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Abstract

We analyze the interstellar medium properties of a sample of 16 bright CO line emitting galaxies identified in the
ALMA Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS) Large Program. This CO−selected galaxy
sample is complemented by two additional CO line emitters in the UDF that are identified based on their Multi-
Unit Spectroscopic Explorer (MUSE) optical spectroscopic redshifts. The ASPECS CO−selected galaxies cover a
larger range of star formation rates (SFRs) and stellar masses compared to literature CO emitting galaxies at z>1
for which scaling relations have been established previously. Most of ASPECS CO-selected galaxies follow these
established relations in terms of gas depletion timescales and gas fractions as a function of redshift, as well as the
SFR–stellar mass relation (“galaxy main sequence”). However, we find that ∼30% of the galaxies (5 out of 16) are
offset from the galaxy main sequence at their respective redshift, with ∼12% (2 out of 16) falling below this
relationship. Some CO-rich galaxies exhibit low SFRs, and yet show substantial molecular gas reservoirs, yielding
long gas depletion timescales. Capitalizing on the well-defined cosmic volume probed by our observations, we
measure the contribution of galaxies above, below, and on the galaxy main sequence to the total cosmic molecular
gas density at different lookback times. We conclude that main-sequence galaxies are the largest contributors to the
molecular gas density at any redshift probed by our observations (z∼1−3). The respective contribution by
starburst galaxies above the main sequence decreases from z∼2.5 to z∼1, whereas we find tentative evidence
for an increased contribution to the cosmic molecular gas density from the passive galaxies below the main
sequence.
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1. Introduction

One of the major goals of galaxy evolution studies has been
to understand how galaxies transform their gas reservoirs into
stars as a function of cosmic time, and how they eventually halt
their star formation activity.

An important development has been the discovery that most
of the star-forming galaxies show a tight correlation between
their stellar masses and star formation rates (SFRs; e.g.,
Brinchmann et al. 2004; Daddi et al. 2007; Elbaz et al.
2007, 2011; Noeske et al. 2007; Peng et al. 2010; Rodighiero
et al. 2010; Whitaker et al. 2012, 2014; Schreiber et al. 2015).
Galaxies in this sequence, usually called “main-sequence”
(MS) galaxies, would form stars in a steady state for ∼1–2
billion years and dominate the cosmic star formation activity.
Galaxies above this sequence, forming stars at higher rates for a
given stellar mass, are called “starbursts”; and galaxies below
this sequence, are called “passive” or “quiescent” galaxies. The
large gas reservoirs necessary to sustain the star-forming
activity along the MS would be provided through a continuous
supply from the intergalactic medium and minor mergers
(Kereš et al. 2005; Dekel et al. 2009). As a consequence, the
fundamental galaxy parameters (SFRs, stellar masses, gas
fractions, and gas depletion timescales) are found to be closely
related at different redshifts. Galaxies above the MS have
boosted their SFRs typically through a major merger event
(e.g., Kartaltepe et al. 2012).

A critical parameter in the interstellar medium (ISM)

characterization has been the specific SFR (sSFR), defined as
the ratio between the SFR and stellar mass (SFR/Mstars), which
for a linear scaling between these parameters denotes how far a
galaxy is from the MS population at a given redshift and stellar
mass. As a result of observations of gas and dust in star-
forming galaxies at high redshift in the last decades (for a
detailed summary, see Tacconi et al. 2018; Freundlich et al.
2019), current studies indicate that there is an increase of the
gas depletion timescales and a decrease in the molecular gas
fractions with decreasing redshift (z∼3 to 1), and that the gas
depletion timescales decrease with increasing sSFR (Bigiel
et al. 2008; Daddi et al. 2010a, 2010b; Genzel et al.
2010, 2015; Tacconi et al. 2010, 2013, 2018; Saintonge et al.
2011b, 2013, 2016; Leroy et al. 2013; Santini et al. 2014;
Sargent et al. 2014; Papovich et al. 2016; Schinnerer et al.
2016; Scoville et al. 2016, 2017; Freundlich et al. 2019;
Wiklind et al. 2019). Finally, after galaxies would have formed
most of their stellar mass on and above the MS, they would
slow down or even halt star formation when they exhausted
most of their gas reservoirs (e.g., Peng et al. 2010), bringing
them below the MS line.

Observations of the cold molecular gas in high-redshift
galaxies have typically relied on transitions of carbon
monoxide, 12CO (hereafter CO), to infer the existence of large
gas reservoirs, as CO is the second most abundant molecule in
the ISM of star-forming galaxies after H2 and given the
difficulty in directly detecting H2 (Solomon & Vanden
Bout 2005; Omont 2007; Carilli & Walter 2013).

While progress has been substantial, there are still potential
biases that have so far been little explored. For example, most
of the high-redshift galaxies for which observations of
molecular gas and dust are available have been preselected
from optical and near-IR extragalactic surveys, based on their
stellar masses and SFRs estimated from spectral energy
distribution (SED) fitting or UV/24 μm photometry. Also

due to the finite instrumental bandwidth of millimeter
interferometers, CO line studies rely on optical/near-IR
redshift measurements. In most cases this means that galaxies
need to have relatively bright emission or absorption lines, or
display strong features in the continuum. Similarly, galaxy
selection based on detections in Spitzer and Herschel far-IR
maps, or in ground-based submillimeter observations, will
target the most strongly star-forming galaxies, and are in many
cases affected by source blending due to the poor angular
resolution of these space missions. In turn, this means that such
source preselection will select massive galaxies on or above the
massive end of the MS.
A complementary approach to the targeted observations has

been the so-called “molecular line scan” strategy (Carilli &
Blain 2002; Walter et al. 2014). Here, millimeter/centimeter
line observations of an extragalactic “blank-field” are per-
formed using a sensitive interferometer, exploring a significant
frequency range (e.g., the full 3 mm and/or 1 mm band) over a
sizable area of the sky. This essentially provides a large data
cube to search for the redshifted emission from CO emission
lines and/or cold dust continuum. Under this approach,
galaxies are selected purely based on their molecular gas
content. Pioneering observations of the Hubble Deep Field
North (HDF-N) with the Plateau de Bureau Interferometer,
covering the full 3 mm band, led to the first estimates of the CO
luminosity functions (LF) at high redshift and the first
constraints on the cosmic density of molecular gas (Decarli
et al. 2014; Walter et al. 2014). More recently, observations
with the Karl Jansky Very Large Array at centimeter
wavelengths in the COSMOS field and the HDF-N have
allowed to cover larger areas, enabling the characterization of
larger samples of gas rich galaxies, and providing tighter
constraints on the CO LF and the evolution of the cosmic
density of molecular gas (Pavesi et al. 2018; Riechers et al.
2019).
The ALMA Spectroscopic Survey (ASPECS) is the first

contiguous molecular survey of distant galaxies performed with
ALMA. The ASPECS pilot program targeted a region of 1
arcmin2 of the Hubble Ultra Deep Field (HUDF), scanning the
full 3 mm and 1 mm bands. This enabled independent line
searches in each band (Walter et al. 2016), allowing the
investigation of a variety of topics including the characteriza-
tion of CO-selected galaxies (Decarli et al. 2016a), constraints
on the CO LF and cosmic density of molecular gas (Decarli
et al. 2016b), derivation of 1 mm continuum number counts
and study of the properties of the faintest dusty galaxies
(Aravena et al. 2016b; Bouwens et al. 2016), searches for [C II]
line emission at z>6 (Aravena et al. 2016c), and derivation of
constraints for CO intensity mapping experiments (Carilli et al.
2016).
The ASPECS program has since been expanded, represent-

ing the first extragalactic ALMA large program (LP). ASPECS
LP builds upon the observational strategy and the results
presented by the ASPECS pilot observations, but extending the
covered area of the HUDF from ∼1 arcmin2 to 5 arcmin2,
comprising the full area encompassed by the Hubble eXtremely
Deep Field (XDF). We here report results based on the 3 mm
data obtained as part of the ASPECS LP.
The ASPECS LP survey strategy and derivation of the CO

LF and evolution of the cosmic molecular gas density are
presented by Decarli et al. (2019). The line and continuum
search techniques, as well as 3 mm continuum image and
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number counts are presented in González-López et al. (2019).
The optical source and redshift identification and global galaxy
properties, based on the ultra deep optical/near-IR coverage of
the UDF are presented in Boogaard et al. (2019). A theoretical
prediction of the cosmic evolution of the CO LF and
comparison to the ASPECS measurements are presented in
Popping et al. (2019).

In this paper, we analyze the ISM properties of the 16
statistically reliable CO line identifications plus 2 lower
significance CO lines identified through optical redshifts, and
compare them with the properties of previous targeted CO
observations at high redshift. In Section 2, we briefly
summarize the ASPECS LP observations and the ancillary
data used in this work. In Section 3, we present the CO line
properties. In Section 4, we compare the ISM properties of our
ASPECS CO galaxies with standard scaling relations derived
from targeted observations of star-forming galaxies. In
Section 5, we summarize the main conclusions from this work.
Hereafter, we assume a standard ΛCDM cosmology with
H0=70 km s−1Mpc−1, ΩΛ=0.7, and ΩM=0.3.

2. Observations

The ASPECS LP uses the same observational strategy
followed by the ASPECS pilot survey (Walter et al. 2016), but
expanding the covered area to ∼5 arcmin2. The ASPECS
approach is to perform frequency scans over the ALMA bands
3 and 6 (corresponding to the atmospheric bands at
85–115 GHz and 212–272 GHz, respectively) and mapping
the selected area through mosaics. The overall strategy is to
search in this data cube for molecular gas rich galaxies through
their redshifted 12CO emission lines entering the ALMA bands.
The ASPECS LP band 3 survey setup and data reduction steps
are discussed in detail by Decarli et al. (2019). Details about the
line search procedures are presented in González-López et al.
(2019). For completeness, we repeat the most relevant
information for the analysis presented here.

2.1. ALMA band 3

ALMA band 3 observations were obtained during Cycle 4 as
part of the LP project 2016.1.00324.L. The observations
were performed using a 17-point mosaic centered at (R.A.,
decl.)=(03:32:38.0, −27:47:00) in the HUDF. We used the
spectral scan mode, covering the ALMA band 3, from 84.0 to
115.0 GHz in 5 frequency setups. This strategy yielded an areal
coverage of 4.6 arcmin2 at 99.5 GHz at the half power
beamwidth of the mosaic. Observations were performed in a
compact array configuration, C40-3, yielding a synthesized
beam of 1 75″×1 49 at 99.5 GHz.

The data were calibrated and imaged using the CASA

software, using an independent procedure, which follows the
ALMA pipeline closely. The visibilities were inverted using
the TCLEAN task. Since no very bright sources are found in
the data cube, we used the “dirty” cubes. The data were
rebinned to a channel resolution of 7.813 MHz, corresponding
to 23.5 km s−1 at 99.5 GHz. The final cube reaches a sensitivity
of ∼0.2 mJy beam−1 per 23.5 km s−1 channel, yielding 5σ CO
line sensitivities of ∼(1.4, 2.1, 2.3)×109K km s−1 pc2 for
CO(2−1), CO(3−2) and CO(4−3), respectively (Decarli et al.
2019). Our ALMA band 3 scan provides coverage for the
redshifted line emission from CO(1−0), CO(2−1), CO(3−2)
and CO(4−3) in the redshift ranges 0.003–0.369, 1.006–1.738,

2.008–3.107, and 3.011–4.475, respectively (Walter et al.
2016; Decarli et al. 2019).

2.2. CO Sample

To inspect the data cubes we used the LineSeeker line
search routine (González-López et al. 2017). This algorithm
convolves the data along the frequency axis with an expected
input line width, reporting pixels with signal-to-noise (S/N)

values above a certain threshold. Kernel widths ranging from
50 to 500 km s−1 were adopted. The probability of each line
candidate of not being due to noise peaks, or Fidelity, F, was
assessed by using the number of negative line sources in the
data cube, with F=1−NNeg/NPos. Here, NNeg and NPos

correspond to the number of negative and positive emission
line candidates with a given S/N value in a particular kernel
convolution (González-López et al. 2019). We select the
sources for which the fidelity is above 0.9. This yields 16
selected line candidates. All of them, except two sources have
fidelity values of 1.0. We find that 3 mm.15 and 3 mm.16 have
fidelity values of 0.99 and 0.92, respectively. All these sources
are very unlikely to be false positives, based on the statistics
presented by González-López et al. (2019). Two other
independent line searches were performed using similar
algorithms with the findclumps (Decarli et al. 2016a; Walter
et al. 2016) and MF3D (Pavesi et al. 2018) codes. All the
algorithms coincide in the statistical reliability of these sources.
As we mention below, all the selected sources have reliable and
matching optical/near-infrared counterparts. The sample of 16
line candidates thus constitutes our primary sample, all of
which have S/N>6.4.
Two additional sources were selected based on the

availability of an optical spectroscopic redshift and a matching
positive line feature in the ALMA cube at the corresponding
frequency. By construction, these sources are selected at lower
significance than the CO-selected sources. For more details
please refer to Boogaard et al. (2019). This makes up a sample
of 18 galaxies detected in CO emission by the ASPECS
program in band-3.

2.3. Ancillary Data and SEDs

Our ALMA observations cover roughly the same region as
the Hubble XDF. Available data include Hubble Space
Telescope (HST) Advanced Camera for Surveys and Wide
Field Camera 3 IR data from the HUDF09, HUDF12, and
Cosmic Assembly Near-infrared Deep Extragalactic Legacy
Survey (CANDELS) programs, as well as public photometric
and spectroscopic catalogs (Coe et al. 2006; Xu et al. 2007;
Rhoads et al. 2009; McLure et al. 2013; Schenker et al. 2013;
Bouwens et al. 2014; Skelton et al. 2014; Momcheva et al.
2015; Morris et al. 2015; Inami et al. 2017). In this study, we
make use of this optical and infrared coverage of the XDF,
including the photometric and spectroscopic redshift informa-
tion available from Skelton et al. (2014). The area covered by
the ASPECS LP footprint was observed by the Multi-Unit
Spectroscopic Explorer (MUSE) Hubble Ultra Deep Survey
(Bacon et al. 2017), representing the main optical spectroscopic
sample in this area (Inami et al. 2017). The MUSE at the ESO
Very Large Telescope provides integral field spectroscopy in
the wavelength range 4750–9350Å of a 3′×3′ region in the
HUDF, and a deeper 1′×1′ region, which mostly overlaps
with the ASPECS field. The MUSE spectroscopic survey
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provides spectroscopic redshifts for optically faint galaxies at
the ∼30 mag level, and is thus very complimentary to our
ASPECS survey. In addition to the HST coverage, a wealth of
optical and infrared coverage from ground-based telescopes is
available in this field, including the Spitzer Infrared Array
Camera (IRAC) and Multiband Imaging Photometer (MIPS), as
well as by the Herschel PACS and SPIRE photometry (Elbaz
et al. 2011). From this, we created a master photometric and
spectroscopic catalog of the XDF region as detailed in Decarli
et al. (2019), which includes >30 bands for ∼7000 galaxies,
475 of which have spectroscopic redshifts.

We fit the SED of the continuum-detected galaxies using
the high-redshift extension of MAGPHYS (da Cunha et al.
2008, 2015), as described in detail in Boogaard et al. (2019).
We use the available broad- and medium-band filters in the
optical and infrared regimes, from the U band to Spitzer IRAC
8 μm, including also the Spitzer MIPS 24 μm and Herschel
PACS 100 μm and 160 μm. We also include the ALMA 1.2-
mm and 3.0-mm data flux densities from Dunlop et al. (2017)
and González-López et al. (2019); however, we note that the
optical/infrared data have a much stronger weight given the
tighter constraints in this part of the spectra. We do not include
Herschel SPIRE photometry in the fits because its angular
resolution is very poor, being almost the size of our target field
for some of the IR bands. For each individual galaxy, we
perform SED fits to the photometry fixed at the CO redshift.
MAGPHYS employs a physically motivated prescription to
balance the energy output at different wavelengths. MAGPHYS

delivers estimates for the stellar mass, SFR, dust mass, and IR
luminosity. Estimates on the IR luminosity and/or dust mass
come from constraints on the dust-reprocessed UV light, which
is well sampled by the UV-to-infrared photometry. The derived
parameters are listed in Table 2.

3. Results

3.1. CO Measurements

By construction, the ASPECS CO-based sources presented
here are selected through their high significance CO line
detection. The moment-0 images for each galaxy are created by
collapsing the data cube along the frequency axis, considering
all the channels within the 99.99% percentile range of the line
profile. Figure 1 shows a combined CO image of all the
moment-0 maps of these sources, highlighting the location of
each of these sources in the field. This map is obtained by
coadding all the individual moment-0 line maps, after masking
all the pixels with S/N below 2.5σ. Figure 2 shows the CO
spectral profiles, obtained at the peak position of each of the
sources (see also Appendix B).

Following González-López et al. (2019), the total CO
intensities were derived from the ASPECS band-3 data cube
by creating moment-0 images, collapsing the cube in velocity
around the detected CO lines, and spatially integrating the
emission from pixels within a region containing the CO
emission (see González-López et al. 2019, for more details).

All of our CO sources are clearly identified with optical
counterparts, as described in detail by Boogaard et al. (2019).
While for most of these sources a photometric redshift is
enough to provide an identification of the actual CO line
transition and redshift, a large fraction of them is matched with
a MUSE spectroscopic redshift. In three cases (3 mm.8,
3 mm.12, and 3 mm.15), the CO line emission can be either

associated with multiple optical sources, due to the higher
angular resolution of the optical HST images, or the candidate
CO redshift does not coincide with any of the cataloged
photometric or spectroscopic redshifts. In these cases, inspec-
tion of the MUSE data cube is critical (Boogaard et al. 2019).
For the source 3 mm.13, identified with a CO(4−3) source at
z∼3.601 we search for a nearby [C I] 1–0 emission line;
however, no emission is found at the explored frequency range
(see Appendix A). Table 1 lists the CO fluxes, positions, and
derived CO redshifts.
We compute the CO luminosities, ¢LCO in units of K km s−1 pc2,

following Solomon et al. (1997):

( ) ( )n¢ = ´ +- -L z D F3.25 10 1 , 1CO
7

r
2 3

L
2

CO

where νr is the rest frequency of the observed CO line, in GHz, DL

is the luminosity distance at redshift z, in Mpc, and FCO is the

integrated CO line flux in Jy km s−1. Following Decarli et al.

(2016a), we convert the CO luminosities observed at transition

CO(  -J J 1) to the ground transition CO(J=1−0) assum-
ing a line brightness temperature ratio, –= ¢ ¢ -r L LJ JJ1 CO 1 CO 1 0.

From previous observations of massive MS galaxies (Daddi et al.

2015), we adopt r21=0.76±0.09, r31=0.42±0.07, and

r41=0.31±0.06. The uncertainties in ¢LCO account for the

uncertainties in the flux measurements and for the uncertainties

due to dispersion in the average rJ1 values measured by Daddi

et al. (2015). Since the Daddi et al. (2015) observations do not

measure the CO(4−3) lines, but rather CO(3−2) and CO(5−4),

we extrapolate between those two lines (i.e., we follow the same

approach as Decarli et al. 2016b). We note that so far the Daddi

Figure 1. Rendered CO image toward the HUDF, obtained by coadding the
individual average CO line maps around the 16 bright CO-selected galaxies
and the 2 lower significance MUSE-based CO sources (labeled MP). Regions
with significances below 2.5σ in each of the average maps are masked out prior
to combination. The location of these individual detections is highlighted by
solid circles and their IDs. The tendency of sources to lie in the top two-thirds
of the map is likely a combination of clustering and chance, given the
sensitivity of the observations is fairly uniform across this region. We note that
in this representation of the combined CO map, some individual images might
have larger weight (lower noise) than others, and thus some noise peaks might
appear as brighter than other statistically significant sources.
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et al. CO excitation measurements are the only ones available for

similar galaxies at these redshifts. These measurements yield

excitation values that are intermediate between low-excitation

scenarios such as the external part of the disk in the Milky Way

and higher-excitation thermalized scenarios in the J=3–5 range.

This implies that we would not be too far off on either side, if we

relax our excitation assumptions. We thus compute the molecular

gas masses, in units of M
e
, as

( )a
a

= ¢ = ¢-  -M L
r

L , 2
J

J JH CO CO 1 0
CO

1
CO 12

where αCO is the CO luminosity to gas mass conversion factor

in units M
e

(K km s−1 pc2)−1. The value of αCO has been

found to vary from galaxy to galaxy locally, and to depend on

various properties of the host galaxies including metallicity and

galactic environment (Bolatto et al. 2013). There is a clear

dependency of decreasing αCO values with increasing metalli-

city (Wilson 1995; Boselli et al. 2002; Leroy et al. 2011;

Genzel et al. 2012; Schruba et al. 2012), but there is also a

trend with morphology, with lower αCO for compact starbursts

(Downes & Solomon 1998) compared to extended disks such

as the Milky Way. Based on previous observations of massive

MS galaxies (Daddi et al. 2010b, 2015; Genzel et al. 2015), we

assume a value αCO=3.6M☉ (K km s−1 pc2)−1.
To check the reliability of our choice of αCO, we performed

an independent computation of this parameter using the

Figure 2. CO line emission profiles obtained from the ALMA 3 mm data cube, toward the 16 most significant CO-selected detections. The spectra are centered at the
identified line, and shown at a width of 7.813 MHz per channel (∼25 km s−1

). For the sources in the bottom row, the spectra have been rebinned by a factor of 2.
The red solid line, represents a one-dimensional Gaussian fit to the profiles. The profiles are obtained by extracting the spectra in the original cube, at the location of
the peak position identified in the moment-0 image. The gray shaded area corresponds to the velocity range used to obtain the moment-0 images used in Figure 1.
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metallicity-dependent approach detailed in Tacconi et al.
(2018). This method uses assumptions about the stellar
mass–metallicity and the αCO–metallicity relations. Using this
prescription, we find very homogeneous metallicity-dependent

αCO values for the ASPECS CO galaxies. Excluding one
source, we find a median of 4.4M

e
(K km s−1 pc2)−1 and a

standard deviation of 0.5M
e

(K km s−1 pc2)−1. The excluded
source, 3 mm.13, however, is an outlier with αCO∼13M

e

Table 1

Observed CO Properties

ID R.A. Decl. zCO Jup S/N FWHM FCO ( )
¢  -L J JCO 1 ¢ -LCO 1 0

(J2000) (J2000) (km s−1
) (Jy km s−1

) (1010 K km s−1 pc2) (1010 K km s−1 pc2)

(1) (2) (3) (4) (5) (6) (7) (8) (9 (10))

1 03:32:38.54 −27:46:34.62 2.543 3 37.7 517±21 1.02±0.04 3.40±0.14 8.10±0.34

2 03:32:42.38 −27:47:07.92 1.317 2 17.9 277±26 0.47±0.04 1.08±0.10 1.42±0.13

3 03:32:41.02 −27:46:31.56 2.453 3 15.8 368±37 0.41±0.04 1.28±0.12 3.04±0.28

4 03:32:34.44 −27:46:59.82 1.414 2 15.5 498±47 0.89±0.07 2.31±0.19 3.03±0.25
5 03:32:39.76 −27:46:11.58 1.550 2 15.0 617±58 0.65±0.06 2.03±0.19 2.67±0.24

6 03:32:39.90 −27:47:15.12 1.095 2 11.9 307±33 0.48±0.06 0.77±0.09 1.01±0.12

7 03:32:43.53 −27:46:39.47 2.697 3 10.9 609±73 0.76±0.09 2.81±0.34 6.68±0.81
8 03:32:35.58 −27:46:26.16 1.382 2 9.5 50±8 0.16±0.03 0.39±0.06 0.52±0.08

9 03:32:44.03 −27:46:36.05 2.698 3 9.3 174±17 0.40±0.04 1.48±0.16 3.52±0.39

10 03:32:42.98 −27:46:50.45 1.037 2 8.7 460±49 0.59±0.07 0.85±0.10 1.12±0.13

11 03:32:39.80 −27:46:53.70 1.096 2 7.9 40±12 0.16±0.03 0.25±0.05 0.33±0.07
12 03:32:36.21 −27:46:27.78 2.574 3 7.0 251±40 0.14±0.02 0.47±0.06 1.12±0.15

13 03:32:35.56 −27:47:04.32 3.601 4 6.8 360±49 0.13±0.02 0.42±0.06 1.35±0.19

14 03:32:34.84 −27:46:40.74 1.098 2 6.7 355±52 0.35±0.05 0.56±0.08 0.73±0.11

15 03:32:36.48 −27:46:31.92 1.096 2 6.5 260±39 0.21±0.03 0.34±0.05 0.45±0.07
16 03:32:39.92 −27:46:07.44 1.294 2 6.4 125±28 0.08±0.01 0.18±0.03 0.23±0.04

MP01 03:32:37.30 −27:45:57.80 1.096 2 4.5 169±21 0.13±0.03 0.21±0.05 0.28±0.07
MP02 03:32:35.48 −27:46:26.50 1.087 2 4.0 107±30 0.10±0.03 0.16±0.05 0.20±0.06

Note. (1) Source ID. ASPECS-LP.3 mm.xx. (2)-(3) CO coordinates of the detection (González-López et al. 2019). (4) CO redshift. (5) Observed CO transition.

(6) Signal-to-noise ratio of the detection. (7) CO line full width at half maximum (FWHM). (8) Integrated CO line intensity. (9) CO luminosity of the observed CO

transition. (10) CO(1−0) luminosity, inferred from the observed transitions, under the assumptions mentioned in the main text.

Table 2

ISM Properties of ASPECS CO Galaxiesa

ID zCO SFR Mstars sSFR Mmol fmol tdep LIR
(M

e
yr−1

) (1010 M
e
) (Gyr−1

) (1010 M
e
) (Gyr) (1011 L

e
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 2.543 -
+233 0
0

-
+2.4 0.0
0.0

-
+9.3 0.0
0.0 29.1±1.2 -

+12.2 0.5
0.5

-
+1.2 0.1
0.1

-
+80 0
0

2 1.317 -
+11 0
3

-
+15.5 1.0
0.7

-
+0.1 0.0
0.0 5.1±0.5 -

+0.33 0.04
0.03

-
+4.6 0.4
1.1

-
+3.1 0.0
0.5

3 2.453 -
+68 20
19

-
+5.0 0.9
1.0

-
+1.3 0.4
0.6 10.9±1.0 -

+2.2 0.5
0.5

-
+1.6 0.5
0.5

-
+8.9 2.6
2.6

4 1.414 -
+61 12
3

-
+18.2 2.0
1.3

-
+0.3 0.1
0.0 10.9±0.9 -

+0.60 0.08
0.07

-
+1.8 0.4
0.2

-
+9.6 1.2
0.2

5 1.550 -
+62 19
6

-
+32 2
1

-
+0.2 0.1
0.0 9.6±0.9 -

+0.30 0.03
0.03

-
+1.6 0.5
0.2

-
+11 3
1

6 1.095 -
+34 1
0

-
+3.7 0.0
0.1

-
+0.9 0.0
0.0 3.7±0.4 -

+1.0 0.1
0.1

-
+1.1 0.1
0.1

-
+3.5 0.1
0.0

7 2.697 -
+187 16
38

-
+12 1
2

-
+1.7 0.5
0.3 24±3 -

+2.0 0.3
0.4

-
+1.3 0.2
0.3

-
+22 2
4

8 1.382 -
+35 5
7

-
+4.8 0.1
0.2

-
+0.8 0.2
0.1 1.9±0.3 -

+0.39 0.06
0.06

-
+0.53 0.11
0.14

-
+4.2 0.6
0.8

9 2.698 -
+318 34
39

-
+13 1
3

-
+2.4 0.3
0.6 12.7±1.4 -

+1.0 0.1
0.2

-
+0.40 0.06
0.07

-
+36 4
4

10 1.037 -
+18 1
0

-
+12. 1
1

-
+0.2 0.0
0.0 4.0±0.5 -

+0.33 0.05
0.04

-
+2.2 0.3
0.3

-
+4.5 0.4
0.1

11 1.096 -
+10 1
0

-
+1.5 0.1
0.0

-
+0.7 0.1
0.0 1.2±0.3 -

+0.78 0.18
0.16

-
+1.2 0.3
0.3

-
+1.1 0.1
0.0

12 2.574 -
+31 3
18

-
+4.4 0.5
0.3

-
+0.7 0.0
0.5 4.1±0.5 -

+0.93 0.16
0.14

-
+1.3 0.2
0.8

-
+3.4 0.3
2.2

13 3.601 -
+41 8
16

-
+0.6 0.1
0.1

-
+9 4
2 4.9±0.7 -

+8.5 1.9
2.3

-
+1.2 0.3
0.5

-
+4.2 1.0
1.9

14 1.098 -
+27 5
1

-
+4.1 0.5
0.5

-
+0.6 0.00
0.06 2.6±0.4 -

+0.65 0.13
0.12

-
+1.0 0.2
0.2

-
+3.4 0.8
0.2

15 1.096 -
+62 4
0

-
+0.5 0.0
0.4

-
+12 6
0 1.6±0.2 -

+3.2 0.5
2.8

-
+0.26 0.04
0.04

-
+6.9 0.0
0.0

16 1.294 -
+11 3
1

-
+2.1 0.1
0.3

-
+0.5 0.1
0.1 0.8±0.2 -

+0.39 0.07
0.09

-
+0.73 0.22
0.14

-
+1.0 0.3
0.1

MP01 1.096 -
+8 2
3

-
+1.3 0.1
0.2

-
+0.52 0.15
0.23 1.0±0.2 -

+0.73 0.17
0.20

-
+1.2 0.4
0.5

-
+0 80
80

MP02 1.087 -
+25 0
0

-
+2.8 0.0
0.0

-
+0.9 0.0
0.0 0.75±0.22 -

+0.26 0.08
0.08

-
+0.30 0.09
0.09

-
+2.9 0.2
0.7

Note.
a
As noted by Boogaard et al. (2019), formal uncertainties on the derived parameters from the SED fitting are small, systematic uncertainties can be up to 0.3 dex

(Conroy 2013). (1) Source ID. ASPECS-LP.3 mm.xx (2) CO redshift. (3)-(5) SFR, stellar mass and specific SFR, derived from MAGPHYS SED fitting. (6) Molecular

gas mass, computed from the CO line luminosity, ¢LCO and assuming a CO luminosity to gas mass conversion factor a = M3.6CO (K km s−1 pc2)−1. (7) Gas

fraction, defined as =f M Mmol mol stars. (8) Molecular gas depletion timescale, =t Mdep mol/SFR. (9) IR luminosity estimate provided by MAGPHYS SED fitting.
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(K km s−1 pc2)−1. Given the close to solar metallicities
measured in our z∼1.5 ASPECS CO sources (Boogaard
et al. 2019), and for consistency with other papers in this series,
in the following we assume a fixed αCO=3.6M☉

(K km s−1 pc2)−1. This will yield <0.1 dex differences in the
molecular gas mass estimates throughout this study with
respect to the metallicity-dependent approach. The following
analysis has been checked to remain unchanged if we were
assuming a metallicity-dependent αCO prescription. The
computed CO luminosities are listed in Table 1. The
corresponding molecular gas masses are listed in Table 2.

3.2. CO Luminosity versus FWHM

Following Bothwell et al. (2013), if the CO line emission is
able to trace the mass and kinematics of the galaxy, then the
CO luminosity ( ¢LCO), a tracer of the molecular gas mass and
thus proportional to the dynamical mass of the system within
the CO radius (where baryons are expected to be dominant),
should be related to the CO line FWHM. A simple
parameterization for this relationship is given by (see Harris
et al. 2012; Bothwell et al. 2013; Aravena et al. 2016a):

⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠
( )

a
¢ =

D
L C

R

G

v

2.35
, 3CO

CO

FWHM
2

where R is the CO radius in units of kpc, DvFWHM is the line

FWHM in km s−1, αCO is the CO luminosity to molecular gas

mass conversion factor in units of M
e

(K km s−1 pc2)−1, and G

is the gravitational constant, and C is a constant that depends

on the source geometry and inclination (Erb et al. 2006;

Bothwell et al. 2013). A similar argument follows for the

possible relation between stellar mass and line FWHM.
Figure 3 (left) shows the relationship between the CO

luminosities and the line FWHM for our ASPECS CO galaxies,
compared to a compilation of high-redshift galaxies detected in
CO line emission from the literature. This includes a sample of
unlensed submillimeter galaxies (Frayer et al. 2008; Coppin
et al. 2010; Carilli et al. 2011; Riechers et al. 2011, 2014;
Thomson et al. 2012; Bothwell et al. 2013; Hodge et al. 2013;
Ivison et al. 2013, 2011; De Breuck et al. 2014) and z>1 MS

galaxies (Daddi et al. 2010b; Magdis et al. 2012, 2017;

Magnelli et al. 2012; Tacconi et al. 2013). CO line luminosities

for MS galaxies have been corrected down to CO(1−0) using

the line ratios mentioned above. All the submillimeter galaxies

shown have observations of either CO(1−0) or CO(2−1)

available, and no correction has been applied in these cases.

Also shown in Figure 3, are the parameterization of the ¢LCO

versus FWHM relationship for two representative cases

including a disk galaxy model, with C=2.1, R=4 kpc, and
αCO=4.6M☉ (K km s−1 pc2)−1; and a isotropic (spherical)

source, with C=5, R=2 kpc, and αCO=0.8M☉

(K km s−1 pc2)−1. A positive correlation is seen between ¢LCO

and the line FWHM, as already found in previous studies (e.g.,

Harris et al. 2012; Bothwell et al. 2013; Aravena et al. 2016a).

The scatter in this plot is driven by the different CO sizes (R)

and inclinations among sources, as well as the choices of αCO

and line ratios. Interestingly, most of the ASPECS CO sources

seem to cluster around the “disk” model line and appear to

follow a preferred geometry. Similarly, most submillimeter

galaxies appear to lie closer to the “spherical” model line.

However, this depends on the choice of parameters for the

plotted models (a spherical model would also be able to pass

through the ASPECS points). Inspection of the optical images

(see Appendix C) show that the galaxies’ morphologies are

complex (see also Boogaard et al. 2019). Instead, this could

either hint toward a possible homogeneity of the ASPECS

galaxies in terms of their geometry and αCO factors or just a

conspiracy of these. Interestingly, two sources, 3 mm.8 and

3 mm.11, show very narrow line widths (40 and 50 km s−1,

respectively) for their expected ¢LCO. Inspection of the HST

images (see Appendix C) shows that these galaxies are very

likely face-on, and thus the reason for such narrow line widths.
Figure 3 (right) shows the stellar mass versus the CO

line FWHM. Among the CO sources from the literature, only

those with a stellar mass measurement available are shown.

More scatter is apparent in this case, arguing for a relative

disconnection between the stellar and molecular components.

However, the intrinsic uncertainties and differences in the

computation of stellar masses makes this difficult to study with

the current data.

Figure 3. (Left) Estimated CO(1−0) line luminosities as a function of the line widths (Δ vFWHM) for the ASPECS sources, compared to a compilation of galaxies from
the literature detected in CO line emission, including unlensed submillimeter galaxies (Frayer et al. 2008; Coppin et al. 2010; Carilli et al. 2011; Riechers
et al. 2011, 2014; Thomson et al. 2012; Bothwell et al. 2013; Hodge et al. 2013; Ivison et al. 2013, 2011; De Breuck et al. 2014) and MS galaxies (Daddi et al. 2010b;
Magnelli et al. 2012; Magdis et al. 2012, 2017; Tacconi et al. 2013; Freundlich et al. 2019). The dashed lines represent a simple “virial” functional form for the CO
luminosity for a compact starburst and an extended disk (Section 3.2). The actual location of each of these lines depends on the choice of geometry and αCO factor.
(Right) Stellar masses vs. line widths for the ASPECS sources, compared to the literature (where stellar mass estimates are available).
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4. Analysis and Discussion

4.1. CO-selected Galaxies in Context

The ASPECS CO survey redshift selection function for CO
line detection is roughly limited to galaxies at z>1, with a
small gap at z=1.78–2.00. While it is also possible to detect
CO(1−0) for galaxies at z<0.4, the volume surveyed is too
small to provide enough statistics.

To put our galaxies into context with respect to previous
ISM observations, we compare the properties of the ASPECS
CO galaxies with the compilation published as part of the
“Plateau de Bureau High-z Blue Sequence Survey,” PHIBBS
(Tacconi et al. 2013) and PHIBSS2 (Tacconi et al. 2018;
Freundlich et al. 2019). This provides the largest compilation to
date of targeted molecular gas mass measurements from CO
line observations, 1 mm dust photometry and far-infrared SEDs
for 1444 galaxies selected from different extragalactic fields
(Gao & Solomon 2004; Greve et al. 2005; Tacconi et al.
2006, 2008; Graciá-Carpio et al. 2008; Graciá-Carpio 2009;
Daddi et al. 2010b; Riechers et al. 2010; Tacconi et al.
2010, 2013; Combes et al. 2011, 2013; Saintonge et al.
2011a, 2011b, 2013, 2016, 2017; García-Burillo et al. 2012;
Magdis et al. 2012; Magnelli et al. 2012, 2014; Bauermeister
et al. 2013; Bothwell et al. 2013; Santini et al. 2014; Béthermin
et al. 2015; Genzel et al. 2015; Silverman et al. 2015;
Tadaki et al. 2015, 2017; Aravena et al. 2016b; Barro et al.
2016; Berta et al. 2016; Decarli et al. 2016b; Scoville et al.
2016; Schinnerer et al. 2016; Dunlop et al. 2017). The full
compilation contains galaxies selected from various different
observations and surveys, and thus with different selection
functions (Tacconi et al. 2018). To provide a meaningful
comparison, we restrict this sample to sources observed as part
of the PHIBSS and PHIBSS2 surveys only, detected in CO line
emission at z>1 (i.e., excluding dust continuum measure-
ments) from Tacconi et al. (2018). This yields a sample of 87
PHIBSS1/2 CO sources at z>1, compared to the 18 ASPECS
CO sources, spanning a significant range of properties
(SFR∼10–1000M

e
yr−1and Mstars=109.5–1011.8M

e
).

Given the different nature of the ASPECS survey compared
to targeted observations, it is interesting to check how different
the ASPECS selection is in terms of basic galaxy parameters.
Figure 4 shows the distribution of redshift, stellar mass, SFR,
and CO-derived gas masses for all ASPECS CO galaxies, as

well as the MUSE-based CO sample, compared with the
normalized distribution of z>1 PHIBSS1/2 CO galaxies (a
normalization factor of one-fifth has been used).
Except for the redshift, these parameters show different

distributions for the ASPECS CO galaxies when compared to
the z>1 PHIBSS1/2 CO galaxies. The ASPECS CO galaxies
span a range of two orders of magnitude in stellar mass and
three orders of magnitude in SFR. The ASPECS CO galaxies’
distributions tend to have lower stellar masses and lower SFRs,
with median values of ∼1010.6M☉ and 35M☉ yr−1, respec-
tively, whereas the bulk of the z>1 PHIBSS1/2 CO galaxies
have median stellar masses and SFRs of 1010.8M

e
and

∼100M
e
yr−1, respectively. While there are a few literature

galaxies with stellar masses below 1010.2 M
e
, a larger fraction

of ASPECS CO galaxies are located in this range (4 out of 18).
We find a clear difference in SFRs between our galaxies and
the z>1 PHIBSS1/2 CO sample, with all except three
ASPECS CO galaxies lying below ∼100M☉ yr−1 and the bulk
of the PHIBSS1/2 CO galaxies above this value. Similarly,
while almost none of the galaxies in the comparison sample are
found with SFR<25M

e
yr−1, 5 out of the 18 ASPECS CO

sources are found in this range. Furthermore, the ASPECS CO
galaxies tend to have a flatter distribution of molecular gas
masses and some of them show lower values than the
PHIBSS1/2 CO galaxies. Since only part of this can be
attributed to differences in the assumed αCO factors (as the
PHIBSS1/2 survey assumes a metallicity/stellar mass depen-
dent αCO), this might reflect differences in parameter space
between these surveys, i.e., the lower stellar masses and SFRs
inherent to our survey.
To quantify these differences between the ASPECS CO and

the PHIBSS1/2 CO z>1 samples, we computed the two sided
Kolmogorov–Smirnov (KS) statistic, which yields the prob-
ability that two data sets are drawn from the same distribution.
We find KS probabilities of 0.05, 2.3×10−4, and 0.06 for the
stellar mass, SFR, and molecular gas mass, respectively. These
low values of the KS probability for the stellar mass and SFR
distributions point to the differences in the selection between
the ASPECS and PHIBSS1/2 surveys, because the latter
explicitly did not select galaxies with low SFRs.
Figure 5 shows the location of the ASPECS CO galaxies in

the SFR versus stellar mass plane, compared to the z>1
PHIBSS1/2 CO galaxies. The ASPECS galaxies are depicted

Figure 4. Distribution of galaxy properties (SFR, stellar mass, specific SFR, and derived gas mass) for the CO line sources in the ASPECS field. The black solid,
yellow shaded histograms represent the distributions of all ASPECS CO sources (both CO and MUSE based). The gray shaded histograms present the distribution of
the MUSE-based sources only. The light blue histograms show the distribution of the z>1 PHIBSS1/2 CO sources (Tacconi et al. 2013, 2018). The number of
PHIBSS1/2 sources is normalized by a factor of one-fifth for displaying purposes. Due to its uncertain photometry and thus SED fit, 3 mm.12 is not considered in this
figure. A fixed conversion factor αCO=3.6 (K km s−1 pc2)−1 has been assumed for the ASPECS CO sources. The comparison sample uses a metallicity-based
prescription for this parameter.
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by large circles and triangles, color-coded to denote their
redshifts. Also shown, are the observational relationships
derived for the MS galaxies as a function of redshift (Schreiber
et al. 2015). We choose to use the Schreiber et al. (2015) MS
relationships as a comparison because this prescription is
tunable to a specific redshift, produces curves that are similar to
those used in other studies (e.g., Speagle et al. 2014; Whitaker
et al. 2014), and reproduces the location of the PHIBSS1/2
sources in the MS plane well. A complementary view of the
SFR versus stellar mass plot is shown in Figure 6, which
presents the sSFR as a function of the stellar mass. The right
panel in particular shows the sSFR normalized by the expected
sSFR value of the MS (i.e., the offset from the MS). The sSFR
of each galaxy is normalized by the expected sSFR value of the
MS at the galaxies’ redshift and stellar mass, using the MS
prescription presented by Schreiber et al. (2015).

Aside from the larger parameter space explored by the
ASPECS survey, as mentioned above, we find two galaxies that
are significantly below the MS of star-forming galaxies at their
respective redshift: 3 mm.2 and 3 mm.10, corresponding to
12.5% of the CO-selected sample. These galaxies would be
classified as “quiescent” galaxies, as their sSFRs are a factor of
at least ∼0.4 dex below the value of the MS of galaxies at each
particular redshift for a fixed stellar mass. Conversely, in three
cases (3 mm.1, 3 mm.13, and 3 mm.15) the location of the
sources on this plot makes them consistent with “starbursts,”
lying 0.4 dex above the MS, and corresponding to 18.7% of the
CO-selected sample. This implies that ∼30% of the CO-
selected sample corresponds to galaxies off the MS. Note that
this would still be valid if we consider systematic uncertainties
between different calibrations of the MS as a selection of the
MS lines. However, differences in the methods used to

compute the SFRs and stellar masses by different studies
(e.g., Whitaker et al. 2014; Schreiber et al. 2015) compared to
the MAGPHYS SED fitting method used here can bring
our “quiescent” sources closer to the respective MS lines
(e.g., Mobasher et al. 2015). We refer the reader to Boogaard
et al. (2019) for a more detailed discussion on this subject.
Figure 7 shows the measured SFRs and CO-derived gas

masses for the ASPECS CO galaxies compared to
the PHIBSS1/2 CO z>1 sample. Dashed lines represent the
location of constant depletion timescales (tdep; see below for the
definition of this parameter). Despite the differences between
the ASPECS sources and the PHIBSS1/2 CO z>1 sample
shown in Figures 4 and 5, the majority of the ASPECS galaxies
follow relatively tightly the tdep∼1 Gyr line in the SFR–Mmol

plot (see Figure 8). This is consistent with the location of the
bulk of PHIBSS1/2 CO z>1 galaxies, which lie just above
this line. Only one ASPECS source, 3 mm.2, tends to lie
significantly below this trend, closer to the tdep=10 Gyr curve.
Interestingly, we find that the galaxy with the largest offset

below the MS line in Figure 5, 3 mm.2, appears to have a
significant reservoir of molecular gas (>1010M☉), which
would be able to sustain star formation for about 5 Gyr at the
current rate (Figure 7). This could be interpreted in the sense
that this galaxy might have just recently left the MS of star-
forming galaxies and/or might have recently replenished its
molecular gas reservoir. Conversely, the starburst galaxies
3 mm.9 and 3 mm.15 are consistent with short gas depletion
timescales (<1 Gyr) as typically found in these kinds of
galaxies.

4.2. Gas Depletion Timescales and Gas Fractions

The molecular gas depletion timescale is defined as the time
needed to exhaust the current molecular gas reservoir at the
current level of star formation in a galaxy. In the absence of
feedback mechanisms (inflows/outflows) the consumption of
the molecular gas is driven by star formation, and thus the gas
depletion timescale can be defined as tdep=Mmol/SFR.
Similarly, the gas fraction corresponds to a measurement of
how much of the baryonic mass of the galaxy is in the
molecular form. This parameter is typically defined as

( )= +f M M Mgas mol mol stars . For this work, we use a simpler

quantity, the molecular gas ratio, defined as μmol=Mmol/
Mstars. Current measurements based on targeted CO and dust
observations of star-forming galaxies indicate that both
parameters, tdep and fgas (or μmol), follow clear scaling relations
with redshift, sSFR, and stellar mass (Scoville et al. 2017;
Tacconi et al. 2018). These studies indicate that the gas
depletion timescales evolve moderately with redshift, following
∝(1+z)α. The value of α has been found to be −0.62 from
observational studies (e.g., Tacconi et al. 2013, 2018), while
theoretical studies suggest α=−1.5 (Davé et al. 2012). The
sSFR follows a steeper evolution with redshift with sSFR

( )µ + b -z M1 stars
0.1, with β between 5/3 and 3 (Lilly et al. 2013).

Due to the close relationship between these parameters,
m = t sSFRmol dep or [ ( ) ]= + - -f t1 sSFRmol dep

1 1, the molecu-
lar gas fraction is thus predicted to follow a much stronger
evolution with ( ) –µ +f z1mol

1.8 2.5. To match up the mild
evolution of molecular gas depletion timescales with the evolution
of the molecular gas ratios or fractions, galaxies might need high
accretion rates (Scoville et al. 2017). While these scaling relations
have been successful to describe the properties of star-forming
galaxies preselected from optical/near-IR surveys, it is not clear to

Figure 5. SFR vs. stellar mass diagram for the ASPECS CO sources, compared
to PHIBSS1/2 CO sources at z>1. The PHIBSS1/2 galaxies are represented
by the blue contours. The solid lines represent the observational relationships
between SFR and stellar mass at different redshifts derived by Schreiber et al.
(2015). These redshifts are denoted in different colors as shown by the color
bar to the right. Three of the ASPECS CO-selected galaxies lie >0.4 dex below
the MS at their respective redshifts (3 mm.2 and 3 mm.10).
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what level they extend to the CO-selected galaxies presented in
this study.

Figure 8 depicts the distributions of tdep and μmol of the
ASPECS CO galaxies compared to the z>1 PHIBSS1/2 CO
galaxies. The range of the distributions of tdep for both samples
appears similar, although the ASPECS CO galaxies seem to
have systematically higher tdep. This difference could be driven
by the lower SFRs in the ASPECS sources and in principle this
could be driven by the systematic differences in the SED fitting
methods (Mobasher et al. 2015). However, we should note that

some of the ASPECS CO galaxies have systematically lower

gas masses. This could be only partly driven by the different

prescriptions used for the αCO conversion factor between the

different samples, because the distributions of molecular gas

masses mostly overlap (Figure 4). Conversely, the distributions

of μmol appear similar, covering identical ranges. A KS test

comparing the distributions of μmol and tdep yields probabilities

of 0.33 and 0.0012, respectively, indicating that the ASPECS

CO sources follow a different tdep distribution than the

PHIBSS1/2 CO z>1 sample.
Figure 9 shows the standard scaling relation between tdep and

sSFR for the ASPECS CO galaxies, compared to the

PHIBSS1/2 CO z>1 sample. While the distribution of

ASPECS galaxies appears considerably wider in this plane than

Figure 6. (Left) Specific SFR vs. stellar mass diagram for the ASPECS CO sources, compared to z>1 PHIBSS1/2 CO sources (Tacconi et al. 2013, 2018). (Right)
Specific SFR (normalized by the value of the sSFR expected for the MS, which is a function of the redshift and stellar mass) vs. stellar mass diagram for the ASPECS
CO sources, compared to z>1 PHIBSS1/2 CO sources. In both panels, the PHIBSS1/2 galaxies are represented by the blue contours. In the left panel, the solid lines
represent the observational relationships between SFR (or sSFR) and stellar mass at different redshifts derived by Schreiber et al. (2015). These redshifts are denoted in
different colors as shown by the color bar to the right. In the right panel, the dotted line represents the location of the MS, while the dashed lines represent the location
of sources at +0.4 and −0.4 dex from the MS. Two of the ASPECS CO-selected galaxies lie >0.4 dex below the MS at their respective redshifts (3 mm.2 and
3 mm.10).

Figure 7. SFR vs. Mmol for the ASPECS CO galaxies compared to the z>1
PHIBSS1/2 CO sources (Tacconi et al. 2013, 2018), represented by blue
contours as in Figure 5. The dashed lines represent curves of constant tdep at
0.1, 1, and 10 Gyr. A fixed conversion factor αCO=3.6 (K km s−1 pc2)−1 has
been assumed for the ASPECS CO sources. The comparison sample uses a
metallicity-based prescription for this parameter. Typical values will range
between αCO=2–5 (K km s−1 pc2)−1 for the ASPECS CO sources.

Figure 8. Distribution of derived ISM properties (gas depletion timescale and
gas fraction) for the CO line sources in the ASPECS field. The black solid,
yellow shaded histogram represents the distributions of all ASPECS sources
(both CO and MUSE based). The gray shaded histogram shows the distribution
of the MUSE-based sources only. The light blue histograms show the
distribution of z>1 PHIBSS1/2 CO sources (Tacconi et al. 2013, 2018). Due
to its uncertain counterpart photometry, 3 mm.12 is not considered in this
figure. Sources 3 mm.1 and 3 mm.13 have high values of Mmol/Mstars falling
outside the range covered by this figure. A fixed conversion factor αCO=3.6
(K km s−1 pc2)−1 has been assumed for the ASPECS CO sources. The
comparison sample uses a metallicity-based prescription for this parameter.
Typical values will range between αCO=2–5 (K km s−1 pc2)−1 for the
ASPECS CO sources.
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that of PHIBSS1/2 sources, with a significant fraction of
sources having large gas depletion timescales and sSFR below
1 Gyr−1, the ASPECS CO galaxies fall well within the lines of
constant gas ratio (Mmol/Mstars) at 0.1 and 10 and overall
appear to follow the standard relationship between these
quantities. This is more clearly seen in the right panel, which
shows the sSFR normalized by the expected sSFR value of the
MS (i.e., the offset from the MS), using the MS prescription by
Schreiber et al. (2015). Here, the ASPECS CO-selected
galaxies follow the standard linear trend, supporting a direct
connection between the distance from the MS and the gas
depletion timescale (or inversely the star formation efficiency).
The large span of properties of ASPECS galaxies suggests that
a wider parameter space exists beyond that explored by
targeted gas/dust observations of preselected galaxies.

Figure 10 shows the molecular gas depletion timescales and
molecular gas ratios of ASPECS CO galaxies as a function of
redshift, color-coded by stellar mass, compared to the z>1
PHIBSS1/2 CO sample. The ASPECS CO-selected galaxies
do not show a particular trend of tdep with redshift, and within

the uncertainties they seem consistent with the predicted mild
evolution of this parameter. As also shown in Figure 8, the
ASPECS CO galaxies display a significant span in tdep
compared to the PHIBSS1/2 sample. A stronger evolution is
seen in terms of Mmol/Mstars. If we focus only on the more
massive galaxies, depicted as green and red points, there is an
obvious increase in the average value of the molecular gas ratio
from Mmol/Mstars∼0.3 at z=1 to ∼2 at z=2.5. The
ASPECS CO-selected sample supports the strong evolution
in molecular gas ratio (or fraction) expected from previous
targeted observations and models.

4.3. Molecular Gas Budget

Inspection of Figure 9 and the color-coding of the data
points, suggests there is a tendency of having more starbursting
galaxies with increasing redshift (i.e., higher values of sSFR
with increasing redshift). Conversely, galaxies tend to be more
passive at lower redshifts. This effect is expected by standard
scaling relations and has been seen by previous targeted CO

Figure 9. Molecular gas depletion timescale (tdep) as a function of the specific SFR for the ASPECS CO galaxies. In both panels, the background blue contour levels
represent the distribution of z>1 PHIBSS1/2 CO galaxies (Tacconi et al. 2013, 2018), and the coloring of each ASPECS source represents its respective redshift.
The left panel shows tdep as a function of sSFR. Here the dashed lines represent curves of fixed gas fraction (Mmol/Mstars). The right panel shows the sSFR normalized
by the value of the sSFR expected for the MS (which is a function of the redshift and stellar mass) from Schreiber et al. (2015). In this case, the dashed lines are shown
only for visualization purposes. A fixed conversion factor αCO=3.6 (K km s−1 pc2)−1 has been assumed for the ASPECS CO sources. The comparison sample uses a
metallicity-based prescription for this parameter. Typical values will range between αCO=2–5 M

e
(K km s−1 pc2)−1 for the ASPECS CO sources.

Figure 10. Evolution of the tdepl and fmol=Mmol/Mstars with redshift. The background blue contour levels represent the distribution of galaxies from the PHIBSS1/2
compilation (Tacconi et al. 2013, 2018). As a reference in redshift, we also show as green contours the distribution of galaxies detected in CO line emission at z<0.5
from the PHIBSS1/2 compilation (e.g., from xCOLDGASS, GOALS, and EgNOG surveys). The solid lines show the expected evolution of tdepl and fmol with
redshift, based on previous targeted observations of star-forming galaxies. A fixed conversion factor αCO=3.6 (K km s−1 pc2)−1 has been assumed for the ASPECS
CO sources. The comparison sample uses a metallicity-based prescription for this parameter. Typical values will range between αCO=2–5 M

e
(K km s−1 pc2)−1 for

the ASPECS CO sources.
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surveys (e.g., Tacconi et al. 2013, 2018). The clean CO-based
selection of the ASPECS survey now allows us to investigate
how the total budget of molecular gas in galaxies evolves
as a function of redshift and distance from the MS (i.e.,
galaxy type).

We divided the ASPECS sample into three sets: galaxies
significantly above the MS, with log(δMS)=log(sSFR/sSFRMS)

above 0.4 (“starburst”); galaxies below the MS, with
log(δMS)<−0.4 (“passive”); and galaxies within the MS, with
−0.4<log(δMS)<0.4 (“MS”). We subdivide these samples
into two broad redshift bins: 1.0<z<1.7; 2.0<z<3.1,
which essentially trace the redshift coverage of ASPECS for
CO(2−1) and CO(3−2). Each of these redshift bins contains 10
and 4 sources, respectively (sources 3mm.8 was excluded due to
the ambiguous optical identification and 3mm.13 due to its
redshift outside the defined range). For each redshift bin, we now
ask the question of what is the contribution of each galaxy type to
the total budget of molecular gas (or what fraction of the total
budget they are making up). At each redshift bin, we thus
compute this contribution as the sum of all the molecular gas
masses from galaxies of this particular type divided by the total
molecular gas mass obtained from the recent measurement of
cosmic molecular gas density (rH2

) using ASPECS data (Decarli
et al. 2019).

The result of this exercise is shown in Figure 11. Here, the
different colors represent the galaxy types, and the shaded
regions corresponds to the associated uncertainties in these
measurements. The values of redshifts used in the horizontal
axes correspond to the average redshift among all galaxies in
that redshift bin. These uncertainties in the vertical axes are
computed as the sum in quadrature of the individual molecular

gas mass values, added in quadrature to the statistical
uncertainty, which follows binomial distribution, scaled to
the total molecular gas in that redshift bin.
The fact that we do not reach full completeness when adding

up all CO-selected ASPECS sources is due to the fact that the
total molecular gas density also accounts for fainter galaxies
that are not part of our sample.
While the analysis is still limited by the admittedly low

number of sources (and thus large statistical uncertainties),
there appears to be a difference in the trends followed by the
different galaxy types. MS galaxies seem to have a dominant
contribution to the molecular gas mass budget, which tends to
slightly decrease at high redshifts. This decrease, however, is
likely driven by the drop in the total contribution from our
bright ASPECS galaxies (black curve). Starburst galaxies are
consistent with mild evolution, with a contribution increasing
from ∼5% at z∼1.2 to ∼20% at higher redshift (yet still
consistent with no evolution at 1σ). Passive galaxies appear to
have a decreasing contribution with increasing redshift, falling
from 15% at z∼1.2 to 0% at z∼2.6.
Current IR surveys indicate that starburst galaxies have a

relatively constant, yet minor, contribution to the cosmic SFR
density as a function of redshift, of ∼8%–14% (Sargent et al.
2012; Schreiber et al. 2015), whereas MS galaxies would have
a dominant contribution out to z=2. This is consistent with
the results presented here in terms of the contribution of
starburst and MS galaxies to the molecular gas budget with
redshift, and this consistency is expected if the molecular gas
content is directly linked to the star formation activity in these
kinds of galaxies, except only if there is substantial change in
efficiencies by a particular galaxy type. However, the
decreasing contribution with increasing redshift found for
passive galaxies seems to be in contradiction with recent
findings by Gobat et al. (2018) that quiescent early-type
galaxies at z=1.8 have two orders of magnitude more dust
than early-type galaxies at z∼0. As argued by these authors,
this result implies the presence of leftover molecular gas
in these z∼1.8 quiescent galaxies, which is consumed in a
low-efficient fashion.
This discrepancy can be understood as follows. Starburst

galaxies, typically more abundant at z>1, would rapidly
exhaust most of their molecular gas reservoirs and typically
evolve into passive galaxies. The latter would be more
numerous at lower redshifts (z∼1), and might still retain
some of the leftover molecular gas from the previous starburst
episode(s) (as pointed out by Gobat et al. 2018). Hence, while
passive galaxies might have on average significantly more
molecular gas at higher redshifts (z∼2−3), they still represent
a very minor fraction of the cosmic molecular gas density or
molecular gas budget compared to MS or starburst galaxies. At
lower redshifts (z∼1) passive galaxies would have already
consumed part of their molecular gas reservoirs; however,
because they are more numerous, they would contribute an
increasing fraction to the cosmic molecular gas density. These
“below MS” galaxies would thus not only be more prone to be
detected by surveys like ASPECS. Perhaps most importantly,
this reflects the possibly important, yet overlooked, role of
these kinds of galaxies in the formation of stars in the universe.

5. Conclusions

We have presented an analysis of the molecular gas
properties of a sample of 16 CO line selected galaxies in the

Figure 11. Contribution to the total molecular gas budget from galaxies above
(starburst), in, or below (passive) the MS as a function of redshift inferred from
the ASPECS survey. The blue, green, and red data points and lines represent
galaxies above, in, and below the MS, respectively. The black curve shows the
contribution of all the CO-selected galaxies considered here to the total
molecular gas at each redshift. Each data point is computed from the sum of
molecular gas masses of all galaxies in that redshift bin and galaxy type. The
redshift measurement of each point is computed as the average redshift from all
galaxies in that bin. The shaded region corresponds to the uncertainties of each
measurement.
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ALMA Spectroscopic Survey in the Hubble UDF, plus two

additional CO line emitters identified through optical MUSE

spectroscopy.
The ASPECS CO-selected galaxies follow a tight relation-

ship in the CO luminosity versus FWHM plane, suggestive of

disk-like morphologies in most cases. We find that the

ASPECS CO galaxies span a range in properties compared to

previous preselected galaxies with CO/dust follow-up obser-

vations. Our galaxies are found to lie at z∼1–4, with stellar

masses in the range (0.03–4)×1011M
e
, SFRs in the range

(0–300)M
e
yr−1 and gas masses in the range 5×109M

e
to

1.1×1011M
e
. The wide range of properties shown by the

ASPECS CO galaxies expand the range covered by PHIBSS1/
2 in CO at z>1, with two galaxies falling significantly below

the MS (∼15%) and the other three sources (∼20%) above the

MS at their respective redshifts.
The ASPECS CO galaxies are found to tightly follow the

SFR–Mmol relation, with a typical molecular gas depletion

timescale of 1 Gyr, similar to z>1 PHIBSS1/2 CO galaxies,

yet spanning a range from 0.1 to 10 Gyr. Similarly, the

ASPECS sources are found to span a wide range in molecular

gas ratios ranging from Mmol/Mstars=0.2 to 6.0. Despite the

wide range of properties, the ASPECS CO-selected sources

follow remarkably the standard scaling relation trends of tdep
and μmol with sSFR and redshift.

Finally, we take advantage of the nature of the ASPECS

survey to measure the contribution of the molecular gas budget

as a function of redshift from galaxies above, in, and below the

MS. We find a dominant role from MS galaxies. Starburst

galaxies appear to have a relatively flat contribution of ∼10%

at z=1 and z=2. Conversely, passive galaxies appear to

have a relevant contribution to the molecular gas budget at

z<1, yet almost none at z>1. We argue this could be due to

starbursts evolving into passive galaxies at z∼1, and thus an

increasing number of passive galaxies with leftover molecu-

lar gas.
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Appendix A
Search for [C I] Line Emission

The line identification for one of the ASPECS CO detections,
3mm.13, was found to be consistent with CO(4−3) at a redshift
of 3.601, based on the comparison with the photometric redshift
estimate (Boogaard et al. 2019). At this redshift, the 3mm band
also covers the [C I] 1–0 emission line. We extracted a spectral
profile around the expected frequency of this line; however, no
line detection is found down to an rms of 0.26mJy beam−1 per
21 km s−1 channel or 0.09mJy beam−1 per 200 km s−1 channel.
This places a limit on the line luminosity, assuming the [C I] line
would have the same width as CO(4−3), of [ ]

¢ = ´L 2.7C I

109 Kkm s−1 pc2 (3σ). Following Bothwell et al. (2017), we
compute an upper limit to the molecular gas mass from this [C I]
line measurement (see also Papadopoulos et al. 2004; Wagg et al.
2006) using:
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where DL is the luminosity distance in Mpc, X[C I] is the

[C I]/H2 abundance ratio, which we assume to be 3×105, and
A10 is the Einstein A coefficient equal to 7.93×10−8 s−1. Q10

is the excitation factor, which we set at 0.6 and F[C I] is the [C I]
line intensity in units of Jy km s−1. Thus, we find a 3σ limit

for the [C I]-based molecular gas mass ( ) < ´M H 1.92
C I

1010 M
e
. This limit is consistent with the molecular gas mass

estimate derived from CO of 1.3×1010M
e
. Note that this

estimate extrapolates the CO(4−3) line emission down to

CO(1−0) using a template obtained for massive BzK galaxies

at z=1.5. If the CO SLED is steeper, with CO(4−3) and

CO(1−0) closer to thermal equilibrium, the CO-derived gas

mass would be in better agreement.

Appendix B
Flux Measurements in Tapered Cubes

We explored the possibility that we could be missing some
flux due to sources being extended spatially. For this, we
created a new version of the ASPECS band-3 data cube,
tapered to an angular resolution of ∼3″, which should contain
all of the extended CO line emission. We collapsed this cube,
created the moment−0 images, and computed the integrated
fluxes as the value of the peak pixels in these images. Figure 12
shows the comparison of CO fluxes and line widths between
these two estimates. The flux estimates for almost all sources
are in excellent agreement within the uncertainties.
In the case of source 3 mm.16, the measurement in the

tapered cube not only doubles the flux in the original one, but
also yields a much larger line FWHM. This suggests significant
extended low surface brightness emission, undetected in the
original cube. Manual inspection of the cube, however, shows
that the extra emission can be attributed to noise at large
velocities (>200 km s−1

). All the other sources, however, have
an excellent agreement between their measured FWHM. We
thus use the original flux estimates throughout this paper.
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Appendix C
CO and Optical Sizes

We used the CO moment-0 maps at original resolution (no

tapering) to measure CO emitting sizes of the ASPECS

sources. Here, we only focus on the 16 brighter CO-selected

sources. We used the CASA task imfit to fit two-dimensional

Gaussian profiles to these images centered at the CO source

positions. Due to the limited angular resolution and sensitivity

of our observations, we did not attempt to fit more complicated

profiles, which require more free parameters (i.e., Sérsic

profile). From this, we extracted the deconvolved semimajor

and semiminor axes of the fitted Gaussian profile (Bmaj, Bmin),

and computed the half-light radius r1/2 by averaging these two
(weighted by uncertainties). We computed the ellipticity of the

profile as e=Bmaj/Bmin. We consider that the source is

resolved in CO emission if either Bmaj or Bmin are measured at a
significance above 3. The derived parameters are listed in

Table 3.
In addition to the CO sizes, we use the structural parameters

derived by van der Wel et al. (2012) from the HST near-IR

images of the CANDELS field. We remove sources 3 mm.8

and 3 mm.12 since their optical counterparts are contaminated
by foreground structures. The parameters are listed in Table 3.

van der Wel et al. (2012) use Sérsic profiles to fit these images,

given the high resolution and signal of the rest-frame optical
sources. Note that a two-dimensional Gaussian profile is

equivalent to a Sérsic profile with index n=0.5. In some

cases, the fitted profiles show Sérsic index n values above 2,

indicative of a highly concentrated central source (for example,
a bright central bulge, or a galactic nuclei). Thus, in these cases

Figure 12. Comparison of the CO flux measurements and line widths obtained from two-dimensional Gaussian fitting in the original resolution moment-0 maps vs. the
ones obtained from the measurements in the 3″ tapered cubes. Dotted lines in the top panel indicate lines of 20% difference between these estimates. The dashed lines
indicate the location of identical estimates by both methods.

Table 3

Sizes of the ASPECS CO Galaxiesa

ID zCO r1 2,CO eCO r1 2,opt nopt eopt
3 mm. (kpc) (kpc)

(1) (2) (3) (4) (5) (6)

1 2.543 4.3±0.4 3.7±3.4 1.7 0.8 0.8

2 1.317 K K 4.0 2.2 0.6

3 2.453 3.9±0.5 2.2±0.7 5.1 0.2 0.3

4 1.414 5.0±0.7 3.7±2.2 7.4 0.5 0.2

5 1.550 4.2±0.7 2.4±1.1 8.3 3.0 0.4

6 1.095 4.5±1.1 1.2±0.6 5.4 1.1 0.8

7 2.697 K K 4.8 0.9 0.5

8b 1.382 5.3±1.6 2.1±1.4 K K K

9 2.698 K K 0.6 7.2 0.7

10 1.037 3.6±1.1 2.2±1.8 2.5 0.9 0.5

11 1.096 3.6±1.3 4.1±3.1 1.8 0.2 0.6

12b 2.574 K K K K K

13 3.601 4.0±1.2 1.8±1.5 0.9 2.1 0.4

14X 1.098 K K K K K

15 1.096 K K 6.0 0.4 0.4

16 1.294 6.1±1.7 1.0±0.6 4.8 1.0 0.5

Notes.
a
For sources that were unresolved in CO emission, no sizes are provided.

b
Sources 3 mm.8 and 3 mm.12 do not have reliable optical counterparts and

thus their optical sizes are not listed. X Source 3 mm.14 does not have a reliable

optical morphology estimate in the catalog of van der Wel et al. (2012).

Columns: (1) Source ID. (2) CO redshift. (2) Half-light radius of the CO

emission, assuming a Gaussian distribution (Sérsic index of 0.5). (3) Ellipticity

of the CO distribution. (4) Half-light radius of the optical emission, using a

Sérsic profile with index nopt (van der Wel et al. 2012). (5) Sérsic index of the

optical emission. (6) Ellipticity of the Sérsic profile.

Figure 13. Comparison between the rest-frame optical sizes derived by van der
Wel et al. (2012) and the CO sizes measured from the ASPECS data. Only
resolved sources in CO emission are considered. Red squares highlight sources
for which the optical morphology indicates large Sercic indexes, which would
indicate highly concentrated optical emission and thus might not be directly
comparable to the CO estimates.
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the derived values of the half-light radius, r1/2, in the HST

images might not be necessarily comparable to the values

derived for CO.
Figure 13 compares the CO and optical sizes (r1/2) derived in

this way. Figure 14 shows a visual comparison of the optical/
near-IR with the CO line emission morphologies. We find no

clear correlation between the CO and the optical sizes. The CO

sizes seem to stay relatively constant around ∼4–6 kpc, whereas

the optical sizes span a significant range from ∼1.0 to 8.5 kpc.

We note that even in cases where the CO emission is significantly

resolved, as in sources 3 mm.1, 3 mm.3, or 3 mm.5, the optical

sizes show evident differences compared to the CO sizes. This

suggests that (at least for these sources) the differences in size

between CO and optical are physical, and not necessarily driven

by the angular resolution and sensitivity limits of our data. This

also may suggest that the CO sizes are relatively homogeneous in

our sample. However, this result is limited by the fact that about

half of our sample is currently unresolved.

Appendix D
CO Kinematics

Since some of our galaxies were resolved in CO line
emission, we computed CO moment-1 maps or velocity fields
(see Figure 15). In some cases, we clearly see velocity
gradients suggestive of ordered gas rotation (3 mm.4, 3 mm.5,
3 mm.6, and 3 mm.7). In the particular case of 3 mm.7, the CO
emission is marginally resolved in one axis only, but the
velocity field shows the structure clearly. Other cases with hints
of velocity gradients are limited by the significance and
resolution. Conversely, other cases where the emission is
significantly resolved, such as in 3 mm.1, do not show evidence
of rotation and suggest a dispersion dominated object.
We take advantage of the software 3DBarolo (Di Teodoro &

Fraternali 2015) to perform a tilted-ring modeling of the gas
velocity field. Because of the coarse resolution of our data, we fix
the ring inclination and position angle based on the Sérsic fits per-
formed on all the sources in the field by van der Wel et al. (2012),

Figure 14. Optical/near-IR postage stamps compared to the CO emission for the ASPECS CO-selected sample. HST RGB images (F435W, F850LP, and F105W) are
shown in the background with white contours overlaid representing the CO line emission at significances 2, 3, 4, 6, 10, 20, and 30σ, where σ is the rms noise level of
each CO moment-0 image.
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so that only the centroid of the line emission, the gas velocity, and
velocity dispersion are free in the fit.

The ASPECS LP 3mm data were obtained in a relatively
compact array configuration, thus the majority of the sources are
only marginally resolved, and a proper dynamical analysis is not
feasible. Only three sources show a significant velocity gradient
in the CO emission, which allows us to put loose constraints
on the dynamical mass. The dynamical mass is derived as

= -M Rv Gdyn rot
2 1. At R=Ropt, the dynamical masses inferred

for the ASPECS sources 3 mm.4, 3 mm.5, and 3mm.7
are (8.1±2.4)×1010M

e
, (2.7±0.8)×1011M

e
, and (1.4±

0.5)× 1011M
e
, respectively.
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