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Abstract 

Architecture  Description  Languages  (ADLs)  have  emerged  over  the 

past two decades as a means to abstract details of large-scale systems 

in order to enable better intellectual control over the complete systems. 

Recently, there has been an explosion in the number of ADLs created 

in the research community. However, industrial adoption of these ADLs 

has been rather limited. This has been attributed to various reasons, 

including the lack of support of some ADLs for: variability management, 

requirements traceability, architectural artefact reusability and multiple 

architectural  views.  To  overcome  these  limitations,  this  paper  is  a 

report on ALI, an ADL that was designed to complement existing work 

by adding mechanisms to address the aforementioned limitations. The 

ALI  design  principles,  concepts,  notations and  formal  semantics  are 

presented  in  this  paper.  The  notation  is  illustrated  using  two  distinct 

case  studies,  one  from  the  information  systems  domain – an  Asset 

Management System (AMS); and another from the embedded systems 

domain - a Wheel Brake System (WBS). 

 
Categories and Subject Descriptors 

D.3.3 [Software and its engineering]: Software system structures – 

software architectures 

 
General Terms 

Design, Language. 
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1. INTRODUCTION AND MOTIVATION 

Within the software engineering community, the concept 
of  software  architecture  started  to  emerge  as  a  distinct 
discipline in 1990 [1] which led to an explosion of interest 
during the 1990s and 2000s, referred to as the “Golden Age 
of Software Architecture” [2]. Today, software architecture 
is growing from its adolescence in research laboratories to 
the  responsibilities  of  maturity,  which  was  predicted  by 
Shaw [3] over a decade ago. But that does not mean that 
the time for research, innovation, and enhancement is past. 
In fact, it brings an additional responsibility to show not 
just  that  ideas  are  promising  (adequate  grounds  to 
continue  research)  but  also  that  they  are  effective 
(indispensable grounds to move into practice) [3]. In other 
words,  it  is  a  coupling  between  ongoing  research and 

actual  application  to  make  new  ideas  practical.  For  this 
reason,  software  architecture  has  drawn  considerable 
attention from both academia and industry. 
The increasing complexity of software and the critical 

nature of its use are driving a rapid maturation of the field 
of software architecture. According to Garlan [4], a critical 
issue  in  the  design  and  construction  of  any  complex 
software system is its architecture; that is, its organization 
as  a  collection  of  interacting  elements – modules, 
components,  services,  etc.  Thus,  a  well-designed 
architecture  ensures  the  quality  and  longevity  of  a 
software  system. A  number  of  approaches  exist  that  can 
describe  a  software  architecture,  ranging  from  formal 
notations  (e.g.  ADLs),  semi-formal  (e.g.  UML)  and 
informal (e.g. boxes and lines, videos, etc.). 
Architecture  Description  Languages  (ADLs) are 

currently  considered  to  be viable  tools  for  formally 
representing  the  architectures  of  systems  at a  reasonably 
high level of abstraction to enable better intellectual control 
over the systems [5]. An ideal ADL is considered to be both 
human-readable and machine-readable. An ADL must be 
simple,  understandable,  encompassed  by  multiple 
architectural views and syntactically flexible. With regards 
to  this,  Lago  et  al. [6] presented  a  general  framework  of 
requirements  for  the  next  generation  architectural 
languages  by  taking  into  account  current  architectural 
needs of both the academic and industrial worlds. 
Over the past two decades, a number of ADLs [7] have 

been developed  as  compared  to  the  number  of  ADLs 
reported in [8], [9] but the majority of the problems have 
not been resolved. Among those, a frequent problem is that 
ADLs  have  gained  wide  acceptance  in  the  research 
community  as  a  means  of  describing  system  designs but 
their current industrial adoption level is still reported to be 
as low as before with some exceptions, for example, in the 
embedded systems domain [10-13]. This could be due to a 
number  of  reasons  identified  in [14-16], including  the 
mismatch  between  their  strengths  and  the  needs  of 
practitioners.  
Many existing ADLs tend to focus on a specific aspect 

of a system (e.g. system structure), or be geared towards a 



 

 

    
 

particular  application  domain  (e.g.  embedded  systems). 
While  domain  specific  notations  can  be  well  tailored  to 
serve  particular  application  area  needs,  today’s  systems 
(and  system-of-systems)  cross  traditional  design 
boundaries, where software persists across various layers 
(e.g.  Cyber-physical  systems,  Smart  Cities  systems,  etc.). 
Thus, to be able to use an ADL in such domains, it would 
need to have the flexibility and expressiveness that allows 
it to stretch beyond a single application domain. 
There  has  recently  been  an  increase  in  the  usage  of 

variability  mechanisms  at  the  architectural  level  (e.g.  to 
represent product families or runtime system adaptation). 
Variability  management  allows  a)  the  development  and 
evolution  of  different  versions  of  software  and  product 
variants,  b)  planned  reuse  of  software  artefacts,  and  c) 
well-organized  instantiation  and  assessment  of 
architecture  variants [17]. An ADL  with  the  capability  to 
capture and express such complex variability exhibited in 
software systems would empower architects to build and 
model more sophisticated systems. 
To  overcome  these  aforementioned  limitations,  we 

propose ALI - an Architecture  Description Language  for 
Industrial Applications [18]. ALI has been designed to be a 
comprehensive  language,  suited  for  different  types  of 
systems,  from  individual  systems,  to  product  lines,  and 
system-of-systems.  A  major  goal  of  ALI  is  to provide  a 
blend  of  flexibility  and  formalism.  Flexibility  means  it  is 
easier to use and informative enough to convey the needed 
information  to  the  stakeholders  involved  in  the 
architecting  phase.  Formalism,  on  the  other  hand,  paves 
the way for developing better tool support and automated 
analysis.  ALI  is  designed  to  be  highly  customisable  to 
provide support for a wide range of application domains. 
ALI  is  built  on  existing  literature,  and  takes  into 
consideration the latest recommended guidelines [4, 6, 16] 
and characteristics [14]. 
The  remainder  of  this  article  is  organised  as  follows: 

Section  2  discusses  the  current  literature  while 
highlighting  the  limitations  of  existing  work.  Section  3 
presents  the  design  principles  behind ALI  and  the  high-
level  (abstract)  description  of  ALI  in  the  form  of  a 
conceptual  model.  Section  4  covers  the  details  of  the 
language,  visiting  the  different  constructs  in  the  ALI 
notation.  Section  5  describes  ALI  structural  and 
behavioural  semantics.  Section  6  illustrates,  through  two 
case studies, the ALI ADL. Evaluation of the case studies 
and the analysis are then discussed in Section 7. Section 8 
discusses  the  study  limitations.  Finally,  Section  9 
concludes the paper by summarizing the important points 
and outlining future research directions.   

2. LITERATURE REVIEW 

Several ADLs [7] have been developed over the past two 

decades. Existing literature is critically analysed in the next 

subsection,  with  limitations  discussed  in  the  following 

one.  

2.1 Critical Appraisal of Existing Work 
Since  the  early  90’s,  a  thread  of  research  on  formal 
architecture  description  languages  (ADLs)  has  evolved. 
Many different ADLs have been proposed in the literature 
for  modelling  architectures  both  within  a  particular 
domain,  and  as  general-purpose  architecture  modelling 
notations.  
All the classical ADLs (also considered  first generation 

ADLs [19])  compared  and  analysed  by  Medvidovic  and 
Taylor [8] were  conceptually  based  on  structural 
architecture modelling features (components, connectors, 
interfaces  and  architectural  configuration). Another ADL 
survey  was  conducted  by  Clements [9] in  the  same  era. 
Some of the second generation ADLs have been compared 
in [20] but it covers a very limited number of characteristics 
of the languages. 
Reflecting on existing literature, it is interesting to note 

that very few ADLs were originated in industry.  Described 
below are the three widely cited ones.    
AADL [10] (Architecture Analysis & Design Language) 

derived  from  the  MetaH [21] ADL,  is  a  SAE  standard 
formal  modelling  language  for  describing  software  and 
hardware  system  architectures  and  uses  a  component-
based  notation  for  the specification of  task  and 
communication.  It  provides  precise  execution  semantics 
for  system  components,  such  as  threads,  processes, 
memory,  and  buses.  All  external  interaction  points  of  a 
component  are  defined  as features. Data  and  events flow 
through  and  across  multiple  components.  The  AADL 
Behavioural annex describes nominal component behaviour 
and  the Error  annex describes  flows  in  the  presence  of 
errors.  
Koala [12] is a component oriented ADL based on key 

concepts from Darwin [22].  Basically, it was designed with 
the  aim  of  achieving  a  strict  separation  between 
component  and  configuration  development  in  order  to 
reuse  software  components  in  many  different 
configurations  for  different  product  variants,  while 
controlling cost and complexity.  
EAST-ADL [11] defines  an  approach  for  describing 

automotive  electronic  systems  through  an  information 
model  that  captures  engineering  information  in  a 
standardized  form,  provides  separation  of  concerns  and 
embraces the de-facto architecture of automotive software 
– AUTOSAR [23]. It covers a variety of aspects -functions, 
requirements, variability, software components, hardware 
components and communication. 



 

 

    
 

Although these ADLs come from different  industries, 
they  all  relate  to  the  embedded  systems  domain. AADL 
and  EAST-ADL  emerged  from  the  avionics  and 
automotive  industries  and  are  currently  widely  used  in 
their  respective  domains.  Koala,  on  the  other  hand,  was 
developed  within  the  consumer  electronics  domain, 
though its use has not seen the same proliferation as the 
previous  two. These  industrial  ADLs,  that  are  limited 
(perhaps by design) to the embedded systems application 
domain,  would  not  be  suitable  to  model  cross-domain 
applications  (e.g. Cyber-Physical  applications 
encompassing embedded as well as Information systems).  
On  the  academic  side,  a  large  number  of ADLs  have 

been  proposed,  each  characterised  by  slightly  different 
conceptual  architectural  elements;  different  syntax  or 
semantics; varying  emphasis  on  a  single  view  (structural 
or behavioural) or operational domain such as embedded 
system; or for specific analysis techniques. 
Below are some of the ADLs developed in academia: 

• ACME [24] is a general purpose ADL proposed as 

an architectural interchange language.  

• Darwin is a declarative ADL which is intended to be 

a  general  purpose  notation  for  specifying  the 

structure  of  distributed  systems  composed  from 

diverse component types using diverse interaction 

mechanisms [22].  

• UniCon [25] creates  a  useful,  pragmatic  and 

extensible  test-bed  that  would  allow  the 

architectural  abstractions  used  by  practitioners 

(such as pipes, filters, objects, clients and servers) to 

be  captured  and  reasoned  about in  a  systematic 

manner.  

• xADL[26],  an  XML  based  architecture  description 

language, is defined as a set of XML schemas and 

has  been  designed  to  use  the  standard  XML 

infrastructure  and  to  be  easily  extensible  using 

standard XML-Schema extension mechanisms. 

• C2 is a component- and message-based  ADL which 

simplifies  the  definition  of  architectures  following 

the Chiron-2 (“C2”) style [27]. 

• Rapide [28] is  an  event-based  concurrent  object-

oriented  language specifically  designed  for 

prototyping architectures of distributed systems.  

• WRIGHT [29] is  designed  with  an  emphasis  on 

analysis of communication protocols and provides 

formal  semantics  for  an  entire  architectural 

description  by  extending  Communicating 

Sequential  Processes  (CSP) [30].  Wright  has  been 

extended, termed Dynamic WRIGHT [31], with the 

ability to handle foreseen dynamic reconfiguration 

aspects of architecture. 

According  to  the  ANSI/IEEE  1471-2000  standard, 
structural  and  behavioural  viewpoints  are the  two  most 
important  and  frequently  used  viewpoints  for 
architectural  description.  The  specification  of  each 
viewpoint  with  their  entities  is  elucidated  in [19,  32]. A 
great challenge for an ADL is being able to describe static 
and  dynamic  software  architectures  from  structural  and 
behavioural perspectives.  
ADLs  like  ACME [24],  Aesop [33],  Aspectual-ACME 

[34], Darwin [22], Koala [12], MontiArcHV [35], UniCon [25], 
Weaves [36] and  xADL [26] were  focused  largely  on  the 
structural concerns of software architecture. On the other 
hand, some ADLs covered both behavioural and structural 
specifications,  including:  AADL [10],  ABC/ADL [37], 
ADLARS [13],  ADML [38], C2 [27],  CBabel [39],  EAST-
ADL [11],  LEDA [40],  MetaH [21],  PrimitiveC [41], 
PRISMA [42],  Rapide [28],  SOADL [43],  xADL [26], 
XYZ/ADL [44], vADL [45], WRIGHT [29, 31], Zeta [46], π-
ADL [19] and π-SPACE [47]. Only  a  few  ADLs  cover 
behavioural  aspects,  such  as  Monterey  Phoenix [48],  yet, 
these ADLs  do  not  treat  behaviour  as  a  first  class  citizen 
(tend to be merged with structural description). 
Additionally, most of these languages (except [22, 29]) 

define  structural  elements  using  their  own  bespoke 
notation. Some ADLs (such as AADL) have a core language 
that  contains  constructs  for  representing  structural  and 
behavioural  aspects  of  the  architecture.  Some  used 
different processes to define the behavioural description. 
For  example,  Rapide  describes  behaviour  through 
partially ordered event sets (or “posets”); Wright uses CSP 
with  minor  extensions;  LEDA,  PRISMA,  SOADL,  vADL, 
π-ADL and π-SPACE use the π-calculus. 
Generally,  the  overall  architectural  structure  of ADLs 

focuses  on  the  basic  component,  connector  and  system 
paradigm. All ADLs that have been analysed so far treat 
components as first class citizens, but in some languages 
[10, 12, 13, 21, 22, 28, 35, 40, 45, 49-54] there is no notion of 
connectors as first class citizens. Connectors are not even 
defined. This does not mean that we cannot create a useful 
language  without  first  class  connectors.  There  are  viable 
and potentially  useful  architectural  languages  that  have 
been created without them, like [10, 12, 22, 28].  [36, 38, 40, 
45,  46,  51,  52,  55,  56] do  not  support  an  architectural 
configuration  as  a  first  class  element.  Neither  connector 
nor  architectural  configuration  was  considered  first  class 
citizens in [40, 45, 51, 52]. Both types of ADLs, the ones that 
support  connectors,  and  the  ones  that  do  not  support 
connectors, tend to impose architectural decisions on the 
architect  (by  forcing  the  architect  to  have  a  connector  or 
not).  The  need  here  is  for  more  flexibility  to  allow 
architects  to  decide  whether  a  connector  is  need  or  not 



 

 

    
 

based  on  the  system  under  development  (rather than  an 
ADL restriction). 
There are few second generation academic ADLs that 

focus  mainly  on  the  behavioural  modelling  in  a  slightly 
different way as compared to traditional ADLs. Monterey 
Phoenix [48] is an ADL in which behaviour of the system 
is defined as a set of events (event traces) with two basic 
relations:  precedence  and  inclusion.  Different  types  of 
patterns (such as alternative, optional, etc.) are defined in 
the form of an event trace that occurs in a transaction. But 
they lack the unique visual notation for each of these event 
patterns. A schema is defined as a set of transactions that 
includes  all  possible  event  traces.  It  can  be  tedious  to 
understand  (especially  visually)  and  sometimes  becomes 
more  complicated  when  it  is  encapsulated  with  several 
pattern types in a single schema, particularly, in the case of 
large-scale and complex systems. 
PrimitiveC-ADL [41] is  a  component-based  language 

that modifies the application architecture by subdividing 
components  into  subsystems  of  static  and  dynamic 
elements.  A design  pattern typically  shows  relationships 
and interactions between components’ dynamic behaviour 
parts. The decision policy proposes the use of a design pattern 
and  the  application  of  the decision  policy depends  on  a 
scenario. The main problem in [41] and other ADLs [19, 45] 
is that while they define the behaviour of the system within 
a  component  or  in  their  configuration,  behavioural 
elements  are  not  explicitly  defined.  In  other  words,  it 
provides a single view of the system which is not suitable 
for  a  large-scale  industrial system  where  component 
behaviour  varies  enormously.  In  that  case,  component 
definition  becomes  complex  and  it  is  difficult  to 
differentiate static and dynamic parts. 
AspectLEDA [57] is an ADL that provides behavioural 

specification  of  the  system  using  the  UML  use  case  and 
activity  diagrams  by  adopting  the Aspect-Oriented  (AO) 
approach. Each use case diagram represents a component 
that  constitutes  the  system  and  its  interactions  are 
expressed in the form of sequence diagrams. Subsequently, 
a sequence diagram for every use case contains by default 
an aspect component as each use case is extended with an 
aspect. In other words, it describes the interactions among 
components visually via a UML sequence diagram with its 
dependency  on  an  AO  approach.  Looking  at  this, 
component  interactions  need to  be  more  elaborative  in  a 
sense by considering component interfaces (or ports) that 
are involved in the interaction which would be helpful to 
design complex systems. 
Another  major  element  that  needs  attention  with 

regards to ADLs, is the concept of variability. This is a very 
important and critical area when it comes to its use in the 
architectural  description,  especially  in  large-scale 
industrial applications [13, 58]. Variability is the ability to 
design  for  a  planned  set  of  changes  for  deployment  in 

specific  contexts [17].  It  facilitates  the  development  of 
different  variants  of  a  system  architecture.  Variability  is 
largely  taken  into  account  in  the  architecture  and  design 
phase of  software  engineering [59].  Although  there  are 
several ADLs where variability has been studied, variation 
is  specific  to  describing  a  set  of  related  products  as  in  a 
software  product  line  (SPL).  Among  the  ADLs  are:  PL-
AspectualACME [60], ADLARS, EAADL [61], LightPL-
ACME [62],  vADL,  and  DSOPL [63].  Other  ADLs 
that  consider  variability  as  a  separate  entity  are: 
MontiArcHV and ∆-MontiArc [64]. 
Software  architecture  typically  plays  a  key  role  as  a 

bridge  between  requirements  and  implementation [4].  In 
terms of ADLs, a challenge in bridging this gap is how to 
trace  feature  (requirements)  into  the  architecture 
description  particularly,  into  each  architectural  element. 
So  far,  in  the  research  literature, ADLARS  and  LightPL-
ACME  are  the  only  two ADLs  that made  an  attempt  to 
capture the  relationship  between  the  system's 
features  and  the  architectural  structures.  Both 
assumed  a  feature  model as  a  precursor  to  the 
architecture design process and were limited to specifying 
a product line. 
It is worth mentioning that there are few ADLs that try 

to  represent  different  aspects  and  domains  in  the 
architecture  by  presenting  it  in  the  form  of  different 
versions. Each focuses on a particular aspect/domain. For 
instance,  ACME  has  been  extended  to  AspectualACME 
with its descendant PL-AspectualACME, LightPL-ACME, 
Cloud-ADL [65] and ADML; MontiArc [66] to MontiArcHV, 
∆-MontiArc and MontiArcAutomaton [67]. 
There  is  a  framework  known  as  ByADL  (Build  Your 

ADL) [68] that  supports  a  software  architecture  team    in 
defining their own ADL by allowing software architects to 
(i)  extend  existing  ADLs  with  domain  specificities,  new 
architectural  views,  or  analysis  aspects,  (ii)  integrate  an 
ADL with development processes and methodologies, and 
(iii) customise an ADL. Basically, it takes the meta-model 
of the ADL to be extended as an input. 
Overall,  a  common  pitfall  for  the  discussed  ADLs  is 

their  limited  ability  to  support  large-scale  real-life 
applications.  Some  possible  reasons  behind  this  are 
discussed in [14, 16]. Limitations are further discussed in 
the next section. 

2.2 Limitations within Existing ADLs 
After  critically  analysing  the  existing  ADL  literature, 
particularly  around  scalability  and  uptake  (industrial 
adoption),  it  was  evident  that  only  ADLs  that  were 
originated  in  industry  saw  some  level  of  industrial 
adoption.  This  has  been  attributed  to  potential 
misalignment  between  practitioner  needs  and  the 
academic focus [16]. 
Below,  we  summarise  some  of  the  main  limitations 



 

 

    
 

identified in ADLs that emerged from academic research, 
but failed to achieve any notable industrial adoption:  
 
L1: Limited support for variability management 
To manage the size and complexity of industrial systems, 
and  with  the  current  trend  of  delaying  architectural 
decisions as much as economically feasible (and the shift 
of variability from hardware to software), it is valuable to 
have the capability of modelling variability adequately in 
the architecture design. 
 
L2: No  explicit  mechanism  to  link  requirements  to 
architectural artefacts  
Requirements traceability has emerged as a main objective 
in  industry.  Yet,  without  the  support  for  capturing  such 
relationships at the architecture description stage, the link 
between  requirements  and  implementation  becomes 
difficult to establish and maintain. For example, although 
AADL  does  not  support  modelling  such  relationships 
natively,  tools  such  as  AADL’s  OSATE  provide  such 
mechanisms outside the core ADL. 

 

L3: Application domain dependency  
As can be seen from the previous section, many ADLs are 
tailored  for  a  particular  application  domain,  with 
embedded  systems  having  the  majority  of  such  systems. 
However, given the way today’s systems are evolving with 
the  rise  of  the  Internet  of  Things  (IoT),  Cyber-Physical 
Systems (CPS), and Smart Cities to name a few, for an ADL 
to be capable of modelling a complete solution, it needs to 
cross cut multiple application domains. 
 
L4: Restrictive syntax 
Many ADLs impose a strict syntax and design principles 
on the architect (e.g. layered model, network model, etc.). 
Building ADLs in such a way allows the ADL designer to 
provide  various  automated  architectural  analysis. 
However,  from  a  practitioner  perspective,  the  last  thing 
needed  is  to  be  forced  to  reason  about  the  system  in  a 
specific way. 

 

L5: Lack of support for architectural artefact reusability 
Existing  ADLs  have  been  designed  to  support  the 
abstraction  of  details;  however,  support  for  architectural 
artefact  reuse  across  multiple  projects  is  lacking.  While 
architecture  reuse  has  seen  some  success  in  specific 
domains, e.g. the automotive domain using AADL [10], the 
granularity  of  reuse  remains  relatively  small.  In  order  to 
support  large-scale  reuse,  ADLs  would  need  to  provide 
mechanisms  to  capture  some  degree  of  variability  in  the 
description  of  artefacts  (and  their  interfaces)  to  enable 
redeployment in multiple contexts. 
 

L6: Overloaded architectural views 
Given  that  one  of  the  main  benefits  of  having  an  overall 
system  architecture  description  is  to  use  it  as  a 
communication  vehicle  among  the  various  stakeholders, 
not  all  the  information  captured  within  the architecture 
relate to every stakeholder. Accordingly, ADLs providing 
one  or  two  architectural  views  tend  to  suffer  from 
information overload. The importance of having multiple 
architectural views has also been highlighted in [32].  
 
L7: Focus  on  structure  more  than  behavioural 
architectural aspects 
The  structural  description  of  a  system  changes  less 
frequently  compared  to  the  behavioural  description 
because  systems  can  serve  different  objectives  with  the 
same structural description. In other words, the structural 
description  can  encapsulate  more  than  one  behavioural 
description.  Yet,  it  can  be  said  that  most  ADLs  still 
overlook the importance of behavioural description. While 
it is viewed as a major construct in some [10, 28], it is not 
covered in many [25, 29, 36], with fewer ADLs supporting 
the representation of behavioural architectural knowledge 
graphically [69].  
In the following sections, we discuss the ALI ADL [18], 

which  builds  on  initial  work  done  in [70],  to  overcome 
these limitations. 

3. DESIGN PRINCIPLES 

Analysing the practitioner’s needs as discussed in [16, 71], 

and in the literature review as discussed in Section 2, our 

goal  is  to  design  a  language  that  is  simple  enough  to  be 

usable  in  an  industrial  setting,  yet  formal  enough  to 

adequately support automated analysis and other essential 

functionalities  (extensibility,  evolution,  traceability  etc.), 

though the latter is outside the scope of this paper.  

To  achieve  this  goal,  we  present  the  set  of  principles, 

which  were  used  to  drive  the  development  of  the  ALI 

notation in order to address the limitations pointed out in 

the previous section. Additionally, this section provides an 

overview of ALI’s conceptual model. 

3.1 Principles 
Six general principles guided the creation of the ALI ADL: 
 

P1: Variability management 
Software  architects  need  adequate  support  for  dealing 
with variability in designing their system architecture. As 
stated in [72], it is essential for the architect to have suitable 
methods  for  handling  (i.e.,  representing,  managing  and 
reasoning  about)  variability.  From  an  architectural 
description perspective, variability is a concern of multiple 
stakeholders,  and  in  turn  affects  other  concerns.  So, 



 

 

    
 

variability  needs  to  be  treated  in  a  similar  way  to  other 
essential functionalities of the architectural language.  
Our proposed ALI ADL treats variability as a first class 

citizen and manages it as an integral part of the language. 
It provides the ability to manage variability not only in the 
overall system  architecture  description  but  also  in  the 
design  of  individual  architectural  elements – interfaces, 
connectors and components. This is done with the help of 
a simple if/else structure concept along with the keywords 
“supported”  and  “unsupported”.  Additionally,  ALI 
supports  variability  management  in  its  behavioural 
description  using  the  same  if/else  structure  (details  in 
Section 4.1.12). 
 

P2: Requirement traceability 
Tracing  requirements  from  the  problem  space 
(specification)  into  the  solution  space  (implementation) 
provides a valuable tool for architects to help validate the 
produced system against its set of objectives. However, for 
such an end-to-end traceability to work, there needs to be 
continuity  in  capturing  relevant  information  at  all 
development stages, including architecture. 
ALI supports requirements traceability by supporting 

the linkage of end-user features (see Section 4.1.2) directly 
to  architectural  elements  (components,  connectors, 
patterns etc.) using first order logic (to allow for complex 
dependencies). 

Additionally,  ALI  supports  ‘conditioning’  the 

behavioural aspects of the system to external parameters 

(see  Section  4.1.10).  Such  conditions  can  also  be  used  to 

change the behaviour of the system given various external 

requirements. 

 

P3: Cross application domain modelling 
With the emergence of new paradigms such as the Internet 
of  Things  (IoT)  and  Cyber-Physical  Systems  (CPS), 
architecture descriptions are now faced with the challenge 
of  encompassing  multiple  application  domains.  For 
example, if we consider the Smart Cities scenario, systems 
in  this  application  domain  will  entail  the  applications 
running  sensor  platforms  (IoT  devices),  communication 
gateways,  databases  (BigData  infrastructure),  and 
Information Systems that deliver end-user services. While 
the  architecture  of  the  sensor  systems  can  be  modelled 
using  embedded-system  oriented  ADLs,  these  ADLs  do 
not  necessarily lend  themselves  to  representing  the 
architecture of Information Systems. Thus, there is a need 
for  new  generation  ADLs  that  are  capable  of  modelling 
system across traditional design boundaries. 
ALI  supports  cross-application  domain  modelling  by 

introducing flexibility  in  the  notation  design  at  different 
levels. For example, ALI allows for the creation of custom 
interface types using a dedicated notation. The case studies 

discussed  show  ‘port’  like  interfaces,  as  well  as  ‘WSDL’ 
interfaces. 
 

P4: Balance formality and flexibility to better support the 
design process 
During  the  early  stages  of  the  design  process,  architects 
tend to sketch things at a very high level, using mere lines 
and boxes. At that stage, for example, it is difficult to start 
talking about the details of interfaces between components 
or  what  meta  information  to  capture  about  each 
architectural element. 
As the system development process progresses, and as 

more details are captured about the system, specific details 
in relation to architectural elements can then be discussed 
and modelled. Thus, an ADL needs to allow some flexibly 
at the initial stages of the design process, and at the same 
time,  provide  the  required  formality when  details  are 
available. 
For  example,  ALI  achieves  this  balance  between 

formality  and  flexibility  by  allowing  architects  to  work 
with  undefined  interface  types.  When  such  informal 
interfaces  are  used,  no  automated  analysis  would  be 
possible. Once the design is mature, and interface types are 
created,  ALI  could  then  provide  an  array  of  verification 
checks (as specified in the interface type description).  
 

P5: Increase architectural artefact reusability 
Architectural  artefacts  tend  to  be  tailored  to  particular 
system requirements. Accordingly, very few ADLs discuss 
the concept of artefact reusability across multiple systems. 
Yet, in real-life, it is more often than not we are faced with 
similar architectural challenges that could be solved using 
architectural  artefacts  we  have  in  existing  projects.  ALI 
supports the concept of large-grain reusability by allowing 
architectural  artefacts  to  be  made  configurable  based  on 
selected sets of features. 
For  example,  components  in  ALI  can  be  customised 

based  on  which  features  are  selected  for  a  particular 
component,  and  the  values  of  these  features.  Similarly, 
connectors and interfaces can also be parameterised using 
feature  sets.  By  mapping  the  feature  set  of  the  source 
domain  (where  the  component  is  taken  from)  and  the 
feature  set  of  the  destination  domain  (where  the 
component  is  going  to  be  deployed),  the  component  can 
adapt  to  the  new  environment  (further  details  in  Section 
4.1.6).  
 

P6: Multiple architectural views 
As systems increase in size and complexity, and as more 
and  more  stakeholders  take  interest  in  system 
development (product managers, architects, end-users ‘in 
the  loop’,  etc.),  the  information  captured  within  an 
architecture  description  is  expanding.  Accordingly,  in 



 

 

    
 

order  to  minimise  information  overload,  and  sacrifice 
abstraction  for  completeness,  the  need  for  multiple 
architectural  views  catering  for  different  stakeholders  is 
becoming an important feature of an ADL. 
ALI  is  designed  with  the  concept  of  multiple 

architectural  views,  where  each  view  corresponds  to  a 
stakeholder  (or  stakeholder  group)  and  addresses  a 
different  set  of  concerns  (see  Section  4.1  for  textual  and 
Section 4.2 for graphical descriptions). 
 

3.2 Conceptual Model 
A conceptual  model is  a  high-level  description  of  how  a 
system  is  organized  and  operates [73]. The  aim  of  a 
conceptual model is to express the meaning of terms and 
concepts  used  by  domain  experts  and  to  find  the  correct 
relationships between different concepts. Several notations 
[74-77] exist  that  are  used  to  describe  the  conceptual 
model.  Among  those,  UML  (Unified  Modelling  Language) 
[74] is a widely used and comprehensive notation (ISO/IEC 
19501).  
Fig. 1 shows the conceptual model of ALI. The reference 

architecture represents the overall system description. The 
reference  architecture  is  made  up  of arrangements and 
viewpoints. Arrangements  represent  the  structural  (static) 
description of the system and are composed of components 

and connectors, which communicate through interfaces.  
Viewpoints  are  sets  of transaction domains that pertain 

to  a  common  concern  (e.g.  car  ignition  system). 
Transaction domains represent the behavioural (dynamic) 
aspects  of  the  system,  and  are  composed  of  sets  of 
transactions that together serve a particular system feature 
(e.g.  user/key  validation).  Transactions  are  expressed  in 
terms of sets of events that achieve a system functionality 
(e.g.  key  authorisation).  And  events  are  the  basic 
communication mechanism between components (e.g. key 
code update event). 
Conditions are parameters that represent external (to the 

system)  environmental  aspects  that  could  impact  the 
system  behaviour.    The  architecture  description  is 
parameterised using these conditions, which can be either 
true  or  false.  Different  combinations  of  conditions  and 
their values, called scenarios, can be used to test and adapt 
the behaviour of the system to various contexts. 
Finally,  a product  architecture can  be  derived  from  a 

reference  architecture  using  a product  configuration. 
Product configurations represent desired features, and their 
values, for a specific product in a product line. 
In the next section, the details of these constructs, along 

with the notation used to describe them, are discussed. 
 

Fig. 1. ALI conceptual model 
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4. CONSTRUCTS AND NOTATIONS 

Woods  and  Bashroush [71] observed  that  architectural 
languages constructed with complex or obscure syntactical 
notations are rarely used correctly. Generally, practitioners 
avoid adopting complex languages into their development 
process especially in large scale systems where it becomes 
tedious  to  handle  and  understand.  Malavolta  et  al. [16] 
conducted  an  industrial  survey  which  shows  that 
architectural  languages  need  to  be  simple  and  intuitive 
enough  to  communicate  the  right  message  to  the 
stakeholders involved in the architecting phase along with 
some  formality  in  order  to  drive  analysis  and  other 
automation  tasks.  The  ALI  notation  is  designed 
accordingly,  where  the  syntax  (graphical  and  textual)  is 
kept  simple  and  flexible,  yet  formal  enough  to  conduct 
automated analysis. 
In  the  following  sections,  we  discuss  the  main 

constructs  of  the  ALI  notation.  Where  applicable,  we 
demonstrate  the  concepts  using  parts  of  the  Asset 
Management  System  (AMS).  AMS  is used  to  manage 
investment  portfolios  of  financial  instruments  such  as 
equities  and  commodities  (see  Section  6.1  for  further 
details). 

4.1 ALI Textual Notation 
The  ALI  textual  notation  is  designed  based  on  the 
principles  defined  in  Section  3.1. The  textual  notation  is 
made up of 14 main constructs as listed in Table 1. 

These  constructs  are  discussed  in  the  following 
sections. 
 

4.1.1 Meta Types 
The meta  types section  provides  a  formal  syntax  for 

capturing  meta-information  of  the  architectural  element 

(e.g. components, connectors, etc.). A meta type is defined 

by  the  information  it  encompasses.  The  information  is 

stored  in  fields,  where  each  field  has  a  name  (tag)  and  a 

data  type  (text,  number,  etc.).  The  following  example 

defines a meta type called	Meta_ServerEquity:		

      meta type Meta_ServerEquity { 

            tag creatorID, intention: text; 

            tag cost, version*: number; 

            tag last_updated: date; 

        } 

In  this  example,  “meta  type”  is  a  keyword  which  is 

used to start a meta type definition. Meta_ServerEquity is 

the name of the meta type being specified. Each meta type 

contains  a  set  of  tags  each  of which  is  either textual, 

numeric,  date,  enumeration  or  character.  Five  tags  are 

defined  in  the  above  example:  two  textual,  two  numeric 

and one date. The asterisk “*” on the version tag indicates 

that it is an optional tag.  

 

TABLE 1 

 ALI CONSTRUCTS 

Construct Description 

Meta types Provide an extensible mechanism for capturing architectural meta-information 

Features The system features are catalogued 

Interface templates Specifies a dedicated notation for creating categories of interface types 

Interface types Architectural interfaces are defined 

Connector types Architectural connectors are defined 

Component types Architectural components are defined 

Pattern templates Reusable architectural design patterns are defined 

Product configurations Provides the feature combinations that characterise individual products 

Events The events that flows within a system are defined 

Conditions The system behavioural conditions (architecture parameterisation) are catalogued 

Scenarios Behavioural scenarios are defined (sets of conditions to represent a runtime scenario) 

Transaction domains Provides the behavioural interactions within a particular system domain 

Viewpoints Different behavioural viewpoints are defined  

System The overall system architecture is described  



 

 

Once meta types are specified, meta objects conforming 

to these types can be created and attached to architectural 

elements  throughout  the  architectural  description.  These 

meta  objects  provide  an  area  for  appending  additional 

information related to these elements. 

Below is an example of a meta object that conforms to 

the meta type defined in the example above.   

      meta: Meta_ServerEquity { 

           creatorID: “Martin005”; 

           intention: “Acts as a mediator to manage  

                       equity portfolio”; 

           cost: 5,000; 

           version: 1.3; 

           last_updated: 20-02-2017;     

       } 

A meta object could also be a combination of more than 

one meta type. To enhance the language flexibility, it is also 

possible to create meta objects that do not conform to any 

meta  type.  However,  little  automated  analysis  can  be 

performed on such informally described data. The reason 

for allowing objects with no type is to enable architects to 

sketch  what  they  initially  think  could  be  relevant  meta-

information,  then,  once  confirmed,  they  create  the 

appropriate meta types to ensure conformance.  

The formal specification of meta information allows for 

easier  CASE  tool  development  to  harness  these  meta 

objects and conduct automated analyses (e.g. cost/benefit 

analysis,  project  timing/scheduling,  etc.  depending  on 

what  type  of  meta  information  is  available).  Other  meta 

information  could  include:  design  decisions,  component 

compatibility,  etc.  which  when  extracted  and  formatted 

using  proper  CASE  tools,  allow  automated  architecture 

documentation to be achieved on-the-fly. 

In  general,  it  is  expected  that  the  meta  types  will  be 

created  once  and  used  repeatedly  across  the  different 

systems  developed  by  the  same  enterprise.  In  order  to 

make  sure  that  critical  information  is  always  provided 

within an architecture description, a project management 

team  (or  any  other  stakeholder)  may  first  identify  the 

standard  set  of  information  required  (tags),  and  then 

provide it to architects for conformance. The flexibility in 

the  syntax  also  allows  the  architects  to  augment  this 

information  with  fields  (tags)  that  they  may  want  to  use 

internally within the architecture team. 

4.1.2 Features 
The  feature  description  notation  provides  a  catalogue  of 
the  system features (mandatory,  optional  or  alternative) 
used within the system. The feature definition comprises 
of: 

• alternative  names:  In  many  cases,  different  teams 

within  the  development  process  address  a  feature 

with different names. This sub-section of the feature 

definition keeps track of the different names (if any) 

that  are  used  to  address  the  same  feature.  This 

property will keep track of the system features and 

reduce redundancy. 

• parameters:  A  feature  can  carry  different  types  of 

parameters -textual,  numerical  and  Boolean. 

Though, not all features would be parameterised. 

 

Below is an example of how features are defined in ALI:  

features { 

  Equity: { 

     alternative names: { 

         Designer.FI1, Developer.Ey,  

         Evaluator.F11;  

       } 

     parameters: {  

         {Equity_Type = text}; 

        } 

       } 

 

  Equity_Derivative: { 

     alternative names: { 

         Designer.ID1, Developer.SD,  

         Evaluator.F14;  

       } 

     parameters: {  

         {Derivative_Type = text, 

          Premium_Period = text, 

          OTC = boolean}; 

       } 

      } 

   // similarly other features can be defined   

 } 

In the example above, Equity_Derivative was defined 
showing that it is referred to as ID1 by the design team, SD 
by the development team, and F14 by the evaluation team. 
The  feature  encompasses  three  parameters,  two  textual 
and one Boolean. 
In  ALI,  system  features  are  defined  in  a  stand-alone 

catalogue  as  shown  above.  The  catalogue  serves  as  an 
adapter  between  any  feature  modelling  technique  used 
and the architecture description, making ALI independent 
of any particular feature modelling technique. 
 

4.1.3 Interface Templates 
The interface template notation provides a framework that 

allows the description of multiple interface type categories 

within  a  system  description.  The  idea  behind  this  is  to 

create  a  set  of  common  interface  templates  (e.g.  WSDL, 



 

 

RMI, etc.) needed within an application domain once, and 

reuse them in different projects. These interface templates 

can be used as a specification in defining the interface types 

of  the  system,  either  explicitly  (as  explained  in  the  next 

section) or in the component type definition (Section 4.1.6). 

This template specification can also be reused outside the 

defined system depending upon the design requirement as 

per principle P5 in Section 3.1. 

The interface template definition is divided into three 

main sections:  

• provider  syntax  definition:  where  the  syntax  of  the 

provider interface is specified using a subset of the 

JavaCC [78] notation.  JavaCC  (Java  Compiler 

Compiler) is an open source notation that allows the 
definition  of  grammars    using  EBNF  style  syntax  

[79]. The JavaCC specification can then be compiled 

to  produce  a  parser  for  a  particular  interface 

definition. 

• consumer  syntax  definition:  where  the  syntax  of  the 

consumer interface is specified using a subset of the 

JavaCC  notation. 

• constraints:  where  the  interface  connectivity 

constraints are specified. These include: 

- Should  match:  here  the  terms  (identified  in  the 

below syntax definition sections using the JavaCC 

notation)  that  should  match  between  two 

interfaces to be considered compatible (allowed to 

bind) are identified.  

- Binding:  comprises  of  three  different  fields:  1) 
multiple -a  Boolean  value  that  states  whether 
multiple  binding  is  allowed  on  this  interface;  2) 
data size -range of the data that can pass through 
this  interface  by  providing  the  maximum  and 
minimum  values;  and  3) max  connections – 
maximum  number  of  simultaneous  connections 
allowed on the interface. 
- Factory: This is a Boolean value that states whether 
the interface is a factory or not. A factory interface 
means that when a connection request is received 
on  this  interface,  a  new  instance  is  created  to 
handle  that  particular  request  while  the factory 
interface  continues  to  listen  to  new  incoming 
requests. Example: server socket interfaces in Java 
are  factories.  On  the  other  hand,  C++  sockets  do 
not support factory functionality by default. 
- Persistent: This is a Boolean value that indicates a 
persistent  interface  (the  internal  data  of  the 
interface component is kept unchanged after the 
current  connection  has  ended)  when  set  to  true 
and indicates a transient interface (internal data is 
reset to initial values when the current connection 
is terminated) when set to false.  

An  interface  template  description  begins  with  the 

keyword “interface  template” followed  by  the  interface 

template name such as MethodInterface as in the example 

below: 

interface template MethodInterface {  

  provider syntax definition: { 

    "Provider"":" 

     "{" 

        {"function" <FUNCTION_NAME> 

          "{" 

             "impLanguage" ":" <LANGUAGE_NAME> ";" 

             "invocation" ":" <INVOCATION> ";" 

             "parameterlist" ":" "(" 

                         [<PARAMETER_TYPE> {","               

                         <PARAMETER_TYPE}] ")" ";" 

             "return_type" ":" <RETURN_TYPE> ";"     

            "}" } 

     "}" 

    } 

  consumer syntax definition: { 

    "Consumer"":" 

        "{" 

           “Call” “:” <INVOCATION> “(“ 

                      [<PARAMETER_TYPE> {","  

                       <PARAMETER_TYPE}] ”)” “;” 

        "}" 

   } 

 

  constraints: { 

    should match: {INVOCATION_NAME =  

              .INVOCATION_NAME,PARAMETER_TYPE} 

    binding: { 

         multiple: true; 

         data_size: [50KB, 500MB]; 

         max_connections: 5; 

 } 

    factory: false; 

    persistent: false; 

   } 

 }  

} 

For  further  details  about  the  notation  used  for 
specifying  the  interface  template  syntax,  please  refer  to 
JavaCC [78]. 



 

 

It is important to clarify here that the interface template 

definition is not meant to be read by humans, but rather 

created  once  and  then  read  by  CASE  tools  that  would 

verify  the  interface  descriptions  and  connections  made 

throughout the architecture definition. 

4.1.4 Interface Types 
The interface  type notation  provides  a  set  of  pre-defined 
interface  types  that  are  created  in  conformance  to  the 
definition of an interface template, described in the previous 
section.  Interface  types can  be  (re)used  in  the  design  of 
architectural  elements  (components  and  connectors) 
throughout the system description (design principle P5). 
An interface type definition begins with the keyword 

“interface type” as in the example below: 
interface type {       

  ArithmeticOperation: MethodInterface { 

        Provider: { 

         function Addition 

          { 

           impLanguage: Java; 

           invocation: add; 

           parameterlist: (int); 

           return_type: void;  

          } 

         function Subtraction {…} 

         function Multiplication {…} 

        } 

        Consumer: { 

           Call: getValue (long_int); 

        }  

}  

 

  AverageOperation: MethodInterface { 

        Provider: { 

         function Average 

          { 

           impLanguage: Java; 

           invocation: average; 

           parameterlist: (int); 

           return_type: void;  

          } 

         } 

        Consumer: {//nothing consumed}      

     } 

 

   NumericOperation: MethodInterface { 

        Provider: { 

         function GetValue 

          { 

           impLanguage: Java; 

           invocation: getValue; 

           parameterlist: (void); 

           return_type: long_int; 

          } 

        } 

        Consumer: { 

         Call: add (long_int); 

         Call: subtract (long_int); 

         Call: multiply (long_int); 

         Call: average (long_int); 

        }  

     } 

  … //similarly other interface types can be 
defined 

} 

Each  interface  type  is  defined  by  a  unique  name 
followed  by  the interface  template name,  to  which  it 
conforms.  In  the  example  above, ArithmeticOperation 
performs  basic  mathematical  operations  to  calculate  the 
portfolio  value  based  on  the  value  it consumed  and 
AverageOperation calculates the portfolio value by using 
the  average  formula  strategy.  The  interface  type 
NumericOperation consumes  values  returned  from  these 
interface  types  and  provides  them  to  the  other  interface. 
They  all  conform  to  the  interface  template 
MethodInterface defined in the previous section. We can 
also  define  other  interface  types  that  conform  to  other 
interface templates such as WSDL, RMI, etc.  
 

4.1.5 Connector Types 
Like  many  other  ADLs,  such  as  ACME [24],  Aesop [33], 

CBabel [39], EAST-ADL [11], UniCon [25], WRIGHT [31] 

and π-ADL [19], to name a few, connectors are considered 

first class citizens in ALI.  

A  connector  type  definition  begins  with  the  keyword 

“connector type” followed by the connector type name and 

is divided into three sections.  

connector type Calculator_Equity 

  { 

    features: { 

 MTM_Price_Method: “Share prices matched  

                    with market price”, 

    Company_Price_Method: “Unlisted share price  

                     of an individual company”, 

 Weighted_Average_Method:  

       “Portfolio Valuation is done on the   

        basis of average share price”; 

     } 

    interfaces: { 

    valueport1: ValueOperation; 

    valueport2: ArithmeticOperation; 

    valueport3: AverageOperation; 

    valueport4: NumericOperation;  

   } 

    layout: { 

      connect valueport4 and valueport1; 

   if (supported(MTM_Price_Method ||  



 

 

                 Company_Price_Method)) 

      {connect valueport1 to valueport2; 

 connect valueport2 to valueport4;} 

else if (supported(Weighted_Average_Method)) 

 connect valueport3 to valueport4; 

   }  

   }  

• features: a set of optional/alternative features used to 

parameterise a connector type. By changing feature 

values,  a  connector  can  be  reconfigured  to  be 

deployed  in  different  products  (based  on  feature 

availability  and  parameter  values).  The 

configuration  is  achieved  using if/else structures 

and  the  keywords  “supported/unsupported”  to 

link features to the connector definition. 

• interfaces:  where  the  connector  interfaces  are 

defined  along  with  their  interface  types.  These 

resemble  the  input/output  ports  of  the  connector. 

Basically,  interfaces  are  instances  of interface  types 

that are defined in accordance to interface templates.  

• layout:  The  layout  section  describes  the  internal 

configuration  (structure/arrangement)  of  the 

connector.  It  demonstrates  how  the  connector 

interfaces are connected internally, that is, how the 

traffic  (information)  travels  internally  from  one 

interface to another. This syntax introduces a high 

level  of  configurability  to  the  connector  definition 

which  provides  better  support  for  defining 

configurable  product  and  product  line 

architectures.  Two  types  of  configurations  are 

allowed between connector interfaces, namely: 

- uni-directional  connections  (to):  which  specify  that 

the  data  from  one  interface  goes  to  another 

interface.  This  is  done  using  the  keywords: 

“connect” and “to”. Example: connect valueport1 

to valueport2 in Calculator_Equity outputs the 

data on the valueport1 interface to the valueport2 

interface.  

- bi-directional  connection  (and):  which  specify  that 

the data can travel in both directions between two 

interfaces.  This  is  done  using  the  keywords: 

“connect” and “and”. Example: connect 

valueport4 and valueport1 in 

Calculator_Equity outputs  the  data  on  the 

valueport4 interface  to  the valueport1 interface 

and vice versa.  

Additionally, the keyword “all” can be used to connect 
a connector interface to all other interfaces of the connector 
using  a  bi-directional  or  unidirectional  communication. 
For example, “connect all to all” can be used to create 
bi-directional  connections  among  all ports.  We  can  also 

have “connect valueport1 to all” which makes the input 
on  interface valueport1 available  as  output  on  all  other 
interfaces of the connector.  

Lastly, meta objects can be attached to connector types 

by simply defining the meta object (as explained in Section 

4.1.1)  inside  the  connector  type  definition  (anywhere 

between the start and end brackets. 

4.1.6 Component Types 
The component  type definition  is  divided  into  three  main 
sections: 

• features: a  set  of  optional/alternative  features  that 

make  up  a  component  type.  The  purpose  and 

definition  of  this  section  is  exactly  similar  to  the 

concept of features defined in the connector type (see 

Section 4.1.5). That is, it provides the capability to 

reuse components in multiple products and systems 

by varying feature values (product configurations).  

• interfaces: which specify the different interfaces used 

by the component. The interfaces section is divided 

into  two  sections, definition where  new  interfaces 

can be created from scratch; and implements where 

already defined interfaces can be reused (interfaces 

implemented here are instances of interface types).  

• sub-system:  where  the  internal  structure  (sub-

system)  of  the  component  is  described.  The  sub-

system section is divided into three sections: 

- components:  where  the  different  sub-components 

included within the component are defined. 

- connectors: where the different connectors used in 

connecting sub-components are defined. 

- arrangement:  where  the  way  in  which  sub-

components are connected is described. To allow 

flexibility,  ALI  provides  three  different  methods 

that can be used to connect components: 

a. Using connectors: where a connector mediates 

the  connection  between  two  or  more 

components.  This  is  done  using  the 

keywords: “connect”.  

Example: connect component.interface1 
with connector.interface1. 

b. Direct  binding:  where  component  interfaces 

are  bound  directly  without  the  use  of  a 

connector. This is done using the keywords: 

“bind”. For  example: bind 
component1.interface1 with 
component2.interface1. 
 

c. Using patterns: where predefined connection 

patterns  can  be  used  to  connect  a  set  of 

components  according  to  a  selected 

architectural pattern (see Section 4.1.7). 



 

 

For  example,  a component  type description  for  a 
portfolio  equity  valuator  (which  calculates  the  portfolio 
value  based  on  the  valuation  method  requested  by  the 
fund  manager)  begins  with  the  keyword “component 
type” followed  by  the  component  type  name 
Portfolio_EquityValuator as  shown  in  the  example 
below. 
 

component type Portfolio_EquityValuator  

  { 

   meta: Meta_Valuator, Meta_ShareTradeData { 

    /* demonstrates meta object comprises of two      

       meta types */ 

    acceptance_value: “any numerical value”;  

    value_approximation: “2 significant figures”; 

    curreny_acceptance: “all top international  

         trading currencies that exists in stock  

         exchange”; 

    last_request: 18-01-2017; 

    intention: “to calculate the portfolio value  

         on the basis of current business day  

         trading”; 

    }  

 

  features: { 

    E_Share: “Type of equity in financial  

              instruments”, 

    MTM_Rate_Method: “Share prices matched with  

                      market price”, 

    Company_Rate_Method: “Unlisted share price of  

                          an individual company”, 

    Weighted_Average_Value_Method:  

         “Portfolio Valuation is done on the   

          basis of average share price”; 

    } 

 

  interfaces: { 

   definition: { 

       //No need to define any interfaces 

   } 

   implements:{ 

      // MethodInterface interface template 

      NumercialValue: NumericOperation;        

      if (supported (MTM_Rate_Method ||  

                     Company_Rate_Method)) 

        //WSDL interface template        

        PriceStatus: ValueData;                 

      if (supported  

                 (Weighted_Average_Value_Method)) 

        CalculationMessage: PortfolioMessenger;   

    } 

  } //end of interfaces 

 

 

 

 sub-system: { 

  components { 

   PValueProcessor<false, false, false, true,  

                 true, true>: Portfolio_Processor; 

   if (supported(E_Share)) { 

    if (supported(MTM_Rate_Method)&&  

       unsupported(Weighted_Average_Value_Method)) 

      MTMValuator<true, false, false, false>:  

                                 EquityCalculator; 

    else if (supported(Company_Rate_Method)) 

      CRValuator<false, true, false, false>:  

                                 EquityCalculator; 

    else  

      WeightedValuator<false, false, true, false>:  

                                 EquityCalculator;  

    }  

   } 

  connectors { 

   HTTP_EMarket<MTM_Rate_Method, Company_Rate_ 

              Method, false>: HTTP_EquityValuator; 

   if (supported(MTM_Rate_Method) &&  

       unsupported(Weighted_Average_Value_Method)) 

     Cal_MTM<true, false, false>:  

                                Calculator_Equity;  

   else if (supported(Company_Rate_Method))  

     Cal_CR<false, true, false>: 

                                Calculator_Equity; 

   else { 

     HTTP_VProcessor<true, false>: HTTP_Equity; 

     HTTP_CalWAV<false, false, true>:  

                            HTTP_EquityCalculator;  

     Cal_WAV<false, false, true>:  

                               Calculator_Equity;} 

  } 

  arrangement { 

   // connecting components using connectors 

  connect PValueProcessor.CalculationMessage with  
                         HTTP_VProcessor.msgport2; 

  connect my.CalculationMessage with  

                         HTTP_VProcessor.msgport1; 

  if (supported (MTM_Rate_Method ||  

                 Company_Rate_Method)){ 

   connect PValueProcessor.PriceStatus with  
                          HTTP_EMarket.valueport1; 

    connect my.PriceStatus with 

                         HTTP_EMarket.valueport2;} 

  if (supported(MTM_Rate_Method) &&  

      unsupported(Weighted_Average_Value_Method)){ 

    connect PValueProcessor.CalculationValue with  

                               Cal_MTM.valueport1; 

     

    connect MTMValuator.OperationalValue with  

                               Cal_MTM.valueport2; 



 

 

    connect MTMValuator.OperationalValue with  

                              Cal_MTM.valueport2; 

    connect my.NumericalValue with  

                              Cal_MTM.valueport4;} 

  else if (supported(Company_Rate_Method)) { 

    connect PValueProcessor.CalculationValue with  

                                Cal_CR.valueport1; 

    connect CRValuator.OperationalValue with  

                                Cal_CR.valueport2; 

    connect CRValuator.OperationalValue with  

                                Cal_CR.valueport2; 

    connect my.NumericalValue with  

                               Cal_CR.valueport4;} 

  else { 

    connect PValueProcessor.AverageRequest with  

                         HTTP_CalWAV.messageport1; 

    connect WeightedValuator.AverageMessage with  

                         HTTP_CalWAV.messageport2; 

    connect WeightedValuator.AverageValue with  

                               Cal_WAV.valueport3; 

    connect my.NumericalValue with  

                              Cal_WAV.valueport4;} 

     } // end of arrangement section 

   } // end of sub-system section 

} // end of component type 

The  example  above  shows  how  the  component 

configuration can change depending on what features are 

supported.  The  keyword  “my” is  used  to  reference  the 

component’s own interfaces as opposed to sub-component 

interfaces  (similar to  the  use  of  “this”  in  some 

programming languages). 

4.1.7 Pattern Templates 
The pattern template notation in ALI allows the definition 

and use of architectural patterns. They are first defined and 

then  (re)used  throughout  the  architecture  by  calling  the 

pattern template needed. The pattern template definition 

takes the interfaces to be connected as an argument and is 

defined  in  a  similar  way  to  the  definition  of  functions 

(methods) in programming languages. A pattern template 

definition comprises of:   

• pattern name: a unique pattern name.  

• arguments: a set of interfaces to be connected. Single 

interface and/or arrays of interfaces can be passed 

as  arguments.  The  minimum  and  maximum 

number  of  interfaces  passed  can  be  specified  as 

arguments for arrays of interfaces. 

• definition: the description of how the interfaces are 

to  be  connected  (the  pattern).  The syntactical 

notation  used  for  defining  patterns  is  very  simple 

and provides support for: 

- connecting  interfaces:  uses  syntax  similar  to  that 

used  in  the  connections  section  of  the  connector 

type definition (discussed in Section 4.1.5). 

- defining  loops:  to  allow  for  connecting  arrays  of 

interfaces.  The  syntax  used  here  is  similar  to  the 

syntax used in most programming languages for 

creating for loops. The point to be noted is that the 

arrays  of  interfaces  start  at  index  1  and  not  at  0 

(like in most programming languages). 

Below  is  an  example  that  defines	Client_Server	
pattern:   

pattern templates: 

{ 

    Client_Server (server : MethodInterface,  

            clients [1…N] : MethodInterface) 

  { 

    for ( i = 1 ; i <= N ; i++ ) 

 connect clients[i] and server; 

  } 

} 

In this example, the Client_Server pattern takes as an 

argument  one  interface server of  template 

MethodInterface, and an array of interfaces called clients 

(with [1..N] meaning  at  least  one client interface)  of 

template MethodInterface. The pattern is defined as: for 

all N clients interfaces, create a bi-directional connection 

with the server interface (see Section 4.1.5 on the use of the 

keywords:  “connect”,  “and”,  and  “to”  for  connecting 

interfaces).  

4.1.8 Product Configurations 
A product configuration is a set of features, along with their 
values,  representing  a  particular  product  configuration 
(this  is  also  called product  feature  set in  Software  Product 
Line Engineering). Product configurations can be used to 
generate  specific  products  from  the  parameterised 
reference  architecture.  Below  is  an  example  product 
configuration for an Equity_Share_Derivative product. 

product configurations { 

 Equity_Share_Derivative: { 

    Equity {Equity_Type = long}; 

    Equity_Share = true; 

    Equity_Derivative {Derivative_Type = options,  

                       Premium_Period = 1year, 

                       OTC = false}; 

 Share_Sector {Holdings = 100,  

               Total_Share_Value = 1,550, 

               Share_Sector_Category =  

                   (banking, pharmaceutical)}; 

  } 



 

 

  … // similarly other products can be defined 

} 

4.1.9 Events 
Events are  abstractions  of  actions  performed  during  the 

execution  of  the  system,  such  as  a  message  transmission 

from one component to another. In ALI, events are defined 

using  a  unique  name,  along  with  the  interface  templates 

they  travel  to  and  from.  Below  is  an example  of  how to 

define events: 

events { 

  ValuationRequest: <WSDL, WSDL>; 

  RequestValuationDetails: <MethodInterface,  

                                 MethodInterface>; 

  CalculateValue: <WSDL, WSDL>; 

  … 

 } 

In  the  above  example, ValuationRequest is  an  event 
that flows between two WSDL interfaces. It is also possible 
for events to travel from, and to, more than one interface 
template. In this case, interface templates are listed within 
parentheses  and  separated  by  commas  as  shown  in  the 
example below. 

Inform: <(MethodInterface, WSDL),  

         (MethodInterface, WSDL)>;  

4.1.10 Conditions 
Conditions are used to parameterise the system description 
to  make  it  adapt  to  certain  environmental  conditions. 
Every  set  of  conditions  (a  scenario)  can  then  be  used  to 
simulate  a  certain  environmental  situation  (e.g.  failure, 
market changes, etc.). These can be used to test the way the 
architecture  definition  can  adapt  to  different  operational 
changes (design principle P2). Conditions are defined with 
a  unique  name  along  with  a  simple  textual  description. 
Below is an example definition of four different conditions.  

conditions { 

  PriceChanged: “Change in share price”; 

  PriceUnchanged: “No change in share price”; 

  ShareTrade: “Buying/Selling of shares”; 

  Exchange_Traded: “Shares listed in stock  

                    exchange”;  

   …  

 } 

 
 
 

4.1.11 Scenarios 
Scenarios are  basically  collections  of  different  conditions, 
along  with  their  values,  which  together  can  simulate  a 
certain operational scenario. Below is an example scenario 
description. 

scenarios { 

   P.RevaluatingPC: { 

      Description: “Revaluating portfolio due to  

    change in share price with no trading”; 

      Parameterisation: {  

                         PriceChanged = true;  

            PriceUnchanged = false; 

                   ShareTrade = false; 

           } 

     } 

    … // similarly other scenarios can be defined. 

   } 

In  the  above  example,  scenario P.RevaluatingPC 
demonstrates  the  portfolio  revaluation  when  there  is  a 
change in share price only. It encapsulates three conditions 
(defined in the previous section) in which one is true and 
two  are  false.    Scenarios  can  be  very  useful  when 
comparing different  architectural  configurations. 
Scenarios  serve  as  switches,  and  as  such,  do  not  support 
parametrisation (which can be achieved in other parts of 
the notation, such as transaction domains). 

4.1.12 Transaction Domains 
Transaction  domains represent  the  behavioural  aspects  of 
the  system.  Each  transaction  domain  comprises  a  set  of 
components  and  connectors  within  a  system  that  work 
together  to  achieve  some  system functionality (e.g. 
portfolio evaluation). Within a transaction domain, various 
transactions  are  defined,  each  describing a  particular 
system function or feature (e.g. valuation processing, MTM 
valuation, etc.). Transactions are defined in terms of event 
flows. 
The transaction  domain definition  is  divided  into  two 

main  sections, contents which  lists  the  components  and 
connectors  included  in  a  transaction  domain;  and 
transactions which describes the transactions encompassed 
in  the  transaction  domain.  Each  transaction  is  defined  in 
terms of the events that flow to achieve the transaction, and 
the  description  of  the  event  flow  (interactions).  Table  2 
summarises  the  textual  notation used  in  defining 
interactions within a transaction. 

 

 

 
 



 

 

TABLE 2 

 ALI TRANSACTION DOMAIN TEXTUAL NOTATION 

Notation Meaning 

Component.Interface Component name with interface 

name 

* Component External component (or system) 

Event Event name 

Event/Connector Event traveling on connector 

TRANSACTION Transaction name 

sends 

receives 

from 

to 

 

Keywords describing the path of an 

event 

if/else Alternation (OR Fork) 

| Alternation (OR Join) 

, Concurrency (AND) 

[…] 
Multiple simultaneous interactions 

(concurrency) 

(…) Grouping of events 

; Interaction termination 

 
Below  is  an  excerpt  of  the PortfolioValuation 

transaction domain definition.  
transaction domain PortfolioValuation  

    { 

      /* Meta objects can be attached as discussed  

        earlier in Section 4.1.1 */    

     contents:   

       {   

        /*provides the list of components and  

          connectors involved in this transaction  

          domain*/ 

        components: {Portfolio_GUI, UI_Server,  

          EquityDb, Job_Processor, Value_Processor,  

          Market_Share_Data, Equity_Market_Data,  

          *Stock_Market, *Company_Financial_Account,  

          UI_Price_Server,Portfolio_Value_Calculator, 

          *P/L_System}         

        connectors: {HTTP_GUI, HTTP_Status,  

          HTTP_Processor, HTTP_ExMRate,  

          HTTP_ExCRate, HTTP_CRate, HTTP_Price,  

          HTTP_External, Cal_Processor,  

          DB_VProcessor} 

       } 

      

 

transactions: 

      { 

         VALUATIONREQUEST: {…}    

         VALUATIONUPDATE: {…} 

         MTMVALUATION: {…} 

         UNLISTEDVALUATION:  

           { 

            events: {RequestPrice, CurrentPrice} 

            interactions:  

              { 

               *Company_Financial_Account receives  

                           RequestPrice/HTTP_ExCRate; 

               *Company_Financial_Account sends  

                         CurrentPrice/HTTP_ExCRate to  

                         UI_Price_Server.PriceStatus;  

                UI_Price_Server.PriceStatus sends  

                             CurrentPrice/HTTP_CRate;  

             }  

   } 

         REVALUATION: {…} 

         VALUATIONPROCESS:  

          { 

            events: {Inform, RequestPriceList,  

                     RequestPrice, CurrentPrice} 

            interactions:  

              { 

               if (supported(Equity_Share)) { 

                 if (PriceUnchanged) 

                  VALUATIONUPDATE receives   

                           Inform/ODBC_Processor from  

                                    VALUATIONREQUEST; 

                 else {    

                  if (supported(MarkToMarket_Method        

                            && (Exchange_Traded))  

                   MTMVALUATION receives  

                    RequestPriceList /HTTP_Processor 

                               from VALUATIONREQUEST; 

                  else  

                   UNLISTEDVALUATION receives  

                    RequestPrice/HTTP_ExCRate from  

                    VALUATIONREQUEST;} 

                } 

              

 

 



 

 

[REVALUATION receives  

              CurrentPrice/HTTP_ExMRate from  

              MTMVALUATION | 

              REVALUATION receives  

              CurrentPrice/HTTP_CRate from  

              UNLISTEDVALUATION];  

             } //end of interaction 

          } //end of transaction 

     } //end of transactions section  

 } } //end of transaction domain 

Given  the  way  interaction  domains  represent  event 
flows, graphical representations (discussed in Section 4.2) 
tend to work much better in expressing complex flows. 

4.1.13 Viewpoints 
Viewpoints in  ALI  represent  collections  of  transaction 
domains  that  relate  to  a  particular  stakeholder.  A 
viewpoint definition includes: a unique name, description 
and  a  list  of  related  transaction  domains.  Below  is  an 
example viewpoint definition for PortfolioInvestment. 

viewpoints { 

   PortfolioInvestment: { 

      Description: “Investment made into the  

                    Portfolio”; 

      Transaction Domain: {PortfolioValuation,   

                           PortfolioRebalance, 

                           PortfolioStrategy};           

     } 

    … //similarly other viewpoints can be defined 

 } 

4.1.14 System 
Finally, the system notation describes the overall product 
(or product line) architecture. It uses very similar notation 
to  the  component  description  section  with  some  minor 
changes.  For  example,  the  system  description  provides 
support  (using  asterisk  “*”)  for  linking components  to 
external  (to  the  system)  components  or  systems. 
Additionally,  a  system  description  includes  a  listing  of 
viewpoints. Below is an example system description. 
 

system { 

components {  

 Portfolio_GUI<>: PortfolioAMS_GUI; 

 UI_Server<false, false, false>:  

                      Portfolio_EquityUIServer; 

 Job_Processor<false, false, false, false,  

            false, false>: Portfolio_Processor; 

 EquityDb<true, false, false, false, false,  

                          false>: AMS_EquityDb; 

 if(supported(Equity_Share)){ 

  // portfolio valuation 

  Value_Processor<false, false, false, true,  

             true, false>: Portfolio_Processor; 

  if(supported(MarkToMarket_Method) &&  

      unsupported(Share_Company_Method)){ 

   Market_Share_Data<false, false, false, true,  

                   false, false>: AMS_EquityDb; 

   *Stock_Market;} 

  else { 

   *Company_Financial_Account; 

    UI_Price_Server<false, false, true>:  

                     Portfolio_EquityUIServer;} 

  } 

 Equity_Market_Data<false, false, false, true,  

                    true, false>: AMS_EquityDb; 

 Portfolio_Value_Calculator<true,  

     MarkToMarket_Method, Share_Company_Method,  

              false>: Portfolio_EquityValuator;                                                       

 *P/L_System; 

}  

connectors {   

  HTTP_GUI<true, false, false, false>:  

                         HTTP_AMSUserInterface; 

  HTTP_Processor<true, false>: HTTP_Equity; 

  DB_VProcessor<false, false>:  

                          ODBC_EquityPortfolio; 

  HTTP_Status<false, false, false, false>:  

                         HTTP_AMSUserInterface; 

  if(supported(Equity_Share)){ 

   if(supported(MarkToMarket_Method)) 

     HTTP_ExMRate<false, true, false>:  

                           HTTP_ExternalSystem;  

   if(supported(Share_Company_Method)){ 

     HTTP_ExCRate<false, false, true>:  

                           HTTP_ExternalSystem; 

     HTTP_CRate<false, true, false>:  

                          HTTP_EquityValuator;} 

   HTTP_Price<true, true, false>:  

                           HTTP_EquityValuator; 

   Cal_Processor<false, false, false>:  

                             Calculator_Equity; 

   HTTP_External<false, false, false>:  

                          HTTP_ExternalSystem;} 

  } 

} 

 arrangement { 

  //similar to component type arrangement  

  /* an snippet below demonstrates some of the  

     connections related to revaluation  

     transaction that have been presented  

  visually in Figure 2 */ 

  if( supported(Equity_Share)){ 

   … 



 

 

  connect Portfolio_Value_Calculator. 

   NumericalValue with 
Cal_Processor.valueport4; 

  connect Value_Processor.OperationalValue with  

                       
Cal_Processor.valueport1; 

  connect Value_Processor.NotificationMessage  

                with 
HTTP_External.messageport1; 

  connect *P/L_System with  

                     
HTTP_External.messageport2; 

  connect Value_Processor.NotificationMessage  

               with 
HTTP_Processor.messageport1; 

  connect UI_Server.NotificationMessage with  

                    
HTTP_Processor.messageport2; 

  /* similarly other connections can be made  

     via connectors */ 

 } 

 viewpoints { 

   PortfolioInvestment; 

 } 

 } 

4.2 ALI Graphical Notation 
Many of the existing ADLs such as AADL [10], ACME [24], 
Aesop [33],  MontiArcHV [35],  Darwin [22],  Koala [12], 
UniCon [25] and π-ADL [19], provide  both  textual  and 
graphical  notations,  though  none  provide  a  behavioural 
graphical  notation.  Yet,  in  some  cases,  the  need  for  such 
graphical  behavioural  representation  was  argued,  e.g. 
using Use Case Maps with ADLARS [13, 69]. ALI provides 
graphical notations for structural and behavioural aspects 
of the systems. 
In  order  to  create  a  consistent  graphical  notation  that 

was expressive and easy to use, the theoretical guidance in 
[80] was  followed.  Furthermore,  lessons  learned  from 
Woods  and  Bashroush  in [71],  designing  a  large-scale 
architectural description within an industrial context, were 
also  taken  into  consideration. The  following  sections 
discuss ALI’s graphical notation.  

4.2.1 Structural Notation 
ALI provides an extensible visual notation for its structural 
description. Table 3 illustrates the meaning of the symbols 
used to specify architectural structures in ALI. It is possible 
to extend the  notation  to  represent  components  by 
introducing  other  graphical  objects  (e.g.  a  cylinder  to 
represent  a  database  component)  that  architects  identify 
with or already use in certain application domains. 
Fig.  2  represents  the  structural  description  of  the 

Revaluation transaction (part of the PortfolioValuation 
transaction  domain  defined  earlier  in  Section  4.1.12  in 
textual format). The same notation can be used to describe 
the whole system.  

TABLE 3 

 ALI GRAPHICAL STRUCTURAL NOTATION 

Symbol Name (Meaning) 

 

Component 

    

External Component (or 

System) 

     

                                    

                                           ……              

 

Interfaces (different shapes 

represent different interface 

templates) 

 

                                                   

  

                                    

 

 

Connectors representing 

different interface templates 

  

 

Direct Binding 

(no connector) 

       

 

 
Transaction 

 

Transaction Domain 

 

4.2.2 Behavioural Notation 

4.2.2.1 Event Traces 

In ALI, event traces constitute the graphical representation 
of transactions, described textually in Section 4.1.12. Table 4 
provides  the  detailed  description  of  the  symbols  used  to 
design event traces. Some of the symbols used are adopted 
from the UML Activity diagram [74], with added notation 
to  represent  concurrency (based  on  some  extended 
concepts from Petri Nets [81]). 
Fig. 3 shows an example of the graphical behavioural 

representation  of  the  transaction  domain 
PortfolioValuation (this  maps  to  the  textual 
representation  provided  in  Section  4.1.12).  The  example 
demonstrates  the transactions that  occur  in 
PortfolioValuation along with the interactions that take 
place  in  the VALUATIONUPDATE, MTMVALUATION and 
UNLISTEDVALAUTION transactions.     

 



 

 

 
 

 

 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

  Fig. 2. Graphical structural representation for transaction Revaluation 

 

Fig. 3. Graphical behavioural representation of transaction domain PortfolioValuation 
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TABLE 4 

 ALI EVENT TRACES NOTATION 

Symbol Name Meaning 

 

 

 

 

START 

 

 

A node that starts the interaction in an event trace by a 

component that invokes an event. 

 

 

                 

 

 

END 

 

 

A node that stops the interaction of all the transactions in 

an event trace. 

 

 

        

 

FINAL 

 

A node that terminates the interaction of the transaction. 

 

 

        EventName/Cr* 

 

 

 

 

Event Flow 

 

The direction of an event flow from one component to 

another component, specifying the event name and the 

connector* being traversed. 

 

 

 

 

 

AND Fork 

 

A source component sending two or more concurrent 

events to destination components. 

 

 

 

 

 

 

AND Join 

 

A destination component receives two or more concurrent 

events from source components. This blocks until all 

events are received before progressing. 

 

  

 

OR Fork 

 

A source component sends one or more events to 

destination components. Selection of the destination 

components can be linked to system conditions and features. 

 

 

 

 

 

 

 

OR Join 

 

A destination component receives any of the events from 

any one of the source components (non-blocking) as soon 

as it arrives (without waiting for all expected events). 

 

 

Component 

 

A component within the system that sends/receives events. 

 

 

External Component/ 

System 

 

A system (or component) outside the system that 

communicates with our system. 

 

 

 

 

 

Transaction 

 

Transaction is a package containing a set of interactions. It 

can be nested wherever required in another transaction. 

              * means optional i.e. if connection is made using connectors (see Section 4.1.6)  



 

 

4.2.2.2 Component Interaction 

This  section  provides  the  graphical  notation  used  to 
describe  the interactions  of  an  individual  component. 
While  event  traces  model  the  complete  event  flow  path, 
component  interactions  focus  on  modelling  the 
interactions  of  a  particular  component  (focus  on 
components rather than events).  For this, UML Sequence 
diagrams [74] are used to model component interactions. 
Sequence diagrams are known to many architects and are 
comprehensive to model handshakes, timing, etc.  
Fig.4 shows the component interaction diagram for the 

component UIServer in  the transaction  domain 
PortfolioValuation (defined  textually  in  Section  4.1.12, 
with interactions described in Fig. 3).  
The  squares  at  the  top  of  the  sequence  diagram 

represent  component  interfaces.  White  squares  represent 
the interfaces of the component being model (in this case 
UIServer),  and  greyed  squares  represent  external 
interfaces  (of  other  components UIServer is 
communicating with).  
Having  discussed  the  ALI  notation,  the  next  section 

defines the semantics behind the notation. 
 

5 SEMANTICS 

In this section, we discuss the ALI notation semantics [82]. 
We  start  by discussing  the  semantics  of  the  structural 
notation, then the behavioural notation. It is worth noting 
that  proofs  of  correctness  and  completeness  of  the 
semantics are beyond the scope of this paper. 
The  following  notation  convention  is  used  in  the 

subsequent two sections: i for interface, Ct for component, 
Cr for connector  and e for  event.  The  name  of  each 
element  (where  applicable)  is  indicated  in  the  subscript. 
For example, iA denotes interface A. 

5.1 Semantics of Structural Notation 
In this section, we discuss the semantics of the structural 

notation,  namely  covering:  components,  connectors  and 

interfaces. 

For  simplicity,  a  component  is  a  finite  set  of n 
interfaces:    

 

                 (5.1.1)         
                                                     
Different  combinations  of  interfaces  in  a  component 

can  occur  depending  on  the feature(s) supported  in  its 

specification. All possible occurrences can be defined as: 

 

                     (5.1.2) 
                                             
The notation  refers to the power set of the set of 

interfaces of a component. It also includes the null/empty 

set  (∅)  which  relates  0…*  relationship  between  the 

interface  and  the  component  as  explained  in  the 

conceptual model section (see Section 3.2 and Fig. 1). 

Similarly, a connector is a finite set of n interfaces: 
 

                   (5.1.3)           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Component UIServer interactions in transaction domain PortfolioValuation
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The number of interfaces in a connector must be at least 

two to form a connection between two components.  

The following are the naming rules: 

Rule 1: The names of all the components must be unique 
within a system. 
 

       (5.1.4)                         
 

Rule  2: The  names  of  all  the  connectors  must  be  unique 
within a system. 

 
                     (5.1.5)  

                                                                                                                                 
Rule 3: The names of all the interfaces of a component must 
be unique.   
       

         (5.1.6)                                                                                                                                                                                                                                             
 

Rule 4: The names of all the interfaces of a connector must 
be unique. 

 
(5.1.7)        
 

5.2 Semantics of Behavioural Notation  
     In  this  section,  we  discuss  the  semantics  of  the 
behavioural  notation  of  ALI  by  translating  the  notation 
into  formal  specification  theory,  namely  CSP [30].  The 
main  construct  of  the  behaviour  notation  in  ALI  is  the 
process  that  defines  the  interactions  of  a  transaction  in  a 
transaction domain.  
Using  the  CSP  process  notation,  where (x:A à P(x)) 

[pronounced “x from A then P of x”], we  transform 
interaction (Itn) into:  

 
        (5.2.1)  

 
To recall, an interaction in ALI is an event flowing via 

connector  or  via  direct  binding  from  one  component  to 
another  component  (see  Section  4.1.6  for  in-depth 
description).  Equation  5.2.1  describes  an  interaction  in 
terms  of  CSP  as:  event  (e1)  via  connector  (CrA)  from 
sender  component  (Cts)  on  its  interface  (iA)  goes  to  the 
receiver  component  (Ctr)  on  its  interface  (iB).  Symbol ‘†’ 
represents the optionality of the connector, that is, it will 
be  defined  if  event  flows  via  a  connector.  Similarly,  we 
insert an asterisk ‘*’ before the sender/receiver component 
(Cts/Ctr) without specifying the interface name if it is an 
external  component  (or  system),  as  explained  in  Section 
4.1.12 and Section 4.2.2.1. 
Interactions  can  occur  in  different  combinations  with 

other  interactions.  The  operators  which  form  these 
combinations are: AND fork, AND join, OR fork and OR 
join,  each  combination  is  explained  categorically  in  the 
transaction domain (see Section 4.2.2.1).  
In  the  rest  of  this  section,  we  elucidate  the  formal 

semantics for each interaction scenario using CSP.   

AND  Fork: Two  or  more  interactions  that  occur 
concurrently.  Considering  different Ctr and  different 
interface of Cts,, we have the following definition:    
 

              (5.2.2a)                        
 
Where ‘||’ is  the  CSP  parallel  operator  which 

represents concurrent  activity.  Hence,  it  is  not  necessary 
that AND Fork always has different receiver components 
(like Ctr1 and Ctr2 as  above),  we  could  have  a  situation 
where two or more events flow to one Ctr via the same or 
different interfaces as discussed in Section 4.1.12. 
Considering the same Ctr, using the same interface, we 

can define an AND fork as:   
                                                                                                     

              (5.2.2b) 
 
In addition to the above expression conditions, we can 

also define it by considering Cts, using the same interface, 
as: 
                                                                                                

                                                                                          (5.2.2c)    
 
AND  Join: Two  or  more  interactions  that  go  to  the Ctr 
concurrently.  Considering  different Cts and  different 
interfaces of Ctr, it is defined as:   

              (5.2.3a) 
 
Where ‘⋀’ is the logical AND operator, WAIT is a time-

based CSP operator [82], ‘∑’ is submission (union) of all the 
events  and ‘;’ means  successfully  followed by.  Thus, 
‘WAIT ∑ ; Ctr’ designates: Ctr will not proceed with other 
interaction(s) until it receives all the events.    
Considering  the  same  interface  of Ctr, we  can  define 

AND join as:                                                                                                    

                                                                                         (5.2.3b) 
 
Moreover,  the  definition  for  the  same Cts with  its 

different  interfaces  can  be  defined  in  a  similar  way  as 
above. But if we have the same Cts with its same interface 
and the same interface of Ctr then we can define it as: 



 

 

 

                                                                                        (5.2.3c)    
 
OR Fork: Two or more interactions that occur alternatively 
in accordance to the condition(s) and feature(s) supported. 
Considering different Ctr and different interface of Cts, we 
have the following definition:  

              (5.2.4a)  
                      

Where ‘□’ is the CSP deterministic choice operator.  
If the same event flows to different Ctr depending on 

the condition(s) and feature(s) supported  from  the  same 
interface of Cts then it can be defined as:  

                                                                                        (5.2.4b)                                         
 
 Another case, when different events flow to same Ctr 

to its  same  interface  depending  on  the condition(s) and 
feature(s) supported from the same interface of Cts then it 
can be define as:   
 

                                                                                          (5.2.4c)   
  
OR  Join: Two  or  more  interactions  that  go  to  the Ctr 
alternatively. Unlike AND join, Ctr will proceed with other 
interaction(s)  after  receiving  the  first  event  from  any Cts 
without  waiting  for  all  the  events  to  occur.  Considering 
different Cts and different interface of Ctr, it is defined as:  

                  
                                    
                                                                                                    
                                                                                                       

                                                                                          (5.2.5a) 
 
Considering the same interface of Ctr, we can define it 

as: 

                                                                                         (5.2.5b)   
  
Also, we can define the same Cts with its same interface 

along with the same interface of Ctr as:   
                                                                                                                                                                                

                                                                                          (5.2.5c)     
 

6 CASE STUDIES 

In order to illustrate the applicability of the proposed ADL 
and evaluate its effectiveness, particularly in relation to the 
identified  limitations,  we  use  two  case  studies.  The  case 
studies  were  selected  from  two  distinct  application 
domains,  namely  Information  Systems  (Asset 
Management  System)  and  embedded  systems  (Wheel 
Brake System). A number of selection criteria were applied 
to  decide  on  the  best  case  studies,  including:  distinct 
application  domains  (to  demonstrate  cross  domain 
modelling capabilities); existence of inherent variability in 
the  application  domain;  varying  types  of  connectivity 
between  components;  different  complexity  levels 
(information  overload);  varied  emphasis  on  behavioural 
versus  structural  descriptions;  potential  for  artefact 
reusability  within  the  case  study;  and  access  to  full 
technical details. 
Table  5  demonstrates  the  comparison  between  the  two 

case  studies  against  the  selection  criteria  for  the  case 
studies. 

 

TABLE 5 

 CASE STUDIES CRITERIA 

Criteria 
Case Studies 

   AMS                           WBS 

Application domain 
Information 

Systems 

Embedded 

Systems 

Existence of inherent 

variability 
    High     Low 

Types of connectivity With connectors Direct binding 

Level of complexity 

(overall) 
          High     Low 

Level of complexity 

(structural) 
   High     Low 

Level of complexity 

(behavioural) 
          Low    High 

Artefact reusability Medium Medium 

In  the  following,  a  description  of  each  of  the  case 
studies  is  given,  followed  by  example  descriptions  (with 
further  details  provided  in Appendix A  and Appendix  B 
respectively). The two case studies are then used to assess 
the  extent ALI  meets  its  design  principles  and  addresses 
the identified limitations.   

 

6.1 Case Study: Asset Management System (AMS) 
An  Asset  Management  System  (AMS)  in  banking  and 

finance is used by a fund manager to support making and 

executing  investment  decisions  for  a  large-scale 

investment portfolio. In the following sections, we give a 

brief overview of AMS and provide the ALI architectural 

description. 



 

 

6.1.1 AMS Overview 
The primary aim of AMS is to allow a fund manager (or a 
fund management team) to manage a portfolio of holdings 
in  financial  instruments.  In  this  paper,  we  are  only 
covering the management of equities financial instruments 
by AMS, under which we focused on company shares and 
their derivatives. AMS allows fund managers to view the 
content of their portfolios and trading and market data (in 
this  case,  share  trades  and  prices)  to  make  investment 
decisions. More specifically, it automates the calculation of 
suggested changes to portfolios on-demand or using a pre-
defined  schedule.  This  functionality  is  performed  on  a 
daily basis to calculate the portfolio value at the end of each 
working  day,  after  the  closure  of  stock  market.  In  an 
investment  bank,  portfolio  valuation  can  be  performed 
using two methods, depending on the user’s request. The 
first method is Mark to Market (MTM), where share prices 
are  matched  with  the  current  stock  market  price  and 
individual company share price (companies which are not 
listed in the stock market). The second method is applied 
on  monthly/quarterly/bi-annual  basis  by  checking  the 
company’s  financial  statement,  depending  on  the 
company’s fiscal period.  

6.1.2 AMS Architecture 
In  this  section,  we  discuss  the  AMS  architecture 
description using ALI. 
The following are the architectural artefacts of the AMS 

system for the portfolio value calculation, some of which 
are  used  in  section  4  as  examples  of  the  ALI  notation 
constructs.  

a) AMS  Meta  Types: Meta_AMSFeature, 

Meta_EquityServer (defined  in  Section  4.1.1), 
Meta_Processor,  Meta_DbEquity,  Meta_Share-

ValueData,  Meta_Valuator,  Meta_Derivative and 
Meta_PortfolioDomain. 

b) AMS  Features: Equity,  Equity_Share, 
Share_Sector, Equity_Derivative, 

MarkToMarket_Method and Share_Company_Method 

(some of these features are defined in Section 4.1.2). 

c) AMS  Interface  Templates: MethodInterface (defined 

in Section 4.1.3) and WSDL. 

d) AMS  Interface  Types: ArithmeticOperation, 
ValueOperation,  AverageOperation,  Numeric- 
Operation,  InvestmentOperation,  DatabaseOpera-

tion,  DatabaseUpdation,  DatabaseOrder and 

Deriv-ativeOperation, that  all  conform  to  interface 

template MethodInterface (some  of  these  interface 

types are defined in Section 4.1.4). Similarly, interface 

types  (such  as PortfolioMessenger and ValueData) 

that  conform  to  interface  template WSDL can  be 

defined. 

e) AMS  Connector  Types: HTTP_AMSUserInterface, 
HTTP_Equity, ODBC_EquityPortfolio, 
HTTP_Equity-Valuator,  Calculator_Equity 

(defined  in  Section  4.1.5), HTTP_ExternalSystem, 

HTTP_EquityRate and Calculator_Derivative. 

f) AMS  Component  Types: PortfolioAMS_GUI, 
Portfolio_EquityUIServer, 

Portfolio_EquityValu-ator (defined  in  Section 

4.1.6), EquityCalculator,  Portfolio_Processor, 
AMS_Eq-uityDb,  PortfolioDb,  DerivativeValuator 

and InternalEquityData. 

g) AMS Products: Equity_Share_Derivative (defined in 

Section  4.1.7), Equity_Share_ExchangeTraded and 
Equity_Share_Traded. 

h) AMS Events: ValuationRequest, RequestValuation-

Details, SendValuationDetails, etc. See Appendix 

A for complete list of events. 

i) AMS  Conditions: PriceUnchanged,  PriceChanged, 

ShareTrade,  Exchange_Traded and Illiquid 

(defined in Section 4.1.10). 

j) AMS Scenarios: P.RevaluatingPC (see Section 4.1.11), 
P.RevaluatingPC.ST_ET,  P.RevaluatingPC.ST_IL, 

P.RevaluatingST_ET and P.RevaluatingST_IL. 

k) AMS  Transaction  Domain: PortfolioValuation 

(excerpt of it is described in Section 4.1.12). 

l) AMS  Viewpoint: PortofolioInvestment (defined  in 

Section 4.1.13). 

Appendix A  contains  further  details  about  the  above 
listed  architectural  constructs  of  the  AMS  system.  The 
AMS system description can be found in Section 4.1.14. 
Fig. 5 shows the graphical structural description of the 

transaction domain PortfolioValuation. The behavioural 
representation can be found in Fig. 3 and Fig. 4.  

6.2 Case Study: Wheel Brake System (WBS) 
The  case  study  of  the  wheel  brake  system  (WBS)  of  a 
commercial aircraft is based on the one introduced in the 
ARP4761 standard [84] published by SAE. In the following, 
we provide a brief overview of the system, along with ALI 
architectural descriptions. 

6.2.1 WBS Overview 
The primary purpose of the WBS in commercial aircraft is 
to  decelerate  the  wheel  on  the  ground  along  with  the 
associated functions as explained in [84]. The WBS consists 
of  a  digital  controller,  the  Brake  System  Control  Unit 
(BSCU), and the hydraulic pipe assembly that carries the 
braking  pressure  to  the  wheels.  Different  valves  are 
embedded that receive commands and control the flow of 
brake pressure. 
Based on the safety requirement, the probability of loss 

of all wheel braking is less than 5x10-7 per flight, a design 
decision  was  made  that  each  wheel  would  have  a  brake 
assembly operated by two independent sets of hydraulic 
pistons. One set of pistons is operated from the green pump 
and  is  used  in  the NORMAL braking  mode.  The 
ALTERNATE braking system is on standby and is selected 
 



 

 
 

 
 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. AMS graphical structural representation of transaction domain PortfolioValuation 
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Fig. 6. WBS graphical behavioural representation of transaction domain WheelDecelerationOnGround 

Fig. 7. WBS component Accumulator interactions in transaction domain WheelDecelerationOnGround 
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system {  

  components {  

    Selector_Valve<Electrical_Power>:  

                              Aircraft_BrakeValve;  

    Wheel<>: Aircraft_Wheel;  

    Meter_Valve<Electrical_Brake,  

       Mechanical_Brake, Piston_Pressure,  

       Accumulator_Pressure, Electrical_Power>:                                              

                           Aircraft_PressureValve;  

    … 

    if (supported(Mechanical_Brake))  

      Mechanical_Pedal<false, true>:  

                              Aircraft_BrakePedal;  

    if (supported(Electrical_Brake &&  

                  Piston_Pressure)){  

      Green_Pump<true, false, true, false>:  

                            Aircraft_PressurePump;  

    else if (supported(Mechanical_Brake &&  

                       Piston_Pressure))  

      Blue_Pump<false, true, true, false>:  

                            Aircraft_PressurePump;  

    else  

      Accumulator<false, true, false, true>:  

                           Aircraft_PressurePump;}  

 } // end of components  

 connectors { }  

 arrangement {  

   … 

   if (supported(Mechanical_Brake)){  

bind Mechanical_Pedal.MechanicalPosition with  

Meter_Valve.MechanicalPosition;  

     bind Mechanical_Pedal.MechanicalCommand with   

                    Meter_Valve.MechanicalCommand;  

  }  

  if (supported(Electrical_Brake &&  

                Piston_Pressure)){  

   {bind Shutoff_Valve.PressureMessage with  

                   Selector_Valve.PressureMessage;  

    bind Selector_Valve.PressureMessage with  

                       Green_Pump.PressureMessage;  

    bind Green_Pump.NormalPressure with  

                      Meter_Valve.NormalPressure;}  

  else if (supported(Mechanical_Brake &&  

                     Piston_Pressure))  

   {bind Selector_Valve.PressureMessage with  

                        Blue_Pump.PressureMessage;  

    bind Blue_Pump.AlternatePressure with  

                   Meter_Valve.AlternatePressure;}  

  else  

   {bind Selector_Valve.PressureMessage with 

                      Accumulator.PressureMessage;  

    bind Accumulator.ReservePressure with  

                     Meter_Valve.ReservePressure;}  

 } // end of arrangement  

viewpoints {  

   WheelDeceleration;  

 } // end of viewpoints  

} // end of WBS 

Fig. 8.WBS graphical structural representation 

Electrical Pedal
Power

Blue Pump

Selector Valve

Wheel

BSCU ShutOff Valve

Meter Valve

Green Pump
Accumulator

Mechanical Pedal

EBD

dalMC

EV

EV

BD

BCAC

CN

PM

AP

NP

RP

PM

PM

PM

SCN

PM

IP

MC

BCC

NP AP

AC
RP

BP

MMP

MP



 

 

7 EVALUATION AND ANALYSIS 

In  this  section,  the  two  case  studies  (AMS  and  WBS)  are 
used to evaluate the ALI notation. Particularly, we assess 
the extent to which ALI addresses the limitations identified 
in Section 2.2 by following the design principles explained 
in Section 3.1. 

7.1 AMS Analysis 
Based  on  the AMS  case  study  discussed  in  the  previous 

section,  Table  6  lists  the  limitations  and  how  they  are 
addressed  in  the  case  study,  along  with  the  relevant 
principles. 

7.2 WBS Analysis 
Similarly, based on the WBS case study, Table 7 below lists 
the  limitations  and  how  they  are  addressed  in  the  case 
study, along with the relevant principles. 

 
TABLE 6 

 EVALUATION OF THE AMS CASE STUDY 

Limitations 

Addressed 
CASE STUDY: Asset Management System (AMS) 

ALI Principles 

Used 

L1 

 

AMS demonstrates support for capturing variability in the architecture at various points. For 

example, one variability in portfolio valuation is the trigger for recalculation due to change in 

the  share  price  and/or  share  trading.  This  is  captured  using  the  following  features: 
Equity_Share,  MarkToMarket_Method and Share_Company_Method, and the conditions 
defined in Section 4.1.10.                                                                                                                       

P1 

 

L2 

 

The  capability  to  trace  requirements  into  architecture is  demonstrated  using  the  features 
Equity_Share,  MarkToMarket_Method and Share_Company_Method which  represent  the 
actual requirements and link them to architectural artefacts in the system description (Section 
4.1.14).   
Traceability  is  also  applicable  in the  behavioural  description,  where  the  conditions 
PriceUnchanged,  PriceChanged,  ShareTrade,  ExchangeTraded and Illiquid can 
occur  during  the  equity  portfolio  valuation  depending  on  external  requirements.  These 

conditions are represented in the transaction domain PortfolioValuation. 

P2 

 

L3 This is discussed in section 7.3. P3 

L4 

 

The AMS architecture description demonstrates the notation flexibility in various constructs. For 

example,  component  type EquityCalculator (defined  in  Appendix  A) used  pre-defined 
interfaces  (OperationalValue of  type ArithmeticOperation, AverageValue of  type 
AverageOperation,  AverageMessage and DerivativeRequest of  type 
PortfolioMessenger and DerivativeValue of  type DerivativeOperation)  instead  of 
defining them within its definition section using the interface templates MethodInterface and 
WSDL. The component type EquityCalculator has the flexibility to define an interface similarly 
to the method used in the interface types section in its definition section (as explained in Section 

4.1.6). Similarly, the event Inform supports the interface templates MethodInterface and WSDL 
in the transaction domain PortfolioValuation, but it has the flexibility to support only the 
interface template MethodInterface in another transaction domain.       

P4  

 

L5 

 

 

AMS  utilises  the  reusability  aspects  of  ALI  extensively.  For  example,  Interface  template 
MethodInterface (i.e., an interface that supports method invocation) and the interfaces of type 
MethodInterface (defined in Section 4.1.3 and 6.1.2, respectively) can be reused in any type of 
system architecture wherever an interface of this type is required (e.g. other AMS systems for 

different  financial  instruments).    Same  thing  applies  to connector  types and component  types 
(defined in Section 6.1.2). Within  the  new  system,  artefacts  can  be  adopted  by  mapping  their 

feature  set  to  the  target  system  which  automatically  reconfigures  the  artefact  to  produce  the 

desired supported functionality.  
For  example,  connector type Calculator_Equity (defined  in  Section  4.1.5)  and  component 
type Portfolio_EquityValuator (defined  in  Section  4.1.6)  have  features 
Weight_Average_Method and Weighted_Average_Value_Method, respectively.  This 
feature is one of the methods used to calculate the equity portfolio and is not adopted by an 
investment bank nowadays where they must manage large-scale equity portfolios. Therefore, it 
is not considered in the system description (see Section 4.1.14). But the artefact description of 
the  connector  type Calculator_Equity and  component  type Portfolio_EquityValuator 

P5 

 



 

 

Limitations 

Addressed 
CASE STUDY: Asset Management System (AMS) 

ALI Principles 

Used 

are defined in such a way that it may be used in another system where they support the weighted 
average value method to calculate their equity portfolio value due to the support of its relevant 
features.     

L6 

 

Information overload in AMS is addressed by having multiple views, each focusing on different 

aspects.  For  example,  in  order  to  calculate  the  equity  portfolio  value,  the  transaction  domain 
PortfolioValuation (defined  textually  in Section  4.1.12  and  presented  graphically  using 
event traces in Fig. 3) illustrates its behavioural description. In addition to the behavioural view, 

the  sequential  interaction  of  all  the  components  involved  in  the  transaction  domain 
PortfolioValuation (such  as  component UIServer in  Fig.  4)  are  presented. While  the 
system description  (defined  textually  in  Section  4.1.14  and  presented  graphically  in  Fig.  5) 
illustrates its structural description.  
The AMS architecture provides multiple views of a particular function (as a transaction domain) 

with  a  clear  separation  between  structural  and  behavioural  descriptions  while  maintaining 
consistency. 

P6 

 

L7 

 

Behaviour in AMS has a dedicated section. For example, events such as ValuationRequest, 
RequestValuationDetails, etc.,  are  defined  clearly,  with  their  source  and  destination 
interface templates (specified in Appendix A). 

From a visualisation perspective, an example is the transaction domain PortfolioValuation 
which is presented in the form of event traces that demonstrate the ways an event can occur to 

calculate the equity portfolio, as demonstrated in Fig. 3. RequestPriceList/HTTP_Processor 
and RequestPrice/HTTP_ExCRate are  the  events  that  depend  on  the  conditions 
Exchange_Traded and Illiquid, respectively. This is represented using the OR Fork notation 
(as defined in Table 4), meaning that they can only occur serially to do equity portfolio valuation.  

Moreover,  the  interactions  of  the  component UIServer in  the  transaction  domain 
PortfolioValuation are explicitly presented using a UML sequence diagram in Fig. 4. 

P6 

 

 
 

TABLE 7 

 EVALUATION OF THE WBS CASE STUDY 

Limitations 

Addressed 
CASE STUDY: Wheel Brake System (WBS) 

ALI Principles 

Used 

L1 

 

Variability  representation  is  widely  used  in  WBS.  For  example,  the  case  study  has  various 
variation points to represent the different braking modes. This is captured using the following 
features: Electrical_Brake,  Mechanical_Brake,  Electrical_Power, 

Piston_Pressure and Accumulator_Pressure, as  well  as  the  conditions  defined  in 
Appendix B.                                                                                                                                   

P1 

 

L2 

 

The  capability  to  trace requirements  into  the  architecture  is  demonstrated  using  the  features 
Electrical_Brake, Electrical_Power and Piston_Pressure when the brake is applied 
in  the NORMAL mode.  This  represents  actual  requirements  and  links  them  to  architectural 
artefacts in the system description (Section 6.2.2). When the brake is applied in the ALTERNATE 
modes, the features Mechanical_Brake, Piston_Pressure and/or Electrical_Power are 
enabled. While, if it is applied in an EMERGENCY mode, the features Mechanical_Brake and 
Accumulator_Pressure are enabled.  
Traceability  is  also  demonstrated  in  behavioural  description,  where  the  conditions 
BSCU_Active and GreenPressure demonstrates  the NORMAL braking  mode  while 
BSCU_Failed and/or GreenPressure_Failed demonstrates the ALTERNATE braking modes. 
An EMERGENCY braking  mode  is  demonstrated  by  the  condition BluePressure_Failed. 
These  conditions  are  represented  in  the  transaction  domain WheelDecelerationOnGround.  
Such conditions allow us to trace related requirements into various aspects of the architecture.  

P2  

 

 L3 This is discussed in section 7.3. P3 



 

 

Limitations 

Addressed 
CASE STUDY: Wheel Brake System (WBS) 

ALI Principles 

Used 

L4 

 

Support  for  flexibility  in  the  WBS  architecture  description  can  be  demonstrated  in various 
constructs. For example, component type Aircraft_BrakePedal (defined in Appendix B) used 
pre-defined interfaces (BrakeData, MechanicalPosition and MechanicalCommand of type 
DataOperation,  ValueOperation and CommandOperation, respectively)  rather  than 
defining  them  locally  within  its definition section.  On  the  other  hand,  component  type 
Aircraft_BrakePedal can defines its interfaces locally (as explained in Section 4.1.6). 

P4 

 

L5 

 

WBS utilises the reusability aspects of ALI extensively. Interface template MethodInterface 
and the interfaces of type MethodInterface (defined in Appendix B) can be reused in any other 
system wherever an interface of this type is required (e.g. other WBS systems for different types 
of  aircraft).  Same  thing  applies  to component  types.  Within  the  new  system,  artefacts can  be 

adapted by mapping their feature set to the target system. 
For example, component type Aircraft_BrakePedal has features Electronic_Brake and 
Mechanic_Brake. These features are one of the options used to apply the brake. The artefact 
description of the component type Aircraft_BrakePedal is defined in such a way that it can 
be reused in another system where electrical braking is not supported by simply selecting the 
feature Mechanic_Brake.  

P5 

 

L6 

 

In  the  WBS  architecture, information  overload  is  addressed  by  having  multiple  views,  each 

focusing on different aspects. For example, in order to stop/decelerate, the transaction domain 
WheelDecelerationOnGround (defined  textually  in  Appendix  B  and  presented  graphically 
using event traces in Fig. 6) illustrates its behavioural description. In addition to the behavioural 

view,  the  sequential  interaction  of  all  the  components  involved  in  the  transaction  domain 

WheelDecelerationOnGround (such as component Accumulator in Fig. 7) are presented. 
While the system description (defined textually in Section 6.2.2 and presented graphically in 
Fig. 8) illustrates its structural description.  

The WBS architecture provides multiple views of a particular function (as a transaction domain) 

with  a clear  separation  between  structural  and  behavioural  descriptions  while  maintaining 
consistency between them. 

P6 

 

L7 

 

Behaviour  in  WBS  has  a  dedicated  section.  For  example,  events  such  as 
HydraulicPressureRequest, AntiSkid, etc., have been defined clearly, with their source 
and destination interface templates (specified in Appendix B). 

From a visualisation perspective, the transaction domain WheelDecelerationOnGround which 
is  presented  in  the  form  of  event  traces  that demonstrate  the  ways  an  event  can  occur  to 

stop/decelerate the aircraft, as demonstrated in Fig. 6. For example, in the transaction domain 
WheelDecelerationOnGround, Reserve_Pressure_Request and 
MPedal_Position_Request are  the  events  that  depend  on  the  condition 
BluePressure_Failed. This is represented using the AND Fork notation (as defined in Table 
4)  meaning  that  it  can  occur  concurrently  in  the EMERGENCY braking  mode. Moreover,  the 

interactions  of  the  component Accumulator in  the  transaction  domain 
WheelDecelerationOnGround are explicitly presented using a UML sequence diagram in Fig. 
7. 

P6 

 

 
7.3 Discussion 
The previous two subsections demonstrated how each case 
study  addressed  the  limitations  identified  (Section  2.1) 
using  the  ALI  principles  (Section  3.1).  However,  some 
cross-cutting  aspects  such  as  cross  application  domain 
modelling are discussed in this section since two different 
domains are needed to fully illustrate cross-cutting issues.  
As  a  product  line  comprising  various  back  office 

portfolio  management  applications  for  financial 
instruments  such  as  equity,  commodity  and  currency, 
AMS corresponds to the Information Systems application 
domain.  On  the  other  hand,  WBS  is  a  single  product 
system with multiple variants that specify different modes 
of  how  brakes  can  be  applied  to  wheels  of  commercial 

aircraft  and  corresponds  to  the  Embedded  Systems 
application  domain. Accordingly, ALI  is  the  first ADL  to 
be  used  successfully  to  model  both  Embedded  Systems 
and  Information  Systems [71].  This demonstrates  ALI’s 
ability  of  modelling  multiple  application  domains 
(principle P3), which addresses limitation L3. 
The  structural  design  of  the  AMS  architecture  uses 

connectors  to  join  components.  This  can  be  visualised 
using the AMS graphical structural notation in Fig. 5. On 
the other hand, connections made between components in 
the WBS architecture are done via direct binding without 
the  use  of  connectors  (see  Fig.  8).  This  demonstrates  the 
flexibility  of  ALI  in  supporting  architecture  descriptions 
(P4) whether or not they require connectors to be first class 



 

 

citizens  (L4),  giving  the  architect  the  flexibility  to  choose 
one style or another. 
As  for  varying  complexity,  in  the  WBS  case  study,  it 

was enough to capture the complete structural information 
in a  single  view  (i.e.  an  overall  system  architecture)  as 
shown  in  Fig.  8.  However,  this  would  have  been 
substantially more difficult to do with the AMS case study 
given  the  complexity  of  the  system  and  the  amount  of 
information  that  needed  to  be  captured.  Accordingly, 
various  structural  views  were  produced,  each  capturing 
the information pertaining to a single major architectural 
artefact such as a transaction (see Fig. 2) or a transaction 
domain  (see  Fig.  5),  depending  on  stakeholder  concerns. 
Providing  such  multiple  views  allowed  the  notation  to 
scale (P6), while still capturing all the required information 
at the appropriate level of abstraction (L6). 
The  AMS  case  study  had  comparatively  a  more 

complex  structural  description  (components  and 
connectors).  Yet,  it  contained  fewer  and  simpler 
interactions  in  the  transactions  leading  to  a  relatively 
simple  behavioural  architecture.  On  the  other  hand,  the 
WBS case study had a simpler structural architecture, yet 
far  more  sophisticated  behavioural  architecture.  For 
instance,  in  WBS,  interactions  between  components  take 
place often with multiple events flowing concurrently. In 
both  cases,  ALI  demonstrated  its  ability  to  provide  the 
right mechanisms to capture the structural complexity (e.g. 
using  structural  notation,  Fig.  5)  and  the  behavioural 
complexity  (e.g.  using  event  traces,  Fig.  6)  as  needed 
(addressing limitation L7). 
Finally,  architectural  elements  (such  as  components, 

connectors and interfaces) defined in both case studies can 
be reused with minimal changes across the two application 
domains  (P5).  For  example,  an  interface  template 
MethodInterface in  AMS  can  be  reused  in  the  WBS  by 
making  minor  changes  in  its constraints.  Although  this 
could  be  achieved  with  most  ADLs  that  provide  formal 
artefact descriptions, the reuse granularity in ALI is much 
larger  (L5).  This  is  due  to  ALI’s  support  for  capturing 
variability  in  artefact  descriptions  and  linking  that 
variability to external features. This allows the creation of 
highly  configurable  artefacts  that  can  be  adapted  to 
various  application  domains  by  making  minimal  or  no 
changes to their internal description (which is achieved by 
only  varying  the  artefact  feature  set,  an  inherent 
characteristic of Software Product Line Engineering).  
 

8 STUDY LIMITATIONS 

This section discusses the limitations of our work. First, 
two  large  industry-scale  case  studies  were  developed, 
and  evaluation  work  was  performed  to  show  how ALI 
addresses  many  of  the  limitations  exhibited  by  existing 
ADLs (e.g. variability management, see Sections 2 and 7). 
However,  the  architecting  work  in  the  case  studies  was 
done by the authors of this study, in collaboration with 

domain experts (who provided the requirements for the 
two  systems).  From   [71],  we  learned  that  some  of  the 
barriers to adopting ADLs is beyond just the ADL itself 
and  include  human  aspects.  This  can  only  be  evaluated 
when ALI is used by practitioners, and observed by the 
researchers without external support (to ensure unbiased 
feedback).  
Second, given the large number of ADLs available, it 

was not possible to make a comparison between ALI and 
every  other ADL,  as  this  would  have  required  the  two 
case  studies  to  be  developed  using  every  ADL. 
Accordingly,  a  different  approach  was  used  to  show 
ALI’s  unique  capabilities.  We  started  by  critically 
analysing  existing  works  (Section  2.1),  identified  their 
limitations (Section 2.2), then conducted two case studies 
that  showed  ALI  did  not  exhibit  these  limitations 
(Sections 6 and 7). 
Finally, there is an inherent limitation in generalising 

the  findings  from  a  limited  number  of  case  studies.  In 
reality, the majority of similar existing work reported on 
one  or  two  case  studies  (and  in  some  cases  only  toy 
running  examples)  due  to  the  substantial  resource 
requirements  needed  to  develop  such  case  studies.  
However,  in  analytic  generalisation,  there  are  two  key 
criteria  for  judging  the  causal  inference  from  the 
experimental design. The first is the statistical significance 
of the number of case studies (to allow extrapolation of 
results).  And  the  second  is  the  degree  to  which  the 
selected case studies represent the whole population, in 
this  case,  embedded  systems  and  Information  Systems 
representing systems design in general (hence our choice 
of two completely different application domains). 
 

9 CONCLUSION AND FUTURE WORK 

In  this  paper,  the  ALI ADL  is  presented  including  its 
various  constructs  and  capabilities. ALI  was  designed  to 
overcome a number of limitations (Section 2.2) by adopting 
a set of design principles (Section 3.1). Case studies were 
used to demonstrate ALI’s abilities against the set of design 
principles and identified limitations.  
The  ALI  notation  demonstrated  various  unique 

capabilities. This includes the notation’s support for large-
scale  reuse  of  architectural  artefacts  (components, 
connectors and interfaces); the ability to provide multiple 
architectural views as a mechanism to address information 
overloading via the separation of concerns; and the balance 
between formalism and flexibility.  
The formal specification of ALI was also discussed by 

defining  the  structural  and  behavioural  semantics 
explicitly. Rules were defined for the structural aspect of 
ALI using mathematical set theory. Behavioural semantics 
were defined using the CSP notation. 
Finally,  two  case  studies  illustrated  ALI.  The  case 

studies  were  chosen  from  different  application  domains 
with  varying  structural  and  behavioural  complexities. 



 

 

Firstly,  an  Asset  Management  System  (AMS)  case  study 
was  used  to  demonstrate  the  applicability  of  ALI  in  the 
Information  Systems  domain  using  a  product  line 
engineering  process.  The AMS  architecture  describes  the 
portfolio management of financial instruments. In this case 
study,  a  portfolio  valuation  system,  which  considers 
equities  (particularly  shares)  as  the  financial  instrument, 
was designed. The second case study was a Wheel Brake 
System (WBS) that demonstrated the applicability of ALI 
in  the  Embedded  Systems  domain.  The  design 
encompassed  having  a  single  product  with  multiple 
variants (rather than a product line). The WBS architecture 
describes the braking system of a commercial aircraft.   
Our future work will be focused on three fronts.  First, 

the immediate intention is to continue to use ALI to model 
systems in more application domains and using other case 
studies to refine the notation and evaluate further aspects 
of  the  language  (e.g.  the  usage  of  pattern  templates  as 
defined in Section 4.1.7).  Second, the medium term aim is 
to create better tool support to facilitate the creation and 
analysis of ALI architectural descriptions. The ALI toolset 
will be developed in collaboration with industrial partners 
to  help  integrate  it  within  existing  tool  chains  used  in 
architecture  practices.  Finally,  and  once  the  tool  support 
has  matured,  we  aim  to  recruit  practitioners  to  run 
independent trials in operational environment which will 
allow us to evaluate the human aspect.  
 

APPENDIX A: AMS ARCHITECTURE 

AMS Component Types: 

PortfolioAMS_GUI provides the asset managers using the 
system  with  the  ability  to  view,  analyse  and  value 
portfolios,  to  request  (and  monitor  the  progress  of)  long 
running system operations (such as order generation) and 
to  check,  enter,  dispatch  and  monitor  orders  that  go for 
execution in trading systems.  

component type PortfolioAMS_GUI  

  { 

   meta: { } 

   features: { 

     /* no optional/alternative and parameterized  

        features */ 

    } 

 

   interfaces: {  

    definition: { 

       // no need to define any interface/s 

     } 

    implements: { 

       ServiceRequest, UpdationStatus:  

                               PortfolioMessenger; 

     } 

    } 

   sub-system: { 

    components { } 

    connectors { } 

    arrangement { } 

   } // end of sub-system 

  } // end of component type 

EquityCalculator performs  the  mathematical  operation 
based on the value and the method or message it received 

and  then  outputs  the  calculated  portfolio  value.  It  also 

calculates the derivative value of equities, if requested.  

 

 

component type EquityCalculator  

  { 

   meta: Meta_Valuator { 

     acceptance_value: “any numerical 
value”;  

     value_approximation: “2 significant  

                           figures”; 

     last_request: 10-02-2016; 

    }  

   features: { 

      MTM_Method: “Share prices matched with  

                   market price”’ 

      SCompany_Method: “Unlisted share price  

                        of an individual   

                        company”,           

      WAV_Method: “Portfolio Valuation is 
done  

                   on the basis of average  

                   share price”, 

      E_Derivative: “Used as a security for  

                     the equity asset”; 

    } 

   interfaces: { 

    definition: { //no need to define any  

                 interface/s } 

    implements:{ 

       if (supported(MTM_Method ||  

                     SCompany_Method)) 

          OperationalValue:  

                          
ArithmeticOperation;  

       if (supported(WAV_Method)){ 

          AverageMessage: 
PortfolioMessenger; 

          AverageValue: AverageOperation;} 

             if (supported(E_Derivative)){ 

               DerivativeRequest:  

                                 
PortfolioMessenger;  

               DerivativeValue;  

                               
DerivativeOperation;} 

     } 

   } //end of interfaces 

 sub-system: { 



 

 

  components { 

    if (supported(E_Derivative)) 

       PShareDerivative< >:   

                           
DerivativeValuator;  

    if (supported(WAV_Method)) 

       WAVData <false, false, true>:   

                          
Internal_EquityData; 

   } 

  connectors { 

    if (supported(E_Derivative)){ 

       Cal_Derivative< >:   

                        
Calculator_Derivative;  

       HTTP_DValue<true, true>: 
HTTP_Equity;}  

    if (supported(WAV_Method)){  

       HTTP_CalWAV<false, false, true>:  

                        
HTTP_EquityCalculator;  

       Cal_WAV<false, false, true>:  

                           
Calculator_Equity;} 

  } 

arrangement { 

 if (supported(E_Derivative)){ 

     connect 
PShareDerivative.DerivativeRequest with  

                     
HTTP_DValue.messageport2; 

     connect my.DerivativeRequest with  

                     
HTTP_DValue.messageport1;  

     connect 
PShareDerivative.DerivativeValue  

               with 
Cal_Derivative.valueport1; 

     connect my.DerivativeValue with  

                   
Cal_Derivative.valueport2;} 

  if (supported(WAV_Method)){  

     connect WAVData.ValuationRequest with  

                     
HTTP_CalWAV.messageport2;   

     connect my.AverageMessage with  

                     
HTTP_CalWAV.messageport1;   

     connect WAVData.AverageValue with  

                           
Cal_WAV.valueport3;   

     connect my.AverageValue with  

                          
Cal_WAV.valueport4;}    

  } // end of arrangement 

   } // end of sub-system 

 } // end of component type 

 

AMS Products: 

product configurations { 

      … // defined in Section 4.1.7 

     Equity_Share_ExchangeTraded: { 

            Equity {Equity_Type = (long, short)}; 

            Equity_Share = true; 

            MarkToMarket_Method = true; 

         Share_Company_Method = false; 

      } 

 

     Equity_Share_Traded: { 

            Equity {Equity_Type = long}; 

            Equity_Share = true; 

            MarkToMarket_Method = false; 

         Share_Company_Method = true; 

      } 

  } // end of product configurations 

 

AMS Scenarios: 

scenarios { 

   … // defined in Section 4.1.11 

  P.RevaluatingPC.ST_ET: { 

    Description: “Revaluating portfolio due to  

                  change in share price and ex 

                  change trading both”; 

    Parameterisation: {  

                       PriceChanged = true;  

          PriceUnchanged = false; 

                       ShareTrade = true; 

                       Exchange_Traded = true; 

                       Illiquid = false; 

                      } 

    }  

   P.RevaluatingPC.ST_IL: { 

     Description: “Revaluating portfolio due to  

                   change in share price and il- 

                   liquid shares trading both”; 

     Parameterisation: {                                                             

                        PriceChanged = true;  

           PriceUnchanged = false; 

                        ShareTrade = true; 

                        Exchange_Traded = true; 

                        Illiquid = true; 

                       } 

     } 



 

 

   P.RevaluatingST_ET: { 

     Description: “Revaluating portfolio due to  

                   Exchange trading”; 

     Parameterisation: {  

                        PriceChanged = false;  

           PriceUnchanged = true; 

                        ShareTrade = true; 

                        Exchange_Traded = true; 

                        Illiquid = false; 

                       } 

    } 

 

   P.RevaluatingST_IL: { 

     Description: “Revaluating portfolio due to  

                   Illiquid shares trading”; 

     Parameterisation: {                                                             

                        PriceChanged = false;  

           PriceUnchanged = true; 

                        ShareTrade = true; 

                        Exchange_Traded = false; 

                        Illiquid = true; 

                       } 

    } 

  } // end of scenarios 

 

AMS Events: 

events {  

  ValuationRequest: <WSDL, WSDL>; 

  RequestValuationDetails: <MethodInterface,  

                                 MethodInterface>; 

  SendValuationDetails: <MethodInterface,  

                                 MethodInterface>; 

  RequestPrice: <WSDL, WSDL>; 

  CurrentStatus: <WSDL, WSDL>; 

  RequestPriceList: <WSDL, WSDL>; 

  CurrentPrice: <WSDL, WSDL>; 

  UpdatedPriceList: <WSDL, WSDL>; 

  SendValuation: <MethodInterface,  

                                 MethodInterface>; 

  UpdateValue: <MethodInterface, MethodInterface>; 

  Update: <MethodInterface, MethodInterface>; 

  Notify: <MethodInterface, MethodInterface>; 

  Inform: <(MethodInterface, WSDL),  

                         (MethodInterface, WSDL)>; 

  Access: <MethodInterface, MethodInterface>; 

} // end of events 

 

APPENDIX B: WBS ARCHITECTURE 

WBS Meta Types: 

meta type Meta_Brake { 

   tag monitored_by, application: text; 

   tag battery_charged_on*: date; 

 }  

   

meta type Meta_BrakePump { 

   tag responsible_technician, failure_rate: text; 

   tag threshold_value: number; 

 } 

 

WBS Features: 

features {  

   Electrical_Brake: { 

   alternative names: { 

     Designer.AF1, Developer.EB, Evaluator.F12;  

    } 

   parameters: {  

     {Pedal_Value = number}; 

    } 

 } 

 

   Mechanical_Brake: { 

   alternative names: { 

     Designer.AF3, Developer.MP, Evaluator.F14;  

    } 

   parameters: {  

     {Max_Pedal_Force = string};  

    } 

 } 

     … 

 } // end of features 

 

WBS Interface Types: 

interface type {   

    DataOperation: MethodInterface { 

        Provider: { 

         function InsertBrakeData 

          { 

           impLanguage: Java; 

           invocation: insert; 

           parameterlist: (string); 

           return_type: void; 
    

          } 

         } 

       Consumer: { 

           Call: insert (string); 

        }  



 

 

     }  

    … 

  } // end of interface types 

 

WBS Component Types: 

Aircraft_BrakePedal provides  electrical  braking  data  to 

the braking system as an input to the control unit. In the 

case of mechanical braking, it provides the pedal force and 

its position values to the metering valve.  

component type Aircraft_BrakePedal {  

   meta: Meta_WheelPedal {  

     intention: “To apply the brake”;  

     consequences: “Aircraft will not stop”;  

     cost: 5000; 

     last_checked: 28-04-2016;  

   }  

  features: {  

    Electronic_Brake: “Electrical pedal used to   

                       stop the aircraft wheel”,  

    Mechanic_Brake: “Mechanical pedal applied to  

                     stop the aircraft wheel”;  

  }  

  interfaces: {  

    definition: {  

      // no need to define any interface/s  

     }  

    implements:{  

      if (supported(Electronic_Brake))  

       BrakeData: DataOperation;  

      if (supported(Mechanic_Brake)){  

       MechanicalPosition: ValueOperation;  

       MechanicalCommand: CommandOperation;}  

    }  

  } //end of interfaces  

  sub-system: {  

    components { }  

    connectors { }  

    arrangement { }  

  } // end of sub-system  

} // end of component type  

 

WBS Product: 

product configurations { 

   CommercialAircraftBrake: { 

      Electrical_Brake {Pedal_Value = 850KN}; 

      Electrical_Power {Voltage = 240V AC}; 

      Mechanical_Brake {Max_Pedal_Force = 980KN}; 

   Piston_Pressure {Maximum = 10.75 Pa,  

                    Minimum = 5.25 Pa}; 

      Accumulator_Pressure { 

                      Pressure_Supplied = 9.5 Pa}; 

    } 

 } // end of product configurations 

 

WBS Events: 

events {  

  Send_EPedal_Position1: <MethodInterface,  

                                 MethodInterface>; 

  Send_EPedal_Position1: <MethodInterface,  

                                 MethodInterface>; 

  Send_Power_Signal1: <MethodInterface,  

                                 MethodInterface>; 

  Send_Power_Signal2: <MethodInterface,  

                                 MethodInterface>; 

  Inform: <MethodInterface, MethodInterface>; 

  Notify: <MethodInterface, MethodInterface>; 

  CMD: <MethodInterface, MethodInterface>; 

  AntiSkid: <MethodInterface, MethodInterface>; 

  Hydraulic_Pressure_Request: <MethodInterface,  

                                 MethodInterface>; 

  Send_Hydraulic_Pressure: <MethodInterface,  

                                 MethodInterface>; 

  No_Hydraulic_Pressure_Supply: <MethodInterface,  

                                 MethodInterface>; 

  MPedal_Position_Request: <MethodInterface,  

                                 MethodInterface>; 

  Send_MPedal_Position: <MethodInterface,  

                                 MethodInterface>; 

  Reserve_Pressure_Request: <MethodInterface,  

                                 MethodInterface>; 

  Decelerate: <MethodInterface, MethodInterface>; 

} // end of events 

 

WBS Conditions: 

conditions { 

   BSCU: “BSCU working properly”; 

   BSCU_Failed: “Unable to provide brake command”; 

   GreenPressure: “Provide hydraulic pressure in a  

                   normal mode”; 

   GreenPressure_Failed: “No hydraulic pressure  

                 supply or below threshold value”; 

   BluePressure: “Provide hydraulic pressure in an  

                  alternate mode”; 

   BluePressure_Failed: “No hydraulic pressure  

                  supply or below threshold value  

                  in an alternate mode”; 



 

 

   AccumulatorPump: “Provide hydraulic pressure in  

                     an emergency mode”; 

} // end of conditions 

 

WBS Scenarios: 

scenarios { 

   NormalOperation { 

      Description: “WBS in a normal mode”; 

      Parameterisation { 

                         BSCU_Active = true; 

                         GreenPressure = true; 

                         BluePressure = false; 

                         AccumulatorPump = false; 

                       } 

     } 

 

   AlternateOperation { 

      Description: “WBS is in alternate mode with  

                    Antiskid command”; 

      Parameterisation { 

                         BSCU_Active = true; 

                         GreenPressure_Failed =  

                                             true; 

                         BluePressure = true; 

                         AccumulatorPump = false; 

                       } 

     } 

 

   BSCUFailureOperation { 

      Description: “WBS is in alternate mode with 

                    out Antiskid command”; 

      Parameterisation { 

                         BSCU_Failed = true; 

                         GreenPressure = true; 

                         BluePressure = true; 

                         AccumulatorPump = false; 

                       } 

     } 

 

   EmergencyOperation { 

      Description: “WBS is in emergency mode”; 

      Parameterisation { 

                         BSCU_Failed = true; 

                         GreenPressure_Failed =  

                                             true; 

                         BluePressure_Failed =  

                                             true; 

                         AccumulatorPump = true; 

                       } 

    } 

} // end of scenarios 

 

WBS Transaction Domain: 

transaction domain WheelDecelerationOnGround 

  { 

   meta: Meta_DecelerationDomain  

     { 

      purpose: “To stop the commercial aircraft on  

                ground”; 

      minimum_wheels_active: 4; 

     }  

   contents:   

     {   

      /*provides the list of components involved  

        in this transaction domain*/ 

      Components: {Electrical_Pedal,  

               Mechanical_Pedal, Power, BSCU,  

               ShutOff_Valve, Selector_Valve,  

               Green_Pump, Blue_Pump, Accumulator,  

               Meter_Valve, Wheel}          

       //No connectors –direct binding 

    }   

   transactions: 

   { 

    NORMALMODE: {…}   

  

    EMERGENCYMODE: {  

     events: {MPedalPositionRequest, ReservePres- 

              sureRequest, SendHydraulicPressure,  

              SendMPedalPosition, Decelerate} 

     interactions: {   

      [Selector_Valve.MechanicalPosition sends  

       MPedalPositionRequest to  

       Mechanical_Pedal.MechanicalPosition,  

       Selector_Valve.PressureMessage sends  

       ReservePressureRequest to  

       Accumulator.PressureMessage]; 

      [Meter_Valve.MechanicalCommand receives  

       SendMPedalPosition from  

       Mechanical_Pedal.MechanicalCommand, 



 

 

       Meter_Valve.ReservePressure receives  

       SendHydraulicPressure from  

       Accumulator.ReservePressure]; 

      Meter_Valve.BrakePressure sends Decelerate  

      to Wheel.InputPressure;        

     } 

    }     

    ALTERNATEMODE1: {…} 

 

    ALTERNATEMODE2: {…} 

  

    DECELERATINGWHEEL: { 

      /* No events in this transaction therefore,  

         there is no event section */ 

     interactions: {   

       if (supported(Electircal_Brake &&  

                     Electrical_Power) &&  

           (BSCU_Active && GreenPressure)) 

          {NORMALMODE;} 

       else if (unsupported(Electrical_Power &&  

                            Piston_Pressure) &&    

                (BluePressure_Failed)) 

          {EMERGENCYMODE;} 

       else if (supported(Electircal_Power) &&   

                unsupported (Accumulator_Pressue)       

                &&(BSCU_Active && GreenPressure-  

                   _Failed)) 

          {ALTERNATEMODE1;} 

       else   

          {ALTERNATEMODE2;}     

      } // end of interaction 

    } // end of transaction 

  } // end of transactions section 

} // end of transaction domain 

 

 

 

 

WBS Viewpoint: 

viewpoints { 

   WheelDeceleration: { 

      Description: “Decelerating the aircraft  

                    wheel”; 

      Transaction Domain: { 

                        WheelDecelerationOnGround,  

                        WheelDecelerationOnGear;}           

   } 

} // end of viewpoints 
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