
The Alldifferent Constraint: A Survey∗

Willem-Jan van Hoeve vanhoeve@cs.cornell.edu

Cornell University, Department of Computer Science

4130 Upson Hall, Ithaca, NY 14853, USA

http://www.cs.cornell.edu/∼vanhoeve

Abstract

Constraints of difference are known to the constraint programming community since
Lauriere introduced Alice in 1978. Since then, several strategies have been designed to
handle the alldifferent constraint. This paper surveys the most important developments
over the years regarding this important constraint. First we introduce the underlying
concepts and results from combinatorial theory. Then we give an overview and a comparison
of different solution strategies achieving arc, range, bounds and hyper-arc consistency,
respectively. In addition, three variants of the alldifferent constraint are discussed: the
symmetric alldifferent constraint, the minimum weight alldifferent constraint and
the soft alldifferent constraint. Finally, the convex hull representation of the alldiff-

erent constraint in integer linear programming is considered.

∗. A preliminary version of this paper appeared as (van Hoeve, 2001).

1

Contents

1 Introduction 3
1.1 The Alldifferent Constraint in Constraint Programming 3
1.2 Historical Overview . 4
1.3 Outline of the Paper . 5

2 Preliminaries 6
2.1 Constraint Programming . 6

2.1.1 Basic Notions . 6
2.1.2 Solution Process . 7
2.1.3 Local Consistency Notions . 7

2.2 Graph Theory . 9
2.2.1 Basic Notions . 9
2.2.2 Matching Theory . 10
2.2.3 Flow Theory . 11

3 Combinatorial Background 13
3.1 Alldifferent and Bipartite Matching . 13
3.2 Hall’s Marriage Theorem . 14

4 Filtering Algorithms for Local Consistency Notions 16
4.1 Local Consistency of a Decomposed CSP . 16
4.2 Bounds Consistency . 18
4.3 Range Consistency . 20
4.4 Hyper-arc Consistency . 21
4.5 Complexity Survey and Discussion . 24

5 Variants of the Alldifferent Constraint 25
5.1 The Symmetric Alldifferent Constraint . 25
5.2 The Weighted Alldifferent Constraint . 28
5.3 The Soft Alldifferent Constraint . 31

5.3.1 Variable-Based Violation Measure 33
5.3.2 Decomposition-Based Violation Measure 33

6 The Alldifferent Polytope 35

References 37

2

1. Introduction

Many combinatorial (optimization) problems can be modeled and solved using the constraint
programming paradigm (Apt, 2003; Dechter, 2003). In constraint programming, a model is
stated by means of variables that range over their domain of possible values, and constraints
on these variables. A constraint restricts the space of possible variable instantiations. For
example, if x and y are variables which both range over the domain {1, 2, 3}, the constraint
x + y ≤ 4 forbids the instantiations (x, y) = (3, 2), (2, 3), (3, 3). The not-equal constraint
x 6= y forbids the instantiations (x, y) = (1, 1), (2, 2), (3, 3).

A constraint programming system consists of several constraint types, each of which may
be treated differently by the system. One of the constraints that is present in practically
all constraint programming systems, is the famous alldifferent constraint. It states that
all variables in this constraint must be pairwise different.

In this section we first introduce the alldifferent constraint within the context of con-
straint programming. Then a brief historical overview is presented. This section concludes
with an outline of the paper.

1.1 The Alldifferent Constraint in Constraint Programming

We first give a formal definition of the alldifferent constraint. Then we model the well-
known n-queens problem using the alldifferent constraint in Example 1.

Definition 1 (Pairwise difference) Let x1, x2, . . . , xn be variables with respective finite
domains D(x1),D(x2), . . . ,D(xn). Then

alldifferent(x1, . . . , xn) = {(d1, . . . , dn) | di ∈ D(xi), di 6= dj for i 6= j}.

Example 1 We want to model the n-queens problem, described as: “Place n queens on an
n × n chessboard in such a way that no queen attacks another queen.”

One way of modelling this problem is to introduce an integer variable xi for every row
i = 1, 2, . . . , n, which ranges over column 1 to n. This means that in every row i a queen is
placed in the xi-th column. We express the no-attack constraints as

xi 6= xj for 1 ≤ i < j ≤ n, (1)

xi − xj 6= i − j for 1 ≤ i < j ≤ n, (2)

xi − xj 6= j − i for 1 ≤ i < j ≤ n, (3)

xi ∈ {1, 2, . . . , n} for 1 ≤ i ≤ n. (4)

The constraints (1) state that no two queens are allowed to occur in the same column. The
constraints (2) and (3) state the diagonal cases. After rearranging the terms of constraints
(2) and (3), we transform the model into

alldifferent(x1, . . . , xn),

alldifferent(x1 − 1, x2 − 2, . . . , xn − n),

alldifferent(x1 + 1, x2 + 2, . . . , xn + n),

xi ∈ {1, 2, . . . , n} for 1 ≤ i ≤ n.

3

(Note that it is shown in (Falkowski & Schmitz, 1986) how to construct a solution to the
n-Queens problem for n > 3.)

We can find a solution to a model as in the previous example by systematically enumer-
ating all possible variable-value combinations. For each combination we check whether it
satisfies all constraints. If this is the case, we have found a solution. Otherwise we continue.
This is roughly how a constraint programming system computes a solution. Unfortunately,
the systematic enumeration of variable-value combinations leads to a search space of expo-
nential size. As a result, it may take a very long time before we find a solution.

To overcome this problem (at least partially), techniques have been developed to safely
prune parts of the search space beforehand. To each constraint of the model, an individual
“solver” is attached. It identifies and removes domain values that never appear in any solu-
tion to the constraint in the remaining search space. Doing so, the number of combinations
is reduced and the search space becomes smaller.

Some of the variables of which the domain has been reduced may also appear in other
constraints. In reaction to the domain reduction, these constraints ask their respective
solvers to identify and remove inconsistent values again. This process is called constraint
propagation, because the effect of domain reduction is propagated through the constraints.
The solvers for the individual constraints are called constraint propagation algorithms, while
the domain reduction algorithms are also called domain filtering algorithms. If at a cer-
tain stage in the search process no more inconsistent values are detected, the constraint
propagation algorithms are said have reached some (specified) notion of local consistency.

In this paper we focus on filtering algorithms for the alldifferent constraint. The
alldifferent constraint gives rise to several filtering algorithms, depending on the desired
notion of local consistency. There exist different notions of local consistency, each notion
allowing more or less values in a variable domain. In general it takes more time to obtain a
“stronger” local consistency than to obtain a “weaker” local consistency. So with more ef-
fort, one could remove more domain values. Naturally, the goal is to design efficient filtering
algorithms that establish the strongest possible notion of local consistency. Nevertheless, for
each individual problem one has to make a trade-off between the effort (time) and the gain
(search space reduction) when choosing a particular notion of local consistency to establish.

1.2 Historical Overview

In 1978 Lauriere introduced Alice, “A language and a program for stating and solving

combinatorial problems” (Lauriere, 1978). Already in this system the importance of dis-
equality constraints was recognized. The keyword “DIS” applied to a set of variables is
used to state that the variables must take different values. It defines a global structure (i.e.
the set of variables form a “clique of disjunctions”), that is exploited during the search for
a solution.

After the introduction of constraints in logic programming, for example in the system
Chip (Dincbas, Van Hentenryck, Simonis, Aggoun, Graf, & Berthier, 1988), it was also
possible to express the constraint of difference as the well-known alldifferent constraint.
In the system Eclipse (Wallace, Novello, & Schimpf, 1997) this constraint was introduced
as alldistinct. However, in the early constraint (logic) programming systems this con-
straint was treated internally as a sequence of not-equal constraints; see for example (Van

4

Hentenryck, 1989). Unfortunately the global information is lost in that way. The global
view was retrieved with the algorithm introduced by (Régin, 1994), that considers all not-
equal constraints simultaneously.

Throughout the history of constraint programming, the alldifferent constraint has
played a special role. Various papers and books make use of this special constraint to show
the benefits of constraint programming, either to show its modelling power, or to show that
problems can be solved faster using this constraint. From a modelling point of view, the
alldifferent constraint arises naturally in problems that are based upon a permutation
or when a directed graph has to be covered with disjoint circuits. Numerous applications
exist in which the alldifferent constraint is of vital importance, for example quasi-group
completion problems (Gomes & Shmoys, 2002), air traffic management (Barnier & Brisset,
2002; Grönkvist, 2004) and rostering problems (Tsang, Ford, Mills, Bradwell, Williams,
& Scott, 2004). Finally, many other global constraints can be viewed as an extension
of the alldifferent constraint, for example the sort constraint (Older, Swinkels, & van
Emden, 1995; Zhou, 1997), the cycle constraint (Beldiceanu & Contejean, 1994), the diffn
constraint (Beldiceanu & Contejean, 1994) and the global cardinality constraint (Régin,
1996).

Over the years, the alldifferent constraint as well as other global constraints has
been well-studied in constraint programming; see for example (Beldiceanu, Carlsson, &
Rampon, 2005) and (Régin, 2003) for an overview. Special algorithms have been developed
that are able to exploit the global information of the constraints. As we will see, for the
alldifferent constraint at least six different filtering algorithms exist, each achieving a
different notion of local consistency, or achieving it faster. These algorithms often make
use of the same underlying principles. To make them more understandable, accessible
and coherent, this paper presents a systematic overview of the alldifferent constraint,
which may probably be regarded as the most well-known, most influential and most studied
constraint in the field of constraint programming.

1.3 Outline of the Paper

This paper is organized as follows. In Section 2 we present preliminaries on constraint
programming and graph theory. In particular, we formally define different notions of local
consistency that are applied to the alldifferent constraint. The preliminaries on graph
theory include results from matching theory and flow theory.

In Section 3 we connect results from combinatorial theory to the alldifferent con-
straint. Many of the considered filtering algorithms rely on these results.

Each of the Sections 4.1 up to 4.4 treats a different notion of local consistency. The
sections are ordered in increasing strength of the considered local consistency. The treat-
ment consists of a description of the particular notion of local consistency with respect to
the alldifferent constraint, together with a description of an algorithm that establishes
that particular local consistency notion. Section 4 ends with a time complexity survey and
a discussion.

Section 5 gathers a number of variants of the alldifferent constraint. First the sym-
metric version of the alldifferent constraint is considered. Then the weighted alldiff-

5

erent constraint is presented, where a linear objective function in conjunction with the
alldifferent constraint is exploited. Third, the soft alldifferent constraint is treated,
which allows partial violation of the alldifferent constraint.

Finally, Section 6 considers the alldifferent polytope, which is a particular description
of the solution set of the alldifferent constraint, using linear constraints. This description
can be applied in integer linear programming models.

2. Preliminaries

2.1 Constraint Programming

In this section we recall constraint programming concepts. For more information on con-
straint programming we refer to (Apt, 2003) and (Dechter, 2003).

2.1.1 Basic Notions

Let x be a variable. The domain of x, denoted by D(x), is a set of values that can be assigned
to x. As a shorthand to define D(x) = {d1, . . . , dm} we often write x ∈ {d1, . . . , dm}. In
this paper we only consider variables with finite domains.

Let Y = y1, y2, . . . , yk be a finite sequence of variables, where k > 0. A constraint C
on Y is defined as a subset of the Cartesian product of the domains of the variables in Y,
i.e. C ⊆ D(y1) × D(y2) × · · · × D(yk). This is written as C(Y) or C(y1, y2, . . . , yk).

1 A
constraint is called a binary constraint if it is defined on two variables. A global constraint
is a constraint that is defined on more than two variables.

A constraint satisfaction problem, or a CSP, is defined by a finite sequence of variables
X = x1, x2, . . . , xn with respective domains D = D(x1),D(x2), . . . ,D(xn), together with a
finite set of constraints C, each on a subsequence of X . To simplify notation, we often omit
braces “{ }” when presenting a specific set of constraints. A CSP P is also denoted by
P = (X ,D, C).

Let P = (X ,D, C) be a CSP where X = x1, x2, . . . , xn and D = D(x1),D(x2), . . . ,D(xn).
A tuple (d1, . . . , dn) ∈ D(x1) × · · · × D(xn) satisfies a constraint C ∈ C on the variables
xi1 , xi2 , . . . , xim if (di1 , di2 , . . . , dim) ∈ C. If no such tuple satisfies C, we say that C is
inconsistent. A tuple (d1, . . . , dn) ∈ D(x1)×· · ·×D(xn) is a solution to a CSP if it satisfies
every constraint C ∈ C.

A consistent CSP is a CSP for which a solution exists. An inconsistent CSP is a CSP
for which no solution exists. A failed CSP is a CSP with an empty domain or with only
singleton domains that together are not a solution to the CSP. A solved CSP is a CSP with
only singleton domains that together are a solution to the CSP. Note that a failed CSP is
also inconsistent, but not all inconsistent CSPs are failed.

Let P = (X ,D, C) and P ′ = (X ,D′, C′) be CSPs. P and P ′ are called equivalent if
they have the same solution set. P is said to be smaller than P ′ if they are equivalent and
D(x) ⊆ D′(x) for all x ∈ X . This relation is written as P � P ′. P is strictly smaller than
P ′, if P � P ′ and D(x) ⊂ D′(x) for at least one x ∈ X . This is written as P ≺ P ′. When

1. Sometimes a constraint C is defined on variables Y together with additional parameters p, for example
a set of cost values. In such cases we write C(Y, p) or C(y1, y2, . . . , yk, p), for syntactical convenience.

6

both P � P ′ and P ′ � P we write P ≡ P ′.

We fix the following notation. For a sequence of variables K we denote D(K) =
⋃

x∈K D(x). When the domain D(x) of a variable x is a singleton, say D(x) = {d}, we
also write x = d.

2.1.2 Solution Process

In constraint programming, the goal is to find a solution (or all solutions) to a given CSP.
The solution process interleaves domain filtering and constraint propagation, and search.

The search for a solution (or all solutions) to a CSP is performed by iteratively splitting
a CSP into smaller CSPs. The splitting process is said to construct a search tree. A node
of the tree represents a CSP. Initially, at the root, we are given a CSP P0 that is the
problem we want to solve. If P0 is not solved nor failed, we split P0 into two or more CSPs
P1, P2, . . . , Pk (k > 1). We must ensure however that all solutions to P0 are preserved and
no solutions are added to P0. Thus, the union of the solution sets of P1, P2, . . . , Pk equals
the solution set of P0. Further, each CSP Pi (i > 0) should be strictly smaller than P0 to
ensure that the splitting process terminates. Next we split each of the CSPs P1, P2, . . . , Pk

according to the same criteria as above. The splitting proceeds until we have split all CSPs
into either failed or solved CSPs. The failed and solved CSPs are the leaves of the search
tree.

The size of the search tree is exponential in the number of variables of P0. To reduce the
size of the search tree, constraint programming uses a process called constraint propagation.
Given a constraint C and a notion of local consistency, a domain filtering algorithm removes
values that are not consistent with C from the domains of the variables in C. The algorithm
must preserve all solutions and not add any solution to C. Whenever an inconsistent domain
value has been removed, the effect is propagated through all other constraints that share the
same corresponding variable. This iterative process continues until no more inconsistent
domain values are detected for all constraints in a CSP. We then say that the CSP is locally
consistent and that we have established the notion of local consistency on the CSP. The term
“local consistency” reflects that we do not obtain a globally consistent CSP, but a CSP in
which all constraints are locally, i.e. individually, consistent. A thorough description of the
process of constraint propagation is given in (Apt, 1999); see also (Apt, 2003).

After splitting a CSP, domain filtering and constraint propagation is applied to the
smaller CSPs. The removal of domain values leads to a smaller search tree and thus speeds
up the solution process. However, the time spent on constraint propagation should be less
than the speed-up it induces in order to be effective. Therefore we want to apply efficient
filtering algorithms. The efficiency is often determined by the notions of local consistency
that are applied to the constraints. It remains problem dependent when to apply which
notion of local consistency during the solution process.

2.1.3 Local Consistency Notions

Next we recall four notions of local consistency of a constraint.

7

Definition 2 (Arc consistency) A binary constraint C(x1, x2) is arc consistent if for all
values d1 ∈ D(x1) there exists a value d2 ∈ D(x2) such that (d1, d2) ∈ C, and for all values
d2 ∈ D(x2) there exists a value d1 ∈ D(x1) such that (d1, d2) ∈ C.

Definition 3 (Hyper-arc consistency) A constraint C(x1, . . . , xm) (m > 1) is hyper-
arc consistent if for all i ∈ {1, . . . ,m} and all values di ∈ D(xi), there exist values dj ∈
D(xj) for all j ∈ {1, . . . ,m} − i such that (d1, . . . , dm) ∈ C.

Note that arc consistency is equal to hyper-arc consistency applied to binary constraints.
Both arc consistency and hyper-arc consistency ensure that all values in every domain
belong to a tuple that satisfies the constraint, with respect to the current variable domains.
In the literature hyper-arc consistency is also referred to as generalized arc-consistency and
domain consistency.

The two following local consistency notions reason on the bounds of the variable domains.
For that reason, we assume that the involved variable domains are subsets of a fixed, linearly
ordered, finite set of domain elements when we apply these definitions. Let D be such a
domain. We define minD and maxD to be its minimum value and its maximum value,
respectively. Further, we use braces “{ }” and brackets “[]” to indicate a set and an interval
of domain values, respectively. Thus, the set {1, 3} contains the values 1 and 3 whereas the
interval [1, 3] ⊂ N contains 1, 2 and 3.

Definition 4 (Bounds consistency) A constraint C(x1, . . . , xm) (m > 1) is bounds con-
sistent if for all i ∈ {1, . . . ,m} and each value di ∈ {min D(xi),max D(xi)}, there exist
values dj ∈ [min D(xj),maxD(xj)] for all j ∈ {1, . . . ,m} − i such that (d1, . . . , dm) ∈ C.

Definition 5 (Range consistency) A constraint C(x1, . . . , xm) (m > 1) is range consis-
tent if for all i ∈ {1, . . . ,m} and all values di ∈ D(xi), there exist values dj ∈ [min D(xj),
maxD(xj)] for all j ∈ {1, . . . ,m} − i such that (d1, . . . , dm) ∈ C.

Range consistency does not ensure the feasibility of the constraint with respect to the
domains, but with respect to intervals that include the domains. It can be regarded as
a relaxation of hyper-arc consistency. Bounds consistency can in turn be regarded as a
relaxation of range consistency. It does not even consider all values in the domains, but
only the minimum and the maximum value. For these values the feasibility of the constraint
is again ensured with respect to intervals that include the domains. Consequently, range
consistency and bounds consistency do not guarantee the existence of a solution to the
constraint, which hyper-arc consistency does. This is formalized in Theorem 1.

Definition 6 (Locally consistent CSP) A CSP is arc consistent, respectively range con-
sistent, bounds consistent or hyper-arc consistent if all its constraints are.

If we apply to a CSP P a propagation algorithm that establishes range consistency
on P , we denote the result by ΦR(P). Analogously, ΦB(P), ΦA(P) and ΦHA(P) denote
the application of bounds consistency, arc consistency and hyper-arc consistency on P ,
respectively.

Theorem 1 Let P be a CSP. Then ΦHA(P) � ΦR(P) � ΦB(P) and all relations may be
strict.

8

Proof. If a constraint is hyper-arc consistent then it is also range consistent, since D(x) ⊆
[min D(x),max D(x)] for all variables x in P . The converse is not true, see Example 2.
Hence ΦHA(P) � ΦR(P), possibly strict.

If a constraint is range consistent then it is also bounds consistent, because {min D(x),
maxD(x)} ⊆ D(x) for all variables x in P . The converse is not true, see Example 2. Hence
ΦR(P) � ΦB(P), possibly strict. �

Example 2 Consider the following CSP

P =

{

x1 ∈ {1, 3}, x2 ∈ {2}, x3 ∈ {1, 2, 3},
alldifferent(x1, x2, x3).

Then ΦB(P) ≡ P , while

ΦR(P) =

{

x1 ∈ {1, 3}, x2 ∈ {2}, x3 ∈ {1, 3},
alldifferent(x1, x2, x3)

and ΦHA(P) ≡ ΦR(P). Next, consider the CSP

P ′ =

{

x1 ∈ {1, 3}, x2 ∈ {1, 3}, x3 ∈ {1, 3},
alldifferent(x1, x2, x3).

This CSP is obviously inconsistent, since there are only two values available, namely 1
and 3, for three variables that must be pairwise different. Indeed, ΦHA(P ′) is a failed CSP,
while ΦR(P ′) ≡ P ′.

2.2 Graph Theory

We use results from matching theory and flow theory without presenting all underlying
algorithms and proofs in detail. This is because many of the results are well-known and
there already exist excellent overviews of these topics. More information about matching
theory can for example be found in (Lovász & Plummer, 1986), (Gerards, 1995) and (Schrij-
ver, 2003, Chapter 16–38). More information about flow theory can be found in (Ahuja,
Magnanti, & Orlin, 1993) and (Schrijver, 2003, Chapter 6–15). However, we do present
proofs and algorithms that provide useful insights.

In this paper, we mainly follow the notation of (Schrijver, 2003), unless this conflicts
with notation from Section 2 on constraint programming.

2.2.1 Basic Notions

A graph or undirected graph is a pair G = (V,E), where V is a finite set of vertices and E is
a multiset2 of unordered pairs from V , called edges. An edge “between” u ∈ V and v ∈ V
is denoted by uv.

A graph G = (V,E) is bipartite if there exists a partition S, T of V such that E ⊆ {st |
s ∈ S, t ∈ T}. We also write G = (S, T,E).

2. A multiset is a set in which elements may occur more than once. In the literature it is also referred to
as family.

9

A walk in a graph G = (V,E) is a sequence P = v0, e1, v1, . . . , ek, vk where k ≥ 0,
v0, v1, . . . , vk ∈ V , e1, e2, . . . , ek ∈ E and ei = vi−1vi for i = 1, . . . , k. If there is no confusion,
P may be denoted by v0, v1, . . . , vk or e1, e2, . . . , ek. A walk is called a path if v0, . . . , vk are
distinct. A closed walk, i.e. v0 = vk, is called a circuit if v1, . . . , vk are distinct.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ {uv | u ∈ V ′, u ∈ V ′, uv ∈ E}. A component or connected component of a graph
G = (V,E) is a maximal (with respect to V ′) subgraph G′ = (V ′, E′) of G such that there
exists a u − v path in G′ for every pair u, v ∈ V ′.

A directed graph is a pair G = (V,A) where V is a finite set of vertices and A is a
multiset of ordered pairs from V , called arcs. A pair occurring more than once in A is called
a multiple arc. An arc from u ∈ V to v ∈ V is denoted by (u, v).

Similarly to undirected bipartite graphs, a directed graph G = (V,A) is bipartite if
there exists a partition S, T of V such that A ⊆ {(s, t) | s ∈ S, t ∈ T}. We also write
G = (S, T,A).

A directed walk in a directed graph G = (V,A) is a sequence P = v0, a1, v1, . . . , ak, vk

where k ≥ 0, v0, v1, . . . , vk ∈ V , a1, a2, . . . , ak ∈ A and ai = (vi−1, vi) for i = 1, . . . , k. Again,
if there is no confusion, P may be denoted by v0, v1, . . . , vk or a1, a2, . . . , ak. A directed
walk is called a directed path if v0, . . . , vk are distinct. A closed directed walk, i.e. v0 = vk,
is called a directed circuit if v1, . . . , vk are distinct.

A subgraph of a digraph G = (V,A) is a graph G′ = (V ′, A′) such that V ′ ⊆ V and
A′ ⊆ {uv | u ∈ V ′, u ∈ V ′, (u, v) ∈ A}. A strongly connected component of a digraph
G = (V,A) is a maximal (with respect to V ′) subgraph G′ = (V ′, A′) of G such that there
exists a directed u − v path in G′ for every pair u, v ∈ V ′.

2.2.2 Matching Theory

Given an undirected graph G = (V,E), a matching in G is a set M ⊆ E of disjoint edges,
i.e. no two edges in M share a vertex. A matching is said to cover a set S ⊆ V if all vertices
in S belong to an edge in M . A vertex v ∈ V is called M -free if M does not cover v. The
size of a matching M is |M |. The maximum matching problem is the problem of finding a
matching of maximum size in a graph.

Let M be a matching in a graph G = (V,E). A path P in G is called M -augmenting
if P has odd length, its ends are not covered by M , and its edges are alternatingly out of
and in M . A circuit C in G is called M -alternating if its edges are alternatingly out of and
in M .

On an M -augmenting path, we can exchange edges in M and not in M , to obtain a
matching M ′ with |M ′| = |M | + 1. The following result is due to (Petersen, 1891)3.

Theorem 2 Let G = (V,E) be a graph, and let M be a matching in M . Then either M is
a maximum-size matching, or there exists an M -augmenting path.

Proof. If M is a maximum-size matching, then there exists no M -augmenting path, because
otherwise exchangement of edges on this path gives a larger matching.

If M ′ is a matching larger than M , consider the graph G′ = (V,M ∪ M ′). In G′, each
vertex is connected to at most two edges. Hence, each component of G′ is either a circuit or

3. In the literature this result is often ascribed to (Berge, 1957). However, it should actually be attributed
to Petersen, as for example pointed out by (Mulder, 1992).

10

a path (possibly of length zero). As |M ′| > |M | there is at least one component containing
more edges of M ′ than of M . Because all circuits contain an even number of edges, this
component must be an M -augmenting path. �

Hence, a maximum-size matching can be found by iteratively computing M -augmenting
paths in G and extending M . This method is due to (van der Waerden, 1927) and (König,
1931). It can be done as follows.

Let G = (U,W,E) be a bipartite graph, and let M be a matching in G. Construct the
directed bipartite graph GM = (U,W,A) by orienting all edges in M from W to U and all
other edges from U to W , i.e.

A = {(w, u) | uw ∈ M,u ∈ U,w ∈ W} ∪ {(u,w) | uw ∈ E \ M,u ∈ U,w ∈ W}.

Then every directed path in GM starting from an M -free vertex in U and ending in an
M -free vertex in W corresponds to an M -augmenting path in G. By choosing |U | ≤ |W |,
we need to find at most |U | such paths. As each path can be identified in at most O(|A|)
time by breadth-first search, the time complexity of this algorithm is O(|U | |A|).

We can improve the algorithm to run in O(|V |1/2 |A|) time, as shown by (Hopcroft &
Karp, 1973), where V = U ∪ W . Instead of repeatedly augmenting M along a single M -
augmenting path, the idea is to repeatedly augment M simultaneously along a collection
of disjoint M -augmenting paths. Such a collection of paths can again be found in O(|A|)
time. One can show that after |V |1/2 iterations, there are at most O(|V |1/2) more iterations
possible, by reasoning on the length of the paths. This leads to a total time complexity of
O(|V |1/2 |A|).

In a general graph G = (V,E) (not necessarily bipartite), a maximum-size matching

can be computed in O(|V | |E|) time (Edmonds, 1965) 4 or even O(|V |1/2 |E|) time (Micali
& Vazirani, 1980).

2.2.3 Flow Theory

Let G = (V,A) be a directed graph. For v ∈ V , let δin(v) and δout(v) denote the multiset of
arcs entering and leaving v, respectively. Let s, t ∈ V denote the “source” and the “sink”
respectively. A function f : A → R is called a flow from s to t, or an s − t flow, if

(i) f(a) ≥ 0 for each a ∈ A,
(ii) f(δout(v)) = f(δin(v)) for each v ∈ V \ {s, t}. (5)

Here f(S) =
∑

a∈S f(a) for all S ⊆ A. Property (5)(ii) ensures flow conservation, i.e. for
a vertex v 6= s, t, the amount of flow entering v is equal to the amount of flow leaving v.

The value of an s − t flow f is defined as

value(f) = f(δout(s)) − f(δin(s)).

In other words, the value of a flow is the net amount of flow leaving s. This is equal to the
net amount of flow entering t.

4. this complexity is not due to edmonds

11

Let c : A → Q+ be a “capacity” function. We say that a flow f is under c if

f(a) ≤ c(a) for each a ∈ A.

A maximum s − t flow is an s − t flow under c of maximum value.
Let w : A → R be a “weight” function. For a directed path P in G we define w(P) =

∑

a∈P w(a). Similarly for a directed circuit. The weight of any function f : A → R is
defined as

weight(f) =
∑

a∈A

w(a)f(a).

A minimum-weight s − t flow is an s − t flow under c of maximum value with minimum
weight. Hence, such a flow has minimum weight among all flows of maximum value.

Let f be an s− t flow under c in G. The residual graph of f (with respect to c) is defined
as Gf = (V,Af) where

Af = {a | a ∈ A, f(a) < c(a)} ∪ {a−1 | a ∈ A, f(a) > 0}.

Here a−1 = (v, u) if a = (u, v). We extend w to A−1 = {a−1 | a ∈ A} by defining

w(a−1) = −w(a)

for each a ∈ A.
In order to compute a minimum-weight s − t flow we use the following notation. Any

directed path P in Gf gives an undirected path in G = (V,A). We define χP ∈ RA by

χP (a) =

1 if P traverses a,
−1 if P traverses a−1,

0 if P traverses neither a nor a−1,

for a ∈ A. We define χC ∈ RA similarly for a directed circuit C in Gf .
Using the above notation, a minimum-weight s − t flow in G can be found using the

following algorithm; see (Schrijver, 2003, p. 185):

Algorithm for minimum-weight s − t flow
Starting with f = 0 apply the following iteratively:
Iteration: Let P be a directed s − t path in Gf minimizing w(P). Reset f =
f + εχP , where ε is maximal subject to 0 ≤ f + εχP ≤ c.

The algorithm stops when no more directed s − t paths in Gf can be found or when
a predefined maximum value φ is attained. For integer capacity function c and weight
function w the algorithm finds an integer flow.

The time complexity of this algorithm (for finding a minimum-weight flow of value φ) is
O(φ · SP), where SP is the time to compute a shortest directed path in G. Although faster
algorithms exist for general minimum-cost flow problems, this algorithm suffices when ap-
plied to our problems. This is because in our case the value of all flows is bounded by the
number of variables inside the alldifferent constraint.

12

Note that the algorithm for finding a maximum-size matching in a bipartite graph is a
special case of the above algorithm. Namely, let G = (U,W,E) be a bipartite graph. Similar
to the construction of the directed bipartite graph GM in Section 2.2.2, we transform G into
a directed bipartite graph G′ by orienting all edges from U to W . Furthermore, we add a
“source” s, a “sink” t, and arcs from s to all vertices U and from all vertices in W to t. To
all arcs a of the resulting graph we assign a capacity c(a) = 1 and a weight w(a) = 0. Now
the algorithm for finding a minimum-weight s− t flow in G′ mimicks exactly the algorithm
described in Section 2.2.2 for finding a maximum-size matching in G. Namely, given a flow
f in G′ and the corresponding matching M in G, the directed graph GM corresponds to
the residual graph G′

f where s, t and their adjacent arcs have been removed. Similarly, an
M -augmenting path in GM corresponds to a directed s − t path in Gf .

Finally, we consider a result that is particularly useful for designing incremental filtering
algorithms, as we will see. Given a minimum-weight s − t flow, we want to compute the
additional weight when an unused arc is forced to be used.

Theorem 3 Let f be a minimum-weight s − t flow in G = (V,A) with f(a) = 0 for some
a ∈ A. Let C be a directed circuit in Gf with a ∈ C, minimizing w(C). Then f ′ = f + εχC ,
where ε is maximal subject to 0 ≤ f +εχC ≤ c, is a maximum s−t flow in G with minimum
weight among all maximal s− t flows g in G with g(a) = ε. If C does not exist, f ′ does not
exist. Otherwise, weight(f ′) = weight(f) + ε · w(C).

The proof of Theorem 3 relies on the fact that for a minimum-weight flow f in G, the
residual graph Gf does not contain directed circuits with negative weight.

3. Combinatorial Background

3.1 Alldifferent and Bipartite Matching

This section shows the equivalence of a solution to the alldifferent constraint and a
matching in a bipartite graph.

Definition 7 (Value graph) Let X be a sequence of variables. The bipartite graph G =
(X,D(X), E) with E = {xd | d ∈ D(x), x ∈ X} is called the value graph of X.

Theorem 4 Let X = x1, x2, . . . , xn be a sequence of variables and let G be the value graph
of X. Then (d1, . . . , dn) ∈ alldifferent(x1, . . . , xn) if and only if M = {x1d1, . . . , xndn}
is a matching in G.

Proof. An edge xidi (for some i ∈ {1, . . . , n}) in M corresponds to the assignment xi = di.
As no edges in M share a vertex, xi 6= xj for all i 6= j. �

Note that the matching M in Theorem 4 covers X, and is therefore a maximum-size match-
ing.

Example 3 We want to assign four tasks (1, 2, 3 and 4) to five machines (A, B, C, D

and E). To each machine at most one task can be assigned. However, not every task can be

13

Task Machines

1 B, C, D, E

2 B, C

3 A, B, C, D

4 B, C

Table 1: Possible task - machine combinations.

C D

321

E

Tasks

Machines

A B

4

Figure 1: The value graph for the task assignment problem of Example 3. Bold edges form
a matching covering all tasks.

assigned to every machine. Table 1 below presents the possible combinations. For example,
task 2 can be assigned to machines B and C.

This problem is modelled as follows. We introduce a variable xi for task i = 1, . . . , 4,
whose value represents the machine to which task i is assigned. The initial domains of the
variables are defined by the possible combinations in Table 1. Since the tasks have to be
assigned to different machines, we introduce an alldifferent constraint. The problem is
thus modelled as the CSP

x1 ∈ {B,C,D,E}, x2 ∈ {B,C}, x3 ∈ {A,B,C,D}, x4 ∈ {B,C},
alldifferent(x1, x2, x3, x4).

The value graph of X = x1, . . . , xn is presented in Figure 1. The bold edges in the value
graph denote a matching covering X. It corresponds to a solution to the CSP, i.e. x1 =
D, x2 = B, x3 = A and x4 = C.

3.2 Hall’s Marriage Theorem

A useful theorem to derive filtering algorithms for the alldifferent constraint is Hall’s
Marriage Theorem5 (Hall, 1935):

If a group of men and women marry only if they have been introduced to each
other previously, then a complete set of marriages is possible if and only if every

5. As noted by (Schrijver, 2003, p. 392), the name ‘marriage theorem’ was introduced by H. Weyl in 1949.

14

subset of men has collectively been introduced to at least as many women, and
vice versa6.

The following formulation is stated in terms of the alldifferent constraint.

Theorem 5 The constraint alldifferent(x1, . . . , xn) has a solution if and only if

|K| ≤ |D(K)| (6)

for all K ⊆ {x1, . . . , xn}.

Proof. The direct proof presented here is adapted from (Schrijver, 2003, p. 379), and
originally due to (Easterfield, 1946). Call a set K tight if equality holds in (6). Necessity
of the condition being obvious, we prove sufficiency. We use induction, with the hypothesis
that Theorem 5 holds for k variables with k < n.

If there is a d ∈ D(xn) such that

x1 ∈ D(x1) \ {d}, . . . , xn−1 ∈ D(xn−1) \ {d},
alldifferent(x1, . . . , xn−1)

(7)

has a solution, then we are done. Hence, we may assume the opposite, i.e. in (7), for
each d ∈ D(xn), there exists a subset K ⊆ {x1, . . . , xn−1} with |K| > |D(K) \ {d}|. Then,
by induction, alldifferent(x1, . . . , xn−1), with x1 ∈ D(x1), . . . , xn−1 ∈ D(xn−1), has a
solution if and only if for each d ∈ D(xn) there is a tight subset K ⊆ {x1, . . . , xn−1} with
d ∈ D(K). Choose any such tight subset K. Without loss of generality, K = {x1, . . . , xk}.
By induction, alldifferent(x1, . . . , xk) has a solution, using all values in D(K). Moreover,

xk+1 ∈ D(xk+1) \ D(K), . . . , xn ∈ D(xn) \ D(K),
alldifferent(xk+1, . . . , xn)

has a solution. This follows inductively, since for each L ⊆ {xk+1, . . . , xn},
∣

∣

∣

∣

∣

∣

⋃

xi∈L

(D(xi) \ D(K))

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

⋃

xi∈K∪L

D(xi)

∣

∣

∣

∣

∣

∣

−|D(K)|
(6)

≥ |K ∪ L|−|D(K)| = |K|+|L|−|D(K)| = |L| .

Then alldifferent(x1, . . . , xn) has a solution, using all values in D(K) ∪ D(L). �

The following example shows an application of Theorem 5.

Example 4 Consider the following CSP

x1 ∈ {2, 3}, x2 ∈ {2, 3}, x3 ∈ {1, 2, 3}, x4 ∈ {1, 2, 3},
alldifferent(x1, x2, x3, x4).

For any K ⊆ {x1, x2, x3, x4} with |K| ≤ 3, |K| ≤ |D(K)|. For K = {x1, x2, x3, x4} however,
|K| > |D(K)|, and by Theorem 5 this CSP has no solution.

6. Here we assume that marriage is restricted to two persons of different sex.

15

Algorithm 1: Arc consistency for the binary decomposition of alldiffer-

ent(x1, x2, . . . , xn).

Q := ∅

for i ∈ {1, . . . , n} do
if |D(xi) = 1| then Q := Q + xi

while Q 6= ∅ do
select xi ∈ Q
Q := Q − xi

for j ∈ {1, . . . , n} − i do
if D(xj) ∩ D(xi) 6= ∅ then

D(xj) := D(xj) \ D(xi)
if D(xj) = ∅ then return false
if |D(xj)| = 1 then Q := Q + xj

return true

4. Filtering Algorithms for Local Consistency Notions

This section analyzes four local consistency notions that are applied to the alldifferent

constraint: local consistency of a decomposed CSP, bounds consistency, range consistency
and hyper-arc consistency. For each local consistency notion a corresponding filtering algo-
rithm is presented.

4.1 Local Consistency of a Decomposed CSP

In order to apply arc consistency, we decompose the alldifferent constraint into a set of
binary constraints that preserves the solution set.

Definition 8 (Binary decomposition) Let C be a constraint on the variables x1, . . . , xn.
A binary decomposition of C is a minimal set of binary constraints Cdec = {C1, . . . , Ck}
(for integer k > 0) on pairs of variables from x1, . . . , xn such that the solution set of C
equals the solution set of

⋂k
i=1 Ci.

7

The binary decomposition of alldifferent(x1, x2, . . . , xn) is

⋃

1≤i<j≤n

{xi 6= xj}. (8)

A filtering algorithm that establishes arc consistency on the binary decomposition (8)
is presented as Algorithm 1. It has the following behaviour. Whenever the domain of
a variable contains only one value, this value is removed from the domains of the other
variables that occur in the alldifferent constraint. This procedure is repeated as long as
no more changes occur or a domain becomes empty.

7. Note that we can extend the definition of binary decomposition by introducing new variables on which
we define (some of) the binary constraints in Cdec. In that case we apply a mapping of the solution set
of

Tk

i=1
Ci to the solution set of C and vice versa, as proposed by (Rossi, Petrie, & Dhar, 1990). In this

paper this extension is not necessary, however.

16

Theorem 6 Algorithm 1 establishes arc consistency on the binary decomposition of all-

different(x1, x2, . . . , xn) or proves that it is inconsistent.

Proof.
Algorithm 1 indeed yields arc consistency on the binary decomposition of the alldiff-

erent constraint. Namely, we cannot deduce anything when a domain contains more than
one element. �

One of the drawbacks of this algorithm is that one needs 1
2 (n2−n) not-equal constraints

to express an n-ary alldifferent constraint. Moreover, the worst-case time complexity of
this method is O(n2), as shown by the following example.

Example 5 For some integer n > 1, consider the CSP

P =

{

x1 ∈ {1}, xi ∈ {1, 2, . . . , i} for i = 2, 3, . . . , n,
⋃

1≤i<j≤n{xi 6= xj}

If we make P arc consistent, we start by removing {1} from all domains other than D(x1).
Next we need to remove value {i} from all domains other than D(xi), for i = 2, . . . , n. This
procedure takes in total n(n − 1) steps.

Another, even more important, drawback of the above method is the loss of information.
When the set of binary constraints is being made arc consistent, only two variables are
compared at a time. However, when the alldifferent constraint is being made hyper-arc
consistent, all variables are considered at the same time, which allows a much stronger local
consistency. This is shown in Theorem 7; see also (Stergiou & Walsh, 1999).

Theorem 7 Let P be a CSP and Pdec the same CSP in which all alldifferent constraints
have been replaced by their binary decomposition. Then ΦHA(P) � ΦA(Pdec).

Proof. To show that ΦHA(P) � ΦA(Pdec), consider a value d ∈ Di for some i that is
removed after making Pdec arc consistent. This removal must be due to the fact that xj = d
for some j 6= i. But then d ∈ Di is also removed when making P hyper-arc consistent. The
converse is not true, as illustrated in Example 6. �

Example 6 For some integer n ≥ 3 consider the CSPs

P =

xi ∈ {1, 2, . . . , n − 1} for i = 1, 2, . . . , n − 1,
xn ∈ {1, 2, . . . , n},
alldifferent(x1, x2, . . . , xn),

Pdec =

xi ∈ {1, 2, . . . , n − 1} for i = 1, 2, . . . , n − 1,
xn ∈ {1, 2, . . . , n},
⋃

1≤i<j≤n{xi 6= xj}.
Then ΦA(Pdec) ≡ Pdec, while

ΦHA(P) =

xi ∈ {1, 2, . . . , n − 1} for i = 1, 2, . . . , n − 1,
xn ∈ {n},
alldifferent(x1, x2, . . . , xn).

17

Our next goal is to find a local consistency notion for the binary decomposition that is
equivalent to the hyper-arc consistency notion for the alldifferent constraint. Relational
consistency (Dechter & van Beek, 1997) is used for this purpose.

Definition 9 (Relational (1,m)-consistency) A set of constraints S = {C1, C2, . . . , Cm}
is relationally (1,m)-consistent if all domain values d ∈ Di of variables appearing in S, ap-
pear in a solution to the m constraints, evaluated simultaneously. A CSP P = (X ,D,C)
is relationally (1,m)-consistent if every set of m constraints S ⊆ C is relationally (1,m)-
consistent.

Note that arc consistency is equivalent to relational (1, 1)-consistency.
Let ΦR(1,m)C(P) denote the CSP after achieving relational (1,m)-consistency on a CSP

P .

Theorem 8 Let X = x1, x2, . . . , xn be a sequence of variables with respective finite domains
D = D1,D2, . . . ,Dn. Let P = (X,D,C) be the CSP with C = {alldifferent(x1, . . . , xn)}
and let Pdec = (X,D,Cdec) be the CSP with C =

⋃

1≤i<j≤n{xi 6= xj}. Then

ΦHA(P) ≡ ΦR(1, 1
2
(n2−n))C(Pdec).

Proof. By construction, the alldifferent constraint is equivalent to the simultaneous
consideration of the sequence of corresponding not-equal constraints. The number of not-
equal constraints is precisely 1

2(n2−n). If we consider only 1
2(n2−n)−i not-equal constraints

simultaneously (1 ≤ i ≤ 1
2 (n2−n)−1), there are i unconstrained relations between variables,

and the corresponding variables could take the same value when a certain instantiation is
considered. Therefore, we really need to take all 1

2(n2 − n) constraints into consideration,
which corresponds to relational (1, 1

2(n2 − n))-consistency. �

As suggested before, the pruning performance of ΦA(Pdec) is rather poor. Moreover,
the time complexity is relatively high, namely O(n2), as shown in Example 5. Nevertheless,
this filtering algorithm applies quite well to several problems, such as the n-queens problem
(n < 200), as indicated by (Leconte, 1996) and (Puget, 1998).

Further comparison of non-binary constraints and their corresponding decompositions
are given by (Stergiou & Walsh, 1999) and (Gent, Stergiou, & Walsh, 2000). In particular
the alldifferent constraint and its binary decomposition are extensively studied.

4.2 Bounds Consistency

A bounds consistency filtering algorithm for the alldifferent constraint was first intro-
duced by (Puget, 1998). We summarize his method in this section. The idea is to use Hall’s
Marriage Theorem to construct an algorithm that establishes bounds consistency.

Definition 10 (Hall interval) Let x1, x2, . . . , xn be variables with respective finite do-
mains D1,D2, . . . ,Dn. Given an interval I, define KI = {xi | Di ⊆ I}. I is a Hall
interval if |I| = |KI |.

18

Theorem 9 The constraint alldifferent(x1, . . . , xn) is bounds consistent if and only if
|Di| ≥ 1 (i = 1, . . . , n) and

i) for each interval I: |KI | ≤ |I|,

ii) for each Hall interval I: {min Di,maxDi} ∩ I = ∅ for all xi /∈ KI .

Proof. Let I be a Hall interval and xi /∈ KI . If alldifferent(x1, . . . , xn) is bounds con-
sistent, it has a solution when xi = minDi, by Definition 4. From Theorem 5 immediately
follows that min Di /∈ I. Similarly for max Di.

Conversely, suppose alldifferent(x1, . . . , xn) is not bounds consistent. Thus, there
exist a variable xi and a value di ∈ {min Di,max Di} for some i ∈ {1, . . . , n}, such that
alldifferent(x1, . . . , xi−1, xi+1, . . . , xn) has no solution, where xj ∈ D′

j = [min(Dj \
{di}),max(Dj \{di})] for all j 6= i. By Theorem 5, there exists some K ⊆ {x1, . . . , xn}\{xi}
such that |K| > |D′

K |. Choose I = D′
K and consider KI with respect to alldiff-

erent(x1, . . . , xn). Then either I is a Hall interval and di ∈ I, or |KI | > |I|. �

Example 7 Consider the following CSP

x1 ∈ {1, 2}, x2 ∈ {1, 2}, x3 ∈ {2, 3},
alldifferent(x1, x2, x3).

Observe that the variables x1 and x2 both have domain {1, 2}, Hence, values 1 and 2 cannot
be assigned to any other variable and therefore, value 2 should be removed from D3.

The algorithm detects this when the interval I is set to I = {1, 2}. Then the number of
variables for which Di ⊆ I is 2. Since |I| = 2, I is a Hall interval. The domain of x3 is not
in this interval, and {min D3,maxD3}∩ I = {min D3}. In order to obtain the empty set in
the right hand side of the last equation, we need to remove min Di. The resulting CSP is
bounds consistent.

Theorem 9 is used to construct an algorithm that establishes bounds consistency on the
alldifferent constraint. Consider all intervals I = [l, u] where l ranges over all minimum
domain values and u over all maximum domain values. There are maximally n2 such
intervals, as there are n variables. Count the number of variables that are contained in I.
If a Hall interval is detected, update the bounds of the appropriate variables. This can be
done in O(n) steps. Hence the time complexity of this algorithm is O(n3).

A more efficient algorithm is obtained by first sorting the variables. To update the
minimum domain values, we sort the variables in increasing order of their maximum domain
value. Then we maintain an interval by the minimum and maximum bounds of the variables,
which are inserted in the above order. Whenever we detect a maximal Hall interval, we
update the bounds of the appropriate variables, reset the interval and continue with the
next variable. To update the maximum domain values, we can apply the same method after
interchanging [min Di,max Di] with [−max Di,−min Di] for all i.

The sorting of the variables can be done in O(n log n) time. As shown by (Puget, 1998),
we can use a balanced binary tree to keep track of the number of variables within an interval,
which allows updates in O(log n) per variable. Hence the total time complexity reduces to
O(n log n).

19

An improvement on top of this was suggested and implemented by (Lopez-Ortiz, Quim-
per, Tromp, & van Beek, 2003). They noticed that while keeping track of the number of
variables within an interval, some of the used counters are irrelevant. They give two imple-
mentations, one with a linear running time plus the time needed to sort the variables, and
one with an O(n log n) running time. Their experiments show that the latter algorithm is
faster in practice.

A different algorithm for achieving bounds consistency of the alldifferent constraint
was presented by (Mehlhorn & Thiel, 2000). Instead of Hall intervals, they exploit the
correspondence with finding a matching in a bipartite graph, similar to the algorithm pre-
sented in Section 4.4. Their algorithm runs in O(n) time plus the time needed to sort the
variables according to the bounds of the domains.

Although the worst-case time complexity of the above algorithms is always O(n log n),
under certain conditions the sorting can be performed in linear time, which makes the
algorithms by (Lopez-Ortiz et al., 2003) and (Mehlhorn & Thiel, 2000) run in linear time.
This is the case in many practical instances, for example when the variables encode a
permutation.

4.3 Range Consistency

(Leconte, 1996) introduced an algorithm that establishes range consistency for the all-

different constraint. To explain this algorithm we follow the same procedure as in the
previous subsection. Again we use Hall’s Marriage Theorem to construct the algorithm.

Definition 11 (Hall set) Let x1, x2, . . . , xn be variables with respective finite domains
D1,D2, . . . , Dn. Given K ⊆ {x1, . . . , xn}, define the interval IK = [min DK ,maxDK].
K is a Hall set if |K| = |IK |.

Note that in the above definition IK does not necessarily need to be a Hall interval.

Theorem 10 The constraint alldifferent(x1, . . . , xn) is range consistent if and only if
|Di| ≥ 1 (i = 1, . . . , n) and Di∩IK = ∅ for each Hall set K ⊆ {x1, . . . xn} and each xi /∈ K.

Proof. Let K be a Hall set and xi /∈ K. If alldifferent(x1, . . . , xn) is range consistent,
it has a solution when xi = d for all d ∈ Di, by Definition 5. From Theorem 5 immediately
follows that Di ∩ IK = ∅.

Conversely, suppose alldifferent(x1, . . . , xn) is not range consistent. Thus, there
exist a variable xi and a value di ∈ Di for some i ∈ {1, . . . , n}, such that alldiff-

erent(x1, . . . , xi−1, xi+1, . . . , xn) has no solution, where xj ∈ D′
j = [min Dj \ {di},max Dj \

{di}] for all j 6= i. By Theorem 5, there is some K ⊆ {x1, . . . , xn} \ {xi} with |K| > |D′
K |.

Note that D′
K = IK . Consider IK with respect to alldifferent(x1, . . . , xn). If K is a Hall

set, then di ∈ IK . Otherwise, |K| > |IK |. Then either some domain is empty, or K contains
a Hall set K ′, and Dj ∩ IK ′ 6= ∅ for some xj ∈ K \ K ′. �

We can deduce a first filtering algorithm from Theorem 10 in a similar way as we did
for bounds consistency. Namely, consider all intervals I = [l, u] where l ranges over all

20

minimum domain values and u over all maximum domain values. Then we count again the
number of variables that are contained in I. If a Hall set is detected, we update the domains
of the appropriate variables. This is done in O(n) steps. Hence the time complexity of this
algorithm is O(n3), as there are again maximally n2 intervals to consider.

A more efficient algorithm, due to (Leconte, 1996), goes as follows. We first sort (and
store) the variables twice, according to their minimum and maximum domain value, respec-
tively. The main loop considers the variables ordered by their maximum domain value. For
each such variable, we maintain the interval IK and start adding variables to K. For this we
consider all variables (inner loop), now sorted by their minimum domain value. When we
detect a Hall set, updating the domains can be done in O(1) time, either within or after the
inner loop, and we proceed with the next variable. As sorting the variables can be done in
O(n log n) time, the total time complexity of this algorithm is O(n2). This time complexity
is optimal, as is illustrated in the following example, taken from (Leconte, 1996).

Example 8 Consider the following CSP

xi ∈ {2i + 1} for i = 0, 1, . . . , n,
xi ∈ {0, 1, . . . , 2n + 2} for i = n + 1, n + 2, . . . , 2n,
alldifferent(x0, x1, . . . , x2n).

In order to make this CSP range consistent, we have to remove the n + 1 first odd integers
from the domains of the n variables whose domain is not yet a singleton. This takes O(n2)
time.

Observe that this algorithm has an opposite viewpoint from the algorithm for bounds
consistency, although it looks similar. Where the algorithm for bounds consistency takes
the domains (or intervals) as a starting point, the algorithm for range consistency takes the
variables instead. But they both attempt to reach a situation in which the cardinality of a
set of variables is equal to the cardinality of the union of the corresponding domains.

4.4 Hyper-arc Consistency

A hyper-arc consistency filtering algorithm for the alldifferent constraint was proposed
by (Régin, 1994). The algorithm is based on matching theory (see Section 2.2.2 and Sec-
tion 3.1). We first give a characterization in terms of Hall’s Marriage Theorem.

Definition 12 (Tight set) Let x1, x2, . . . , xn be variables with respective finite domains
D1,D2, . . . ,Dn. K ⊆ {x1, . . . , xn} is a tight set if |K| = |DK |.

Theorem 11 The constraint alldifferent(x1, . . . , xn) is hyper-arc consistent if and only
if |Di| ≥ 1 (i = 1, . . . , n) and Di ∩ DK = ∅ for each tight set K ⊆ {x1, . . . xn} and each
xi /∈ K.

Proof. Let K be a tight set and xi /∈ K. If alldifferent(x1, . . . , xn) is hyper-arc
consistent, it has a solution when xi = d for all d ∈ Di, by Definition 3. From Theorem 5
immediately follows that Di ∩ DK = ∅.

21

Conversely, suppose alldifferent(x1, . . . , xn) is not hyper-arc consistent. Thus, there
exist a variable xi and a value di ∈ Di for some i ∈ {1, . . . , n}, such that alldiff-

erent(x1, . . . , xi−1, xi+1, . . . , xn) has no solution, where xj ∈ D′
j = Dj \ {di} for all j 6= i.

By Theorem 5, |K| > |D′
K | for some K ⊆ {x1, . . . , xn}\{xi}. If K is a tight set with respect

to alldifferent(x1, . . . , xn), then di ∈ DK . Otherwise, |K| > |DK |. Then either some
domain is empty, or K contains a tight set K ′, and Dj ∩DK ′ 6= ∅ for some xj ∈ K \K ′. �

Following Theorem 11, the alldifferent constraint can be made hyper-arc consistent
by generating all tight sets K and updating Di = Di \ DK for all xi /∈ K. This ap-
proach is similar to the algorithms for achieving bounds consistency and range consistency.
For bounds consistency and range consistency we could generate the respective Hall in-
tervals and Hall sets rather easily because we were dealing with intervals containing the
domains. In order to generate tight sets similarly we should consider all possible subsets
K ⊆ {x1, . . . , xn}. As the number of subsets is exponential in n, this approach is not prac-
tical. A different, more constructive, approach makes use of matching theory to update the
domains, and was introduced by (Régin, 1994).

Theorem 12 Let G be the value graph of a sequence of variables X = x1, x2, . . . , xn with re-
spective finite domains D1,D2, . . . ,Dn. The constraint alldifferent(x1, . . . , xn) is hyper-
arc consistent if and only if every edge in G belongs to a matching in G covering X.

Proof. Immediate from Definition 3 and Theorem 4. �

The following Theorem identifies edges that belong to a maximum-size matching. The
proof follows from (Petersen, 1891); see also (Schrijver, 2003, Theorem 16.1).

Theorem 13 Let G be a graph and M a maximum-size matching in G. An edge belongs
to a maximum-size matching in G if and only if it either belongs to M , or to an even
M -alternating path starting at an M -free vertex, or to an even M -alternating circuit.

Proof. Let M be a maximum-size matching in G = (V,E). Suppose edge e belongs to a
maximum-size matching N , and e /∈ M . The graph G′ = (V,M ∪N) consists of even paths
(possibly of length 0) and circuits with edges alternatingly in M and N . If the paths are
not of even length, M or N can be made larger by interchanging edges in M and N along
this path (a contradiction because they are of maximum size).

Conversely, let M be a maximum-size matching in G. By interchanging edges in M and
not in M along even M -alternating paths starting at an M -free vertex and M -alternating
circuits we obtain matchings of maximum size again. �

To establish a connection between Theorem 11 and Theorem 13, consider a tight set
K ⊂ {x1, . . . , xn} of minimum size. The edges between vertices in K and in DK form
M -alternating circuits in the value graph. By applying Theorem 13 we remove those edges
xid with xi /∈ K and d ∈ DK , i.e. Di ∩DK = ∅. This corresponds to applying Theorem 11.

Example 9 Consider again the task assignment problem of Example 3. A solution to this
problem is given in Figure 2.a, where bold edges denote the corresponding matching M
covering the tasks. Machine E is the only M -free vertex. All even M -alternating paths

22

C D

321

E

Tasks

Machines

A B

4 4

E

Tasks

Machines

1 2 3

A B DC

a. A matching covering all tasks. b. The bipartite graph after filtering.

Figure 2: The bipartite graph for the task assignment problem of Example 9.

starting from E belong to a solution, by Theorem 13. Thus, all edges on the path E, 1,D, 3,A
belong to a solution. The only M -alternating circuit in the graph is 2,B, 4,C, 2, and by
Theorem 13 all edges in this circuit belong to a solution. The other edges, i.e. (1,B),
(1,C), (3,B) and (3,C), should be removed to make the alldifferent constraint hyper-arc
consistent. The result is depicted in Figure 2.b. which corresponds to the CSP

x1 ∈ {D,E}, x2 ∈ {B,C}, x3 ∈ {A,D}, x4 ∈ {B,C},
alldifferent(x1, x2, x3, x4).

Using Theorem 13, we construct a hyper-arc consistency filtering algorithm, presented
as Algorithm 2. First we compute a maximum-size matching M in the value graph G =
(X∪DX , E). This can be done in O(m

√
n) time, using the algorithm by (Hopcroft & Karp,

1973), where m =
∑n

i=1 |Di|. Next we identify the even M -alternating paths starting at an
M -free vertex, and the even M -alternating circuits in the following way.

Define the directed graph GM = (X ∪ DX , A) with arc set A = {(v1, v2) | (v1, v2) ∈
M} ∪ {(v2, v1) | (v1, v2) 6∈ M}. In other words, edges in M are being directed from X (the
variables) to DX (the domain values). Edges not in M are being directed reversely. We first
compute the strongly connected components in GM . This can be done in O(n + m) time,
following (Tarjan, 1972). Arcs between vertices in the same strongly connected component
belong to an even M -alternating circuit in G, and are marked as “consistent”. Next we
search for the arcs that belong to a directed path in GM , starting at an M -free vertex.
This takes O(m) time, using breadth-first search. Arcs belonging to such a path belong to
an M -alternating path in G starting at an M -free vertex, and are marked as “consistent”.
For all edges xid that are not marked “consistent” and do not belong to M , we update
Di = Di \{d}. Then, by Theorem 13, the corresponding alldifferent constraint is hyper-
arc consistent.

From the above follows that the alldifferent constraint is checked for consistency,
i.e. checked to contain a solution, in O(m

√
n) time and made hyper-arc consistent in O(m)

time. We could also have applied a general algorithm to establish hyper-arc consistency
on an n-ary constraint. Such algorithm was presented by (Mohr & Masini, 1988). For an
alldifferent constraint on n variables, the time complexity of their general algorithm is
O(d!

(d−n)!), where d is the maximum domain size. Clearly, the above specialized algorithm
is much more efficient.

23

Algorithm 2: Hyper-arc consistency for alldifferent(x1, x2, . . . , xn).

% identify X = x1, x2, . . . , xn

build value graph G = (X,D(X), E)
compute maximum matching M in G
if |M | < |X| then return false
mark all arcs in GM that are not in M as unused
compute SCCs in GM and mark all arcs in a SCC as used
perform breadth-first in GM search starting from M -free vertices, and mark all
traversed arcs as used
for all arcs (xi, d) in GM marked as unused do

D(xi) := D(xi) − d
if D(xi) = ∅ then return false

return true

During the whole solution process of the CSP, constraints other than alldifferent

might also be used to remove values. In such cases, we must update our alldifferent

constraint. As indicated by (Régin, 1994), this can be done incrementally, i.e. we can
make use of our current value graph and our current maximum-size matching to compute
a new maximum-size matching. This is less time consuming than restarting the algorithm
from scratch. The same idea has been used by (Barták, 2003) to make the alldifferent

constraint dynamic with respect to the addition of variables during the solution process.

4.5 Complexity Survey and Discussion

Table 2 present a time complexity survey of the algorithms that obtain the four notions of
local consistency that have been applied to the alldifferent constraint in this section.
Here n is again the number of variables inside the alldifferent constraint and m the sum
of the cardinalities of the domains.

arc consistency O(n2) (Van Hentenryck, 1989)

bounds consistency O(n log n) (Puget, 1998),

(Mehlhorn & Thiel, 2000),

(Lopez-Ortiz et al., 2003)

O(n) (special cases) (Mehlhorn & Thiel, 2000),

(Lopez-Ortiz et al., 2003)

range consistency O(n2) (Leconte, 1996)

hyper-arc consistency O(m
√

n) (Régin, 1994)

Table 2: Survey of time complexity of four local consistency notions.

While increasing the strength of the local consistency notions from bounds consistency
to range consistency and hyper-arc consistency, we have seen that the underlying principle
remains the same. It simply boils down to the refinement of the sets to which we apply
Hall’s Marriage Theorem.

24

In practice, none of these local consistency notions always outperforms all others. It
is strongly problem-dependent which local consistency is suited best. In general, however,
bounds consistency is most suitable when domains are always closed intervals. As more holes
may occur in domains, hyper-arc consistency becomes more useful. Another observation
concerns the implementation of an algorithm that establishes bounds consistency. Although
all three variants in Table 2 have the same worst-case complexity, the one proposed by
(Lopez-Ortiz et al., 2003) appears to be most efficient in practice.

A general comparison of bounds consistency and hyper-arc consistency with respect to
the search space has been made by (Schulte & Stuckey, 2001). In particular, attention is
also paid to the alldifferent constraint.

5. Variants of the Alldifferent Constraint

This section presents three variants of the alldifferent constraint: the symmetric all-

different constraint, the weighted alldifferent constraint and the soft alldifferent

constraint. The first two variants exploit additional information in conjunction with the
alldifferent constraint. The last variant allows the alldifferent constraint to be par-
tially violated.

5.1 The Symmetric Alldifferent Constraint

A particular case of the alldifferent constraint, the symmetric alldifferent constraint,
was introduced by (Régin, 1999b). We assume that the variables and their domain values
represent the same set of elements. The symmetric alldifferent constraint states that all
variables must take different values, and if the variable representing element i is assigned
to the value representing element j, then the variable representing the element j must be
assigned to the value representing element i. A more formal definition is presented below.

The symm alldifferent constraint is particularly suitable for round-robin tournament
problems. In such problems, for example a sports competition, each team has to be matched
with another team. Typically, there are many more constraints involved than only the
symm alldifferent constraint, which makes the problems often very difficult to solve. The
filtering of the alldifferent constraint and the symm alldifferent constraint has been
analyzed for practical problem instances by (Henz, Müller, & Thiel, 2004). They show
that constraint programming, using the symm alldifferent constraint, outperforms other
approaches (such as Operations Research methods) with several orders of magnitude for
these instances.

Definition 13 (Symmetric alldifferent constraint) Let x1, x2, . . . , xn be variables with
respective finite domains D1,D2, . . . ,Dn ⊆ {1, 2, . . . , n}. Then

symm alldifferent(x1, . . . , xn) =
{(d1, . . . , dn) | di ∈ Di, di 6= dj for i 6= j, di = j ⇔ dj = i for i 6= j} .

In a CSP, the symm alldifferent constraint can also be expressed as an alldifferent

constraint together with one or more constraints that preserve the symmetry. Another
representation can be made that uses the so-called cycle constraint, where each cycle must
contain two vertices; see also (Beldiceanu et al., 2005). In that case, a cycle on two vertices

25

x and y indicates that x is assigned to y and vice versa. However, the symm alldifferent

constraint captures more global information than the common alldifferent constraint
together with additional constraints. Hence the symm alldifferent constraint can be used
to obtain a stronger filtering algorithm. The following example, taken from (Régin, 1999b)
shows exactly this.

Example 10 Consider a set of three people that have to be grouped in pairs. Each person
can only be paired to one other person. This problem can be represented as a CSP by
introducing a set of people S = {p1, p2, p3} that are pairwise compatible. These people are
represented both by a set of variables x1, x2 and x3 and by a set of values v1, v2 and v3,
where xi and vi represent pi. Then the CSP

x1 ∈ {v2, v3}, x2 ∈ {v1, v3}, x3 ∈ {v1, v2},
x1 = v2 ⇔ x2 = v1,
x1 = v3 ⇔ x3 = v1,
x2 = v3 ⇔ x3 = v2,
alldifferent(x1, x2, x3)

is hyper-arc consistent. However, the following CSP

x1 ∈ {v2, v3}, x2 ∈ {v1, v3}, x3 ∈ {v1, v2},
symm alldifferent(x1, x2, x3)

is inconsistent. Indeed, there exists no solution to this problem, as the number of variables
is odd.

Suppose there exists a value j ∈ Di, while i /∈ Dj . Then we can immediately remove
value j from Di. Hence we assume that such situations do not occur in the following.

Similar to the common alldifferent constraint, the symm alldifferent constraint
can be expressed by a graph. Given a constraint symm alldifferent(x1, . . . , xn), construct
the graph Gsymm = (X,E), with vertex set X = {x1, x2, . . . , xn} and edge set E = {xixj |
xi ∈ Dj , xj ∈ Di, i < j}. Note that we identify each variable xi with value i for i = 1, . . . , n.
We denote the number of edges in Gsymm by m, i.e. m = (

∑n
i=1 |Di|) /2. An illustration of

Gsymm is given in the next example.

Example 11 Consider the following CSP

xa ∈ {b, c, d, e}, xb ∈ {a, c, d, e}, xc ∈ {a, b, d, e}, xd ∈ {a, b, c, e},
xe ∈ {a, b, c, d, i, j}, xf ∈ {g, h}, xg ∈ {f, h}, xh ∈ {f, g, i, j},
xi ∈ {e, h, j}, xj ∈ {e, h, i},
symm alldifferent(xa, xb, . . . , xj).

In Figure 3.a the corresponding graph Gsymm is depicted, where xa, xb, . . . , xj are abbreviated
to a, b, . . . , j.

Similar to Theorem 4, we have the following result.

Theorem 14 Let x1, x2, . . . , xn be a sequence of variables with respective finite domains
D1,D2, . . . ,Dn. Then (d1, . . . , dn) ∈ symm alldifferent(x1, . . . , xn) if and only if M =
{xidi | i < di} is a matching in Gsymm.

26

e

b c

f

h

i j

a d

g

e

b c

f

h

i j

a d

g

a. The graph Gsymm. b. The graph Gsymm after filtering.

Figure 3: Filtering of the symm alldifferent constraint of Example 11.

Proof. An edge xixj in Gsymm corresponds to the assignments xi = di and xdi
= i, which

are equivalent with xj = dj and xdj
= j, because di = j and dj = i. As no edges in a

matching share a vertex, xi 6= xj for all i 6= j. Finally, as M covers X, to all variables a
value is assigned. �

We use Theorem 14 to make the symm alldifferent constraint hyper-arc consistent.

Theorem 15 The constraint symm alldifferent(x1, . . . , xn) is hyper-arc consistent if and
only if every edge in the corresponding graph Gsymm belongs to a matching that covers
x1, . . . , xn.

Proof. By Definition 3 (hyper-arc consistency) and application of Theorem 14. �

Example 12 Consider again the CSP of Example 11. Figure 3.b shows the graph of Fig-
ure 3.a after making the CSP hyper-arc consistent. Consider for example the subgraph
induced by vertices f , g and h. Obviously vertices f and g have to be paired in order to
satisfy the symm alldifferent constraint. Hence, vertex h cannot be paired to f nor g,
and the corresponding edges can be removed. The same holds for the subgraph induced by
a, b, c, d and e, where the vertices a, b, c and d must form pairs.

A matching in Gsymm that covers x1, . . . , xn is also a maximum-size matching. From
Theorem 13 we already know how to identify edges that belong to a maximum-size matching.
Namely, given an arbitrary maximum-size matching M , they belong either to M , or to an
even M -alternating path starting at a free vertex, or to an even M -alternating circuit.
However, in the current case, Gsymm does not need to be bipartite, so we cannot blindly
apply the machinery from Section 4.4 to establish hyper-arc consistency for the symm all-

different constraint.
A hyper-arc consistency filtering algorithm for the symm alldifferent constraint, pre-

sented as Algorithm 3, was proposed by (Régin, 1999b). First, we compute a maximum-size
matching M in the (possibly non-bipartite) graph Gsymm. This can be done in O(m

√
n)

time by applying the algorithm by (Micali & Vazirani, 1980). If |M | < n/2, there is no
solution. Otherwise, we need to detect all edges that can never belong to a maximum-size
matching. Since there are no M -free vertices, we only need to check whether an edge that
does not belong to M is part of an even M -alternating circuit. This can be done as fol-
lows. If for an edge uv ∈ M we find an M -alternating path u, . . . , w, v (with u 6= w), we

27

Algorithm 3: Hyper-arc consistency for symm alldifferent(x1, x2, . . . , xn).

% identify X = x1, x2, . . . , xn

build graph Gsymm = (X,E)
compute maximum matching M in Gsymm

if |M | < |X| /2 then return false
mark all edges in Gsymm that are not in M as unused
for all vertices x in Gsymm do

% let xd ∈ M
compute all alternating x − d paths in Gsymm − xd, and mark all edges on these
paths as used

for all edges (xi, d) in GM marked as unused do
D(xi) := D(xi) − d
if D(xi) = ∅ then return false

return true

know that the edge wv is on an even M -alternating circuit. Moreover, we can compute all
possible M -alternating paths from u to v, that avoid edge uv. All edges wv that are not
on such a path cannot belong to an even M -alternating circuit. Namely, all M -alternating
circuits through wv should also contain the matching edge uv. Hence, by Theorem 13 and
Theorem 14 we can delete such edges wv. This procedure should be repeated for all vertices
in Gsymm.

The algorithm for computing the M -alternating paths can be implemented to run in
O(m) time, using results of (Edmonds, 1965) to take care of the nonbipartiteness, and
(Tarjan, 1972) for the data structure, as was observed by (Régin, 1999b). Hence the total
time complexity of the algorithm achieving hyper-arc consistency for the symm alldiffer-

ent constraint is O(nm).
Note that the above algorithm is not incremental, and may not be effective in all practical

cases. For this reason, also an incremental algorithm was proposed by (Régin, 1999b), that
does not ensure hyper-arc consistency, however. The algorithm computes once a maximum-
size matching, and each incremental step has a time complexity of O(m).

5.2 The Weighted Alldifferent Constraint

In this section we assume that for all variables in the alldifferent constraint each variable-
value pair induces a cost. Eventually (the problem we want to solve involves also other
constraints), the goal is to find a solution with minimum8 total cost. In the literature, this
combination is known as the constraint MinWeightAllDiff (Caseau & Laburthe, 1997),
or IlcAllDiffCost (Focacci, Lodi, & Milano, 1999). This section shows how to exploit
the alldifferent constraint and the minimization problem together as an “optimization
constraint”. First we give a definition of the weighted alldifferent constraint, and then
we show how we to make it hyper-arc consistent. It should be noted that the weighted all-

8. A maximization problem can be reformulated as a minimization problem by negating the objective
function.

28

different constraint is a special case of the weighted global cardinality constraint (Régin,
1999a, 2002).

Definition 14 (Weighted alldifferent constraint) Let x1, x2, . . . , xn, z be variables with
respective finite domains D1,D2, . . . ,Dn,Dz, and let wij ∈ Q+ for i = 1, . . . , n and all
j ∈ ⋃

i=1,...,n Di be constants. Then

minweight alldifferent(x1, . . . , xn, z, w) =
{

(d1, . . . , dn, d̃) | di ∈ Di, d̃ ∈ Dz, di 6= dj for i 6= j,
∑

i,di=j wij ≤ d̃
}

.

Note that for a pair (xi, j) with j /∈ Di, we may define wij = ∞. The variable z in
Definition 14 serves as a “cost” variable, which is minimized during the solution process.
This means that admissible tuples are those instantiations of variables with total weight
not more than the currently best found solution, represented by max Dz. At the same time,
min Dz should not be less than the currently lowest possible total weight.

In order to make the minweight alldifferent constraint hyper-arc consistent, we in-
troduce the directed graph Gminweight = (V,A) with

V = {s, t} ∪ X ∪ DX and A = As ∪ AX ∪ At

where X = {x1, x2, . . . , xn} and

As = {(s, xi) | i = 1, 2, . . . , n},
AX = {(xi, d) | d ∈ Di},
At = {(d, t) | d ∈ ⋃n

i=1 Di}.

To each arc a ∈ A, we assign a capacity c(a) = 1 and a weight w(a). If a = (xi, j) ∈ AX ,
then w(a) = wij. If a ∈ As ∪ At then w(a) = 0.

Theorem 16 The constraint minweight alldifferent(x1, . . . , xn, z, w) is hyper-arc con-
sistent if and only if

i) for every arc a ∈ AX there exists an s− t flow f under c in Gminweight with f(a) = 1,
value(f) = n and weight(f) ≤ max Dz, and

ii) min Dz ≥ weight(f) for a minimum-weight s − t flow f in Gminweight.

Proof. We may assume that every feasible s − t flow f of value n is integer, because c is
integer. In fact, we may assume that f is {0, 1}-valued, because c(a) = 1 for each arc a ∈ A.
As value(f) = n, f uses exactly n arcs in AX . An arc a = (xi, j) ∈ AX with f(a) = 1
corresponds to assigning xi = j. Because c(a) = 1 for all a ∈ At, each value is used at
most once, which enforces the alldifferent constraint. Hence, if weight(f) ≤ max Dz,
the corresponding assignment is a solution to the minweight alldifferent constraint. �

Example 13 Consider again the task assignment problem of Example 3. Suppose in addi-
tion that each task-machine combination induces a cost, as indicated in Table 3 below. The
goal is to find an assignment with minimum cost. Denote the cost of assigning task i to

29

x2

1x

x3

B

C

D

E

A

x4

ts

(1,0)

(1,0)

(1,5)
(1

,0)

(1,0) (1,9)

(1,4)

(1,0)

(1
,0

)

(1,8)(1
,7

)

(1,6)

(1,5)

(1,8)

(1,4)

(1
,8

)

(1,3)

(1,6)

(1,0)

(1,0)

(1,0)

Figure 4: Graph Gminweight for the minweight alldifferent constraint of Example 13. For
each arc a, (c(a), w(a)) is given. Bold arcs indicate a minimum-weight s − t flow
with weight 21.

Machine

Task A B C D E

1 ∞ 8 5 6 4

2 ∞ 6 9 ∞ ∞
3 8 5 4 3 ∞
4 ∞ 7 8 ∞ ∞

Table 3: Cost of task - machine combinations.

machine j as wij . For the cost variable z we initially set max Dz = 33, being the sum of
the maximum assignment cost for each variable. Then we model the problem as the CSP

z ∈ {0, 1, . . . , 33},
x1 ∈ {B,C,D,E}, x2 ∈ {B,C}, x3 ∈ {A,B,C,D}, x4 ∈ {B,C},
minweight alldifferent(x1, x2, x3, x4, z, w),
minimize z.

The corresponding graph Gminweight is shown in Figure 4. The bold arcs in the graph denote
a minimum-weight s − t flow with weight 21. It corresponds to a solution to the COP, i.e.
x1 = E, x2 = B, x3 = D, x4 = C and z = 21.

Following Theorem 16, we can make the minweight alldifferent constraint hyper-arc
consistent by the following procedure:

For all arcs a = (xi, j) ∈ AX , compute a minimum-weight s − t flow f in
Gminweight with f(a) = 1. If value(f) < n or weight(f) > maxDz, update

30

Di = Di \ {j}.
For a minimum-weight s − t flow f in Gminweight with value(f) = n, update
min Dz = weight(f) if min Dz < weight(f).

The drawback of the above procedure is that we have to compute a minimum-weight s − t
flow for each arc in AX . It is more efficient however, to use the residual graph (Gminweight)f
and apply Theorem 3 as follows.

We first compute a minimum-weight flow f in Gminweight. For this we use the algorithm
presented in Section 2.2.3. We need to compute n shortest s− t paths in the residual graph,
each of which takes O(m + d log d) time where m =

∑n
i=1 |Di| and d = |

⋃n
i=1 Di|. Thus the

minimum-weight flow is computed in O(n(m + d log d)) time. If weight(f) > maxDz, the
minweight alldifferent constraint is inconsistent.

If weight(f) ≤ max Dz, we consider all arcs a = (xi, j) ∈ AX with f(a) = 0 (see Theo-
rem 3). We compute a minimum-weight j − xi path P in the residual graph (Gminweight)f ,

if it exists. If P does not exist, we update Di = Di \ {j}. Otherwise, P, a forms a directed
circuit C of minimum weight, containing a. If weight(f) + weight(C) > max Dz we update
Di = Di \ {j}. Finally, we update minDz = weight(f) if minDz < weight(f). Then, by
Theorem 16 and Theorem 3 the minweight alldifferent constraint is hyper-arc consis-
tent. These last steps involve m−n shortest path computations, each taking O(m+d log d)
time. Hence the total time complexity for making the minweight alldifferent constraint
hyper-arc consistent is O(m(m+d log d)). In fact, this can be improved to O(n(m+d log d)),
as was shown by (Régin, 1999a, 2002) and (Sellmann, 2002).

Other work concerning the alldifferent constraint in conjunction with an objective
function has been done in (Lodi, Milano, & Rousseau, 2003). In that work, the so-called ad-
ditive bounding procedure (Fischetti & Toth, 1989) and limited discrepancy search (Harvey
& Ginsberg, 1995) are exploited in presence of an alldifferent constraint.

5.3 The Soft Alldifferent Constraint

Consider a CSP that is over-constrained, i.e. there exists no solution satisfying all con-
straints. In such occasions, it is natural to search for a solution that satisfies as many
constraints as possible, and violates the other constraints. Constraints that are allowed
to be violated are called soft constraints. The other constraints, which are not allowed to
be violated, are called hard constraints. This section shows how we can handle the soft
alldifferent constraint.

We follow the scheme proposed by (Régin, Petit, Bessière, & Puget, 2000) which is
particularly useful for non-binary constraints. For each soft constraint C(x1, . . . , xn) we
define a violation measure µ : D1 × · · · × Dn → Q and a “cost” variable z that represents
the measure of violation. Then the CSP is transformed into a constraint optimization
problem (COP), where all constraints are hard, and the (weighted) sum of cost variables
is minimized. This approach allows one to use specialized filtering algorithms for soft
constraints, as shown by (Petit, Régin, & Bessière, 2001). We first give a general definition
of constraint softening, which we later apply to the alldifferent constraint.

31

Definition 15 (Constraint softening) Let x1, x2, . . . , xn, z be variables with respective
finite domains D1,D2, . . . ,Dn,Dz. Let C(x1, . . . , xn) be a constraint with a violation mea-
sure µ(x1, . . . , xn). Then

soft C(x1, . . . , xn, z, µ) =
{

(d1, . . . , dn, d̃) | di ∈ Di, d̃ ∈ Dz, µ(d1, . . . , dn) ≤ d̃
}

is the soft version of C with respect to µ.

As in the previous section, the cost variable z is minimized during the solution process.
Thus, max Dz represents the maximum value of violation that is allowed, and minDz rep-
resents the lowest possible value of violation, given the current state of the solution process.

We consider two measures of violation. The first is the variable-based violation measure
µvar which counts the minimum number of variables that need to change their value in
order to satisfy the constraint. The second is the decomposition-based violation measure
µdec which counts the number of constraints in the binary decomposition (see Section 4.1)
that are violated. The latter measure is only defined for constraints for which a binary
decomposition exists.

Let X = x1, . . . , xn be a sequence of variables with respective finite domains D1, . . . ,Dn.
For alldifferent(x1, . . . , xn) we have

µvar(x1, . . . , xn) =
∑

d∈DX
max (|{i | xi = d}| − 1, 0),

µdec(x1, . . . , xn) = |{(i, j) | xi = xj , for i < j}| ,

If we insert these measures into Definition 15 applied to the alldifferent constraint we
obtain soft alldifferent(x1, . . . , xn, z, µvar) and soft alldifferent(x1, . . . , xn, z, µdec).

Example 14 Consider the following over-constrained CSP

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
alldifferent(x1, x2, x3, x4).

We have
µvar(a, a, b, c) = 1, µdec(a, a, b, c) = 1,
µvar(a, a, b, b) = 2, µdec(a, a, b, b) = 2,
µvar(a, a, a, b) = 2, µdec(a, a, a, b) = 3,
µvar(b, b, b, b) = 3, µdec(b, b, b, b) = 6.

We transform the CSP into the following COP

z ∈ {0, 1, . . . , 6},
x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
soft alldifferent(x1, x2, x3, x4, z, µdec),
minimize z.

This COP is not hyper-arc consistent, as there is no solution with z < 1. If we remove
0 from Dz, the COP is hyper-arc consistent, because there are at most 6 simultaneously
violated not-equal constraints.

32

Suppose now that during the search for a solution, we have found the tuple (x1, x2, x3, x4, z) =
(a, a, b, c, 1), which has one violated not-equal constraint. Then z ∈ {1} in the remaining
search. As the assignment x4 = b always leads to a solution with z ≥ 2, b can be removed
from D4. The resulting COP is hyper-arc consistent again.

One should take into account that a simplified CSP is considered in this example. In
general, a CSP can consist of many more hard and soft constraints, and also more cost-
variables that together with z form an objective function to be minimized.

Each of the violation measures µvar and µdec gives rise to a hyper-arc consistency filtering
algorithm.

5.3.1 Variable-Based Violation Measure

We first consider the variable-based violation measure. The results in this section are due
to (Petit et al., 2001).

Theorem 17 Let G be the value graph of a sequence of variables X = x1, x2, . . . , xn and let
M be a maximum-size matching in G. The constraint soft alldifferent(x1, . . . , xn, z, µvar)
is hyper-arc consistent if and only if either

i) min Dz ≤ n − |M | < maxDz, or

ii) min Dz ≤ n − |M | = maxDz and all edges in G belong to a matching in G of size
|M |.

Proof. We can assign |M | variables to a different value. Thus we need to change the value
of n−|M | variables, i.e. µvar = n−|M |. Given an assignment with minimum violation, every
change in this assignment can only increase µvar by 1. Hence, if min Dz ≤ n−|M | < maxDz

all domain values belong to a solution. If n − |M | = max Dz only those edges that belong
to a matching of size |M | belong to a solution. �

The constraint soft alldifferent(x1, . . . , xn, z, µvar) can be made hyper-arc consistent
similar to the approach in Section 4.4. First we compute a maximum-size matching M in
the value graph G in O(m

√
n) time, where m =

∑n
i=1 |Di|. If n − |M | > maxDz, the

constraint is inconsistent. Otherwise, if n − |M | = maxDz, we identify all edges that
belong to a maximum-size matching. Here we apply Theorem 13, i.e. we identify the even
M -alternating paths starting at an M -free vertex, and the even M -alternating circuits. This
takes O(m) time, as we saw in Section 4.4. Note that in this case also vertices in X may be
M -free. Finally, we update min Dz = n − |M | if min Dz < n − |M |. Then, by Theorem 17,
the soft alldifferent(x1, . . . , xn, z, µvar) is hyper-arc consistent.

5.3.2 Decomposition-Based Violation Measure

Next we consider the decomposition-based violation measure. The results in this section
are due to (van Hoeve, 2004).

Construct the directed graph Gsoft = (V,A) with

V = {s, t} ∪ X ∪ DX and A = AX ∪ As ∪ At

33

Figure 5: Graph Gsoft for the soft soft alldifferent constraint of Example 14. For each
arc a, (c(a), w(a)) is given. Bold arcs indicate an optimal s − t flow with cost 1.

where X = {x1, x2, . . . , xn} and

AX = {(xi, d) | d ∈ Di},
As = {(s, xi) | i = 1, . . . , n},
At = {(d, t) | d ∈ Di, i = 1, . . . , n}.

Note that At contains parallel arcs if two or more variables share a domain value. If there
are k parallel arcs (d, t) between some d ∈ DX and t, we distinguish them by numbering
the arcs as (d, t)0, (d, t)1, . . . , (d, t)k−1 in a fixed but arbitrary way.

To each arc a ∈ A, we assign a capacity c(a) = 1 and a cost w(a). If a ∈ As ∪AX , then
w(a) = 0. If a ∈ At, so a = (d, t)i for some d ∈ DX and integer i, the value of w(a) = i.

Example 15 Consider again the problem of Example 14. In Figure 5, the graph Gsoft for
the soft alldifferent constraint is depicted. For each arc a, (c(a), w(a)) is given. The
bold arcs in the graph denote a minimum-weight s− t flow with weight 1. It corresponds to
a solution to the COP, i.e. x1 = a, x2 = a, x3 = b, x4 = c and z = 1.

Theorem 18 The constraint soft alldifferent(x1, . . . , xn, z, µdec) is hyper-arc consis-
tent if and only if

i) for every arc a ∈ AX there exists an s − t flow f under c in Gsoft with f(a) = 1,
value(f) = n and weight(f) ≤ max Dz, and

ii) min Dz ≥ weight(f) for a minimum-weight s − t flow f in Gsoft.

Proof. Similar to the proof of Theorem 16. The weights on the arcs in At are chosen such
that the weight of a minimum-cost flow is exactly µdec. Namely, the first arc entering a
value d ∈ DX causes no violation and chooses outgoing arc with weight 0. The k-th arc
that enters d causes k − 1 violations and chooses outgoing arc with weight k − 1. �

The constraint soft alldifferent(x1, . . . , xn, z, µdec) can be made hyper-arc consistent
similar to the approach in Section 5.2. We first compute a minimum-cost flow f in Gsoft.

34

We do this by computing n shortest s − t paths in the residual graph. Because there are
only weights on arcs in At, each shortest path takes O(m) time to compute; see (van Hoeve,
2004). Hence we can compute f in O(nm) time. If weight(f) > maxDz , the constraint is
inconsistent.

To identify the arcs a = (xi, j) ∈ AX that belong to a flow g with value(g) = n and
weight(g) ≤ maxDz, we apply Theorem 3. Thus, we search for a shortest j − xi path
in (Gsoft)f that together with a forms a directed circuit C. We can compute all such
shortest paths in O(m) time because there are only weights on arcs in At. Then we update
Di = Di \ {j} if weight(f) + weight(C) > maxDz. Finally, we update min Dz = weight(f)
if min Dz < weight(f). Then, by Theorem 18, the soft alldifferent(x1, . . . , xn, z, µdec)
is hyper-arc consistent.

6. The Alldifferent Polytope

One of the cornerstones of Operations Research is the field of integer linear programming;
see (Schrijver, 1986) and (Nemhauser & Wolsey, 1988). An integer linear programming
model consists of integer variables, a set of linear constraints (inequalities or equations) and
a linear objective function to be optimized. An integer linear program can be written as

max {cx | Ax ≤ b, x integral} (9)

for rational matrix A, rational vectors b and c and variable vector x of appropriate size.
The continuous relaxation of (9) is

max {cx | Ax ≤ b}. (10)

In case we are dealing only with continuous variables, like in program (10), the linear
program can be solved to optimality in polynomial time; see (Schrijver, 1986). Otherwise,
one needs to resort to a branch-and-bound framework, which is similar to the constraint
programming search tree. In a branch-and-bound framework we solve at each node the
relaxation (10). If all variables in the solution are integral, the original problem has been
solved to optimality. Otherwise, we branch on a non-integral variable. One branch restricts
the variable to be larger than its current solution value rounded up, the other branch
restricts the variable to be smaller than its current solution value rounded down. Next we
repeat the process on the generated subproblems. More sophisticated strategies exist, see
for instance (Nemhauser & Wolsey, 1988), but are out of the scope of this paper.

A problem can usually be modelled as an integer linear program in more than one way.
Each such model leads to a (possibly different) continuous relaxation. Ideally, one seeks
for a model for which the relaxation is precisely the convex hull of all integer solutions.
Namely, for such models the continuous relaxation has an integral, and hence optimal,
solution. Formally, relaxation (10) defines a so-called polytope, i.e. the convex hull of a
finite number of vectors, where the vectors are defined by the linear constraints Ax ≤ b of
the problem. Our goal is to find a tight polytope, i.e. a polytope that describes the convex
hull of all integer solutions to the problem.

Suppose the problem at hand contains the structure

alldifferent(x1, x2, . . . , xn)
x1, x2, . . . , xn ∈ {d1, d2, . . . , dn}

(11)

35

for which we would like to find a tight linear description. We assume that the domain values
d1, d2, . . . , dn are numerical values with d1 ≤ d2 ≤ · · · ≤ dn. A convex hull representation
of (11) was given by (Williams & Yan, 2001). We follow here the description and the proof
of (Hooker, 2000, p. 232–233). The idea is that the sum of any k variables must be at least
d1 + · · · + dk.

Theorem 19 Let d1, d2, . . . , dn be any sequence of numerical values with d1 ≤ d2 ≤ · · · ≤
dn. Then the convex hull of all vectors x that satisfy alldifferent(x1, x2, . . . , xn) where
xi ∈ {d1, d2, . . . , dn} is described by

n
∑

j=1

yj =
n

∑

j=1

dj , (12)

∑

j∈J

yj ≥
|J |
∑

j=1

dj , for all J ⊂ {1, . . . , n} with |J | < n. (13)

for y ∈ Rn.

Proof. It suffices to show that any valid inequality aTy ≥ α can be obtained as a linear
combination of (12) and (13) in which the coefficients of (13) are nonnegative. Assume,
without loss of generality, that ai1 ≥ ai2 ≥ · · · ≥ ain for some permutation i1, . . . , in of the
indices. Then because aTy ≥ α is valid, one can set yk = dj if ij = k, so that

n
∑

j=1

aijdj ≥ α. (14)

From (12) and (13),

n
∑

j=1

yij = d1 + · · · + dn, (15)

k
∑

j=1

yij ≥ d1 + · · · + dk, k = 1, . . . , n − 1. (16)

Consider a linear combination in which each inequality of 16 has coefficient aik −aik+1
, and

(15) has coefficient ain . The result is

n
∑

j=1

aijyij ≥
n

∑

j=1

aijdj

(14)

≥ α

and the theorem follows. �

Example 16 The convex hull of all vectors x that satisfy

alldifferent(x1, x2, x3)
x1, x2, x3 ∈ {7, 11, 13}

36

y3

y1

2y

11
13

11 137
7

13

11

Figure 6: The polytope of Example 16.

can be given by
y1 + y2 + y3 = 31,
y1 + y2 ≥ 18,
y1 + y3 ≥ 18,
y2 + y3 ≥ 18,
yj ≥ 7, for j = 1, 2, 3,

and is depicted in Figure 6.

Unfortunately, the number of inequalities to describe the convex hull grows exponen-
tially with the number of variables. In practice it may therefore be profitable to generate
these inequalities only when they are violated by the current relaxation.

Further work on the description of the alldifferent constraint in integer linear pro-
gramming has been done by (Lee, 2002). That work proposes a representation that uses
a binary encoding of the solution set. Further, (Appa, Magos, & Mourtos, 2004) present
linear programming relaxations based upon multiple alldifferent constraints.

Acknowledgements

Many people have contributed helpful comments and suggestions to improve this paper.
I wish to thank in particular Maarten van Emden, Krzysztof Apt, Sebastian Brand, Irit
Katriel and Jean-Charles Régin.

References

Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network Flows. Prentice Hall.

Appa, G., Magos, D., & Mourtos, I. (2004). LP Relaxations of Multiple all different Pred-
icates. In Régin, J.-C., & Rueher, M. (Eds.), Proceedings of the First International

37

Conference on the Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR 2004), Vol. 3011 of LNCS, pp.
364–369. Springer.

Apt, K. (1999). The essence of constraint propagation. Theoretical Computer Science,
221 (1–2), 179–210.

Apt, K. (2003). Principles of Constraint Programming. Cambridge University Press.

Barnier, N., & Brisset, P. (2002). Graph Coloring for Air Traffic Flow Management. In
Proceedings of the Fourth International Workshop on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems (CP-AI-
OR 2002), pp. 133–147.

Barták, R. (2003). Dynamic Global Constraints in Backtracking Based Environments.
Annals of Operations Research, 118 (1–4), 101–119.

Beldiceanu, N., Carlsson, M., & Rampon, J.-X. (2005). Global Constraint Catalog. Tech.
rep. T2005-08, SICS.

Beldiceanu, N., & Contejean, E. (1994). Introducing Global Constraints in CHIP. Mathe-
matical and Computer Modelling, 20 (12), 97–123.

Berge, C. (1957). Two theorems in graph theory. Proceedings of the National Academy of
Sciences of the United States of America, 43, 842–844.

Caseau, Y., & Laburthe, F. (1997). Solving Various Weighted Matching Problems with
Constraints. In Smolka, G. (Ed.), Proceedings of the Third International Conference
on Principles and Practice of Constraint Programming (CP’97), Vol. 1330 of LNCS,
pp. 17–31. Springer.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Dechter, R., & van Beek, P. (1997). Local and global relational consistency. Theoretical
Computer Science, 173, 283–308.

Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., & Berthier, F. (1988).
The Constraint Logic Programming Language CHIP. In ICOT (Ed.), Proceedings of
the International Conference on Fifth Generation Computer Systems (FGCS’88), pp.
693–702. Springer.

Easterfield, T. (1946). A combinatorial algorithm. Journal of the London Mathematical
Society, 21, 219–226.

Edmonds, J. (1965). Paths, trees and flowers. Canadian Journal of Mathematics, 17, 449–
467.

Falkowski, B.-J., & Schmitz, L. (1986). A note on the queens’ problem. Information
Processing Letters, 23, 39–46.

Fischetti, M., & Toth, P. (1989). An additive bounding procedure for combinatorial opti-
mization problems. Operations Research, 37, 319–328.

Focacci, F., Lodi, A., & Milano, M. (1999). Integration of CP and OR methods for matching
problems. In Proceedings of the First International Workshop on Integration of AI and
OR techniques in Constraint Programming for Combinatorial Optimization Problems
(CP-AI-OR’99).

38

Gent, I., Stergiou, K., & Walsh, T. (2000). Decomposable Constraints. Artificial Intelligence,
123 (1–2), 133–156.

Gerards, A. (1995). Matching. In Ball, M., Magnanti, T., Monma, C., & Nemhauser, G.
(Eds.), Network Models, Vol. 7 of Handbooks in Operations Research and Management
Science, pp. 135–224. Elsevier Science.

Gomes, C., & Shmoys, D. (2002). Completing Quasigroups or Latin Squares: A Structured
Graph Coloring Problem. In Proceedings of the Computational Symposium on Graph
Coloring and its Generalizations.

Grönkvist, M. (2004). A Constraint Programming Model for Tail Assignment. In Régin,
J.-C., & Rueher, M. (Eds.), Proceedings of the First International Conference on the
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2004), Vol. 3011 of LNCS, pp. 142–156. Springer.

Hall, P. (1935). On representatives of subsets. Journal of the London Mathematical Society,
10, 26–30.

Harvey, W., & Ginsberg, M. (1995). Limited Discrepancy Search. In Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence (IJCAI-95), Vol. 1, pp.
607–615.

Henz, M., Müller, T., & Thiel, S. (2004). Global constraints for round robin tournament
scheduling. European Journal of Operational Research, 153 (1), 92–101.

Hooker, J. (2000). Logic-Based Methods for Optimization - Combining Optimization and
Constraint Satisfaction. Wiley.

Hopcroft, J., & Karp, R. (1973). An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2 (4), 225–231.

König, D. (1931). Graphok és matrixok. Matematikai és Fizikai Lapok, 38, 116–119.

Lauriere, J.-L. (1978). A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10 (1), 29–127.

Leconte, M. (1996). A bounds-based reduction scheme for constraints of difference. In
Proceedings of the Second International Workshop on Constraint-based Reasoning
(Constraint-96), Key West, Florida.

Lee, J. (2002). All-Different Polytopes. Journal of Combinatorial Optimization, 6 (3), 335–
352.

Lodi, A., Milano, M., & Rousseau, L.-M. (2003). Discrepancy-Based Additive Bounding for
the Alldifferent Constraint. In Rossi, F. (Ed.), Proceedings of the Ninth International
Conference on Principles and Practice of Constraint Programming (CP 2003), Vol.
2833 of LNCS, pp. 510–524. Springer.

Lopez-Ortiz, A., Quimper, C.-G., Tromp, J., & van Beek, P. (2003). A fast and simple
algorithm for bounds consistency of the alldifferent constraint. In Proceedings of the
18th International Joint Conference on Artificial Intelligence (IJCAI-03), pp. 245–
250. Morgan Kaufmann.

Lovász, L., & Plummer, M. D. (1986). Matching Theory. North-Holland, Amsterdam.

39

Mehlhorn, K., & Thiel, S. (2000). Faster algorithms for bound-consistency of the sortedness
and the alldifferent constraint. In Dechter, R. (Ed.), Proceedings of the Sixth Interna-
tional Conference on Principles and Practice of Constraint Programming (CP 2000),
Vol. 1894 of LNCS, pp. 306–319. Springer.

Micali, S., & Vazirani, V. (1980). An O(
√

|v||E|) algorithm for finding maximum matching
in general graphs. In Proceedings of the 21st Annual Symposium on Foundations of
Computer Science, pp. 17–27. IEEE.

Mohr, R., & Masini, G. (1988). Good Old Discrete Relaxation. In European Conference on
Artificial Intelligence (ECAI), pp. 651–656.

Mulder, H. (1992). Julius petersen’s theory of regular graphs. Discrete Mathematics, 100,
157–175.

Nemhauser, G., & Wolsey, L. (1988). Integer and Combinatorial Optimization. Wiley.

Older, W., Swinkels, G., & van Emden, M. (1995). Getting to the Real Problem: Experience
with BNR Prolog in OR. In Proceedings of the Third International Conference on the
Practical Applications of Prolog (PAP’95). Alinmead Software Ltd.

Petersen, J. (1891). Die Theorie der regulären graphs. Acta Mathematica, 15, 193–220.

Petit, T., Régin, J.-C., & Bessière, C. (2001). Specific Filtering Algorithms for Over-
Constrained Problems. In Walsh, T. (Ed.), Proceedings of the Seventh International
Conference on Principles and Practice of Constraint Programming (CP 2001), Vol.
2239 of LNCS, pp. 451–463. Springer.

Puget, J.-F. (1998). A fast algorithm for the bound consistency of alldiff constraints. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth
Innovative Applications of Artificial Intelligence Conference (AAAI / IAAI), pp. 359–
366. AAAI Press / The MIT Press.

Régin, J.-C. (1994). A Filtering Algorithm for Constraints of Difference in CSPs. In
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI),
Vol. 1, pp. 362–367. AAAI Press.

Régin, J.-C. (1996). Generalized Arc Consistency for Global Cardinality Constraint. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth
Innovative Applications of Artificial Intelligence Conference (AAAI / IAAI), Vol. 1,
pp. 209–215. AAAI Press / The MIT Press.

Régin, J.-C. (1999a). Arc Consistency for Global Cardinality Constraints with Costs. In Jaf-
far, J. (Ed.), Proceedings of the Fifth International Conference on Principles and Prac-
tice of Constraint Programming (CP’99), Vol. 1713 of LNCS, pp. 390–404. Springer.

Régin, J.-C. (1999b). The symmetric alldiff constraint. In Proceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-99), pp. 420–425.

Régin, J.-C. (2002). Cost-Based Arc Consistency for Global Cardinality Constraints. Con-
straints, 7, 387–405.

Régin, J.-C. (2003). Global Constraints and Filtering Algorithms. In Milano, M. (Ed.),
Constraint and Integer Programming - Toward a Unified Methodology, Vol. 27 of Op-
erations Research/Computer Science Interfaces, chap. 4. Kluwer Academic Publishers.

40

Régin, J.-C., Petit, T., Bessière, C., & Puget, J.-F. (2000). An Original Constraint Based
Approach for Solving over Constrained Problems. In Dechter, R. (Ed.), Proceedings
of the Sixth International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2000), Vol. 1894 of LNCS, pp. 543–548. Springer.

Rossi, F., Petrie, C., & Dhar, V. (1990). On the equivalence of constraint satisfaction
problems. In Proceedings of the 9th European Conference on Artificial Intelligence
(ECAI), pp. 550–556.

Schrijver, A. (1986). Theory of Linear and Integer Programming. Wiley.

Schrijver, A. (2003). Combinatorial Optimization - Polyhedra and Efficiency. Springer.

Schulte, C., & Stuckey, P. (2001). When Do Bounds and Domain Propagation Lead to the
Same Search Space. In Søndergaard, H. (Ed.), Proceedings of the Third International
Conference on Principles and Practice of Declarative Programming, pp. 115–126. ACM
Press.

Sellmann, M. (2002). An Arc-Consistency Algorithm for the Minimum Weight All Differ-
ent Constraint. In Hentenryck, P. V. (Ed.), Proceedings of the Eighth International
Conference on Principles and Practice of Constraint Programming (CP 2002), Vol.
2470 of LNCS, pp. 744–749. Springer.

Stergiou, K., & Walsh, T. (1999). The difference all-difference makes. In Proceedings of the
16th International Joint Conference on Artificial Intelligence (IJCAI-99), pp. 414–
419.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1, 146–160.

Tsang, E., Ford, J., Mills, P., Bradwell, R., Williams, R., & Scott, P. (2004). ZDC-Rostering:
A Personnel Scheduling System Based On Constraint Programming. Tech. rep. 406,
University of Essex, Colchester, UK.

van der Waerden, B. (1927). Ein Satz über Klasseneinteilungen von endlichen Mengen.
Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, 5,
185–188.

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. Logic Program-
ming Series. The MIT Press, Cambridge, MA.

van Hoeve, W.-J. (2001). The Alldifferent Constraint: A Survey. In Proceedings of the Sixth
Annual Workshop of the ERCIM Working Group on Constraints.
http://www.arxiv.org/html/cs/0110012.

van Hoeve, W.-J. (2004). A Hyper-Arc Consistency Algorithm for the Soft Alldifferent
Constraint. In Wallace, M. (Ed.), Proceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CP 2004), Vol. 3258 of LNCS,
pp. 679–689. Springer.

Wallace, M., Novello, S., & Schimpf, J. (1997). ECLiPSe: A platform for constraint logic
programming. Tech. rep., IC-Parc, Imperial College, London.

41

Williams, H., & Yan, H. (2001). Representations of the all different Predicate of Constraint
Satisfaction in Integer Programming. INFORMS Journal on Computing, 13 (2), 96–
103.

Zhou, J. (1997). A permutation-based approach for solving the job-shop problem. Con-
straints, 2 (2), 185–213.

42

