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The α-µ Distribution: A Physical Fading
Model for the Stacy Distribution

Michel Daoud Yacoub

Abstract—This paper introduces a fading model, which explores
the nonlinearity of the propagation medium. It derives the cor-
responding fading distribution–the α-µ distribution–which is in
fact a rewritten form of the Stacy (generalized Gamma) distrib-
ution. This distribution includes several others such as Gamma
(and its discrete versions Erlang and central Chi-squared),
Nakagami-m (and its discrete version Chi), exponential, Weibull,
one-sided Gaussian, and Rayleigh. Based on the fading model
proposed here, higher order statistics are obtained in closed-form
formulas. More specifically, level-crossing rate, average fade dura-
tion, and joint statistics (joint probability density function, general
joint moments, and general correlation coefficient) of correlated
α-µ variates are obtained, and they are directly related to the
physical fading parameters.

Index Terms—Generalized Gamma distribution, Nakagami-m
distribution, Stacy distribution, Weibull distribution, α-µ
distribution.

I. INTRODUCTION

AGREAT NUMBER of distributions exist that well de-
scribe the statistics of the mobile radio signal. The

long-term signal variation is known to follow the Lognormal
distribution, whereas the short-term signal variation is de-
scribed by several other distributions such as Hoyt, Rayleigh,
Rice, Nakagami-m, and Weibull. It is generally accepted that
the path strength at any delay is characterized by the short-
term distributions over a spatial dimension of a few hundred
wavelengths, and by the Lognormal distribution over areas
whose dimension is much larger [1]. Among the short-term
fading distributions, Nakagami-m has been given a special
attention for its ease of manipulation and wide range of applica-
bility. Although, in general, it has been found that the fading
statistics of the mobile radio channel may well be characterized
by Nakagami-m, situations are easily found for which other
distributions such as Hoyt, Rice, and Weibull yield better
results [2]–[5]. More importantly, situations are encountered
for which no distributions seem to adequately fit experimental
data, although one or another may yield a moderate fitting.
Some researches [4] even question the use of the Nakagami-
m distribution because its tail does not seem to yield a good
fitting to experimental data, better fitting being found around
the mean or median. The well-known fading distributions
have been derived assuming a homogeneous diffuse scatter-
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ing field, resulting from randomly distributed point scatterers.
The assumption of a homogeneous diffuse scattering field is
certainly an approximation, because the surfaces are spatially
correlated characterizing a nonlinear environment [6]. With the
aim at exploring the nonlinearity of the propagation medium, a
general fading distribution–the α-µ distribution–was proposed
[7]. This distribution was thought to be new, but it is, in
fact, a rewritten version of the generalized Gamma distribution
(at the time unknown to the author), which was first proposed
by Stacy [8]. In Stacy’s own words [8], the aim of his pro-
posal “concerns a generalization of the Gamma distribution,”
which “in essence. . . is accomplished by supplying a positive
parameter included as an exponent in the exponential factor of
the Gamma distribution.” Stacy’s work was connected neither
with any specific application nor with any physical modeling of
any given phenomenon. It was purely a mathematical problem
in which some statistical properties of a generalized version of
the Gamma distribution were investigated. The derivation of the
α-µ distribution [7], in contrast, has as its base a fading model.
Thence, its parameters are directly associated with the physical
properties of the propagation medium. The Stacy (generalized
Gamma) or α-µ distribution is general, flexible, and has easy
mathematical tractability. It includes important distributions
such as Gamma (and its discrete versions Erlang and central
Chi-squared), Nakagami-m (and its discrete version Chi), expo-
nential, Weibull, one-sided Gaussian, and Rayleigh. Its density,
cumulative frequency, and moments appear in simple closed-
form expressions. All these features combined make the Stacy
or α-µ distribution very attractive. Using the fading model
as proposed in [7], a deeper characterization of the Stacy or
α-µ distribution can be achieved. This paper aims at revisiting
the derivation of the α-µ distribution and showing how some
of its higher order statistics may be attained. In particular, we
shall derive statistics such as level-crossing rate, average fade
duration, joint distribution, cross correlation, and correlation
factor. Other higher order statistics may be derived which are
not shown in this paper.

II. THE α-µ DISTRIBUTION—A REWRITTEN FORM

OF THE STACY DISTRIBUTION

For a fading signal with envelope R, an arbitrary parameter
α > 0, and a α-root mean value r̂ = α

√
E(Rα), the α-µ proba-

bility density function fR(r) of R is written as

fR(r) =
αµµrαµ−1

r̂αµΓ(µ)
exp

(
−µr

α

r̂α

)
(1)
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where µ > 0 is the inverse of the normalized variance
of Rα, i.e.,

µ =
E2(Rα)
V (Rα)

(2)

Γ(z) =
∫∞
0 tz−1 exp(−t)dt is the Gamma function, and E(.)

and V (.) are, respectively, the expectation and variance op-
erators. For a normalized envelope P = R/r̂, the probability
density function fP (ρ) of P is obtained as

fP (ρ) =
αµµραµ−1

Γ(µ) exp(µρα)
(3)

where µ > 0 is given by

µ = V −1(Pα). (4)

The kth moment E(P k) is found as

E(P k) =
Γ(µ+ k/α)
µk/αΓ(µ)

. (5)

Of course, E(Rk) = r̂kE(P k). Now, defining U = Rα/α as
a hyperpower and u = E(U), the probability density function
fU (u) of U is obtained as

fU (u) =
µµuµ−1

uµΓ(µ)
exp

(
−µu

u

)
. (6)

For a normalized hyperpower Y = U/u, the probability density
function fY (υ) of Y is found to be

fY (υ) =
µµυµ−1

Γ(µ) exp(µυ)
. (7)

The probability distribution function FW (w) of an α-µ variate
W can be found in a closed-form formula. In particular, FR(r)
for the envelope R is given by

FR(r) =
Γ(µ, µrα/r̂α)

Γ(µ)
(8)

where Γ(z, y) =
∫ y

0 tz−1 exp(−t)dt is the incomplete Gamma
function. Equivalently, it is

FP (ρ) =
Γ(µ, µρα)

Γ(µ)
. (9)

III. THE α-µ PHYSICAL MODEL

The fading model for the α-µ distribution considers a sig-
nal composed of clusters of multipath waves propagating in
a nonhomogeneous environment. Within any one cluster, the
phases of the scattered waves are random and have similar
delay times with delay-time spreads of different clusters being
relatively large. The clusters of multipath waves are assumed to
have the scattered waves with identical powers. The resulting
envelope is obtained as a nonlinear function of the modulus of
the sum of the multipath components. Such a nonlinearity is
manifested in terms of a power parameter, so that the resulting

signal intensity is obtained not simply as the modulus of the
sum of the multipath components, but as this modulus to a
certain given exponent. The author of this paper does not try
to explain why or how such a nonlinearity occurs or even if
it indeed occurs. What the author conjectures about is that the
resulting effect on the received signal propagated in a certain
medium is manifested in terms of a nonlinearity. The area of
nonlinear phenomena of the propagation medium is rather old
and well explored. It was probably inaugurated in 1930 by the
first reported Luxemburg effect. At that opportunity, a Dutch
scientist listening to the signal from a transmitter located in
Beromünster was surprised to hear at the same time a different
radio station located in Luxemburg (cross modulation). In spite
of the fact that a lot has been done in this area, it is still
open for investigation and has incited the interest for recent
researches (e.g., [9]). In [9], a radio measurement facility has
been specially set up in order to explore the nonlinearity of
the medium. The author of [9] maintains that “a number of
surprising effects” (due to nonlinearity) have been observed
and the investigations “continue to generate new discoveries
and scientific output.” In addition to the phenomenon related
to the propagation medium, the nonlinearity expressed in the
α-µ distribution may also account for the practical limitations
of the detection process of the receiver.

IV. DERIVATION OF THE α-µ DISTRIBUTION

Assume that at a certain given point, the received signal
encompasses an arbitrary number n of multipath components,
and the propagation environment is such that the resulting
signal envelope is observed as a nonlinear function of the
modulus of the sum of these components. Suppose that such
a nonlinearity is in the form of a power parameter α > 0 so that
the resulting envelope R is

Rα =
n∑

i=1

(
X2

i + Y 2
i

)
(10)

where Xi and Yi are mutually independent Gaussian processes,
with E(Xi) = E(Yi) = 0 and E(X2

i ) = E(Y 2
i ) = r̂α/2n.

Departing from (10) and following the standard procedure of
transformation of variables in probability theory, the density
fR(r) of R is found as

fR(r) =
αnnrαn−1

r̂αnΓ(n)
exp

(
−nr

α

r̂α

)
. (11)

From (10), it can be shown that E(Rα) = r̂α and E(R2α) =
r̂2α(n+ 1)/n. The inverse of the normalized variance of Rα,
defined as µ, is then obtained from (2) as µ = n. Note that the
variable n is totally expressed in terms of a physical parameter,
namely the normalized variance of Rα, i.e., µ = n = V −1(P ).
Note also that whereas this physical parameter is of a continu-
ous nature, n is of a discrete nature. It is plausible to presume
that if such a parameter is to be obtained by field measurements,
figures departing from the exact n will certainly occur. Several
reasons exist for this. One of them, which probably is the most
meaningful one, is that, although the model proposed here is
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general, it is in fact an approximate solution to the so-called
random phase problem, as all the other well-known fading
models are approximate solution to the random phase problem.
The limitation of the model can be made less stringent by
defining µ > 0 as the real extension of n. Noninteger values of
the parameter µ may account for 1) nonzero correlation among
the clusters of multipath components; 2) nonzero correlation
between the in-phase and quadrature components; and 3) non-
Gaussianity of the in-phase and quadrature components of
the fading signal; and others. Noninteger values of multipath
clusters have been found in practice, and this issue is exten-
sively reported in the literature. (See, for instance, [10] and
the references therein.) In addition, of course, scattering occurs
continuously throughout the surface and not at discrete points
[6], [11]. Now, replacing n by µ and using r̂ = α

√
E(Rα),

(1) results.

V. THE α-µ DISTRIBUTION AND THE OTHER

FADING DISTRIBUTIONS

The α-µ distribution is a general fading distribution that
includes the Gamma (and its discrete versions Erlang and
central Chi-squared), Nakagami-m (and its discrete version
Chi), exponential, Weibull, one-sided Gaussian, and Rayleigh.
The Weibull distribution can be obtained from the α-µ dis-
tribution by setting µ = 1. From the Weibull distribution, by
setting α = 2, the Rayleigh distribution results. Still from the
Weibull distribution, the negative exponential distribution is
obtained by setting α = 1. The Nakagami-m distribution can
be obtained from the α-µ distribution by setting α = 2. From
the Nakagami-m distribution, by setting µ = 1, the Rayleigh
distribution results. Still from the Nakagami-m distribution,
the one-sided Gaussian distribution is obtained by setting µ =
1/2. Let RDistribution denote the variate of the corresponding
distribution. Then, in accordance with the model proposed here,
the following hold:

Rα
α-µ = R2

Nakagami−m = RGamma. (12)

For half integer values of µ

Rα
α-µ = R2

Chi = RChi−Squared. (13)

For integer values of µ

Rα
α-µ =

µ∑
i=1

RExponential−i

=
µ∑

i=1

R2
Rayleigh−i

=
2µ∑
i=1

R2
Gaussian−i. (14)

Of course, the same relations are valid for their correspond-
ing normalized variates.

Fig. 1. Various shapes of the α-µ density function for α = 7/4.

VI. SAMPLE SHAPES OF THE α-µ DISTRIBUTION AND

MOMENT-BASED PARAMETER ESTIMATORS

Some basic features of the α-µ probability density function
can be observed directly from (3). For αµ < 1 (i.e., µ < 1/α),
fP (ρ) tends to infinity as ρ approaches zero and fP (ρ) de-
creases monotonically with the increase of ρ. For αµ = 1 (i.e.,
µ = 1/α), fP (ρ) = µµ−1/[Γ(µ) exp(µ µ

√
ρ)], and, at the origin,

fP (0) = µµ−1/Γ(µ), and it decreases toward zero with the
increase of ρ. For αµ > 1 (i.e., µ > 1/α), fP (ρ) is nil at the
origin; it increases with the increase of ρ to reach a maximum
at ρ = α

√
(αµ− 1)/αµ, then decreasing toward zero as ρ in-

creases. Fig. 1 plots fP (ρ) versus ρ for α = 7/4 and varying µ.
Fig. 2 plots fP (ρ) versus ρ for µ = 4/7 and varying α. Ap-
parently, the effects of α and µ on fP (ρ) seem comparable
but, in fact, the shapes of the curves vary substantially if they
are observed more closely. Moreover, as will be shown later,
their effects on the correlation properties are rather different. In
order to investigate the flexibility of the α-µ distribution, it is
interesting to examine the various shapes of the α-µ distribution
for a fixed value of the Nakagami parameter m. To this end, we
define βµ as the generalization of the parameter µ, such that

βµ =
E2(Rβ)

E(R2β) − E2(Rβ)
. (15)

Now, using (3)

βµ =
Γ2(µ+ β/α)

Γ(µ)Γ(µ+ 2β/α) − Γ2(µ+ β/α)
. (16)

Of course, αµ = µ, and 2µ = m. Note from (16) that an
infinite number of pairs (α, µ) may be found for the same para-
meter m (2µ = m). In other words, for the same Nakagami-m
curve, an infinite number of α-µ curves can be plotted. This
is illustrated in Figs. 3 and 4, in which the various shapes
of the α-µ density and distribution functions, respectively, are
depicted for the same Nakagami parameter m = 0.5. In these
curves, the parameter µ has be chosen as 0.5, 0.75, 1, 1.5, 2, 5,
10, 50, and 100, and α has been calculated from the relation
2µ = m (16) for the respective µ. The corresponding values
for µ are 2.0, 1.6449, 1.4418, 1.2046, 1.0629, 0.71485, 0.52682,
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Fig. 2. Various shapes of the α-µ density function for µ = 4/7.

Fig. 3. Various shapes of the α-µ density function for the same Nakagami
parameter m = 0.5.

0.25219, and 0.18166. We observe that an enormous variety
of shapes can be found for the same Nakagami parameter m.
Therefore, the α-µ distribution can be used to better adjust to
field data. Equations (15) and (16) may be used as means of esti-
mating the parameters of the distribution. From (15), for a given
β, βµ can be obtained calculating the appropriate moments as
indicated. Therefore, for β1 and β2, chosen arbitrarily (say,
β1 = 1 and β2 = 2), β1µ and β2µ are obtained and equated to
(16) adequately. Therefore, two equations are set up to obtain
the two unknowns (α and µ).

VII. LEVEL-CROSSING RATE AND AVERAGE

FADE DURATION

Level-crossing rate NR(r) and average fade duration TR(r)
are important second-order statistics, which are, respectively,
defined as

NR(r) =

∞∫
0

ṙfṘ,R(ṙ, r)dṙ (17)

TR(r) =
FR(r)
NR(r)

. (18)

Fig. 4. Various shapes of the α-µ distribution function for the same Nakagami
parameter m = 0.5.

In (17), the upper dot denotes time derivative and fṘ,R(ṙ, r) is
the joint density of Ṙ andR. These statistics can now be derived
using any convenient relation between the α-µ and some other
variate. In particular, we use that of (12), in which the α-µ vari-
ate is related to the Nakagami-m one. In order to simplify the
notation, we define R and RN as the α-µ and the Nakagami-m
envelopes, respectively. Thus, from (12)

Rα = R2
N . (19)

Deriving (19) with respect to time and denoting the resulting
variates as Ṙ and ṘN , then

Ṙ =
2
α
R1−α

2 ṘN . (20)

The variate ṘN is known to be zero-mean Gaussian dis-
tributed with variance σ̇2

N [13]. Therefore, the probability
density function fṘ|R(ṙ|r) of Ṙ given R is also zero-mean
Gaussian distributed with variance σ̇2 found from (20) as σ̇2 =
(4/α2)r2−ασ̇2

N . The joint density fṘ,R(ṙ, r) of Ṙ and R is
obtained as fṘ,R(ṙ, r) = fṘ|R(ṙ|r)fR(r). Therefore

fṘ,R(ṙ, r)=
1√
2πσ̇

exp
(
− ṙ2

2σ̇2

)
×αµµrαµ−1

r̂αµΓ(µ)
exp
(
−µr

α

r̂α

)
.

(21)

It is noteworthy that σ̇ depends on r, such dependence vanish-
ing for α = 2. Therefore, apart from this specific case, in which
the α-µ distribution deteriorates into the Nakagami-m one, the
variates Ṙ and R are dependent random variables. Now, with
(17), (18), and (21)

NR(r) =
σ̇fR(r)√

2π
(22)

TR(r) =
√

2πFR(r)
σ̇fR(r)

. (23)

For isotropic scattering, σ̇2
N = (ω/2)2(E(R2

N )/m) [13], where
ω is the maximum Doppler shift in radians per second.
Now, by means of (19), we find that E(R2

N ) = E(Rα), and
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Fig. 5. Various shapes of the α-µ level-crossing rate and average fade duration
for the same Nakagami parameter m = 0.5.

E2(R2
N )/V (R2

N ) = E2(Rα)/V (Rα). Therefore, E(R2
N ) =

r̂α and m = µ. Then, σ̇2
N = (ω/2)2(r̂α/µ). Hence, σ̇2 =

(ω/α)2(r̂αr2−α/µ), and

fṘ,R(ṙ, r)=
α2µµ+0.5rα(µ+0.5)−2

√
2πωr̂αµ+0.5Γ(µ)

exp
(
−µα2rα−2ṙ2

2ω2r̂α
−µrα

r̂α

)
.

(24)

Finally

NR(r) =
ωµµ−0.5ρα(µ−0.5)

√
2πΓ(µ) exp(µρα)

(25)

TR(r) =
√

2πΓ(µ, µρα) exp(µρα)
ωµµ−0.5ρα(µ−0.5)

(26)

where ρ = r/r̂. For α = 2 (Nakagami-m case), (25) and (26)
reduce to [13, eqs. (17) and (21)], respectively. For µ = 1
(Weibull case), (25) and (26) reduce to [14, eqs. (12) and (13)].
Fig. 5 illustrates these statistics for the same combination of the
parameters as those used for Fig. 3 (and Fig. 4).

VIII. JOINT STATISTICS

This section aims at deriving the joint statistics for two
α-µ variates. This is accomplished by capitalizing on some
results already available in the literature for the Nakagami-m
distribution and by the use of the relation as in (19) between
the α-µ and Nakagami-m variates. Let 1) RN1 and RN2 be
two Nakagami-m variates whose marginal statistics are respec-
tively described by the parameters m1, E(R2

N1) = Ω1 and m2,
E(R2

N2) = Ω2, m1 ≤ m2; 2) R1 and R2 be two α-µ variates
whose marginal statistics are respectively described by the
parameters α1, µ1, r̂1, and α2, µ2, r̂2; and 3) 0 ≤ δ ≤ 1 be a
correlation parameter. (We postpone the discussion about this
parameter to Section VIII-D.)

A. Joint Probability Density Function

The joint probability density function fRN1,RN2(rN1, rN2)
of two Nakagami-m variates RN1 and RN2 with marginal

statistics as described previously is given by [15, eq. (12)].
By means of (19), so that Rα1

1 = R2
N1 and Rα2

2 = R2
N2, we

find that r̂α1
1 = Ω1, r̂α2

2 = Ω2, µ1 = m1, µ2 = m2. Now, with
[15, eq. (12)] and the relations just given, the joint proba-
bility density function fR1,R2(r1, r2) of two α-µ variates R1

and R2 is found as fR1,R2(r1, r2) = |J |fRN1,RN2(rN1, rN2),
in which J is the Jacobian of the transformation. Following
the standard statistical procedure of transformation of variates
and after several algebraic manipulations and simplifications,
the joint probability density function fP1,P2(ρ1, ρ2) of the
α-µ normalized envelopes P1 = R1/r̂1 and P2 = R2/r̂2 is
found as

fP1,P2(ρ1, ρ2) =
µµ1

1 µµ2
2 ρα1µ1−1

1 ρα2µ2−1
2

(1 − δ)µ1Γ(µ1)

×
∞∑

k=0

(δµ1µ2ρ
α1
1 ρα2

2 )k
1F1

(
µ2 − µ1, µ2 + k; µ2ρ

α2
2

(1−δ)

)
k!Γ(µ2 + k) exp

(
µ1ρ

α1
1 +µ2ρ

α2
2

1−δ

) (27)

where 1F1(.,.;.) is the confluent hypergeometric function
[16, eq. 13.1.2]. For α1 = α2 = 2, (27) then reduces to
[15, eq. (12)], i.e., for this condition, (27) yields the joint
distribution of two Nakagami-m envelopes with arbitrary
m1 = µ1 and m2 = µ2. In case µ1 = µ2 = µ, then a much
simpler result is found as

fP1,P2(ρ1, ρ2) =
α1α2µ

µ+1ρ
α1
2 (µ+1)−1

1 ρ
α2
2 (µ+1)−1

2

(1 − δ)δ
µ−1

2 Γ(µ)

× exp
(
−µρ

α1
1 + ρα2

2

1 − δ

)
Iµ−1

(
2µ
√
δρα1

1 ρα2
2

1 − δ

)
(28)

where Iν(.) is the modified Bessel function of the first kind
and order ν [16, eq. 9.6.18]. For α1 = α2 = 2, then (28)
reduces to [12, eq. (126)], i.e., for this condition, (28) yields the
joint distribution of two Nakagami-m envelopes with identical
m = µ.

B. Generalized Joint Moments

The joint moments E(Rk
N1R

l
N2) of two Nakagami-m vari-

ates with marginal statistics as described previously is given
by [15, eq. (16)]. Because Rα1

1 = R2
N1 and Rα2

2 = R2
N2,

then the joint moments E(Rkα1/2
1 R

lα2/2
2 ) is also identified as

[15, eq. (16)]. Now, defining p = kα1/2 and q = lα2/2, and
using the relations r̂α1

1 = Ω1, r̂α2
2 = Ω2, µ1 = m1, µ2 = m2,

as before, the generalized moments E(Rp
1R

q
2) of two α-µ

variates R1 and R2 can be obtained from [15, eq. (16)]. The
corresponding normalized moments, i.e., E(P p

1 P
q
2 ), are then

given by

E (P p
1 P

q
2 )=

Γ
(
µ1+ p

α1

)
Γ
(
µ2+ q

α2

)
2F1

(
− p

α1
, q

α2
;µ2; δ

)
µ

p
α1
1 µ

q
α2
2 Γ(µ1)Γ(µ2)

(29)

where 2F1(,.;.;.) is the Gauss hypergeometric function
[16, eq. 15.1.1]. Of course, E(Rp

1R
q
2) = r̂p

1 r̂
q
2E(P p

1 P
q
2 ).
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For α1 = α2 = 2, then (29) reduces to [15, eq. (16)], i.e.,
for this condition, (29) yields the generalized joint moments
of two Nakagami-m envelopes with arbitrary m1 = µ1 and
m2 = µ2. For µ1 = µ2 = µ, the simplification in (29) is not
any substantial. For α1 = α2 = 2 and µ1 = µ2 = m, then (29)
reduces to [12, eq. (137)].

C. Generalized Correlation Coefficient

Define a generalized correlation coefficient δp,q of two α-µ
variates R1 and R2, such that

δp,q =
C (Rp

1, R
q
2)√

V (Rp
1)V (Rq

2)
=

C (P p
1 , P

q
2 )√

V (P p
1 )V (P q

2 )
(30)

where C(.,.) is the covariance operator. By means of (5) and
(29) and after some careful algebraic manipulations, (31) is for-
mulated as shown at the bottom of the page. For α1 = α2 = 2,
then (31) yields the generalized correlation coefficient of two
Nakagami-m envelopes with arbitrary m1 = µ1 and m2 = µ2.
For α1 = α2 = 2, µ1 = µ2 = m, and p = q, then (31) reduces
to [12, eq. (139)].1

D. Some Insight Into the Correlation Coefficient

Let δN
p,q denote the generalized correlation coefficient of the

Nakagami-m distribution, such that

δN
p,q =

C (Rp
N1, R

q
N2)√

V (Rp
N1)V (Rq

N2)
(32)

where RN1 and RN2 are two Nakagami-m variates. Then,
using (30), (32), and the relation as in (19), it is easy to see
that δα1,α2 = δN

2,2. Of course, similar relations may be found
between the correlation coefficients of the α-µ distribution and
the other distributions using the respective relations. It can
be seen from (31) that δα1,α2 =

√
µ1/µ2δ. Now, in case we

have µ1 = µ2, then δα1,α2|µ1=µ2 = δ. This is a very interesting
result, which shows that the correlation parameter δ equals the
correlation coefficient δp,q of the α-µ distribution when p = α1,
q = α2, and µ1 = µ2. Therefore, we have δ = δα1,α2|µ1=µ2 .
Note that such a relation is valid for any α1 > 0, α2 > 0,
and µ1 = µ2 > 0. Taking advantage of some results in the

1While this paper was still under review, results similar to those presented in
Sections VIII-A and VIII-B were published independently in T. Piboongungon,
V. A. Aalo, C. D. Iskander, and G. P. Efthymoglou, “Bivariate generalised
Gamma distribution with arbitrary fading parameters,” IEE Electronics Letters,
vol. 41, no. 12, pp. 49–50, Jun. 2005. On the other hand, (9) of the same
reference is a special case of (31) (p = q = 2) obtained here.

literature, we may choose these parameters appropriately to
obtain the α-µ correlation coefficient. In particular, we may use
α1 = α2 = 2 and µ1 = µ2 = 1, which identify the Rayleigh
case. Therefore, δ = δR

2,2, in which the superscript R denotes
Rayleigh. It is possible to arrive at this same result by another
means, as follows. In [12], it was shown that δN

2,2|m1=m2
= δR

2,2.
As shown before, δα1,α2 = δN

2,2. Therefore

δ = δN
α1,α2|µ1=µ2

= δN
2,2|m1=m2

= δR
2,2. (33)

This is indeed interesting, for the α-µ correlation coefficient,
δp,q can now be expressed in terms of the Rayleigh correlation
coefficient δR

2,2. Hence, the results for the Rayleigh case can be
directly used. The correlation coefficient δR

2,2 for the Rayleigh
fading can be obtained as

δR
2,2 =

C
(
R2

R1, R
2
R2

)
√
V (R2

R1)V (R2
R2)

(34)

where RR1 and RR2 are two Rayleigh envelopes. Now,
we write the Rayleigh processes in terms of the Gaussian
in-phase and quadrature processes as R2

Ri = X2
i + Y 2

i , i =
1, 2, in which Xi, Yi are zero-mean Gaussian in-phase and
quadrature components. For the Rayleigh process E(Xi) =
E(Yi) = 0, ∀i, j, E(XiXj) = E(YiYj), ∀i, j, E(XiYj) =
−E(XjYi), i �= j. For any two Gaussian processes Gi,
i = 1, 2 for which E(Gi) = 0, then E(G4

i ) = 3E(G2
i ) and

E(G2
1G

2
2) = E(G2

1)E(G2
2) + 2E2(G1G2). Using these in (34)

and after algebraic manipulations

δ = δR
2,2 =

E2(X1X2) + E2(X1Y2)
E (X2

1 )E (X2
2 )

. (35)

Any fading model for which the above statistics (35) are known
can be used in order to obtain δ = δR

2,2. In particular, for the
Jakes model [17], we use [17, eqs. (1.5–11), (1.5–14), and
(1.5–15)], such that (36) is formulated, shown at the bottom of
the next page, where D(Θ) is the horizontal directivity pattern
of the receiving antenna; Θ is a variate denoting the angle
of the incident power; ω, as already defined, is the maximum
Doppler shift; τ is the time difference between the two fading
signals; ∆ω is the frequency difference between these signals;
and T is a variate denoting the time delay. For an isotropic
scattering (i.e., uniform distribution in angle of the incident
power), omnidirectional receiving antenna [D(Θ) = 1], and
exponentially distributed time delay [17]

δ =
J2

0 (ωτ)
1 + (∆ωt)2

(37)

δp,q =
Γ
(
µ1 + p

α1

)
Γ
(
µ2 + q

α2

)(
2F1

(
− p

α1
,− q

α2
;µ2; δ

)
− 1
)

√(
Γ (µ1) Γ

(
µ1 + 2p

α1

)
− Γ2

(
µ1 + p

α1

))(
Γ (µ2) Γ

(
µ2 + 2q

α2

)
− Γ2

(
µ2 + q

α2

)) (31)
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Fig. 6. Envelope correlation coefficient for the α-µ distribution as a function
of ωτ (µ = 2).

in which t is the delay spread. The illustrations here consider an
isotropic environment, µ1 = µ2 = µ, and p = q = 1, i.e., enve-
lope correlation. Fig. 6 depicts δp,q as a function of ωτ for dif-
ferent values of the parameters α1 = α2 and ∆ωt = 0 (µ = 2).
Fig. 7 shows δp,q as a function of ∆ωt for different values of
the parameters α1 = α2 and ωτ = 0 (µ = 2). Note, in both
Figures, for α1 = α2 > 1, a large variation of these parameters,
namely from α1 = α2 = 1 to α1 = α2 = 100, implies a small
variation in the curves. In fact, it has been observed that the
curve for which α1 = α2 = 100 is practically coincident with
that for which α1 = α2 → ∞. Therefore, we conclude that the
correlation coefficient does not vary much for α1 = α2 > 1.
The same does not hold for α1 = α2 < 1. In fact, for α1 =
α2 → 0, the correlation coefficient tends to an impulse at the
origin. We note that the condition α1 = α2 = 2 corresponds to
the Nakagami-m case. Therefore, the correlation properties for
the fading environment are roughly those of the Nakagami-m
ones in case the fading parameter is above one. Conversely, the
correlation properties differ substantially from the Nakagami-m
ones in case the fading parameter is below one. Interestingly, it
has been observed through exhaustive plots that the correlation
coefficient of the α-µ distribution is practically insensitive to
the variation of µ. Therefore, these statistics are essentially the
same as those for Weibull. The shapes of the autocorrelation are
similar to those of the correlation coefficient, but the variations
occur around a mean value, which increases with the increase of
µ. These variations tend to be less prominent with the increase
of µ (more deterministic scenario), as expected.

E. Multivariate Joint Probability Density Function

Let Rαi
i =

∑µ
k=1(X

2
ik + Y 2

ik), 1 ≤ i ≤ S, be S α−µ vari-
ates, such that cij , the ijth element of the correlation matrix C

Fig. 7. Envelope correlation coefficient for the α-µ distribution as a function
of ∆ωt (µ = 2).

whose inverse is tridiagonal with elements dij , is the correla-
tion coefficient between Zik and Zjk, ∀k, where Zik = Xik

or Zik = Yik. Again, capitalizing on results available in the
literature, a multivariate joint probability density function for
S α−µ variates can be obtained. In [18], a fundamental result
on generalized Rayleigh distributions was obtained, which was
later on directly applied in [19] and [20] for a multivariate
Nakagami-m distribution. Departing from [18, eq. (2.1)], or
equivalently from [20, eq. (2)], and using the appropriate trans-
formation of variables, as before, a multivariate α-µ distribution
is obtained as

fP1,P2,...,PS
(ρ1, ρ2, . . . , ρS)

=
|C−1|µαSµ

µ+S−1ρ
α1
2 (µ−1)

1 ρ
αS
2 (µ+1)−1

S

Γ(µ) exp (dS,Sµρ
αS

S )

×
S−1∏
k=1

|dk,k+1|1−µαkρ
αk−1
k

exp (dk,kµρ
αk

k )

× Iµ−1

(
2|dk,k+1|µ

√
ραk

k ρ
αk+1
k+1

)
. (38)

For S = 2 and C =
[

1
√
δ√

δ 1

]
, (38) reduces in an exact

manner to (28).

IX. CONCLUSION

This paper introduces the α-µ distribution, which is in fact
a rewritten form of the Stacy (generalized Gamma) distribution
put in terms of physical fading parameters. It includes several
others such as Gamma (and its discrete versions Erlang and

δ =
E2 (D(Θ) cos(ωτ cos Θ − ∆ωT )) + E2 (D(Θ) sin(ωτ cos Θ − ∆ωT ))

E2 (D(Θ))
(36)
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central Chi-squared), Nakagami-m (and its discrete version
Chi), exponential, Weibull, one-sided Gaussian, and Rayleigh.
Based on the fading model proposed here, the level-crossing
rate, average fade duration, joint probability density function,
general joint moments, and general correlation coefficient are
obtained in closed-form formulas. These statistics are general,
and they are written in terms of physical fading parameters.
Therefore, the statistics of those distributions that are special
cases of the α-µ distribution can be obtained directly from
the formulations developed here by simply reducing these
formulations into the respective particular case. It is notewor-
thy that, although the α-µ distribution has one more parame-
ter than Nakagami-m or Weibull distributions, no additional
mathematical difficulty is posed by this. The flexibility of the
α-µ distribution conveys is outstanding and renders it suited to
better adjust to field data.
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