requested by the
fund manager) begins with the keyword “component
type” followed by the component type name
Portfolio_EquityValuator as shown in the example
below.

component type Portfolio_EquityValuator

 {

 meta: Meta_Valuator, Meta_ShareTradeData {

 /* demonstrates meta object comprises of two

 meta types */

 acceptance_value: “any numerical value”;

 value_approximation: “2 significant figures”;

 curreny_acceptance: “all top international

 trading currencies that exists in stock

 exchange”;

 last_request: 18-01-2017;

 intention: “to calculate the portfolio value

 on the basis of current business day

 trading”;

 }

 features: {

 E_Share: “Type of equity in financial

 instruments”,

 MTM_Rate_Method: “Share prices matched with

 market price”,

 Company_Rate_Method: “Unlisted share price of

 an individual company”,

 Weighted_Average_Value_Method:

 “Portfolio Valuation is done on the

 basis of average share price”;

 }

 interfaces: {

 definition: {

 //No need to define any interfaces

 }

 implements:{

 // MethodInterface interface template

 NumercialValue: NumericOperation;

 if (supported (MTM_Rate_Method ||

 Company_Rate_Method))

 //WSDL interface template

 PriceStatus: ValueData;

 if (supported

 (Weighted_Average_Value_Method))

 CalculationMessage: PortfolioMessenger;

 }

 } //end of interfaces

 sub-system: {

 components {

 PValueProcessor<false, false, false, true,

 true, true>: Portfolio_Processor;

 if (supported(E_Share)) {

 if (supported(MTM_Rate_Method)&&

 unsupported(Weighted_Average_Value_Method))

 MTMValuator<true, false, false, false>:

 EquityCalculator;

 else if (supported(Company_Rate_Method))

 CRValuator<false, true, false, false>:

 EquityCalculator;

 else

 WeightedValuator<false, false, true, false>:

 EquityCalculator;

 }

 }

 connectors {

 HTTP_EMarket<MTM_Rate_Method, Company_Rate_

 Method, false>: HTTP_EquityValuator;

 if (supported(MTM_Rate_Method) &&

 unsupported(Weighted_Average_Value_Method))

 Cal_MTM<true, false, false>:

 Calculator_Equity;

 else if (supported(Company_Rate_Method))

 Cal_CR<false, true, false>:

 Calculator_Equity;

 else {

 HTTP_VProcessor<true, false>: HTTP_Equity;

 HTTP_CalWAV<false, false, true>:

 HTTP_EquityCalculator;

 Cal_WAV<false, false, true>:

 Calculator_Equity;}

 }

 arrangement {

 // connecting components using connectors

 connect PValueProcessor.CalculationMessage with
 HTTP_VProcessor.msgport2;

 connect my.CalculationMessage with

 HTTP_VProcessor.msgport1;

 if (supported (MTM_Rate_Method ||

 Company_Rate_Method)){

 connect PValueProcessor.PriceStatus with
 HTTP_EMarket.valueport1;

 connect my.PriceStatus with

 HTTP_EMarket.valueport2;}

 if (supported(MTM_Rate_Method) &&

 unsupported(Weighted_Average_Value_Method)){

 connect PValueProcessor.CalculationValue with

 Cal_MTM.valueport1;

 connect MTMValuator.OperationalValue with

 Cal_MTM.valueport2;

 connect MTMValuator.OperationalValue with

 Cal_MTM.valueport2;

 connect my.NumericalValue with

 Cal_MTM.valueport4;}

 else if (supported(Company_Rate_Method)) {

 connect PValueProcessor.CalculationValue with

 Cal_CR.valueport1;

 connect CRValuator.OperationalValue with

 Cal_CR.valueport2;

 connect CRValuator.OperationalValue with

 Cal_CR.valueport2;

 connect my.NumericalValue with

 Cal_CR.valueport4;}

 else {

 connect PValueProcessor.AverageRequest with

 HTTP_CalWAV.messageport1;

 connect WeightedValuator.AverageMessage with

 HTTP_CalWAV.messageport2;

 connect WeightedValuator.AverageValue with

 Cal_WAV.valueport3;

 connect my.NumericalValue with

 Cal_WAV.valueport4;}

 } // end of arrangement section

 } // end of sub-system section

} // end of component type

The example above shows how the component

configuration can change depending on what features are

supported. The keyword “my” is used to reference the

component’s own interfaces as opposed to sub-component

interfaces (similar to the use of “this” in some

programming languages).

4.1.7 Pattern Templates
The pattern template notation in ALI allows the definition

and use of architectural patterns. They are first defined and

then (re)used throughout the architecture by calling the

pattern template needed. The pattern template definition

takes the interfaces to be connected as an argument and is

defined in a similar way to the definition of functions

(methods) in programming languages. A pattern template

definition comprises of:

• pattern name: a unique pattern name.

• arguments: a set of interfaces to be connected. Single

interface and/or arrays of interfaces can be passed

as arguments. The minimum and maximum

number of interfaces passed can be specified as

arguments for arrays of interfaces.

• definition: the description of how the interfaces are

to be connected (the pattern). The syntactical

notation used for defining patterns is very simple

and provides support for:

- connecting interfaces: uses syntax similar to that

used in the connections section of the connector

type definition (discussed in Section 4.1.5).

- defining loops: to allow for connecting arrays of

interfaces. The syntax used here is similar to the

syntax used in most programming languages for

creating for loops. The point to be noted is that the

arrays of interfaces start at index 1 and not at 0

(like in most programming languages).

Below is an example that defines	Client_Server	
pattern:

pattern templates:

{

 Client_Server (server : MethodInterface,

 clients [1…N] : MethodInterface)

 {

 for (i = 1 ; i <= N ; i++)

 connect clients[i] and server;

 }

}

In this example, the Client_Server pattern takes as an

argument one interface server of template

MethodInterface, and an array of interfaces called clients

(with [1..N] meaning at least one client interface) of

template MethodInterface. The pattern is defined as: for

all N clients interfaces, create a bi-directional connection

with the server interface (see Section 4.1.5 on the use of the

keywords: “connect”, “and”, and “to” for connecting

interfaces).

4.1.8 Product Configurations
A product configuration is a set of features, along with their
values, representing a particular product configuration
(this is also called product feature set in Software Product
Line Engineering). Product configurations can be used to
generate specific products from the parameterised
reference architecture. Below is an example product
configuration for an Equity_Share_Derivative product.

product configurations {

 Equity_Share_Derivative: {

 Equity {Equity_Type = long};

 Equity_Share = true;

 Equity_Derivative {Derivative_Type = options,

 Premium_Period = 1year,

 OTC = false};

 Share_Sector {Holdings = 100,

 Total_Share_Value = 1,550,

 Share_Sector_Category =

 (banking, pharmaceutical)};

 }

 … // similarly other products can be defined

}

4.1.9 Events
Events are abstractions of actions performed during the

execution of the system, such as a message transmission

from one component to another. In ALI, events are defined

using a unique name, along with the interface templates

they travel to and from. Below is an example of how to

define events:

events {

 ValuationRequest: <WSDL, WSDL>;

 RequestValuationDetails: <MethodInterface,

 MethodInterface>;

 CalculateValue: <WSDL, WSDL>;

 …

 }

In the above example, ValuationRequest is an event
that flows between two WSDL interfaces. It is also possible
for events to travel from, and to, more than one interface
template. In this case, interface templates are listed within
parentheses and separated by commas as shown in the
example below.

Inform: <(MethodInterface, WSDL),

 (MethodInterface, WSDL)>;

4.1.10 Conditions
Conditions are used to parameterise the system description
to make it adapt to certain environmental conditions.
Every set of conditions (a scenario) can then be used to
simulate a certain environmental situation (e.g. failure,
market changes, etc.). These can be used to test the way the
architecture definition can adapt to different operational
changes (design principle P2). Conditions are defined with
a unique name along with a simple textual description.
Below is an example definition of four different conditions.

conditions {

 PriceChanged: “Change in share price”;

 PriceUnchanged: “No change in share price”;

 ShareTrade: “Buying/Selling of shares”;

 Exchange_Traded: “Shares listed in stock

 exchange”;

 …

 }

4.1.11 Scenarios
Scenarios are basically collections of different conditions,
along with their values, which together can simulate a
certain operational scenario. Below is an example scenario
description.

scenarios {

 P.RevaluatingPC: {

 Description: “Revaluating portfolio due to

 change in share price with no trading”;

 Parameterisation: {

 PriceChanged = true;

 PriceUnchanged = false;

 ShareTrade = false;

 }

 }

 … // similarly other scenarios can be defined.

 }

In the above example, scenario P.RevaluatingPC
demonstrates the portfolio revaluation when there is a
change in share price only. It encapsulates three conditions
(defined in the previous section) in which one is true and
two are false. Scenarios can be very useful when
comparing different architectural configurations.
Scenarios serve as switches, and as such, do not support
parametrisation (which can be achieved in other parts of
the notation, such as transaction domains).

4.1.12 Transaction Domains
Transaction domains represent the behavioural aspects of
the system. Each transaction domain comprises a set of
components and connectors within a system that work
together to achieve some system functionality (e.g.
portfolio evaluation). Within a transaction domain, various
transactions are defined, each describing a particular
system function or feature (e.g. valuation processing, MTM
valuation, etc.). Transactions are defined in terms of event
flows.
The transaction domain definition is divided into two

main sections, contents which lists the components and
connectors included in a transaction domain; and
transactions which describes the transactions encompassed
in the transaction domain. Each transaction is defined in
terms of the events that flow to achieve the transaction, and
the description of the event flow (interactions). Table 2
summarises the textual notation used in defining
interactions within a transaction.

TABLE 2

 ALI TRANSACTION DOMAIN TEXTUAL NOTATION

Notation Meaning

Component.Interface Component name with interface

name

* Component External component (or system)

Event Event name

Event/Connector Event traveling on connector

TRANSACTION Transaction name

sends

receives

from

to

Keywords describing the path of an

event

if/else Alternation (OR Fork)

| Alternation (OR Join)

, Concurrency (AND)

[…]
Multiple simultaneous interactions

(concurrency)

(…) Grouping of events

; Interaction termination

Below is an excerpt of the PortfolioValuation

transaction domain definition.
transaction domain PortfolioValuation

 {

 /* Meta objects can be attached as discussed

 earlier in Section 4.1.1 */

 contents:

 {

 /*provides the list of components and

 connectors involved in this transaction

 domain*/

 components: {Portfolio_GUI, UI_Server,

 EquityDb, Job_Processor, Value_Processor,

 Market_Share_Data, Equity_Market_Data,

 *Stock_Market, *Company_Financial_Account,

 UI_Price_Server,Portfolio_Value_Calculator,

 *P/L_System}

 connectors: {HTTP_GUI, HTTP_Status,

 HTTP_Processor, HTTP_ExMRate,

 HTTP_ExCRate, HTTP_CRate, HTTP_Price,

 HTTP_External, Cal_Processor,

 DB_VProcessor}

 }

transactions:

 {

 VALUATIONREQUEST: {…}

 VALUATIONUPDATE: {…}

 MTMVALUATION: {…}

 UNLISTEDVALUATION:

 {

 events: {RequestPrice, CurrentPrice}

 interactions:

 {

 *Company_Financial_Account receives

 RequestPrice/HTTP_ExCRate;

 *Company_Financial_Account sends

 CurrentPrice/HTTP_ExCRate to

 UI_Price_Server.PriceStatus;

 UI_Price_Server.PriceStatus sends

 CurrentPrice/HTTP_CRate;

 }

 }

 REVALUATION: {…}

 VALUATIONPROCESS:

 {

 events: {Inform, RequestPriceList,

 RequestPrice, CurrentPrice}

 interactions:

 {

 if (supported(Equity_Share)) {

 if (PriceUnchanged)

 VALUATIONUPDATE receives

 Inform/ODBC_Processor from

 VALUATIONREQUEST;

 else {

 if (supported(MarkToMarket_Method

 && (Exchange_Traded))

 MTMVALUATION receives

 RequestPriceList /HTTP_Processor

 from VALUATIONREQUEST;

 else

 UNLISTEDVALUATION receives

 RequestPrice/HTTP_ExCRate from

 VALUATIONREQUEST;}

 }

[REVALUATION receives

 CurrentPrice/HTTP_ExMRate from

 MTMVALUATION |

 REVALUATION receives

 CurrentPrice/HTTP_CRate from

 UNLISTEDVALUATION];

 } //end of interaction

 } //end of transaction

 } //end of transactions section

 } } //end of transaction domain

Given the way interaction domains represent event
flows, graphical representations (discussed in Section 4.2)
tend to work much better in expressing complex flows.

4.1.13 Viewpoints
Viewpoints in ALI represent collections of transaction
domains that relate to a particular stakeholder. A
viewpoint definition includes: a unique name, description
and a list of related transaction domains. Below is an
example viewpoint definition for PortfolioInvestment.

viewpoints {

 PortfolioInvestment: {

 Description: “Investment made into the

 Portfolio”;

 Transaction Domain: {PortfolioValuation,

 PortfolioRebalance,

 PortfolioStrategy};

 }

 … //similarly other viewpoints can be defined

 }

4.1.14 System
Finally, the system notation describes the overall product
(or product line) architecture. It uses very similar notation
to the component description section with some minor
changes. For example, the system description provides
support (using asterisk “*”) for linking components to
external (to the system) components or systems.
Additionally, a system description includes a listing of
viewpoints. Below is an example system description.

system {

components {

 Portfolio_GUI<>: PortfolioAMS_GUI;

 UI_Server<false, false, false>:

 Portfolio_EquityUIServer;

 Job_Processor<false, false, false, false,

 false, false>: Portfolio_Processor;

 EquityDb<true, false, false, false, false,

 false>: AMS_EquityDb;

 if(supported(Equity_Share)){

 // portfolio valuation

 Value_Processor<false, false, false, true,

 true, false>: Portfolio_Processor;

 if(supported(MarkToMarket_Method) &&

 unsupported(Share_Company_Method)){

 Market_Share_Data<false, false, false, true,

 false, false>: AMS_EquityDb;

 *Stock_Market;}

 else {

 *Company_Financial_Account;

 UI_Price_Server<false, false, true>:

 Portfolio_EquityUIServer;}

 }

 Equity_Market_Data<false, false, false, true,

 true, false>: AMS_EquityDb;

 Portfolio_Value_Calculator<true,

 MarkToMarket_Method, Share_Company_Method,

 false>: Portfolio_EquityValuator;

 *P/L_System;

}

connectors {

 HTTP_GUI<true, false, false, false>:

 HTTP_AMSUserInterface;

 HTTP_Processor<true, false>: HTTP_Equity;

 DB_VProcessor<false, false>:

 ODBC_EquityPortfolio;

 HTTP_Status<false, false, false, false>:

 HTTP_AMSUserInterface;

 if(supported(Equity_Share)){

 if(supported(MarkToMarket_Method))

 HTTP_ExMRate<false, true, false>:

 HTTP_ExternalSystem;

 if(supported(Share_Company_Method)){

 HTTP_ExCRate<false, false, true>:

 HTTP_ExternalSystem;

 HTTP_CRate<false, true, false>:

 HTTP_EquityValuator;}

 HTTP_Price<true, true, false>:

 HTTP_EquityValuator;

 Cal_Processor<false, false, false>:

 Calculator_Equity;

 HTTP_External<false, false, false>:

 HTTP_ExternalSystem;}

 }

}

 arrangement {

 //similar to component type arrangement

 /* an snippet below demonstrates some of the

 connections related to revaluation

 transaction that have been presented

 visually in Figure 2 */

 if(supported(Equity_Share)){

 …

 connect Portfolio_Value_Calculator.

 NumericalValue with
Cal_Processor.valueport4;

 connect Value_Processor.OperationalValue with

Cal_Processor.valueport1;

 connect Value_Processor.NotificationMessage

 with
HTTP_External.messageport1;

 connect *P/L_System with

HTTP_External.messageport2;

 connect Value_Processor.NotificationMessage

 with
HTTP_Processor.messageport1;

 connect UI_Server.NotificationMessage with

HTTP_Processor.messageport2;

 /* similarly other connections can be made

 via connectors */

 }

 viewpoints {

 PortfolioInvestment;

 }

 }

4.2 ALI Graphical Notation
Many of the existing ADLs such as AADL [10], ACME [24],
Aesop [33], MontiArcHV [35], Darwin [22], Koala [12],
UniCon [25] and π-ADL [19], provide both textual and
graphical notations, though none provide a behavioural
graphical notation. Yet, in some cases, the need for such
graphical behavioural representation was argued, e.g.
using Use Case Maps with ADLARS [13, 69]. ALI provides
graphical notations for structural and behavioural aspects
of the systems.
In order to create a consistent graphical notation that

was expressive and easy to use, the theoretical guidance in
[80] was followed. Furthermore, lessons learned from
Woods and Bashroush in [71], designing a large-scale
architectural description within an industrial context, were
also taken into consideration. The following sections
discuss ALI’s graphical notation.

4.2.1 Structural Notation
ALI provides an extensible visual notation for its structural
description. Table 3 illustrates the meaning of the symbols
used to specify architectural structures in ALI. It is possible
to extend the notation to represent components by
introducing other graphical objects (e.g. a cylinder to
represent a database component) that architects identify
with or already use in certain application domains.
Fig. 2 represents the structural description of the

Revaluation transaction (part of the PortfolioValuation
transaction domain defined earlier in Section 4.1.12 in
textual format). The same notation can be used to describe
the whole system.

TABLE 3

 ALI GRAPHICAL STRUCTURAL NOTATION

Symbol Name (Meaning)

Component

External Component (or

System)

 ……

Interfaces (different shapes

represent different interface

templates)

Connectors representing

different interface templates

Direct Binding

(no connector)

Transaction

Transaction Domain

4.2.2 Behavioural Notation

4.2.2.1 Event Traces

In ALI, event traces constitute the graphical representation
of transactions, described textually in Section 4.1.12. Table 4
provides the detailed description of the symbols used to
design event traces. Some of the symbols used are adopted
from the UML Activity diagram [74], with added notation
to represent concurrency (based on some extended
concepts from Petri Nets [81]).
Fig. 3 shows an example of the graphical behavioural

representation of the transaction domain
PortfolioValuation (this maps to the textual
representation provided in Section 4.1.12). The example
demonstrates the transactions that occur in
PortfolioValuation along with the interactions that take
place in the VALUATIONUPDATE, MTMVALUATION and
UNLISTEDVALAUTION transactions.

 Fig. 2. Graphical structural representation for transaction Revaluation

Fig. 3. Graphical behavioural representation of transaction domain PortfolioValuation

EquityDb

MTM
VALUATION

Job Processor

Portfolio Value
Calculator

Equity Market Data

UNLISTED
VALUATION

P/L System Portfolio GUIUI Server

Value Processoror

J

TABLE 4

 ALI EVENT TRACES NOTATION

Symbol Name Meaning

START

A node that starts the interaction in an event trace by a

component that invokes an event.

END

A node that stops the interaction of all the transactions in

an event trace.

FINAL

A node that terminates the interaction of the transaction.

 EventName/Cr*

Event Flow

The direction of an event flow from one component to

another component, specifying the event name and the

connector* being traversed.

AND Fork

A source component sending two or more concurrent

events to destination components.

AND Join

A destination component receives two or more concurrent

events from source components. This blocks until all

events are received before progressing.

OR Fork

A source component sends one or more events to

destination components. Selection of the destination

components can be linked to system conditions and features.

OR Join

A destination component receives any of the events from

any one of the source components (non-blocking) as soon

as it arrives (without waiting for all expected events).

Component

A component within the system that sends/receives events.

External Component/

System

A system (or component) outside the system that

communicates with our system.

Transaction

Transaction is a package containing a set of interactions. It

can be nested wherever required in another transaction.

 * means optional i.e. if connection is made using connectors (see Section 4.1.6)

4.2.2.2 Component Interaction

This section provides the graphical notation used to
describe the interactions of an individual component.
While event traces model the complete event flow path,
component interactions focus on modelling the
interactions of a particular component (focus on
components rather than events). For this, UML Sequence
diagrams [74] are used to model component interactions.
Sequence diagrams are known to many architects and are
comprehensive to model handshakes, timing, etc.
Fig.4 shows the component interaction diagram for the

component UIServer in the transaction domain
PortfolioValuation (defined textually in Section 4.1.12,
with interactions described in Fig. 3).
The squares at the top of the sequence diagram

represent component interfaces. White squares represent
the interfaces of the component being model (in this case
UIServer), and greyed squares represent external
interfaces (of other components UIServer is
communicating with).
Having discussed the ALI notation, the next section

defines the semantics behind the notation.

5 SEMANTICS

In this section, we discuss the ALI notation semantics [82].
We start by discussing the semantics of the structural
notation, then the behavioural notation. It is worth noting
that proofs of correctness and completeness of the
semantics are beyond the scope of this paper.
The following notation convention is used in the

subsequent two sections: i for interface, Ct for component,
Cr for connector and e for event. The name of each
element (where applicable) is indicated in the subscript.
For example, iA denotes interface A.

5.1 Semantics of Structural Notation
In this section, we discuss the semantics of the structural

notation, namely covering: components, connectors and

interfaces.

For simplicity, a component is a finite set of n
interfaces:

 (5.1.1)

Different combinations of interfaces in a component

can occur depending on the feature(s) supported in its

specification. All possible occurrences can be defined as:

 (5.1.2)

The notation refers to the power set of the set of

interfaces of a component. It also includes the null/empty

set (∅) which relates 0…* relationship between the

interface and the component as explained in the

conceptual model section (see Section 3.2 and Fig. 1).

Similarly, a connector is a finite set of n interfaces:

 (5.1.3)

Fig. 4. Component UIServer interactions in transaction domain PortfolioValuation

Job Processor.
NM

Portfolio GUI.
SR

SR

ValuationRequest/
HTTP_Processor

Inform/
HTTP_Processor

ValuationRequest/
HTTP_GUI

CurrentStatus/
HTTP_Status

US
Portfolio GUI.

US
NM

Value Processor.
NM

CurrentStatus/
HTTP_Status

Inform/
HTTP_Processor

alt

[ShareTrade || PriceChanged]

[PriceUnchanged]

The number of interfaces in a connector must be at least

two to form a connection between two components.

The following are the naming rules:

Rule 1: The names of all the components must be unique
within a system.

 (5.1.4)

Rule 2: The names of all the connectors must be unique
within a system.

 (5.1.5)

Rule 3: The names of all the interfaces of a component must
be unique.

 (5.1.6)

Rule 4: The names of all the interfaces of a connector must
be unique.

(5.1.7)

5.2 Semantics of Behavioural Notation
 In this section, we discuss the semantics of the
behavioural notation of ALI by translating the notation
into formal specification theory, namely CSP [30]. The
main construct of the behaviour notation in ALI is the
process that defines the interactions of a transaction in a
transaction domain.
Using the CSP process notation, where (x:A à P(x))

[pronounced “x from A then P of x”], we transform
interaction (Itn) into:

 (5.2.1)

To recall, an interaction in ALI is an event flowing via

connector or via direct binding from one component to
another component (see Section 4.1.6 for in-depth
description). Equation 5.2.1 describes an interaction in
terms of CSP as: event (e1) via connector (CrA) from
sender component (Cts) on its interface (iA) goes to the
receiver component (Ctr) on its interface (iB). Symbol ‘†’
represents the optionality of the connector, that is, it will
be defined if event flows via a connector. Similarly, we
insert an asterisk ‘*’ before the sender/receiver component
(Cts/Ctr) without specifying the interface name if it is an
external component (or system), as explained in Section
4.1.12 and Section 4.2.2.1.
Interactions can occur in different combinations with

other interactions. The operators which form these
combinations are: AND fork, AND join, OR fork and OR
join, each combination is explained categorically in the
transaction domain (see Section 4.2.2.1).
In the rest of this section, we elucidate the formal

semantics for each interaction scenario using CSP.

AND Fork: Two or more interactions that occur
concurrently. Considering different Ctr and different
interface of Cts,, we have the following definition:

 (5.2.2a)

Where ‘||’ is the CSP parallel operator which

represents concurrent activity. Hence, it is not necessary
that AND Fork always has different receiver components
(like Ctr1 and Ctr2 as above), we could have a situation
where two or more events flow to one Ctr via the same or
different interfaces as discussed in Section 4.1.12.
Considering the same Ctr, using the same interface, we

can define an AND fork as:

 (5.2.2b)

In addition to the above expression conditions, we can

also define it by considering Cts, using the same interface,
as:

 (5.2.2c)

AND Join: Two or more interactions that go to the Ctr
concurrently. Considering different Cts and different
interfaces of Ctr, it is defined as:

 (5.2.3a)

Where ‘⋀’ is the logical AND operator, WAIT is a time-

based CSP operator [82], ‘∑’ is submission (union) of all the
events and ‘;’ means successfully followed by. Thus,
‘WAIT ∑ ; Ctr’ designates: Ctr will not proceed with other
interaction(s) until it receives all the events.
Considering the same interface of Ctr, we can define

AND join as:

 (5.2.3b)

Moreover, the definition for the same Cts with its

different interfaces can be defined in a similar way as
above. But if we have the same Cts with its same interface
and the same interface of Ctr then we can define it as:

 (5.2.3c)

OR Fork: Two or more interactions that occur alternatively
in accordance to the condition(s) and feature(s) supported.
Considering different Ctr and different interface of Cts, we
have the following definition:

 (5.2.4a)

Where ‘□’ is the CSP deterministic choice operator.
If the same event flows to different Ctr depending on

the condition(s) and feature(s) supported from the same
interface of Cts then it can be defined as:

 (5.2.4b)

 Another case, when different events flow to same Ctr

to its same interface depending on the condition(s) and
feature(s) supported from the same interface of Cts then it
can be define as:

 (5.2.4c)

OR Join: Two or more interactions that go to the Ctr
alternatively. Unlike AND join, Ctr will proceed with other
interaction(s) after receiving the first event from any Cts
without waiting for all the events to occur. Considering
different Cts and different interface of Ctr, it is defined as:

 (5.2.5a)

Considering the same interface of Ctr, we can define it

as:

 (5.2.5b)

Also, we can define the same Cts with its same interface

along with the same interface of Ctr as:

 (5.2.5c)

6 CASE STUDIES

In order to illustrate the applicability of the proposed ADL
and evaluate its effectiveness, particularly in relation to the
identified limitations, we use two case studies. The case
studies were selected from two distinct application
domains, namely Information Systems (Asset
Management System) and embedded systems (Wheel
Brake System). A number of selection criteria were applied
to decide on the best case studies, including: distinct
application domains (to demonstrate cross domain
modelling capabilities); existence of inherent variability in
the application domain; varying types of connectivity
between components; different complexity levels
(information overload); varied emphasis on behavioural
versus structural descriptions; potential for artefact
reusability within the case study; and access to full
technical details.
Table 5 demonstrates the comparison between the two

case studies against the selection criteria for the case
studies.

TABLE 5

 CASE STUDIES CRITERIA

Criteria
Case Studies

 AMS WBS

Application domain
Information

Systems

Embedded

Systems

Existence of inherent

variability
 High Low

Types of connectivity With connectors Direct binding

Level of complexity

(overall)
 High Low

Level of complexity

(structural)
 High Low

Level of complexity

(behavioural)
 Low High

Artefact reusability Medium Medium

In the following, a description of each of the case
studies is given, followed by example descriptions (with
further details provided in Appendix A and Appendix B
respectively). The two case studies are then used to assess
the extent ALI meets its design principles and addresses
the identified limitations.

6.1 Case Study: Asset Management System (AMS)
An Asset Management System (AMS) in banking and

finance is used by a fund manager to support making and

executing investment decisions for a large-scale

investment portfolio. In the following sections, we give a

brief overview of AMS and provide the ALI architectural

description.

6.1.1 AMS Overview
The primary aim of AMS is to allow a fund manager (or a
fund management team) to manage a portfolio of holdings
in financial instruments. In this paper, we are only
covering the management of equities financial instruments
by AMS, under which we focused on company shares and
their derivatives. AMS allows fund managers to view the
content of their portfolios and trading and market data (in
this case, share trades and prices) to make investment
decisions. More specifically, it automates the calculation of
suggested changes to portfolios on-demand or using a pre-
defined schedule. This functionality is performed on a
daily basis to calculate the portfolio value at the end of each
working day, after the closure of stock market. In an
investment bank, portfolio valuation can be performed
using two methods, depending on the user’s request. The
first method is Mark to Market (MTM), where share prices
are matched with the current stock market price and
individual company share price (companies which are not
listed in the stock market). The second method is applied
on monthly/quarterly/bi-annual basis by checking the
company’s financial statement, depending on the
company’s fiscal period.

6.1.2 AMS Architecture
In this section, we discuss the AMS architecture
description using ALI.
The following are the architectural artefacts of the AMS

system for the portfolio value calculation, some of which
are used in section 4 as examples of the ALI notation
constructs.

a) AMS Meta Types: Meta_AMSFeature,

Meta_EquityServer (defined in Section 4.1.1),
Meta_Processor, Meta_DbEquity, Meta_Share-

ValueData, Meta_Valuator, Meta_Derivative and
Meta_PortfolioDomain.

b) AMS Features: Equity, Equity_Share,
Share_Sector, Equity_Derivative,

MarkToMarket_Method and Share_Company_Method

(some of these features are defined in Section 4.1.2).

c) AMS Interface Templates: MethodInterface (defined

in Section 4.1.3) and WSDL.

d) AMS Interface Types: ArithmeticOperation,
ValueOperation, AverageOperation, Numeric-
Operation, InvestmentOperation, DatabaseOpera-

tion, DatabaseUpdation, DatabaseOrder and

Deriv-ativeOperation, that all conform to interface

template MethodInterface (some of these interface

types are defined in Section 4.1.4). Similarly, interface

types (such as PortfolioMessenger and ValueData)

that conform to interface template WSDL can be

defined.

e) AMS Connector Types: HTTP_AMSUserInterface,
HTTP_Equity, ODBC_EquityPortfolio,
HTTP_Equity-Valuator, Calculator_Equity

(defined in Section 4.1.5), HTTP_ExternalSystem,

HTTP_EquityRate and Calculator_Derivative.

f) AMS Component Types: PortfolioAMS_GUI,
Portfolio_EquityUIServer,

Portfolio_EquityValu-ator (defined in Section

4.1.6), EquityCalculator, Portfolio_Processor,
AMS_Eq-uityDb, PortfolioDb, DerivativeValuator

and InternalEquityData.

g) AMS Products: Equity_Share_Derivative (defined in

Section 4.1.7), Equity_Share_ExchangeTraded and
Equity_Share_Traded.

h) AMS Events: ValuationRequest, RequestValuation-

Details, SendValuationDetails, etc. See Appendix

A for complete list of events.

i) AMS Conditions: PriceUnchanged, PriceChanged,

ShareTrade, Exchange_Traded and Illiquid

(defined in Section 4.1.10).

j) AMS Scenarios: P.RevaluatingPC (see Section 4.1.11),
P.RevaluatingPC.ST_ET, P.RevaluatingPC.ST_IL,

P.RevaluatingST_ET and P.RevaluatingST_IL.

k) AMS Transaction Domain: PortfolioValuation

(excerpt of it is described in Section 4.1.12).

l) AMS Viewpoint: PortofolioInvestment (defined in

Section 4.1.13).

Appendix A contains further details about the above
listed architectural constructs of the AMS system. The
AMS system description can be found in Section 4.1.14.
Fig. 5 shows the graphical structural description of the

transaction domain PortfolioValuation. The behavioural
representation can be found in Fig. 3 and Fig. 4.

6.2 Case Study: Wheel Brake System (WBS)
The case study of the wheel brake system (WBS) of a
commercial aircraft is based on the one introduced in the
ARP4761 standard [84] published by SAE. In the following,
we provide a brief overview of the system, along with ALI
architectural descriptions.

6.2.1 WBS Overview
The primary purpose of the WBS in commercial aircraft is
to decelerate the wheel on the ground along with the
associated functions as explained in [84]. The WBS consists
of a digital controller, the Brake System Control Unit
(BSCU), and the hydraulic pipe assembly that carries the
braking pressure to the wheels. Different valves are
embedded that receive commands and control the flow of
brake pressure.
Based on the safety requirement, the probability of loss

of all wheel braking is less than 5x10-7 per flight, a design
decision was made that each wheel would have a brake
assembly operated by two independent sets of hydraulic
pistons. One set of pistons is operated from the green pump
and is used in the NORMAL braking mode. The
ALTERNATE braking system is on standby and is selected

Fig. 5. AMS graphical structural representation of transaction domain PortfolioValuation

 Meta_WheelPedal, Meta_Brake,
Meta_BrakePump, Meta_BrakeValve, Meta_BrakeCU

 Meta_DecelerationDomain.
 Wheel_Brake, Electrical_Brake,

Electrical_Power, Mechanical_Brake,

Pistion_Pre-ssure Accumulator_Pressure.

 MethodInterface

 DataOperation, Electric-

Operation, CommandOperation, Pressure-

Operation, ValueOperation Notifier,
 MethodInterface.

 Aircraft_BrakePedal,
Aircraft_ElectricPower, Brake_ControlUnit,
Aircraft_WheelControlUnit,

Aircraft_PressurePu-mp, Aircraft_BrakeValve,

Aircraft_PressureValve, Command_Generator,
Value_Monitor Aircraft_Wh-eel.

 CommercialAircraftBrake.
 Reserve_Pressure_Request,

MPedal_Pos-ition_Request,

 BSCU_Active, BSCU_Failed,

GreenPressure, GreenPressure_Failed, BluePre-

ssure, BluePressure_Failed AccumulatorPump.
 NormalOperation, Alternate-

Operation, BSCUFailureOperation Emergency-
Operation.

 WheelDeceleration-
OnGround.

 WheelDeceleration.

EquityDb

Portfolio GUI UI Server

Job Processor

P/L System

Company Financial
Account

Value Processor

Stock Market

Market Share Data
Portfolio Value
Calculator

Equity Market Data

UI Price Server

e
V

WheelDecelerationOnGround

WheelDecelerationOnGround

 Accumulator

 WheelDecelerationOnGround,

 WheelDecelerationOnGround

Fig. 6. WBS graphical behavioural representation of transaction domain WheelDecelerationOnGround

Fig. 7. WBS component Accumulator interactions in transaction domain WheelDecelerationOnGround

Selector Valve.
PM

PM
Meter Valve.

RP
RP

Reserve Pressure Request

Send Hydraulic Pressure

alt

[BluePump_Failed]

system {

 components {

 Selector_Valve<Electrical_Power>:

 Aircraft_BrakeValve;

 Wheel<>: Aircraft_Wheel;

 Meter_Valve<Electrical_Brake,

 Mechanical_Brake, Piston_Pressure,

 Accumulator_Pressure, Electrical_Power>:

 Aircraft_PressureValve;

 …

 if (supported(Mechanical_Brake))

 Mechanical_Pedal<false, true>:

 Aircraft_BrakePedal;

 if (supported(Electrical_Brake &&

 Piston_Pressure)){

 Green_Pump<true, false, true, false>:

 Aircraft_PressurePump;

 else if (supported(Mechanical_Brake &&

 Piston_Pressure))

 Blue_Pump<false, true, true, false>:

 Aircraft_PressurePump;

 else

 Accumulator<false, true, false, true>:

 Aircraft_PressurePump;}

 } // end of components

 connectors { }

 arrangement {

 …

 if (supported(Mechanical_Brake)){

bind Mechanical_Pedal.MechanicalPosition with

Meter_Valve.MechanicalPosition;

 bind Mechanical_Pedal.MechanicalCommand with

 Meter_Valve.MechanicalCommand;

 }

 if (supported(Electrical_Brake &&

 Piston_Pressure)){

 {bind Shutoff_Valve.PressureMessage with

 Selector_Valve.PressureMessage;

 bind Selector_Valve.PressureMessage with

 Green_Pump.PressureMessage;

 bind Green_Pump.NormalPressure with

 Meter_Valve.NormalPressure;}

 else if (supported(Mechanical_Brake &&

 Piston_Pressure))

 {bind Selector_Valve.PressureMessage with

 Blue_Pump.PressureMessage;

 bind Blue_Pump.AlternatePressure with

 Meter_Valve.AlternatePressure;}

 else

 {bind Selector_Valve.PressureMessage with

 Accumulator.PressureMessage;

 bind Accumulator.ReservePressure with

 Meter_Valve.ReservePressure;}

 } // end of arrangement

viewpoints {

 WheelDeceleration;

 } // end of viewpoints

} // end of WBS

Fig. 8.WBS graphical structural representation

Electrical Pedal
Power

Blue Pump

Selector Valve

Wheel

BSCU ShutOff Valve

Meter Valve

Green Pump
Accumulator

Mechanical Pedal

EBD

dalMC

EV

EV

BD

BCAC

CN

PM

AP

NP

RP

PM

PM

PM

SCN

PM

IP

MC

BCC

NP AP

AC
RP

BP

MMP

MP

7 EVALUATION AND ANALYSIS

In this section, the two case studies (AMS and WBS) are
used to evaluate the ALI notation. Particularly, we assess
the extent to which ALI addresses the limitations identified
in Section 2.2 by following the design principles explained
in Section 3.1.

7.1 AMS Analysis
Based on the AMS case study discussed in the previous

section, Table 6 lists the limitations and how they are
addressed in the case study, along with the relevant
principles.

7.2 WBS Analysis
Similarly, based on the WBS case study, Table 7 below lists
the limitations and how they are addressed in the case
study, along with the relevant principles.

TABLE 6

 EVALUATION OF THE AMS CASE STUDY

Limitations

Addressed
CASE STUDY: Asset Management System (AMS)

ALI Principles

Used

L1

AMS demonstrates support for capturing variability in the architecture at various points. For

example, one variability in portfolio valuation is the trigger for recalculation due to change in

the share price and/or share trading. This is captured using the following features:
Equity_Share, MarkToMarket_Method and Share_Company_Method, and the conditions
defined in Section 4.1.10.

P1

L2

The capability to trace requirements into architecture is demonstrated using the features
Equity_Share, MarkToMarket_Method and Share_Company_Method which represent the
actual requirements and link them to architectural artefacts in the system description (Section
4.1.14).
Traceability is also applicable in the behavioural description, where the conditions
PriceUnchanged, PriceChanged, ShareTrade, ExchangeTraded and Illiquid can
occur during the equity portfolio valuation depending on external requirements. These

conditions are represented in the transaction domain PortfolioValuation.

P2

L3 This is discussed in section 7.3. P3

L4

The AMS architecture description demonstrates the notation flexibility in various constructs. For

example, component type EquityCalculator (defined in Appendix A) used pre-defined
interfaces (OperationalValue of type ArithmeticOperation, AverageValue of type
AverageOperation, AverageMessage and DerivativeRequest of type
PortfolioMessenger and DerivativeValue of type DerivativeOperation) instead of
defining them within its definition section using the interface templates MethodInterface and
WSDL. The component type EquityCalculator has the flexibility to define an interface similarly
to the method used in the interface types section in its definition section (as explained in Section

4.1.6). Similarly, the event Inform supports the interface templates MethodInterface and WSDL
in the transaction domain PortfolioValuation, but it has the flexibility to support only the
interface template MethodInterface in another transaction domain.

P4

L5

AMS utilises the reusability aspects of ALI extensively. For example, Interface template
MethodInterface (i.e., an interface that supports method invocation) and the interfaces of type
MethodInterface (defined in Section 4.1.3 and 6.1.2, respectively) can be reused in any type of
system architecture wherever an interface of this type is required (e.g. other AMS systems for

different financial instruments). Same thing applies to connector types and component types
(defined in Section 6.1.2). Within the new system, artefacts can be adopted by mapping their

feature set to the target system which automatically reconfigures the artefact to produce the

desired supported functionality.
For example, connector type Calculator_Equity (defined in Section 4.1.5) and component
type Portfolio_EquityValuator (defined in Section 4.1.6) have features
Weight_Average_Method and Weighted_Average_Value_Method, respectively. This
feature is one of the methods used to calculate the equity portfolio and is not adopted by an
investment bank nowadays where they must manage large-scale equity portfolios. Therefore, it
is not considered in the system description (see Section 4.1.14). But the artefact description of
the connector type Calculator_Equity and component type Portfolio_EquityValuator

P5

Limitations

Addressed
CASE STUDY: Asset Management System (AMS)

ALI Principles

Used

are defined in such a way that it may be used in another system where they support the weighted
average value method to calculate their equity portfolio value due to the support of its relevant
features.

L6

Information overload in AMS is addressed by having multiple views, each focusing on different

aspects. For example, in order to calculate the equity portfolio value, the transaction domain
PortfolioValuation (defined textually in Section 4.1.12 and presented graphically using
event traces in Fig. 3) illustrates its behavioural description. In addition to the behavioural view,

the sequential interaction of all the components involved in the transaction domain
PortfolioValuation (such as component UIServer in Fig. 4) are presented. While the
system description (defined textually in Section 4.1.14 and presented graphically in Fig. 5)
illustrates its structural description.
The AMS architecture provides multiple views of a particular function (as a transaction domain)

with a clear separation between structural and behavioural descriptions while maintaining
consistency.

P6

L7

Behaviour in AMS has a dedicated section. For example, events such as ValuationRequest,
RequestValuationDetails, etc., are defined clearly, with their source and destination
interface templates (specified in Appendix A).

From a visualisation perspective, an example is the transaction domain PortfolioValuation
which is presented in the form of event traces that demonstrate the ways an event can occur to

calculate the equity portfolio, as demonstrated in Fig. 3. RequestPriceList/HTTP_Processor
and RequestPrice/HTTP_ExCRate are the events that depend on the conditions
Exchange_Traded and Illiquid, respectively. This is represented using the OR Fork notation
(as defined in Table 4), meaning that they can only occur serially to do equity portfolio valuation.

Moreover, the interactions of the component UIServer in the transaction domain
PortfolioValuation are explicitly presented using a UML sequence diagram in Fig. 4.

P6

TABLE 7

 EVALUATION OF THE WBS CASE STUDY

Limitations

Addressed
CASE STUDY: Wheel Brake System (WBS)

ALI Principles

Used

L1

Variability representation is widely used in WBS. For example, the case study has various
variation points to represent the different braking modes. This is captured using the following
features: Electrical_Brake, Mechanical_Brake, Electrical_Power,

Piston_Pressure and Accumulator_Pressure, as well as the conditions defined in
Appendix B.

P1

L2

The capability to trace requirements into the architecture is demonstrated using the features
Electrical_Brake, Electrical_Power and Piston_Pressure when the brake is applied
in the NORMAL mode. This represents actual requirements and links them to architectural
artefacts in the system description (Section 6.2.2). When the brake is applied in the ALTERNATE
modes, the features Mechanical_Brake, Piston_Pressure and/or Electrical_Power are
enabled. While, if it is applied in an EMERGENCY mode, the features Mechanical_Brake and
Accumulator_Pressure are enabled.
Traceability is also demonstrated in behavioural description, where the conditions
BSCU_Active and GreenPressure demonstrates the NORMAL braking mode while
BSCU_Failed and/or GreenPressure_Failed demonstrates the ALTERNATE braking modes.
An EMERGENCY braking mode is demonstrated by the condition BluePressure_Failed.
These conditions are represented in the transaction domain WheelDecelerationOnGround.
Such conditions allow us to trace related requirements into various aspects of the architecture.

P2

 L3 This is discussed in section 7.3. P3

Limitations

Addressed
CASE STUDY: Wheel Brake System (WBS)

ALI Principles

Used

L4

Support for flexibility in the WBS architecture description can be demonstrated in various
constructs. For example, component type Aircraft_BrakePedal (defined in Appendix B) used
pre-defined interfaces (BrakeData, MechanicalPosition and MechanicalCommand of type
DataOperation, ValueOperation and CommandOperation, respectively) rather than
defining them locally within its definition section. On the other hand, component type
Aircraft_BrakePedal can defines its interfaces locally (as explained in Section 4.1.6).

P4

L5

WBS utilises the reusability aspects of ALI extensively. Interface template MethodInterface
and the interfaces of type MethodInterface (defined in Appendix B) can be reused in any other
system wherever an interface of this type is required (e.g. other WBS systems for different types
of aircraft). Same thing applies to component types. Within the new system, artefacts can be

adapted by mapping their feature set to the target system.
For example, component type Aircraft_BrakePedal has features Electronic_Brake and
Mechanic_Brake. These features are one of the options used to apply the brake. The artefact
description of the component type Aircraft_BrakePedal is defined in such a way that it can
be reused in another system where electrical braking is not supported by simply selecting the
feature Mechanic_Brake.

P5

L6

In the WBS architecture, information overload is addressed by having multiple views, each

focusing on different aspects. For example, in order to stop/decelerate, the transaction domain
WheelDecelerationOnGround (defined textually in Appendix B and presented graphically
using event traces in Fig. 6) illustrates its behavioural description. In addition to the behavioural

view, the sequential interaction of all the components involved in the transaction domain

WheelDecelerationOnGround (such as component Accumulator in Fig. 7) are presented.
While the system description (defined textually in Section 6.2.2 and presented graphically in
Fig. 8) illustrates its structural description.

The WBS architecture provides multiple views of a particular function (as a transaction domain)

with a clear separation between structural and behavioural descriptions while maintaining
consistency between them.

P6

L7

Behaviour in WBS has a dedicated section. For example, events such as
HydraulicPressureRequest, AntiSkid, etc., have been defined clearly, with their source
and destination interface templates (specified in Appendix B).

From a visualisation perspective, the transaction domain WheelDecelerationOnGround which
is presented in the form of event traces that demonstrate the ways an event can occur to

stop/decelerate the aircraft, as demonstrated in Fig. 6. For example, in the transaction domain
WheelDecelerationOnGround, Reserve_Pressure_Request and
MPedal_Position_Request are the events that depend on the condition
BluePressure_Failed. This is represented using the AND Fork notation (as defined in Table
4) meaning that it can occur concurrently in the EMERGENCY braking mode. Moreover, the

interactions of the component Accumulator in the transaction domain
WheelDecelerationOnGround are explicitly presented using a UML sequence diagram in Fig.
7.

P6

7.3 Discussion
The previous two subsections demonstrated how each case
study addressed the limitations identified (Section 2.1)
using the ALI principles (Section 3.1). However, some
cross-cutting aspects such as cross application domain
modelling are discussed in this section since two different
domains are needed to fully illustrate cross-cutting issues.
As a product line comprising various back office

portfolio management applications for financial
instruments such as equity, commodity and currency,
AMS corresponds to the Information Systems application
domain. On the other hand, WBS is a single product
system with multiple variants that specify different modes
of how brakes can be applied to wheels of commercial

aircraft and corresponds to the Embedded Systems
application domain. Accordingly, ALI is the first ADL to
be used successfully to model both Embedded Systems
and Information Systems [71]. This demonstrates ALI’s
ability of modelling multiple application domains
(principle P3), which addresses limitation L3.
The structural design of the AMS architecture uses

connectors to join components. This can be visualised
using the AMS graphical structural notation in Fig. 5. On
the other hand, connections made between components in
the WBS architecture are done via direct binding without
the use of connectors (see Fig. 8). This demonstrates the
flexibility of ALI in supporting architecture descriptions
(P4) whether or not they require connectors to be first class

citizens (L4), giving the architect the flexibility to choose
one style or another.
As for varying complexity, in the WBS case study, it

was enough to capture the complete structural information
in a single view (i.e. an overall system architecture) as
shown in Fig. 8. However, this would have been
substantially more difficult to do with the AMS case study
given the complexity of the system and the amount of
information that needed to be captured. Accordingly,
various structural views were produced, each capturing
the information pertaining to a single major architectural
artefact such as a transaction (see Fig. 2) or a transaction
domain (see Fig. 5), depending on stakeholder concerns.
Providing such multiple views allowed the notation to
scale (P6), while still capturing all the required information
at the appropriate level of abstraction (L6).
The AMS case study had comparatively a more

complex structural description (components and
connectors). Yet, it contained fewer and simpler
interactions in the transactions leading to a relatively
simple behavioural architecture. On the other hand, the
WBS case study had a simpler structural architecture, yet
far more sophisticated behavioural architecture. For
instance, in WBS, interactions between components take
place often with multiple events flowing concurrently. In
both cases, ALI demonstrated its ability to provide the
right mechanisms to capture the structural complexity (e.g.
using structural notation, Fig. 5) and the behavioural
complexity (e.g. using event traces, Fig. 6) as needed
(addressing limitation L7).
Finally, architectural elements (such as components,

connectors and interfaces) defined in both case studies can
be reused with minimal changes across the two application
domains (P5). For example, an interface template
MethodInterface in AMS can be reused in the WBS by
making minor changes in its constraints. Although this
could be achieved with most ADLs that provide formal
artefact descriptions, the reuse granularity in ALI is much
larger (L5). This is due to ALI’s support for capturing
variability in artefact descriptions and linking that
variability to external features. This allows the creation of
highly configurable artefacts that can be adapted to
various application domains by making minimal or no
changes to their internal description (which is achieved by
only varying the artefact feature set, an inherent
characteristic of Software Product Line Engineering).

8 STUDY LIMITATIONS

This section discusses the limitations of our work. First,
two large industry-scale case studies were developed,
and evaluation work was performed to show how ALI
addresses many of the limitations exhibited by existing
ADLs (e.g. variability management, see Sections 2 and 7).
However, the architecting work in the case studies was
done by the authors of this study, in collaboration with

domain experts (who provided the requirements for the
two systems). From [71], we learned that some of the
barriers to adopting ADLs is beyond just the ADL itself
and include human aspects. This can only be evaluated
when ALI is used by practitioners, and observed by the
researchers without external support (to ensure unbiased
feedback).
Second, given the large number of ADLs available, it

was not possible to make a comparison between ALI and
every other ADL, as this would have required the two
case studies to be developed using every ADL.
Accordingly, a different approach was used to show
ALI’s unique capabilities. We started by critically
analysing existing works (Section 2.1), identified their
limitations (Section 2.2), then conducted two case studies
that showed ALI did not exhibit these limitations
(Sections 6 and 7).
Finally, there is an inherent limitation in generalising

the findings from a limited number of case studies. In
reality, the majority of similar existing work reported on
one or two case studies (and in some cases only toy
running examples) due to the substantial resource
requirements needed to develop such case studies.
However, in analytic generalisation, there are two key
criteria for judging the causal inference from the
experimental design. The first is the statistical significance
of the number of case studies (to allow extrapolation of
results). And the second is the degree to which the
selected case studies represent the whole population, in
this case, embedded systems and Information Systems
representing systems design in general (hence our choice
of two completely different application domains).

9 CONCLUSION AND FUTURE WORK

In this paper, the ALI ADL is presented including its
various constructs and capabilities. ALI was designed to
overcome a number of limitations (Section 2.2) by adopting
a set of design principles (Section 3.1). Case studies were
used to demonstrate ALI’s abilities against the set of design
principles and identified limitations.
The ALI notation demonstrated various unique

capabilities. This includes the notation’s support for large-
scale reuse of architectural artefacts (components,
connectors and interfaces); the ability to provide multiple
architectural views as a mechanism to address information
overloading via the separation of concerns; and the balance
between formalism and flexibility.
The formal specification of ALI was also discussed by

defining the structural and behavioural semantics
explicitly. Rules were defined for the structural aspect of
ALI using mathematical set theory. Behavioural semantics
were defined using the CSP notation.
Finally, two case studies illustrated ALI. The case

studies were chosen from different application domains
with varying structural and behavioural complexities.

Firstly, an Asset Management System (AMS) case study
was used to demonstrate the applicability of ALI in the
Information Systems domain using a product line
engineering process. The AMS architecture describes the
portfolio management of financial instruments. In this case
study, a portfolio valuation system, which considers
equities (particularly shares) as the financial instrument,
was designed. The second case study was a Wheel Brake
System (WBS) that demonstrated the applicability of ALI
in the Embedded Systems domain. The design
encompassed having a single product with multiple
variants (rather than a product line). The WBS architecture
describes the braking system of a commercial aircraft.
Our future work will be focused on three fronts. First,

the immediate intention is to continue to use ALI to model
systems in more application domains and using other case
studies to refine the notation and evaluate further aspects
of the language (e.g. the usage of pattern templates as
defined in Section 4.1.7). Second, the medium term aim is
to create better tool support to facilitate the creation and
analysis of ALI architectural descriptions. The ALI toolset
will be developed in collaboration with industrial partners
to help integrate it within existing tool chains used in
architecture practices. Finally, and once the tool support
has matured, we aim to recruit practitioners to run
independent trials in operational environment which will
allow us to evaluate the human aspect.

APPENDIX A: AMS ARCHITECTURE

AMS Component Types:

PortfolioAMS_GUI provides the asset managers using the
system with the ability to view, analyse and value
portfolios, to request (and monitor the progress of) long
running system operations (such as order generation) and
to check, enter, dispatch and monitor orders that go for
execution in trading systems.

component type PortfolioAMS_GUI

 {

 meta: { }

 features: {

 /* no optional/alternative and parameterized

 features */

 }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

 implements: {

 ServiceRequest, UpdationStatus:

 PortfolioMessenger;

 }

 }

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

 } // end of component type

EquityCalculator performs the mathematical operation
based on the value and the method or message it received

and then outputs the calculated portfolio value. It also

calculates the derivative value of equities, if requested.

component type EquityCalculator

 {

 meta: Meta_Valuator {

 acceptance_value: “any numerical
value”;

 value_approximation: “2 significant

 figures”;

 last_request: 10-02-2016;

 }

 features: {

 MTM_Method: “Share prices matched with

 market price”’

 SCompany_Method: “Unlisted share price

 of an individual

 company”,

 WAV_Method: “Portfolio Valuation is
done

 on the basis of average

 share price”,

 E_Derivative: “Used as a security for

 the equity asset”;

 }

 interfaces: {

 definition: { //no need to define any

 interface/s }

 implements:{

 if (supported(MTM_Method ||

 SCompany_Method))

 OperationalValue:

ArithmeticOperation;

 if (supported(WAV_Method)){

 AverageMessage:
PortfolioMessenger;

 AverageValue: AverageOperation;}

 if (supported(E_Derivative)){

 DerivativeRequest:

PortfolioMessenger;

 DerivativeValue;

DerivativeOperation;}

 }

 } //end of interfaces

 sub-system: {

 components {

 if (supported(E_Derivative))

 PShareDerivative< >:

DerivativeValuator;

 if (supported(WAV_Method))

 WAVData <false, false, true>:

Internal_EquityData;

 }

 connectors {

 if (supported(E_Derivative)){

 Cal_Derivative< >:

Calculator_Derivative;

 HTTP_DValue<true, true>:
HTTP_Equity;}

 if (supported(WAV_Method)){

 HTTP_CalWAV<false, false, true>:

HTTP_EquityCalculator;

 Cal_WAV<false, false, true>:

Calculator_Equity;}

 }

arrangement {

 if (supported(E_Derivative)){

 connect
PShareDerivative.DerivativeRequest with

HTTP_DValue.messageport2;

 connect my.DerivativeRequest with

HTTP_DValue.messageport1;

 connect
PShareDerivative.DerivativeValue

 with
Cal_Derivative.valueport1;

 connect my.DerivativeValue with

Cal_Derivative.valueport2;}

 if (supported(WAV_Method)){

 connect WAVData.ValuationRequest with

HTTP_CalWAV.messageport2;

 connect my.AverageMessage with

HTTP_CalWAV.messageport1;

 connect WAVData.AverageValue with

Cal_WAV.valueport3;

 connect my.AverageValue with

Cal_WAV.valueport4;}

 } // end of arrangement

 } // end of sub-system

 } // end of component type

AMS Products:

product configurations {

 … // defined in Section 4.1.7

 Equity_Share_ExchangeTraded: {

 Equity {Equity_Type = (long, short)};

 Equity_Share = true;

 MarkToMarket_Method = true;

 Share_Company_Method = false;

 }

 Equity_Share_Traded: {

 Equity {Equity_Type = long};

 Equity_Share = true;

 MarkToMarket_Method = false;

 Share_Company_Method = true;

 }

 } // end of product configurations

AMS Scenarios:

scenarios {

 … // defined in Section 4.1.11

 P.RevaluatingPC.ST_ET: {

 Description: “Revaluating portfolio due to

 change in share price and ex

 change trading both”;

 Parameterisation: {

 PriceChanged = true;

 PriceUnchanged = false;

 ShareTrade = true;

 Exchange_Traded = true;

 Illiquid = false;

 }

 }

 P.RevaluatingPC.ST_IL: {

 Description: “Revaluating portfolio due to

 change in share price and il-

 liquid shares trading both”;

 Parameterisation: {

 PriceChanged = true;

 PriceUnchanged = false;

 ShareTrade = true;

 Exchange_Traded = true;

 Illiquid = true;

 }

 }

 P.RevaluatingST_ET: {

 Description: “Revaluating portfolio due to

 Exchange trading”;

 Parameterisation: {

 PriceChanged = false;

 PriceUnchanged = true;

 ShareTrade = true;

 Exchange_Traded = true;

 Illiquid = false;

 }

 }

 P.RevaluatingST_IL: {

 Description: “Revaluating portfolio due to

 Illiquid shares trading”;

 Parameterisation: {

 PriceChanged = false;

 PriceUnchanged = true;

 ShareTrade = true;

 Exchange_Traded = false;

 Illiquid = true;

 }

 }

 } // end of scenarios

AMS Events:

events {

 ValuationRequest: <WSDL, WSDL>;

 RequestValuationDetails: <MethodInterface,

 MethodInterface>;

 SendValuationDetails: <MethodInterface,

 MethodInterface>;

 RequestPrice: <WSDL, WSDL>;

 CurrentStatus: <WSDL, WSDL>;

 RequestPriceList: <WSDL, WSDL>;

 CurrentPrice: <WSDL, WSDL>;

 UpdatedPriceList: <WSDL, WSDL>;

 SendValuation: <MethodInterface,

 MethodInterface>;

 UpdateValue: <MethodInterface, MethodInterface>;

 Update: <MethodInterface, MethodInterface>;

 Notify: <MethodInterface, MethodInterface>;

 Inform: <(MethodInterface, WSDL),

 (MethodInterface, WSDL)>;

 Access: <MethodInterface, MethodInterface>;

} // end of events

APPENDIX B: WBS ARCHITECTURE

WBS Meta Types:

meta type Meta_Brake {

 tag monitored_by, application: text;

 tag battery_charged_on*: date;

 }

meta type Meta_BrakePump {

 tag responsible_technician, failure_rate: text;

 tag threshold_value: number;

 }

WBS Features:

features {

 Electrical_Brake: {

 alternative names: {

 Designer.AF1, Developer.EB, Evaluator.F12;

 }

 parameters: {

 {Pedal_Value = number};

 }

 }

 Mechanical_Brake: {

 alternative names: {

 Designer.AF3, Developer.MP, Evaluator.F14;

 }

 parameters: {

 {Max_Pedal_Force = string};

 }

 }

 …

 } // end of features

WBS Interface Types:

interface type {

 DataOperation: MethodInterface {

 Provider: {

 function InsertBrakeData

 {

 impLanguage: Java;

 invocation: insert;

 parameterlist: (string);

 return_type: void;

 }

 }

 Consumer: {

 Call: insert (string);

 }

 }

 …

 } // end of interface types

WBS Component Types:

Aircraft_BrakePedal provides electrical braking data to

the braking system as an input to the control unit. In the

case of mechanical braking, it provides the pedal force and

its position values to the metering valve.

component type Aircraft_BrakePedal {

 meta: Meta_WheelPedal {

 intention: “To apply the brake”;

 consequences: “Aircraft will not stop”;

 cost: 5000;

 last_checked: 28-04-2016;

 }

 features: {

 Electronic_Brake: “Electrical pedal used to

 stop the aircraft wheel”,

 Mechanic_Brake: “Mechanical pedal applied to

 stop the aircraft wheel”;

 }

 interfaces: {

 definition: {

 // no need to define any interface/s

 }

 implements:{

 if (supported(Electronic_Brake))

 BrakeData: DataOperation;

 if (supported(Mechanic_Brake)){

 MechanicalPosition: ValueOperation;

 MechanicalCommand: CommandOperation;}

 }

 } //end of interfaces

 sub-system: {

 components { }

 connectors { }

 arrangement { }

 } // end of sub-system

} // end of component type

WBS Product:

product configurations {

 CommercialAircraftBrake: {

 Electrical_Brake {Pedal_Value = 850KN};

 Electrical_Power {Voltage = 240V AC};

 Mechanical_Brake {Max_Pedal_Force = 980KN};

 Piston_Pressure {Maximum = 10.75 Pa,

 Minimum = 5.25 Pa};

 Accumulator_Pressure {

 Pressure_Supplied = 9.5 Pa};

 }

 } // end of product configurations

WBS Events:

events {

 Send_EPedal_Position1: <MethodInterface,

 MethodInterface>;

 Send_EPedal_Position1: <MethodInterface,

 MethodInterface>;

 Send_Power_Signal1: <MethodInterface,

 MethodInterface>;

 Send_Power_Signal2: <MethodInterface,

 MethodInterface>;

 Inform: <MethodInterface, MethodInterface>;

 Notify: <MethodInterface, MethodInterface>;

 CMD: <MethodInterface, MethodInterface>;

 AntiSkid: <MethodInterface, MethodInterface>;

 Hydraulic_Pressure_Request: <MethodInterface,

 MethodInterface>;

 Send_Hydraulic_Pressure: <MethodInterface,

 MethodInterface>;

 No_Hydraulic_Pressure_Supply: <MethodInterface,

 MethodInterface>;

 MPedal_Position_Request: <MethodInterface,

 MethodInterface>;

 Send_MPedal_Position: <MethodInterface,

 MethodInterface>;

 Reserve_Pressure_Request: <MethodInterface,

 MethodInterface>;

 Decelerate: <MethodInterface, MethodInterface>;

} // end of events

WBS Conditions:

conditions {

 BSCU: “BSCU working properly”;

 BSCU_Failed: “Unable to provide brake command”;

 GreenPressure: “Provide hydraulic pressure in a

 normal mode”;

 GreenPressure_Failed: “No hydraulic pressure

 supply or below threshold value”;

 BluePressure: “Provide hydraulic pressure in an

 alternate mode”;

 BluePressure_Failed: “No hydraulic pressure

 supply or below threshold value

 in an alternate mode”;

 AccumulatorPump: “Provide hydraulic pressure in

 an emergency mode”;

} // end of conditions

WBS Scenarios:

scenarios {

 NormalOperation {

 Description: “WBS in a normal mode”;

 Parameterisation {

 BSCU_Active = true;

 GreenPressure = true;

 BluePressure = false;

 AccumulatorPump = false;

 }

 }

 AlternateOperation {

 Description: “WBS is in alternate mode with

 Antiskid command”;

 Parameterisation {

 BSCU_Active = true;

 GreenPressure_Failed =

 true;

 BluePressure = true;

 AccumulatorPump = false;

 }

 }

 BSCUFailureOperation {

 Description: “WBS is in alternate mode with

 out Antiskid command”;

 Parameterisation {

 BSCU_Failed = true;

 GreenPressure = true;

 BluePressure = true;

 AccumulatorPump = false;

 }

 }

 EmergencyOperation {

 Description: “WBS is in emergency mode”;

 Parameterisation {

 BSCU_Failed = true;

 GreenPressure_Failed =

 true;

 BluePressure_Failed =

 true;

 AccumulatorPump = true;

 }

 }

} // end of scenarios

WBS Transaction Domain:

transaction domain WheelDecelerationOnGround

 {

 meta: Meta_DecelerationDomain

 {

 purpose: “To stop the commercial aircraft on

 ground”;

 minimum_wheels_active: 4;

 }

 contents:

 {

 /*provides the list of components involved

 in this transaction domain*/

 Components: {Electrical_Pedal,

 Mechanical_Pedal, Power, BSCU,

 ShutOff_Valve, Selector_Valve,

 Green_Pump, Blue_Pump, Accumulator,

 Meter_Valve, Wheel}

 //No connectors –direct binding

 }

 transactions:

 {

 NORMALMODE: {…}

 EMERGENCYMODE: {

 events: {MPedalPositionRequest, ReservePres-

 sureRequest, SendHydraulicPressure,

 SendMPedalPosition, Decelerate}

 interactions: {

 [Selector_Valve.MechanicalPosition sends

 MPedalPositionRequest to

 Mechanical_Pedal.MechanicalPosition,

 Selector_Valve.PressureMessage sends

 ReservePressureRequest to

 Accumulator.PressureMessage];

 [Meter_Valve.MechanicalCommand receives

 SendMPedalPosition from

 Mechanical_Pedal.MechanicalCommand,

 Meter_Valve.ReservePressure receives

 SendHydraulicPressure from

 Accumulator.ReservePressure];

 Meter_Valve.BrakePressure sends Decelerate

 to Wheel.InputPressure;

 }

 }

 ALTERNATEMODE1: {…}

 ALTERNATEMODE2: {…}

 DECELERATINGWHEEL: {

 /* No events in this transaction therefore,

 there is no event section */

 interactions: {

 if (supported(Electircal_Brake &&

 Electrical_Power) &&

 (BSCU_Active && GreenPressure))

 {NORMALMODE;}

 else if (unsupported(Electrical_Power &&

 Piston_Pressure) &&

 (BluePressure_Failed))

 {EMERGENCYMODE;}

 else if (supported(Electircal_Power) &&

 unsupported (Accumulator_Pressue)

 &&(BSCU_Active && GreenPressure-

 _Failed))

 {ALTERNATEMODE1;}

 else

 {ALTERNATEMODE2;}

 } // end of interaction

 } // end of transaction

 } // end of transactions section

} // end of transaction domain

WBS Viewpoint:

viewpoints {

 WheelDeceleration: {

 Description: “Decelerating the aircraft

 wheel”;

 Transaction Domain: {

 WheelDecelerationOnGround,

 WheelDecelerationOnGear;}

 }

} // end of viewpoints

REFERENCES

[1] P. Kruchten, H. Obbink, and J. Stafford, "The Past, Present, and

Future for Software Architecture," IEEE Software, vol. 23, no. 2,

pp. 22-30, 2006.

[2] M. Shaw and P. Clements, "The golden age of software

architecture," IEEE Software, vol. 23, no. 2, pp. 31-39, 2006.

[3] M. Shaw, "The coming-of-age of software architecture

research," in Proceedings of the 23rd International Conference on

Software Engineering, ICSE, 2001, pp. 657-664a.

[4] D. Garlan, "Software architecture: a travelogue," in Proceedings

of the Future of Software Engineering, Hyderabad, India, 2014, pp.

29-39: ACM.

[5] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, 3rd ed. Addison-Wesley Professional, 2012.

[6] P. Lago, I. Malavolta, H. Muccini, P. Pelliccione, and A. Tang,

"The Road Ahead for Architectural Languages," IEEE Software,

vol. 32, no. 1, pp. 98-105, 2015.

[7] Architectural Languages Today. Available:

http://www.di.univaq.it/malavolta/al/ [Accessed: 4-May-2018]

[8] N. Medvidovic and R. N. Taylor, "A Classification and

Comparison Framework for Software Architecture Description

Languages," IEEE Transactions on Software Engineering, vol. 26,

no. 1, pp. 70-93, 2000.

[9] P. C. Clements, "A Survey of Architecture Description

Languages," in Proceedings of the 8th International Workshop on

Software Specification and Design, 1996, pp. 16-25: IEEE Computer

Society.

[10] P. H. Feiler, D. P. Gluch, and J. J. Hudak, "The Architecture

Analysis & Design Language AADL: An Introduction," Software

Engineering Institute, Carnegie Mellon University, Pittsburgh,

USA.2006.

[11] P. Cuenot et al., "The EAST-ADL Architecture Description

Language for Automotive Embedded Software," in Proceedings

of the International Dagstuhl Workshop on Model-Based Engineering

of Embedded Real-Time Systems, 2010, vol. 6100, pp. 297-307:

Springer Berlin Heidelberg.

[12] R. v. Ommering, F. van der Linden, J. Kramer, and J. Magee,

"The Koala Component Model for Consumer Electronics

Software," IEEE Computer, vol. 33, pp. 78-85, 2000.

[13] R. Bashroush, T. J. Brown, I. Spence, and P. Kilpatrick,

"ADLARS: An Architecture Description Language for Software

Product Lines," in Proceedings of the 29th Annual IEEE/NASA

Software Engineering Workshop, 2005, pp. 163-173.

[14] R. Bashroush, I. Spence, P. Kilpatrick, and J. Brown, "Towards

more flexible architecture description languages for industrial

applications," in Proceedings of the Third European conference on

Software Architecture, Nantes, France, 2006, pp. 212-219, 2081985:

Springer-Verlag.

[15] E. Woods and R. Hilliard, "Architecture Description Languages

in Practice Session Report," in Proceedings of the 5th Working

IEEE/IFIP Conference onSoftware Architecture, WICSA, 2005, pp.

243-246.

[16] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang,

"What Industry Needs from Architectural Languages: A

Survey," IEEE Transactions on Software Engineering, vol. 39, no. 6,

pp. 869-891, 2013.

[17] M. Galster, T. Männistö, D. Weyns, and P. Avgeriou, "Variability

in software architecture: the road ahead," ACM SIGSOFT

Software Engineering Notes, vol. 39, no. 4, pp. 33-34, 2014.

[18] U. Haider, "Representing Variability in Software Architecture,"

PhD Thesis, School of Architecture, Computing & Engineering,

University of East London, London, UK, 2016.

[19] F. Oquendo, "π-ADL: an Architecture Description Language

based on the higher-order typed π-calculus for specifying

dynamic and mobile software architectures," ACM SIGSOFT

Softw. Eng. Notes, vol. 29, no. 3, pp. 1-14, 2004.

[20] C. Yao, L. Xiaoqing, Y. Lingyun, L. Dayong, T. Liu, and Y.

Hongli, "A ten-year survey of software architecture," in

Proceedings of the IEEE International Conference on Software

Engineering and Service Sciences (ICSESS), 2010, pp. 729-733.

[21] P. Binns, M. Englehart, M. Jackson, and S. Vestal, "Domain-

Specific Software Architectures for Guidance, Navigation and

Control.," International Journal of Software Engineering and

Knowledge Engineering, vol. 6, no. 2, pp. 201-227, 1996.

[22] J. Magee and J. Kramer, "Dynamic structure in software

architectures," in Proceedings of the 4th ACM SIGSOFT symposium

on Foundations of software engineering, San Francisco, California,

USA, 1996, pp. 3-14: ACM.

[23] T. N. Qureshi, D. Chen, H. Lönn, and M. Törngren, "From

EAST-ADL to AUTOSAR software architecture: a mapping

scheme," presented at the Proceedings of the 5th European

conference on Software architecture, Essen, Germany, 2011.

[24] D. Garlan, R. Monroe, and D. Wile, "Acme: an architecture

description interchange language," in Proceedings of the Centre

for Advanced Studies on Collaborative research, CASCON', 1997,

pp. 169-183.

[25] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and

G. Zelesnik, "Abstractions for software architecture and tools to

support them," IEEE Transactions on Software Engineering,, vol.

21, no. 4, pp. 314-335, 1995.

[26] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, "A

comprehensive approach for the development of modular

software architecture description languages," ACM Transactions

on Software Engineering Methodology, vol. 14, pp. 199-245, 2005.

[27] N. Medvidovic, R. N. Taylor, and E. J. J. Whithead, "Formal

modeling of software architectures at multiple levels of

abstraction," in Proceedings of the California Software Symposium,

California, USA, 1996, pp. 28-40.

[28] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan,

and W. Mann, "Specification and analysis of system architecture

using Rapide," IEEE Transactions on Software Engineering, vol. 21,

pp. 336-355, 1995.

[29] R. Allen and D. Garlan, "A formal basis for architectural

connection," ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 6, no. 3, pp. 213-249, 1997.

[30] C. A. R. Hoare, Communicating sequential processes. Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 1985.

[31] R. Allen, R. Douence, and D. Garlan, "Specifying and Analyzing

Dynamic Software Architectures," in Proceedings of the First

International Conference on Fundamental Approaches to Software

Engineering, FASE, 1998, vol. 1382, pp. 21-37: Springer Berlin

Heidelberg.

[32] "ISO/IEC/IEEE Systems and software engineering --

Architecture description," ISO/IEC/IEEE 42010:2011(E) (Revision

of ISO/IEC 42010:2007 and IEEE Std 1471-2000), pp. 1-46, 2011.

[33] D. Garlan, R. Allen, and J. Ockerbloom, "Exploiting style in

architectural design environments," SIGSOFT Softw. Eng. Notes,

vol. 19, no. 5, pp. 175-188, 1994.

[34] A. Garcia et al., "On the Modular Representation of

Architectural Aspects," in Proceedings of the Third European

Workshop on Software Architecture, EWSA, 2006, vol. 4344, pp. 82-

97: Springer Berlin Heidelberg.

[35] A. Haber, H. Rendel, B. Rumpe, I. Schaefer, and F. van der

Linden, "Hierarchical Variability Modeling for Software

Architectures," in Proceedings of the 15th International Software

Product Line Conference (SPLC), 2011, pp. 150-159.

[36] M. M. Gorlick and R. R. Razouk, "Using weaves for software

construction and analysis," in Proceedings of the 13th International

Conference on Software Engineering, ICSE, 1991, pp. 23-34.

[37] H. Mei, F. Chen, A. Q. Wang, and A. Y.-D. Feng, "ABC/ADL: An

ADL Supporting Component Composition," presented at the

Proceedings of the 4th International Conference on Formal

Engineering Methods: Formal Methods and Software

Engineering, London, UK, 2002.

[38] Z. Wang et al., "An Architecture Description Language Based on

Dynamic Description Logics," in Proceedings of the 7th TC 12

International Conference on Intelligent Information Processing VI,

2012, vol. 385, pp. 157-166: Springer Berlin Heidelberg.

[39] A. Rademaker, C. Braga, and A. Sztajnberg, "A Rewriting

Semantics for a Software Architecture Description Language,"

Electronic Notes in Theoretical Computer Science, vol. 130, no. 0,

pp. 345-377, 5/12/ 2005.

[40] C. Canal, E. Pimentel, and J. M. Troya, "Specification and

Refinement of Dynamic Software Architectures," in Proceedings

of the TC2 First Working IFIP Conference on Software Architecture

(WICSA), San Antonio, Texas USA, 1999, pp. 107-126: Kluwer,

B.V.

[41] B. Magableh and S. Barrett, "Primitive component architecture

description language," in Proceedings of the 7th International

Conference on Informatics and Systems (INFOS), 2010, pp. 1-7.

[42] J. Perez, I. Ramos, J. Jaen, P. Letelier, and E. Navarro, "PRISMA:

towards quality, aspect oriented and dynamic software

architectures," in Proceedings of the Third International Conference

on Quality Software, 2003, pp. 59-66.

[43] J. Xiangyang, Y. Shi, C. Honghua, and D. Xie, "A New

Architecture Description Language for Service-Oriented

Architecture," in Proceedings of the Sixth International Conference

on Grid and Cooperative Computing, GCC, 2007, pp. 96-103.

[44] G.-q. Zhang, H.-j. Shi, and M. Rong, "Mismatch Detection of

Asynchronous Web Services with Timed Constraints," in

Proceedings of the IEEE Asia-Pacific Services Computing Conference

(APSCC), 2011, pp. 251-258.

[45] T. Zhang, D. Xiang, and H. Wang, "vADL: A Variability-

Supported Architecture Description Language for Specifying

Product Line Architectures," in Proceedings of the Second

International Software Product Lines Young Researchers Workshop

(SPLYR) in conjunction with the 9th International Software Product

Line conference (SPLC), Rennes, France, 2005, pp. 31-37.

[46] I. Alloui and F. Oquendo, "Supporting Decentralised Software-

Intensive Processes Using ZETA Component-Based

Architecture Description Language.," in Enterprise Information

Systems III, vol. 3, J. Filipe, B. Sharp, and P. Miranda, Eds., 2002,

pp. 97-106.

[47] C. Chaudet and F. Oquendo, "pi-SPACE: a formal architecture

description language based on process algebra for evolving

software systems," in Proceedings of the Fifteenth IEEE

International Conference on Automated Software Engineering, ASE,

2000, pp. 245-248.

[48] M. Auguston, "Monterey Phoenix, or how to make software

architecture executable," in Proceedings of the 24th ACM

SIGPLAN conference companion on Object oriented programming

systems languages and applications, Orlando, Florida, USA, 2009,

pp. 1031-1040: ACM.

[49] M. Pinto, L. Fuentes, and J. M. Troya, "DAOP-ADL: An

Architecture Description Language for Dynamic Component

and Aspect-Based Development," in Proceedings of the 2nd

International Conference on Generative Programming and

Component Engineering, GPCE, 2003, vol. 2830, pp. 118-137:

Springer Berlin Heidelberg.

[50] P. Poizat and J.-C. Royer, "A Formal Architectural Description

Language based on Symbolic Transition Systems and Modal

Logic," Journal of Universal Computer Science, vol. 12, no. 12, pp.

1741-1782, 2006.

[51] C. K. Chang and K. Seongwoon, "I³: a Petri-net

based specification method for architectural components," in

Proceedings of the Twenty-Third Annual International Computer

Software and Applications Conference, 1999. COMPSAC '99., 1999,

pp. 396-402.

[52] P. Klien, "The Architecture Description Language MoDeL," in

Graph Transformations and Model-Driven Engineering, vol. 5765,

G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, and B.

Westfechtel, Eds. (Lecture Notes in Computer Science: Springer

Berlin Heidelberg, 2010, pp. 249-273.

[53] S. Faulkner and M. Kolp, "Towards An Agent Architectural

Description Language For Information Systems," in Proceedings

of the 5th Int. Conf. on Enterprise Information Systems ICEIS,

France, 2003, pp. 59-66: Press.

[54] D. Cassou, B. Bertran, N. Loriant, and C. Consel, "A generative

programming approach to developing pervasive computing

systems," ACM SIGPLAN Notices, vol. 45, no. 2, pp. 137-146,

2009.

[55] N. Ubayashi, J. Nomura, and T. Tamai, "Archface: a contract

place where architectural design and code meet together," in

Proceedings of the ACM/IEEE 32nd International Conference on

Software Engineering, ICSE, 2010, vol. 1, pp. 75-84.

[56] D. Su, B. De Fraine, and W. Vanderperren, "FuseJ: An

architectural description language for unifying aspects and

components," in Proceedings of the AOSD 2005 Workshop on

Software Engineering Properties of Languages for Aspect

Technologies (SPLAT ’05). 2005, pp. 1-8.

[57] A. Navasa, M. A. Pérez-Toledano, and J. M. Murillo, "An ADL

dealing with aspects at software architecture stage," Information

and Software Technology, vol. 51, no. 2, pp. 306-324, 2// 2009.

[58] M. Svahnberg and J. Bosch, "Issues Concerning Variability in

Software Product Lines," in Proceedings of the International

Workshop on Software Architectures for Product Families, 2000, pp.

146-157.

[59] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou,

"Variability in Software Systems - A Systematic Literature

Review.," IEEE Transaction Software Engineering, vol. 40, no. 3,

pp. 282-306, 2014.

[60] E. A. Barbosa, T. Batista, A. Garcia, and E. Silva, "PL-

AspectualACME: an aspect-oriented architectural description

language for software product lines," presented at the

Proceedings of the 5th European conference on Software

architecture (ECSA), Essen, Germany, 2011.

[61] Y. Oh, D. H. Lee, S. Kang, and J. H. Lee, "Extended Architecture

Analysis Description Language for Software Product Line

Approach in Embedded Systems," in Proceedings of the 5th

IEEE/ACM International Conference on Formal Methods and Models

for Codesign, MEMOCODE, Nice, France, 2007, pp. 87-88: IEEE.

[62] E. Silva, A. L. Medeiros, E. Cavalcante, and T. V. Batista, "A

Lightweight Language for Software Product Lines Architecture

Description," in Proceedings of the 7th European Conference on

Software Architecture, ECSA, Montpellier, France, 2013, vol. 7957,

pp. 114-121: Springer.

[63] S. Adjoyan and A. Seriai, "An Architecture Description

Language for Dynamic Service-Oriented Product Lines," in

Proceedings of the 27th International Conference on Software

Engineering and Knowledge Engineering (SEKE), Pittsburgh, USA,

2015.

[64] A. Haber et al., "Engineering Delta Modelling Languages,"

presented at the Proceedings of the 17th International Software

Product Line Conference (SPLC), Tokyo, Japan, 2013.

[65] E. Cavalcante, A. L. Medeiros, and T. Batista, "Describing Cloud

Applications Architectures," in Proceedings of the 7th European

conference on Software Architecture, ECSA, Montpellier, France,

2013, pp. 320-323: Springer-Verlag.

[66] A. Haber, J. O. Ringert, and B. Rumpe, "MontiArc -

Architectural Modeling of Interactive Distributed and Cyber-

Physical Systems," RWTH Aachen University, Germany, 2012.

[67] J. O. Ringert, B. Rumpe, and A. Wortmann,

"MontiArcAutomaton: Modeling Architecture and Behavior of

Robotic Systems," in Proceedings of the 2013 IEEE International

Conference on Robotics and Automation (ICRA), Karlsruhe,

Germany., 2013.

[68] D. Ruscio, I. Malavolta, H. Muccini, P. Pelliccione, and A.

Pierantonio, "ByADL: An MDE Framework for Building

Extensible Architecture Description Languages," in Proceedings

of the 4th European Conference on Software Architecture, ECSA,

2010, vol. 6285, pp. 527-531: Springer Berlin Heidelberg.

[69] T. J. Brown, R. Gawley, R. Bashroush, I. Spence, P. Kilpatrick,

and C. Gillan, "Weaving behavior into feature models for

embedded system families," in Proceedings of the 10th

International Software Product Line Conference (SPLC), 2006, pp.

52-61.

[70] R. Bashroush, I. Spence, P. Kilpatrick, T. J. Brown, W. Gilani,

and M. Fritzsche, "ALI: An Extensible Architecture Description

Language for Industrial Applications," in Proceedings of the 15th

Annual IEEE International Conference and Workshop on the

Engineering of Computer Based Systems, ECBS, 2008, pp. 297-304,

1396050: IEEE Computer Society.

[71] E. Woods and R. Bashroush, "Modelling large-scale information

systems using ADLs – An industrial experience report," Journal

of Systems and Software, vol. 99, pp. 97-108, 1// 2015.

[72] M. Galster and P. Avgeriou, "Handling Variability in Software

Architecture: Problems and Implications," in Proceedings of the

Ninth Working IEEE/IFIP Conference on Software Architecture,

2011, pp. 171-180, 2015583: IEEE Computer Society.

[73] J. Johnson and A. Henderson, "Conceptual models: begin by

designing what to design," Interactions, vol. 9, no. 1, pp. 25-32,

2002.

[74] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling

Language User Guide, 2nd Edition (Addison-Wesley Object

Technology Series). Addison-Wesley Professional, 2005.

[75] T. Halpin, "Object-Role Modeling: Principles and Benefits,"

International Journal of Information System Modeling and Design,

vol. 1, no. 1, pp. 33-57, 2010.

[76] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and L. William,

Object-Oriented Modeling and Design. Prentice-Hall, Inc., 1991.

[77] T. Halpin and T. Morgan, Information Modeling and Relational

Databases. Morgan Kaufmann Publishers Inc., 2008.

[78] Java Compiler Compiler tm (JavaCC tm) - The Java Parser

GeneratorJava Compiler Compiler tm (JavaCC tm) - The Java Parser

Generator. Available: https://javacc.java.net/

[79] R. S. Scowen, "Extended BNF - A Generic Base Standard," in

Proceedings of the Software Engineering Standards Symposium

(SESS), Brighton, United Kingdom, 1993.

[80] D. L. Moody, "The “Physics” of Notations: Toward a Scientific

Basis for Constructing Visual Notations in Software

Engineering," IEEE Transactions on Software Engineering, vol. 35,

no. 6, pp. 756 - 779, 2009.

[81] T. Murata, "Petri nets: Properties, analysis and applications,"

Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[82] D. Harel and B. Rumpe, "Meaningful modeling: what's the

semantics of "semantics"?," Computer, vol. 37, no. 10, pp. 64-72,

2004.

[83] P. Armstrong, G. Lowe, J. Ouaknine, and A. W. Roscoe, "Model

checking Timed CSP," in Proceedings of the HOWARD-60. A

Festschrift on the Occasion of Howard Barringer's 60th Birthday,

2012, pp. 13-33: EasyChair.

[84] ARP 4761: Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and Equipment,

December 1996.

