
The Alignment Problem in a Linear Algebra Framework

Claude G. Diderich�

Swiss Federal Inst. of Tech. – Lausanne
Computer Science Department

CH-1015 Lausanne, Switzerland
diderich@di.epfl.ch

Marc Gengler
Ecole Normale Supérieure de Lyon

Labo. de l’Info. du Parallélisme
F-69364 Lyon, France

Marc.Gengler@lip.ens-lyon.fr

Abstract

Two important aspects have to be addressed when automat-
ically parallelizing loop nests for massively parallel dis-
tributedmemory computers, namely maximizingparallelism
and minimizing communication overhead due to non local
data accesses. This paper studies the problem of finding a
computation mapping and data distributions that minimize
the number of remote data accesses for a given degree of
parallelism. This problem is called the constant-degree par-
allelism alignment problem and is shown to be NP-hard.
The algorithm presented uses a linear algebra framework
and assumes affine data access functions. It proceeds by
enumerating all interesting bases of the set of vectors rep-
resenting the alignments between computation and data ac-
cesses that should be satisfied. It is shown in a comparison
with related work how the approach presented allows to ex-
press previous results as special cases. The algorithm is ap-
plied to benchmark programs and shown superior to more
basic mappings.

1. Introduction

An important problem when parallelizing nested loops
for distributed memory parallel computers (DMPC) is how
to map the computation and the data onto processors, that
is, which processor executes which computation and which
processor stores which data element. The optimal solu-
tion to this problem is a placement of computation and data
onto the processors that minimizes the overall execution
time. This problem can be subdivided into two subprob-
lems: i) the alignment problem which assigns computation
and data to a set of virtual processors, and ii) the map-
ping problem which folds the set of virtual processors onto
the physical ones. In this paper we exclusively address
the alignment problem. We consider as target architectures

�Research supported by a grant from the Swiss Federal Institute of Tech-
nology – Lausanne.

massively parallel message passing distributedmemory ma-
chines in which communication costs are some magnitudes
larger than local data accesses or computations. Neverthe-
less our techniques are also relevant to shared memory ma-
chines. Indeed, the problem we consider allows to reduce
the interactions between processors due to accesses to a
same memory location on a shared memory machine. As a
consequence, the number of synchronization barriers can be
reduced. Additionally, the global memory bandwidth of in-
terleaved memory systems is increased.

Following the linear algebra formulation of the align-
ment problem by Huang and Sadayappan in 1991 [14], re-
searchers have primarily focused on finding computation
and data alignment functions requiring no remote data ac-
cesses [5]. Anderson and Lam [4] have presented a heuris-
tic for minimizing communication. Anderson, Amaras-
inghe and Lam [3] and Cierniak and Li [7] have studied
the alignment problem targeting onto cache coherent dis-
tributed shared memory machines using only linear map-
pings for locality analysis. Lim and Lam [18] presented a
set of affine transformations to improve data locality. Darte
and Robert [9] reduced uniform alignment constraints to
graph theoretic problems. Dion and Robert [12] applied
similar techniques to linear access functions. Other re-
searchers have modeled the problem in a graph theoretic
framework [6, 17], considered only constant offset data ac-
cess functions [15, 20] or used stencil-based approaches [8].

This paper is organized as follows. In Sec. 2. we de-
fine the alignment problem and show how it can be ex-
pressed in a linear algebra framework. Section 3. describes
an algorithm for finding a communication-free alignment
used as a building block for our algorithm. In Sec. 4. we
present a novel algorithm for finding an optimal solution to
the constant-degree parallelism alignment problem and dis-
cuss various aspects of it. Section 5. features a compari-
son with related work. In Sec. 6. we describe experimental
results when solving the constant-degree parallelism align-
ment problem for loop nests extracted from various pro-
grams, before concluding in Sec. 7.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

2. The alignment problem

We consider the problem of generating efficient parallel
code for single or multiple loop nests. To do so we map the
iterations from the sequential loop nests onto different pro-
cessors. We address the problem of assigning the different
array elements accessed to different processors.

The alignment problem is the problem of finding an
alignment of loop iterations with the array elements ac-
cessed, that is, mappings of the loop iterations, called com-
putations, and array elements to a multidimensional grid of
virtual processors. The alignment should address the fol-
lowing needs:

i) maximize the degree of parallelism, that is, use as many
processors as possible,

ii) minimize the number of non local data accesses, that
is, distribute the array elements such that a processor
owns a maximal number of the elements it accesses.

Clearly the needs i) and ii) depend on each other. De-
pending on how the needs i) and ii) are satisfied, vari-
ous subproblems of the alignment problem can be defined.
When allowing only local data accesses, we talk about the
communication-free alignment problem. Another subprob-
lem is defined by minimizing the number of remote data ac-
cesses for a given degree of parallelism. This subproblem is
called the constant-degree parallelism alignment problem.
Other variants are of course possible and interesting. De-
pending on how the needs are to be taken into account, the
problem may or may not be easy to solve. For instance, the
communication-free alignment problem is solvable in poly-
nomial time, whereas the constant-degree parallelism align-
ment problem is NP-hard.

In this paper we restrict ourselves to array access func-
tions that are linear or affine. This permits us to use a lin-
ear algebra framework, and in particular the approach pre-
sented by Bau et al. [5], for expressing the alignment prob-
lem. Furthermore we do not consider data replication ex-
plicitly as it can be seen as an optimized form of communi-
cation. However, programs that use more complicated ac-
cess patterns may still be dealt with. The principle consists
in substitutingseveral affine accesses to, for example, an in-
direct access, in such a way that the solution will be trivial in
the array dimensions concerned. If this trick does not allow
to compute any clever data alignment it has the advantage
of making our technique applicable to a larger class of pro-
grams. In this linear algebra framework, access l to array k

is defined by the function

F l
k� I �� Dk

i ��� F l
k�i� � Fl

k i� f lk

where I represents the index domain defined by the loop
bounds and Dk the array access domain. For example the

first access A(i+j+1,2*j-k+2) to array A in a loop
nest of depth three and indices i, j and k, also written as
F �

A�i� j� k� � � i� j � � �� j � k � � �T, is encoded by

F
�

A �

�
� � �
� � ��

�
and f

�

A �

�
�
�

�
�

The unknown computation and data mappings can also
be written as matrix functions.

Computation map:
Cj� I �� P

i ��� Cj�i� � Cj i� cj

Data map:
Dk� Dk �� P

a ��� Dk�a� �Dk a� dk

where P represents the virtual multi-dimensional grid of
processors. Although Pmay be viewed as an unbounded
multi-dimensional grid, its size is limited by the number of
iteration points in the iteration space I. We are only consid-
ering affine functions and are not interested in the exact size
of the underlying polytope. Cj�i� represents the processor
on which iteration i of assignment instruction j is executed.
Similarly, the functionDk indicates on which processors the
elements of array k are located. The order in which each pro-
cessor is allowed to execute the assigned iterations is given
by the data dependences among the data elements accessed
and updated. The on-processor iteration scheduling prob-
lem is not addressed in this paper.

To have a complete description of the alignment problem,
we express the needs i) and ii) in the linear algebra frame-
work. Need i) can be formulated as

max
Cj �cj

�
min
j

�
rank

�
C
T

j

���
�

The actual alignment constraints requiring that the data ele-
ments accessed by processor Pq reside on Pq are expressed
by the equations

� i � I� Cj i� cj � Dk

�
F
l
k i� f

l
k

�
� dk� (1)

The eqns. (1) are called alignment constraints or locality
constraints. Each eqn. indicates that processor Pq � Cj i�
cj executing assignment instruction j at iteration i owns the
data accessed during that iteration which is located on pro-
cessor Dk

�
Fl
k i� f lk

�
� dk. Need ii) requires that a maxi-

mal number of the eqns. (1) be satisfied.
The parallel execution scheme, solution of the alignment

problem in the linear algebra framework, is more general
than the alignment functions that are implemented by tradi-
tional BLOCK or CYCLIC data distributionschemes provided
by languages like HPF [16], if abstracting from possible ex-
plicit replications. The owner computes restriction is lifted

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

as read and write data accesses are considered at the same
level.

We say that an O�nq� computation has p degrees of time
parallelism if it executes in O�nq�p� time. The same algo-
rithm is said to have p degrees of processor parallelism if it
uses O�np� processors. When talking about degree of paral-
lelism we usually mean processor parallelism. In most cases
the degree of time parallelism is equal to the degree of pro-
cessor parallelism, except in some work-inefficient parallel
programs. Consider the following two examples:

do i = 2, n
B(i) = A(i-1)

end do

Example a)

do i = 2, n
A(i) = A(i-1)

end do

Example b)

It is possible to assign, in both examples, each iteration to
a different processor. We say that both examples have one
degree of processor parallelism as each of the O�n� proces-
sors assigned is used. But only example a) has one degree
of time parallelism as it executes in O�n���� � O��� time.
This is not the case for example b) in which processor i� �
can only compute after processor i has finished its work due
to the data dependence between the write of A(i) and the
read of A(i-1).

3. Solving the communication-free alignment
problem

In this section we briefly review the algorithm for solv-
ing the communication-free alignment problem in the linear
algebra framework presented by Bau et al. [5]. Our algo-
rithm, as presented in Sec. 4., uses this algorithm as a build-
ing block.

By simple algebraic transformations, the set of eqns. (1)
can be rewritten in the following equivalent forms.

�i � I� �Cj cj �

�
i

�

�
� �Dk dk �

�
Fl

k f lk

� �

��
i

�

�

�i � I�
�
�Cj

�Dk

��
I

��Fl
k

��
i

�

�
� � (2)

where �Cj � �Cj cj �, �Dk � �Dk dk � and �Fl
k ��

Fl
k f lk

� �

�
.

To simplify the problem, as suggested by Bau et al. [5],
we require that eqns. (2) hold for any vector i, regardless of
whether or not it belongs to the iteration domain I. The set
of alignment constraints then becomes

�
�Cj

�Dk

��
I

��Fl
k

�
� �� (3)

Allowing no communication imposes that all locality cons-
traints (3) are satisfied simultaneously. Therefore (3) can be
rewritten as

�U �V � � (4)

where �U � � �C� � � � �Cs
�D� � � � �Dt �, �V �

� �V����� � � � �Vs�t�u � and

�Vj�k�l �
�
� � � � � I � � � � � � �Fl

k � � � � �
�T

�

The sub-matrix �Vj�k�l represents the alignment con-
straint of the data access l of array k in instruction j and the
processor using that data, that is, the zeros are placed such
that �U �Vj�k�l � � implies �Cj � �Dk

�Fl
k � �.

Eqn. (4) is equivalent to �VT �UT � �. Therefore, the
column vectors of the unknown matrix �UT are in the null
space of the known �VT. The degree of parallelism asso-
ciated with an alignment �U equals minj�rank�CT

j ��. Be-
cause the degree of parallelism is not influenced by the cons-
tant offset, it only depends on the rank of the matrices Cj .
In fact, there always exists a trivial solution to the problem
mapping all computation and data elements onto a single
processor. Such a solution would have �Cj � � � � � �� j � �,
�Dk � � � � � �� j � � and rank� �U� � �. This means
that rank�Cj � � rank� �U�. Because the degree of paral-
lelism is not influenced by the constant offset, it only de-
pends on the rank of the matrices Cj . The maximal degree
of parallelism is tightly related to the size of a basis of the
null space of �VT. Algo. 1, called LINEAR-ALIGNMENT al-
gorithm, finds a communication-free alignment with max-
imal degree of parallelism. Bau et al. [5] distinguish be-
tween the linear-alignment and the affine-alignment algo-
rithms, depending on whether the constant offsets are con-
sidered or not. As the principle of both algorithms is strictly
the same we do not make such a distinctionand use the name
linear-alignment indifferently. A more in-depth discussion
of the LINEAR-ALIGNMENT algorithm can be found in [5].

4. An exact solution to the constant-degree
parallelism alignment problem

In most cases the degree of parallelism of a
communication-free alignment is quite low, very often
even non-existing. This is for instance the case for matrix-
multiply, Gaussian elimination or 2-D FFT. It leads to
define the constant-degree parallelism alignment problem
(CDPAP), which is the problem of finding communication
and data mappings such that the degree of parallelism
obtained is at least equal to the input parameter d and the
number of data communications is minimized.

The value of parameter d, that is the degree of paral-
lelism, may be computed as a function of the maximal num-
ber of processors installed in the target system. The prob-
lem may also be solved for different values of d. The value

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

Input: A set of alignment constraints of the form �Cj �
�Dk

�Fl
k.

Output: Communication-free alignment matrices �Cj and
�Dk.

1. Assemble matrix �V as in eqn. (4).
2. Compute a basis �UT for the null space of �VT.
3. Set the degree of parallelism to minj�rank�CTj ��.

4. Extract the solution matrices �Cj and �Dk from �U as
defined in eqn. (4).

Algorithm 1. The LINEAR-ALIGNMENT al-
gorithm. It computes communication-free
alignment functions having a maximal degree
of parallelism.

retained of d would be such that the ratio between the par-
allelism obtained and the number of remote data accesses is
maximized. In an interactive system or user supported com-
pilation tool, the programmer could provide a value. In this
section we present an algorithm, called the constant-degree
parallelism alignment algorithm (CDPAA), exactly solving
the CDPAP by minimizing the number of non local data ac-
cesses.

We assume a communication model in which all proces-
sors are directly connected, that is, the time to transmit a
message is independent of the source and destination pro-
cessor. This model is exact for bus based architectures. In
many recent designs, the architects have taken pains to build
fair approximations of this communication model. The con-
text in which communications are seen is identical to the one
used by Feautrier [13].

4.1. The constants-degree parallelism alignment
algorithm

Assume that it is possible to find a communication-free
alignment of parallelism degree d� for a given problem �V1.
Our idea is to simplify the problem �V by finding a min-
imal set of alignment constraints from (1) to be left un-
satisfied such that the simplified problem has a solution
of degree of parallelism d when solved by the LINEAR-
ALIGNMENT algorithm. To increase the parallelism intro-
duced by the communication-free LINEAR-ALIGNMENT al-
gorithm by d�� � d�d�, we construct a modified problem �V�

such that the size of the basis of the null space of that prob-
lem is increased by d�� compared to the size of the nullspace
of the original problem. This is equivalent to transforming
the initial problem �V into a simpler problem �V� such that
the rank of the matrix �V�, that is, the size of a basis of the

1We use interchangeably the notion of alignment problem and the ma-
trix �V representing the locality constraints of the problem.

column vectors of the matrix �V�, is reduced by d��. Note that
any array accessed having fewer dimensions than the degree
of parallelism required can be safely ignored as it is impos-
sible to satisfy the associated alignment constraints.

We use the notation h �Vi to represent the vector space
spanned by the column vectors of the matrix �V. We use the
term alignment constraint interchangeably with the column
vectors representing that alignment constraint in the matrix
of the problem.

h �Vi represents the space of all the alignment constraints.
To increase the degree of parallelism by at least d��, we
need to find a subspace h �V�i of h �Vi such that dim�h �Vi� �

dim�h �V�i� � d
��. Let �d � dim�h �Vi�� d��. There exists an

infinite number of such subspaces h �V�i of dimension �d, but
only finitely many are of interest to us. In fact, all subspaces
of h �Vi that contain less than �d vector columns of �V are un-
interesting, because we know that there exists at least one
subspace containingat least �d column vectors of �V. Further-
more, the set of all the subspaces of degree at most �d con-
taining at least �d column vectors can be easily enumerated.
To do so, we select any �d column vectors of �V. Complex-
ity issues of this enumeration are discussed n Sec. 4.3. Then,
for each valid subset of column vectors of �V, we compute
a basis and count the number of alignment constraints that
can be expressed in that basis. A subset is called valid if the
subproblem formed by all the alignment constraints contain-
ing any of the vectors used for constructing the subset does
have a communication-free alignment solution having d de-
grees of parallelism. As indicated previously, the degree of
parallelism obtained without this test, may be d � � due to
the constant offsets in �Cj .

Finally, we select a subspace h �V��i that contains the
largest number of alignment constraints. Other cost func-
tions are possible and are discussed in Sec. 4.4. The simpli-
fied problem to be solved thereafter by the communication-
free alignment algorithm is the one containing only the
locality constraints of the initial problem that lie within
h �V�i. If there are several possibilities to choose the sub-
space h �V��i, are possible, we retain the one whose associ-
ated alignment functions are the simplest. Formally the CD-
PAA is described as Algo. 2.

The presented alignment framework allows to generate
correct SPMD code out of any alignment functions Cj and
Dk computed. Because the different data dependences as
well as the processors on which the data elements accessed
are located are known, it is possible, although not necessar-
ily easy, to insert synchronization primitives such that data
dependence constraints are satisfied. This scheduling prob-
lem can be solved by using techniques for enumerating dis-
crete points in a polyhedron [2].

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

�V �

�
BBBBBBBBBB�

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

�� � � �� � � �� � � �� � ��
� �� � � �� � � �� � � �� �
� � �� � � �� � � �� � � ��
v� v� v� v� v� v� v� v� v� v�	 v�� v��

A(i,j) A(i,j-1) A(i-1,j) A(i+1,j-2)

�
CCCCCCCCCCA

�

Figure 1. Matrix �V.

4.2. Example

Let us consider the following single loop nest2:

do i = 1, n
do j = 1, n

B(i,j) = A(i,j) + A(i,j-1)
+ A(i-1,j) + A(i+1,j-2)

end do
end do

Computing a communication-free alignment for this
problem, by using Algo. 1, yields the trivial solution
C�i� j� � � and DA�i� j� � �, that is no parallelism. We
want to obtain computation and data mappings havingd � �
degree of parallelism. Such an alignment is reasonable if
the number of processors available is smaller than the loop
bound n.

For this example we assemble the matrix �V as show in
Fig. 1.3 As size�ker� �VT�� � � and rank�C� � �, we
have �d � � � � � 	. By enumerating all subspaces h �V�i

of h �Vi having as basis �d vector columns of �V and count-
ing for each subspace h �V�i the number of alignment cons-
traints, that is, sets of columns of �V, that lie within it, we find
that the subspace having as basis �v��v��v��v�� contains a
maximal number of alignment constraints. As the alignment
of the computation with the data access A(i,j), that is vec-
tor v�, cannot be expressed within that basis, the simplified
problem is formed of the alignment constraints aligning the
accesses A(i,j-1), A(i-1,j) and A(i+1,j-2) with
the computation of iteration(i,j). Solving this simplified
problem using Algo. 1, we find the following computation
and data alignment functions

C�i� j� � i
 j � � and DA�i� j� � i
 j�

Under this alignment, each loop iteration requires three local
and one remote memory accesses to array A.

2The CDPAA is not restricted to single loop nests. It may be applied to
multiple loop nests or even whole programs.

3To simplify the notation an without loss of generality we only consider
data accesses to array A.

4.3. Optimality and complexity study

The input size of any CDPAP is characterized by four pa-
rameters, which are the number of data accesses n, the max-
imal dimension of any array accessed or the maximal loop
nest depth e, whichever is larger, the number of assignment
statements considered c and the number of arrays a.

To study the complexity of the CDPAP, let us consider the
following problem. Let A � fai � x � �g be a set of n lin-
ear equations with m variables such that ai�j � f���
�g.
The homogeneous bipolar maximal feasible linear subsys-
tem problem, denoted by MAX FLS
, is the problem of
finding a non trivial solution vector x � Rmnf�g that satis-
fies as many of the linear equations inA as possible. Amaldi
and Kann [1] have shown the decision version associated
with this optimization problem to be NP-complete. We
proof the following theorem by reduction from MAX FLS
.
Theorem 4.1 The decision version of the CDPAP, that is,
given a set of alignment constraints �Cj � �Dk

�Fl
k and con-

stants d and K, do there exist computation and data map-
ping functions �Cj and �Dk having d degrees of processor
parallelism such that, at least K alignment constraints are
satisfied, is NP-complete.
Proof. Let A be the decision version of a MAX FLS
 prob-
lem and K a decision constant. We transform the prob-
lem A into m constant-degree parallelism alignment prob-
lems A�

q with required degree of parallelism d � �. The
constant-degree parallelism alignment problem q is con-
structed as follows. Each equation ai �x � � is transformed
into one alignment constraint. Each non satisfied align-
ment constraint represents one remote data access. Each ai
is multiplied by � or �� to have ai�q � �. Then align-
ment constraint i is constructed as i Fig. 2 where X �
� xq y x� � � � xq�� xq�� � � �xm z �T. The affine data ac-
cess functions of the obtained alignment problem are

Fi�i�� � � � � im��� �
��ai�� i�� � � � ��ai�q�� iq����ai�q�� iq� � � � ��ai�m im���.

If there exists a solution to the q-th CDPAP a�q that satisfies
at least K alignment constraints, then �x�� � � � � xk� of X�

q ,

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

�
ai�q xq � ai�� x� � � � � � ai�m � �

y � z � �

�

�
� � ai�� � � � ai�q�� ai�q�� � � � ai�m �
� � � � � � � � � � �

�
X � �

Figure 2. Construction of an alignment constraint from an affine equation.

which is different from� because xq �� �, satisfies at leastK
linear equations. Converse, assume that there exists a vector
x �� � satisfying at least K equations of A and none of the
m CDPAP A�

q has a solution satisfying at least K alignment
constraints. Assume that xr �� �. Such an r always exists.
Then Xr � �x�� �� x�� � � � � xr��� xr��� � � � � xm���� is a
solution to A�

r satisfying at least K alignment constraints.
This is in contradiction to the hypothesis that not such so-
lution exists. Therefore, if no solution exists to any of the
m CDPAP satisfying at least K alignment constraints, then
there does not exist any solution vector x verifying at least
K linear equations. This concludes the reduction. As the
decision version of MAX FLS� is NP-complete and as the
CDPAP belongs to NP, we conclude that the CDPAP is NP-
complete. �

Theorem 4.2 The CDPAA finds communication and data
alignment functions that require a minimal number of non
local data accesses for a given degree of processor paral-
lelism. Furthermore, if all alignment constraints represent-
ing data dependences are satisfied, the degree of processor
parallelism equals the degree of time parallelism.
Proof. Suppose that there exist better communication and
data mapping functions, that is, requiring fewer non local
data accesses, than the ones computed by the CDPAA. This
is not possible because a basis of the subspace representing
these better mapping functionswould have been enumerated
by the CDPAA.

There exist two reasons for the processor and time par-
allelism being not equal. First, the load may be unevenly
balanced. In the CDPAA this is not the case as each virtual
processor is assigned the same number of iterations up to
a constant factor. Second, any processor may have to wait
for the data to become available. But, if all alignment cons-
traints representing data dependences are satisfied, then no
data element written by one processor is read by another one.
�

If not all alignment constraints representing data depen-
dences are satisfied, the degree of processor parallelism may
or may not equal the degree of time parallelism.
Theorem 4.3 The CDPAA requires O��e �n���e�c�a�� time
to find optimal alignment functions.
Proof. Each linear algebra operation, like computing the

rank of a matrix, testing whether or not a vector lies within a
given subspace, can be computed in O��e � n��� time as the
matrix �V is of size e � n � e�c � a� and c � a � � n. The
most time consuming part of the algorithm is the enumera-
tion of all subsets of �d column vectors of �V. O�C

�d
e�n� such

vector sets exist. As one can verify �d � size�base�h �Vi�� �

e �c � a�. Therefore C
�d
e�n � �e � n�e �c�a� is obtained.

Counting the number of alignment constraints lying within
a subspace h �V�i can be done in O��e � n��� time. Combin-
ing these results, we obtain the running time complexity of
O��e � n���e �c�a��. �

If the complexity of computing the cost function mini-
mized by the CDPAA is f�n� e� c� a�, then the result of The-
orem 4.3 generalizes to O��e � n�e �c�a� � f�n� e� c� a��.

Because of the NP-hardness results, it is not astonishing
that the running time of the CDPAA is non polynomial. This
is not as bad as it may look at first. It is reasonable to as-
sume that n, the number of array accesses is much larger
than any of the other three parameters. This is especially
true when considering one loop nest at a time. Therefore,
when only considering the number of array accesses as vari-
able, the CDPAA execution time is polynomial.

4.4. On the cost function

We use a counting argument based on the number of non
local data accesses as optimization function for computing
efficient alignment functions. Although some people argue
that minimizing only the number of data accesses is not pre-
cise enough, we believe that, for a generic message pass-
ing DMPC, minimizing the number of communications is
essential. It is nevertheless true that a minimal number of
remote data accesses is not a sufficient condition to get per-
formance. Among the problems that remain to be addressed
are, communication specialization and vectorization to min-
imize startup overheads [19], data layout on individual pro-
cessors and per processor iteration scheduling to maximize
cache performance. These techniques [3, 7] are usually con-
sidered in a second step and can always be applied with our
approach.

The cost function used can be generalized by assign-
ing different weights to the different alignment constraints

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

Input: A set of alignment constraints of the form �Cj �
�Dk

�Fl
k and a constant d.

Output: Alignment matrices �Cj and �Dk representing par-
allelism of degree at least d.

1. Assemble matrix �V as in eqn. (4).
2. Solve the problem as a communication-free align-

ment problem. Let d� be the degree of parallelism ob-
tained.

3. Let �d � rank� �V�� �d� d��.
4.1. Enumerate all subspaces h �V�i of dimension �d of h �Vi

by selecting as a basis �d of the vector columns of �V.
4.2. Check if the subspace is valid, that is, if the sub-

problem formed of all alignment constraints con-
taining any of the selected basis vectors does have
a communication-free alignment solution having at
least d degrees of parallelism.

4.3. For each valid subspace h �V�i, count how many align-
ment constraints are in that subspace.

5. Select a subspace h �V��i that contains a maximal num-
ber of alignment constraints, as computed in 4.3.

6. Form a new problem �V� containing all the align-
ment constraints that can be expressed in the subspace
h �V��i computed in 5.

7. Solve the new simplified problem �V� by using the
communication-free alignment algorithm LINEAR-
ALIGNMENT.

Algorithm 2. The constant-degree parallelism
alignment algorithm (CDPAA).

depending on their importance and then minimize the
weighted sum of remote data accesses. Such a cost func-
tion even allows the user of the algorithm to require some
alignment constraints to be satisfied by assigning to them an
infinite weight. For example, the owner computes rule can
be imposed by assigning a weight of �� to the alignment
constraint �Cj � �Dk

�F�

k, where �F�

k represents the element
of array k being modified by instruction j. Any conceivable
and efficiently computable cost function can be used to se-
lect the d� basis vectors in step 5 of Algo. 2.

The definition and use of specialized cost functions is es-
pecially interesting in a heuristic environment.

4.5. Some remarks on data dependence cons-
traints

As long as all alignment constraints are verified, data de-
pendences are as well, and the processor parallelism is iden-
tical to the time parallelism. This means that the data and
computation distributions are compatible. But, as soon as
alignment constraints are dropped this may no longer be

true. Removing alignment constraints that represent part
of data dependences may increase the processor parallelism
without changing the time parallelism. In [11] we charac-
terize the relation between the computed alignment and the
iteration scheduling, that is, the relation between processor
and time parallelism. Essentially, we show that a sufficient,
but not necessary, condition to get a non constant number of
active processors during each time step of a linear schedul-
ing is to impose that there be at least two fulfilled alignment
constraints that correspond to a data dependence.

4.6. A heuristic approach to the problem

As we show in Sec. 4.3., the CDPAP is NP-hard. Even
for simple loop nests the running time may be large. In prac-
tice, a reasonably good feasible solution found rapidly is suf-
ficient. This lead us to the development of a heuristic for
finding a feasible solution to the CDPAP. It proceeds by in-
crementally constructing a single basis of a subspace con-
taining verified alignment constraints. The alignment cons-
traints are considered one at a time in a predefined order to
conveniently express the locality constraints that are con-
sidered the most important. The details of this heuristic ap-
proach can be found in [10].

5. Comparison with related work

Many techniques for solving the alignment problem pro-
posed by different research teams are closely related to the
approach taken in this paper. Huang and Sadayappan [14]
were the first to introduce communication-free hyperplane
partitioning of loops. Their paper states necessary and suf-
ficient conditions on computation and data mappings to ob-
tain alignments that do not need any communication. Sub-
sequent efforts have focussed on algorithms for computing
communication-free alignment functions based on the con-
ditions of Huang and Sadayappan [4, 5]. Others have con-
centrated their work on finding a subset of data accesses that
verify the communication-free alignment conditions for a
given degree of parallelism [4, 12, 13]. In this Sec. we re-
view this latter work and compare it to our approach. To do
so we use the linear algebra framework of Bau et al. [5] pre-
sented in Sec. 2.

Anderson and Lam (1993). Anderson and Lam [4] de-
fine necessary conditions for the data accesses executed by
each processor being local. Using the notation introduced in
Sec. 2., these conditions are

ker�Dk� � spanfs j s � F
l
k t� t � ker�Cj��

for all accesses l and all instructions j

in which array k is accessedg (5)

ker�Cj� � spanft j t � ker�Fl
k� �

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

F
l
k t � �ker�Dk� � range�Fl

k���

for all accesses l and all arrays k accessed

in instruction jg (6)

These conditions admit a direct translation into the frame-
work defined by Bau et al. [5]. Condition (5) expresses that
if iterations i� and i� are mapped to the same processor, that
is t � i�� i� � ker�Cj�, then all accesses l in instruction j

to array k are mapped to the same processor, that is,Fl
k t �

ker�Dk�. In the framework of Bau et al. this means that
Dk F

l
k i� � Dk F

l
k i�. Converse, if all array elements of

arrays k are accessed in instruction j, then they are mapped
to the same processor, which is expressed by condition (6).
More formally, this means that if t � i��i� � ker�Dk F

l
k�,

then t � ker�Cj �. As ker�Fl
k� � ker�Dk Fl

k�, we con-
clude that, if t � ker�Fl

k�, then the two iterations must also
be mapped onto the same processor. Again, this means that
Cj t � Dk F

l
k t. Note that there is a third case to consider,

which reduces to the second. If two iterations i� and i� ac-
cess the same data element of array k, that isFl

k i� � F
m
k i�,

then iterations i� and i� must be mapped onto the same pro-
cessor. From t � i� � i� � ker�Cj�, we conclude, using
Cj i � Dk F

l
k i, that the condition t � ker�Dk F

l
k� must

also be satisfied. The same holds for Fm
k .

Anderson and Lam present a greedy algorithm to com-
pute the alignment functions Cj and Dk that can be satis-
fied, incrementally adding constraints as long as the con-
ditions (5) and (6) are satisfied, starting with the most fre-
quently used array access functions. Such heuristic tech-
niques are close to the one mentioned in this paper. How-
ever, Anderson and Lam base their heuristic exclusively on
the number of times the corresponding instruction is exe-
cuted. Opposed to this, our heuristic function briefly men-
tioned in Sec. 4.6. and described in detail in [10] takes sev-
eral aspects into account. These include the number of ex-
ecutions of each data access, the linear and constant offset
parts of the data access functionsand, most importantly, data
dependence information, to yield an alignment that is com-
patible with a scheduling. Anderson and Lam only consider
the linear part of the data access functions, taking care of the
constant offsets in a second step.

Feautrier (1994). Feautrier [13] addresses the problem of
finding an alignment function that maps the data elements on
a one-dimensional grid of virtual processors. The alignment
constraints between computation and data accesses are de-
rived from the data-flow graph (DFG) of the program, pro-
cedure or loop nest considered. The DFG is a directed graph.
Vertices correspond to statements and the arcs to producers
and consumers of data. The computation mapping function
is defined by the owner computes rule which is imposed. For
each statement, the alignment function is assumed to be an
affine function of the iteration vectors with unknown param-

eters. The locality of accesses is imposed by asking that the
producer and the consumer of a data item be the same pro-
cessor. Feautrier defines a distance vectors between any pair
of producers and consumers. To any arc of the DFG corre-
sponds a distance vector that expresses the difference of the
indices of the processor that computes the data and the one
that uses it. Thus, a communication is local if and only if the
corresponding distance vector is zero. The edges are hence
transformed into affine equations and the problem consists
in determining non-trivial parameters for the computation
mappings that zero out as many distance vectors as possi-
ble. A heuristic is the used to sort the equations in decreas-
ing order of the communication traffic induced. The system
of equations, which usually does not have a non trivial solu-
tion, is then solved by successive Gauss-Jordan eliminations
as long as a feasible solution remains non-trivial.

The approach presented by Feautrier is similar to the
heuristic method mentioned in Sec. 4.6., especially as both
approaches handle affine access functions. Nevertheless the
techniques as well as the heuristics are quite different in
the sense that Feautrier uses Gauss-Jordan elimination to
construct a feasible solution whereas our approach is based
on constructing a subspace in which the alignment cons-
traints can be expressed. Furthermore, Feautrier simplifies
the computation mapping problem by using the owner com-
putes rule, whereas our approach allows any affine compu-
tation mapping.

Dion and Robert (1995). The problem considered by
Dion and Robert [12] is also close to our interest, although
the techniques used and the hypotheses made on the prob-
lem instances are quite different. They compute, consider-
ing only the linear parts, the largest set of alignment cons-
traints that can be met while yieldinga given degree of paral-
lelism d. The constant offsets are considered subsequently,
using techniques developed by Darte and Robert [9]. All
data access functions must be of full rank and no smaller
than d. This is the only way they can assure that the paral-
lelism obtained is indeed as large as wanted. We consider a
set of candidate solutions and search for an optimal one that
verifies the largest number of constraints while effectively
yielding the degree of parallelism desired.

In their approach Dion and Robert consider the following
three basic cases.

� If the access matrix Fl
k is square, then it is invertible.

Hence, using the basic condition Cj � Dk Fl
k, it is

possible to either derive a computation mappingCj of
rank d from a given data mappingDk of rank d, that is
Cj � Dk F

l
k, or a data mapping Dk of rank d from a

given computation mappingCj of rank d, that isDk �
Cj inv�F

l
k�, where inv denotes the inverse.

� If the array access functions considered Fl
k is narrow,

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

that is, having fewer columns than lines, then it is possi-
ble to consider a left inverse inv�Fl

k� and, given a com-
putation mapping Cj of rank d, compute a data map-
ping Dk of rank d as Dk � Cj inv�Fl

k�.

� Symmetrically, if Fl
k is a flat data access function, that

is, with fewer rows than columns, then it is possible to
determine a computation mapping Cj � Dk Fl

k of
rank d from a given data mapping Dk of rank d. Ad-
ditionally, as Fl

k admits a right inverse, it is possible to
derive a data mapping Dk � Cj inv�Fl

k� of degree
d from a given computation mapping Cj of degree d,
provided that the equalityCj � Cj inv�Fl

k� F
l
k holds.

Next, Dion and Robert build a directed graph defined as
follows. Vertices correspond either to statements or arrays.
There is an arc from vertex p to vertex q if and only if a
mapping of rank d can be computed for q from a given map-
ping of rank d for p according to the basic cases enumerated
previously. In this graph they search for a tree containing
a maximal number of arcs. Obviously, choosing a mapping
of rank d for the root of the computed tree implicitly deter-
mines mappings of rank d for all other vertices.

The way Dion and Robert compute one mapping given
another mapping is a particular case of the framework de-
fined by Bau et al. [5]. This is immediate for square ac-
cess functions. For a narrow access function Fl

k, Dion and
Robert define Dk � Cj inv�Fl

k�. Multiplying this equal-
ity by Fl

k, we obtain Cj � Dk Fl
k, that is �Cj Dk� �I �

Fl
k�
T � �. There are two cases for flat access functions.

The case Cj � Dk Fl
k is obvious. Let us consider the

case Dk � Cj inv�Fl
k�, provided that the condition Cj �

Cj inv�Fl
k� F

l
k holds. MultiplyingbyFl

k, we getDk F
l
k �

Cj inv�F
l
k� F

l
k which reduces to Cj � Dk F

l
k, taking into

account the condition. Thus, the graph built by Dion and
Robert can alternatively be expressed exactly in the frame-
work by Bau et al. As the technique proposed in this paper
allows us to compute, for any given degree of parallelism,
a solution that satisfies as many constraints as possible, this
solution is equivalent to the one computed by the algorithm
of Dion and Robert, when restricted to access functions of
full rank.

General considerations. The framework presented in this
paper allows to take into account non-local accesses with
only constant offsets F �i� � I i � fkl , linear access func-
tions of the form F �i� � �Fk

l i as well as any general affine
access functionF �i� � �Fk

l i� fkl . Dion and Robert [12], as
well as Anderson et al. [3], for instance, only consider the
linear part of the data access functions in their first step and
introduce the constant offsets subsequently.

Finally cache optimizations like the one considered by
Anderson et al. [3] and Cierniak and Li [7], can be intro-
duced into our framework. Basically, the data is distributed

first and the cache reuse for the data local to a given proces-
sor is optimized second, using techniques like strip-mining.

6. Experimental results

To show the quality of the alignment functions computed
by the CDPAA, we have applied the algorithm to various
loop nests of different depths extracted from various pro-
grams and benchmarks. In each example4 we search for
alignment functions having at least one degree of paral-
lelism. In Table 1 we list the results of the CDPAA and the
heuristic constant degree parallelism alignment algorithm
(HCDPAA) [10] as well as the simple data mapping func-
tion D�i� � im, for the best value of m, that is, the one
minimizing the number of remote data accesses. The last
data mapping function can be implemented in HPF by using
a BLOCK distributionscheme. Although the HCDPAA is not
described in detail in this paper, it is interesting to compare
its performance to the one of the exact CDPAA to show that
it is possible to develop efficient heuristics.

Problems calc1 and calc2 are the main loop nests
in the subroutines of the same name from the program
SHALOW, a weather prediction benchmark program.
psinv and resid are loop nests extracted from the
NAS 2.0 benchmark MG. jacobi is the iterative relax-
ation method of Jacobi. example is the small example
from [11] and diag corresponds to the example described
in Sec. 4.2. All problems marked with a star (�) use data
access functions of the form F �i� � I i � c where I is the
identity matrix and c a constant vector.

The notation xL/yR (z%) indicates that each virtual pro-
cessor executes x local and y remote data accesses, z be-
ing the percentage of local accesses. When mapping virtual
processors to physical ones by blocking consecutive itera-
tions onto one processor, the number of remote data accesses
only applies to iterations within the boundary regions. Such
a blocking operation is always possible. When talking about
massively parallel machines, as we assume in this paper, the
number of virtual processors mapped to one physical one is
small, and therefore the number of remote data access be-
coming local on the physical machine is small. Furthermore,
the number of boundaries does not change considerably be-
tween different alignment functions. This means that if a
given percentage of the remote data accesses become local
for an alignment �, then about the same percentage of the
remote data accesses become local for an alignment �.

As can be seen from Table 1, the CDPAA and the HCD-
PAA outperform the simple alignment functionDm�i� on all
but one example. Except for the loop nest fromSHALOW the
heuristic presented find optimal computation and data map-
pings on all tested examples.

4We only consider loop nests that do not admit a communication-free
alignment.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

Pb.name (1) (2) (3) D�i� � im CDPAA HCDPAA

SHALOW
calc1� 3 7 27 16L/11R (60%) 22L/5R (81%) 20L/7R (74%)
calc2� 3 10 27 16L/11R (60%) 21L/6R (78%) 19L/8R (70%)

NAS2-MG
psinv� 3 4 21 15L/6R (71%) 19L/2R (90%) 19L/2R (90%)
resid� 3 5 21 15L/6R (71%) 19L/2R (90%) 19L/2R (90%)

jacobi� 1 2 5 3L/2R (60%) 3L/2R (60%) 3L/2R (60%)
diag� 1 2 5 3L/2R (60%) 4L/1R (80%) 4L/1R (80%)
example 1 2 4 2L/2R (50%) 3L/1R (75%) 3L/1R (75%)

Table 1. Experimental results for different loop nests. (1) number of instructions, (2) number of dif-
ferent arrays, (3) number of array accesses, xL/yR (z%) number of local and remote data accesses as
well as the percentage of local data referenced per iteration step.

7. Conclusion

We have shown how he linear algebra framework can be
used to solve the CDPAP. The approach chosen is general,
in the sense that previous work can be expressed as spe-
cial cases. Different aspects of the problem have been ad-
dressed. We proved the decision version of the problem to
be NP-complete and introduced an exact algorithm for find-
ing a solution.

In future work we are investigating into incorporating
into the linear algebra framework, or an extension of it, the
notion of scheduling vector. This would allow to optimize a
singe function when solving both the scheduling and align-
ment problems.

References

[1] E. Amaldi and V. Kann, The complexity and approximability
of finding maximum feasible subsystems of linear relations,
Theoret. Comput. Sci. 147 (1995), no. 1–2, 181–210.

[2] C. Ancourt and F. Irigoin, Scanning polyhedra with DO
loops, Proc. PPoPP ’91, April 1991, pp. 39–50.

[3] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam, Data
and computation transformations for multiprocessors, Proc.
PPoPP ’95 (Santa Barbara, CA), July 1995.

[4] J. M. Anderson and M. S. Lam, Global optimizations for
parallelism and locality on scalable parallel machines, Proc.
PLDI ’93 (Albuquerque, NM), June 1993, pp. 112–125.

[5] D. Bau, I. Kodukula, V. Kotlyar, K. Pingali, and P. Stodghill,
Solving alignment using elementary linear algebra, Proc.
LCPC ’94 (Ithaca, NY) (K. Pingali et al., ed.), LNCS, vol.
892, Springer Verlag, August 1994, Also as technical report,
TR95-1478, Cornell University, Ithaca, NY, pp. 46–60.

[6] S. Chatterjee, J. R. Gilbert, and R. Schreiber, The alignment-
distribution graph, Proc. LCPC ’93 (Portland, OR) (U.
Banerjee et al., ed.), LNCS, vol. 768, Springer Verlag, Au-
gust 1993, pp. 234–252.

[7] M. Cierniak and W. Li, Unifying data and control trans-
formations for distributed shared-memory machines, Proc.
PLDI ’95 (La Jolla, CA), June 1995, pp. 205–217.

[8] P. Crooks and R. H. Perrott, An automatic data distribution
generator for distributed memory MIMD machines, Proc.
Workshop on Comp. for Par. Comp. (Delft, The Netherlands)
(H. J. Sips, ed.), Univ. of Delft, December 1993, pp. 33–44.

[9] A. Darte and Y. Robert, Mapping uniform loop nests onto dis-
tributed memory architectures, Par. Comp. 20 (1994), no. 5,
679–719.

[10] C. G. Diderich and M. Gengler, A heuristic approachfor find-
ing a solution to the constant-degree parallelism alignment
proble, Proc. of PACT ’96 (Boston, MA), October 1996.

[11] , Solving the constant-degree parallelism alignment
problem, Tech. Report DI-96/195, Swiss Fed. Inst. of Tech. –
Lsn., Comp. Sci. Dept., Lausanne, Switzerland, June 1996.

[12] M. Dion and Y. Robert, Mapping affine loop nests: New re-
sults, Proc. HPCN ’95 (B. Hertzberger and G. Serazzi, eds.),
LNCS, no. 919, Springer-Verlag, 1995, pp. 184–189.

[13] P. Feautrier, Towardautomatic distribution, Par. Proc. Letters
4 (1994), no. 3, 233–244.

[14] C.-H. Huang and P. Sadayappan,Communication-free hyper-
plane partitioning of nested loops, Proc. LCPC ’91 (Santa
Clara, CA) (U. Banerjee et al., ed.), LNCS, vol. 589, Springer
Verlag, August 1991, pp. 186–200.

[15] K. Knobe, J. D. Lukas, and G. L. Steele, Jr., Data optimiza-
tion: Allocation of arrays to reduce communication on SIMD
machines, J. on Par. and Dist. Comp. 8 (1990), no. 2, 102–
118.

[16] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele
Jr., and M. E. Zosel, The High Performance Fortran hand-
book, MIT Press, Cambridge, MA, 1994.

[17] J. Li and M. Chen, Index domain alignment: Minimizing
cost of cross-referencing between distributed arrays, Proc.
FRONTIERS ’90 (Maryland, MA) (J. JaJa, ed.), IEEE Com-
puter Society Press, October 1990, pp. 424–733.

[18] A. W. Lim and M. S. Lam, Communication-free paralleliza-
tion via affine transformations, Proc. LCPC ’94 (Ithaca, NY)
(K. Pingali et al., ed.), LNCS, no. 589, Springer Verlag, Au-
gust 1994, pp. 92–106.

[19] A. Platonoff, Automatic data distribution for massively par-
allel computers, Proc. Workshop on Comp. for Par. Comp.
(Malaga, Spain), June 1995, pp. 555–570.

[20] B. Sinharoy and B. K. Szymanski, Data and task alignment in
distributed memory architectures, J. on Par. and Dist. Comp.
21 (1994), no. 1, 61–74.

1060-3425/97 $10.00 (c) 1997 IEEE

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

