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ABSTRACT 

Nonparametric data from multi-factor experiments arise 
often in human-computer interaction (HCI). Examples may 
include error counts, Likert responses, and preference 
tallies. But because multiple factors are involved, common 
nonparametric tests (e.g., Friedman) are inadequate, as they 
are unable to examine interaction effects. While some 
statistical techniques exist to handle such data, these 
techniques are not widely available and are complex. To 
address these concerns, we present the Aligned Rank 

Transform (ART) for nonparametric factorial data analysis 
in HCI. The ART relies on a preprocessing step that “aligns” 
data before applying averaged ranks, after which point 
common ANOVA procedures can be used, making the ART 
accessible to anyone familiar with the F-test. Unlike most 
articles on the ART, which only address two factors, we 
generalize the ART to N factors. We also provide ARTool 
and ARTweb, desktop and Web-based programs for aligning 
and ranking data. Our re-examination of some published 
HCI results exhibits advantages of the ART. 

Author Keywords: Statistics, analysis of variance, ANOVA, 
factorial analysis, nonparametric data, F-test. 

ACM Classification Keywords: H.5.2 [Information 
interfaces and presentation]: User interfaces –
evaluation/methodology, theory and methods. 

General Terms: Experimentation, Measurement, Theory. 

INTRODUCTION 

Studies in human-computer interaction (HCI) often 
generate nonparametric data from multiple independent 
variables. Examples of such data may include error counts, 
Likert responses, or preference tallies. Often complicating 
this picture are correlated data arising from repeated 
measures. Two analysis approaches for data like these 
appear regularly in the HCI literature. The first simply uses 
a parametric F-test, which risks violating ANOVA 
assumptions and inflating Type I error rates. The second 
uses common one-way nonparametric tests (e.g., Friedman), 
foregoing the examination of interaction effects. Although 

some methods for handling nonparametric factorial data 
exist (see Table 1) [12], most are not well known to HCI 
researchers, require advanced statistical knowledge, and are 
not included in common statistics packages.1 

Table 1. Some possible analyses for nonparametric data. 

Method Limitations 

General Linear Models 
(GLM) 

Can perform factorial parametric analyses, 
but cannot perform nonparametric analyses. 

Mann-Whitney U,  
Kruskal-Wallis 

Can perform nonparametric analyses, but 
cannot handle repeated measures or analyze 
multiple factors or interactions. 

Wilcoxon, Friedman Can perform nonparametric analyses and 
handle repeated measures, but cannot 
analyze multiple factors or interactions. 

χ2, Logistic Regression, 

Generalized Linear 
Models (GZLM) 

Can perform factorial nonparametric 
analyses, but cannot handle repeated 
measures. 

Generalized Linear 
Mixed Models (GLMM), 
Generalized Estimating 
Equations (GEE) 

Can perform factorial nonparametric analyses 
and handle repeated measures, but are not 
widely available and are complex. 

Kaptein et al.’s [7] 
nonparametric method 

Can perform factorial nonparametric analyses 
and handle repeated measures, but requires 
different mathematics and software modules 
for each type of experiment design. ([7] 
focused only on 2×2 mixed designs.) 

Aligned Rank Transform 
(ART) 

Can perform factorial nonparametric analyses 
and handle repeated measures. Requires 
only an ANOVA after data alignment and 
ranking, provided for by ARTool or ARTweb. 

A remedy to the paucity of nonparametric factorial analyses 
would be a procedure that retains the familiarity and 
interpretability of the familiar parametric F-test. We present 
just such an analysis called the Aligned Rank Transform 
(ART). The ART relies on an alignment and ranking step 
before using F-tests. We offer two equivalent tools to do the 
alignment and ranking, one for the desktop (ARTool) and 
one on the Web (ARTweb). Unlike the advanced methods 

                                                           

1 A useful page from statistics consulting at UCLA for choosing the right 
statistical test has a conspicuous omission marked with “???”, which 
appears in the slot for analyzing factorial ordinal data. See 
http://www.ats.ucla.edu/stat/mult_pkg/whatstat/default.htm. Similarly, 
another useful page giving the rationale for myriad statistical tests fails to 
describe any nonparametric factorial analysis for repeated measures data. 
See http://www.ats.ucla.edu/stat/spss/whatstat/whatstat.htm. Both pages 
were accessed January 12, 2011. 
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shown in Table 1, researchers only familiar with ANOVA 
can use, interpret, and report results from the ART. 

We describe the ART and contribute: (1) its generalization 
from two factors to N factors, (2) the ARTool and ARTweb 
programs for easy alignment and ranking, and (3) a re-
examination of some published HCI data. 

THE ALIGNED RANK TRANSFORM FOR N FACTORS 

This section describes the Aligned Rank Transform, 
generalizing it to an arbitrary number of factors. The ART is 
for use in circumstances similar to the parametric ANOVA, 
except that the response variable may be continuous or 
ordinal, and is not required to be normally distributed. 

Background 

Rank transformations have appeared in statistics for years 
[12]. Conover and Iman’s [1] Rank Transform (RT) applies 
ranks, averaged in the case of ties, over a data set, and then 
uses the parametric F-test on the ranks, resulting in a 
nonparametric factorial procedure. However, it was 
subsequently discovered that this process produces 
inaccurate results for interaction effects [5,11], making the 
RT method unsuitable for factorial designs. 

The Aligned Rank Transform (ART) [2,10] corrects this 
problem, providing accurate nonparametric treatment for 
both main and interaction effects [4,5,11]. It relies on a 
preprocessing step that first “aligns” the data for each effect 
(main or interaction) before assigning ranks, averaged in 
the case of ties. Data alignment is an established process in 
statistics [6] by which effects are estimated as marginal 
means and then “stripped” from the response variable so 
that all effects but one are removed. 

Let’s consider an example: In a two-factor experiment with 
effects A, B, and A*B, and response Y, testing for the 
significance of effect A means first stripping from Y 
estimates of effects B and A*B, leaving only a possible 
effect of A behind. This alignment results in YA′, whose 
values are then ranked, producing YA″. Lastly, a full-
factorial ANOVA is run with YA″ as the response and model 
terms A, B, and A*B, but importantly, only the effect of A is 
examined in the ANOVA table; B and A*B are ignored. This 
process is then repeated for the effects of B and A*B, i.e., 
on aligned ranks YB″ and YA*B″, respectively. Thus, to use 
the ART, responses Y from a study must be aligned and 
ranked for each effect of interest. This is a tedious process 
to do by hand, but ARTool or ARTweb make it easy. 

ART Procedure for N Factors 

We present the ART procedure in five steps: 

Step 1. Compute residuals. For each raw response Y, 
compute its residual as 

residual = Y – cell mean . 

The cell mean is the mean for Y’s “cell,” i.e., the average of 
all responses whose factors’ levels match that of the Y 
response for which we’re computing the residual. As Table 
2 shows, cell means are computed using Y values from rows 

with matching levels of independent variables (X1 and X2). 
Thus, the cell mean in row 1 is the mean Y of s1 and s5. 

Table 2. Example calculation of cell means. 

Subject X1 X2 Y cell mean

s1 a a 12 (12+19)/2 

s2 a b 7 (7+16)/2 

s3 b a 14 (14+14)/2 

s4 b b 8 (8+10)/2 

s5 a a 19 (12+19)/2 

s6 a b 16 (7+16)/2 

s7 b a 14 (14+14)/2 

s8 b b 10 (8+10)/2 

Step 2. Compute estimated effects for all main and 

interaction effects. Let A, B, C, and D be factors with 
levels Ai, i = 1..a;  Bj, j = 1..b;  Ck, k = 1..c;  Dℓ, ℓ = 1..d. 

Let 
iA  be the mean response Yi for rows where factor A is 

at level i. Let 
ji BA  be the mean response Yij for rows where 

factor A is at level i and factor B is at level j. And so on. Let 
µ be the grand mean of Y over all rows. 

One-way effects. The estimated main effect for a factor A 
with response Yi is  

 iA . 

Two-way effects. The estimated effect for an A*B 
interaction with response Yij is  

 jiji BABA .
 

Three-way effects. The estimated effect for an A*B*C 
interaction with response Yijk is  

 kjikjkijikji CBACBCABACBA .
 

Four-way effects. The estimated effect for an A*B*C*D 
interaction with response Yijkℓ is  

. 











DCBA

DCDBCBDACABA

DCBDCADBACBADCBA

kji

kjkjikiji

kjkijikjikji

 

N-way effects. The generalized estimated effect for an N-
way interaction is  

       

 
 

.even  is  if  // 

or odd, is  if  // 

...

even is  if  //  way

or odd, is  if  //  way

...
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Step 3. Compute aligned response Y′. The calculation is  

Y′ = residual + estimated effect,  i.e., 
 = result from Step 1 + result from Step 2. 
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significant (F19,76=3.46, p<.001). An alternative to using a 
log-transform to correct for non-normality would have been 
to use a nonparametric procedure on the original data. With 
the ART, the main effects of Session (F19,76=5.19, p<.001) 
and Method (F1,4=10.64, p=.031) are still significant, and 
now their interaction is also significant (F19,76=1.85, 
p=.032). Although OPTI had fewer overall errors, its errors 
increased faster than that of QWERTY, being quite similar 
from the 15th-20th sessions. 

Wobbrock et al. (UIST 2007) 

Wobbrock et al. [14] compared a new stroke recognizer to 
two published recognizers in a within-subjects study of 
gestures made at three different speeds by 10 participants. 
The researchers found that recognition errors were rare and 
highly skewed towards zero. They therefore regarded errors 
as “rare events” and used Poisson regression [13], which 
can be appropriate for such data. However, Poisson 
regression is a Generalized Linear Model (GZLM) and 
cannot handle repeated measures (see Table 1). Wobbrock 
et al. found significant effects of Recognizer 
(χ2

(2,N=780)=867.33, p<.001), Speed (χ2
(2,N=780)=24.56, 

p<.001), and No. Train (χ2
(1,N=780)=125.24, p<.001) on error 

counts. However, they found no significant interactions. By 
contrast, an (inappropriate) parametric mixed-effects model 
analysis of variance [8] gives the same significant main 
effects, but also a significant Recognizer*No. Train 
interaction (F2,757=98.25, p<.001) and a marginal 
Recognizer*Speed interaction (F4,757=2.27, p=.060). More 
appropriately, using the ART reduces the skew in the data, 
gives the same significant main effects, and now gives both 
significant Recognizer*No. Train (F2,757=42.49, p<.001) and 
Recognizer*Speed (F4,757=4.37, p=.002) interactions. 

Some Limitations of the Aligned Rank Transform 

In the above examples, the ART enabled the nonparametric 
testing of interactions, the avoidance of distributional 
assumptions, and the nonparametric testing of repeated 
measures. But the ART has limitations. For data exhibiting 
very high proportions of ties, the ART simply replaces those 
ties with tied ranks. If data exhibits extreme skew (e.g., 
power-law distributions), the ART, as with any rank-based 
transform, will reduce that skew, which may be undesirable 
if distributions are meaningful. Lastly, alignment works 
best for completely randomized designs; it also works for 
other designs, but effects may not be entirely stripped out. 

CONCLUSION 

We have presented the Aligned Rank Transform for 
nonparametric analysis of factorial experiments using the 
familiar F-test. The ART offers advantages over more 
complex methods in its simplicity and usability. We offered 
the first generalized mathematics for an N-way ART and 
programs called ARTool and ARTweb to make alignment 
and ranking easy. By providing three examples of published 
data re-examined using the ART, we exhibited its benefits. 
It is our hope that researchers in HCI will find this 
convenient nonparametric method and our tool as useful as 
we have. 
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