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	e understanding of how osteoclasts are generated and whether they can be altered by in
ammatory stimuli is a topic of particular
interest for osteoclastogenesis. It is known that the monocyte/macrophage lineage gives rise to osteoclasts (OCs) by the action of
macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-kB ligand (RANKL), which induce cell
di�erentiation through their receptors, c-fms and RANK, respectively. 	e multinucleated giant cells (MGCs) generated by the
engagement of RANK/RANKL are typical OCs. Nevertheless, very few studies have addressed the question of which subset of
macrophages generatesOCs. Indeed, twomain subsets ofmacrophages are postulated, the in
ammatory or classically activated type
(M1) and the anti-in
ammatory or alternatively activated type (M2). It has been proposed thatmacrophages can be polarized in vitro
towards a predominantly M1 or M2 phenotype with the addition of granulocyte macrophage- (GM-) CSF or M-CSF, respectively.
Various in
ammatory stimuli known to inducemacrophage polarization, such as LPS or TNF-�, can alter the type ofMGCobtained
from RANKL-induced di�erentiation. 	is review aims to highlight the role of immune-related stimuli and factors in inducing
macrophages towards the osteoclastogenesis choice.

1. Introduction

	e vertebrate skeleton undergoes constant remodelling to
remove old bone and maintain its structure throughout life.
	is entails a balance between bone synthesis by osteoblasts
(OBs) and bone resorption by OCs. OBs are derived from
mesenchymal stem cells (MSCs), while OCs arise from
hematopoietic stem cells (HSCs) [1]. Brie
y, OCs originate
through a series of steps involving �rst the commitment
of HSCs into the monocyte/macrophage lineage [2], then
the proliferation of pre-OCs, their di�erentiation into OCs,
and �nally the cell polarization enabling resorptive activity
[3]. Among the various colony-forming units (CFUs) giving
rise to di�erent cells of the myeloid lineages, only the CFU
macrophages, in the presence of the M-CSF, undergo osteo-
clastic di�erentiation [4]. Ultimately, two osteoblast-derived
cytokines control osteoclastogenesis, M-CSF, and RANKL
[5, 6]. 	ese cytokines engage their cognate receptors, c-fms
and RANK, respectively, which are both present on pre-OCs
[7] (Figure 1).

	e interaction of RANKL with RANK induces the
recruitment of tumor necrosis factor receptor-associated
factors (TRAFs) to the cytoplasmic domain of RANK. 	is
engagement leads to the activation of a signaling cascade
with downstream targets including the extracellular regulated
kinase (ERK), p38 mitogen-activated protein kinase (p38), c-
jun N-terminal kinase (JNK), phosphatidylinositol-3 kinase
(PI3K), and Akt and I�B kinase [8, 9]. Consequently, some
transcription factors, such as activator protein-1 (AP-1),
nuclear factor-�B (NF-�B), and nuclear factor of activated
T cells c1 (NFATc1), are activated. Finally, these transcrip-
tion factors induce the expression of OC-speci�c genes,
including tartrate-resistant acid phosphatase (TRAP) and
cathepsin K [10, 11], and fusion-speci�c genes, including den-
dritic cell-speci�c transmembrane protein (DC-STAMP) and
ATPase H1 transporting V0 subunit d isoform 2 (ATP6v0d2)
(Figure 2).

Even though many extensive reviews have summarized
data focusing on osteoclast origin, di�erentiation, and func-
tion, the precise identity of pre-OCs is not well known
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Figure 1: Osteoclastogenesis. Osteoclasts derived from monocyte/macrophage lineage a�er M-CSF and RANKL stimulation. Osteoclast
precursors (preosteoclast) are M-CSF-dependent for proliferation and respond to RANKL through its receptor. Osteoblasts produce M-CSF
and RANKL. Finally, preosteoclast fuse each other and di�erentiate into osteoclasts.
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Figure 2: Preosteoclast. 	e interaction between RANK and RANKL induces the recruitment of TRAF6 leading to the activation of
extracellular regulated kinase (ERK), p38mitogen-activated protein kinase (p38), and c-junN-terminal kinase (JNK).	erefore, transcription
factors such as AP-1 and NF-�B are activated and subsequently NF-�B and NFATc2 are recruited to the promoter of NFATc1, which has been
called the master regulator of osteoclastogenesis.

to date [12–19]. In this review, we will focus on recent
progress in understanding the molecular basis underlying
osteoclasts generation, including signaling pathways, tran-
scription factors, and in
ammatory stimuli coming from the
microenvironment.

2. Macrophages Polarization

Macrophages are cells with great plasticity and versatility
and appear very di�erent from each other. Two cytokines,
known as GM-CSF and M-CSF, are important for main-
taining numbers and function of macrophages. 	ey allow
the steady-state condition in the macrophages development
that can change depending on the presence of signals in
the microenvironment. When macrophages are present in
the tissues, they respond to signals with the acquisition
of distinct functional phenotypes. Indeed, in response to
ligands of toll-like receptors (TLRs) and IFN-�, macrophages
may undergo classical M1 activation, while they undergo
an alternative M2 activation a�er stimulation by IL-4/IL-13.

Actually, M1 andM2 represent two extremes in the spectrum
of themacrophages phenotype. In fact, the analysis of surface
antigens expression in human bone marrow shows a large
number of di�erent monocyte/macrophage phenotypes [20].
Similarly, data from the gene expression pro�les reveal that
murinemacrophages from di�erent organs are transcription-
ally diverse, with minimal overlap [21]. 	e two-macrophage
phenotype can be reversed, in some cases, in vitro and in
vivo [22, 23]. Moreover, some in
ammatory diseases are
frequently associated with changes inmacrophage activation,
with the classically activated M1 cells implicated in initiating
and sustaining in
ammation and the M2 or M2-like cells
associated with the resolution or dampening of in
ammation
[24]. In fact, M1 macrophages produce large amounts of
proin
ammatory cytokines, such as TNF-�, COX-2, and IL-
6, can generate nitric oxide (NO) and reactive oxygen species
(ROS), and express high levels of MHC molecules function-
ing as killer of pathogens and tumor cells. In contrast, M2
macrophages produce high quantity of IL-10, IL-4 receptor
(IL-4R), and arginase 1, express scavenger receptors and
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Figure 3: Macrophage polarization. Two cytokines GM-CSF and M-CSF contribute to the survival and proliferation of macrophages
population in the steady-state conditions. TLR and IFN� promote the expression of proin
ammatorymolecules such as TNF-�, IL-6, COX-2,
NO, and ROS via STAT1 and NF-�B (RelA/p50). In contrast, the activation of STAT6 and NF-�B (p50/p50) by IL-4 promotes the expression
of anti-in
ammatory molecules such as IL-10, arginase 1, PPAR�, IL-4R, and scavengers.

molecules, and exhibit anti-in
ammatory and tissue repair
functions [25] (Figure 3).

Despite the large amount of data on macrophages
diversity, the majority of transcription factors promoting
alternative functional phenotypes, in response to di�erent
environmental inputs, are quite unknown. Among them,
members of the signal transducer and activator of tran-
scription (STAT) family together with interferon-regulatory
factors (IRF) seem to play a key role in macrophage polar-
ization. Indeed, the M1 macrophage phenotype is controlled
by STAT1 and IRF5, whereas STAT6, IRF4, and peroxi-
some proliferator-activated receptor-� (PPAR�) regulate M2
macrophage polarization [25] (Figure 3). Another important
transcription factor is PU.1, which determines macrophages
identity through the regulation of theirwhole gene expression
pro�le [26]. Furthermore, it has been demonstrated that PU.1
is involved in osteoclastogenesis, given that the development
of macrophages and the OCs di�erentiation are arrested in
PU.1-de�cient mice [27].

3. Factors Associated with
Macrophages Polarization

Macrophages ability to adapt to di�erent stimuli from the
microenvironment relies on their response to cytokines,
cell-cell interaction, and pathological states. In general, the
factors that contribute to macrophages polarization a�ect
their ability to become OCs.

Under nonin
ammatory conditions, tissue-resident ma-
crophages largely exhibit anM2 phenotype that promotes tis-
sue homeostasis and repair. Interleukine-10 (IL-10), which is
a potent anti-in
ammatory cytokine producedmainly byM2
macrophages, inhibits the early stages of osteoclastogenesis,

preventing the di�erentiation of osteoclast progenitors in pre-
OCs. In particular, IL-10 may act directly by reducing the
expression of NFATc1 and preventing its nuclear transloca-
tion [28] or indirectly through the reduction of RANKL and
M-CSF expression [29].

Another suppressor of osteoclastogenesis is the IL-
4, known to promote the M2 phenotype. It inhibits
the RANKL-induced osteoclast di�erentiation through the
STAT6-dependent inhibition of NF-�B [30–33] but does
not inhibit the distinctive ability of macrophages to fuse
each other and form multinucleated giant cells (MGCs)
other than OCs [34]. Similarly, GM-CSF inhibits RANK-
mediated osteoclastogenesis, although it is not critical for
macrophage development, since mice lacking GM-CSF do
not have notable defects in tissue macrophages [35–37].

Under in
ammatory conditions, for example, follow-
ing an infection, M1 macrophage activation is induced
by pathogen associated molecular patterns (PAMPs) such
as lipopolysaccharide (LPS) in cooperation with interferon
gamma (IFN�) [38]. In this situation too, macrophages do
not form OCs. Indeed, a�er the addition of highly puri-
�ed LPS/IFN�, bone marrow macrophages or RAW 264.7
macrophages (the last are considered as pre-OCs) fuse to
form MGCs with speci�c immunological roles, while they
neither express OC-speci�c enzymes nor show bone resorp-
tion [39]. Furthermore, the cell-cell fusion occurring a�er
treatmentwith LPS/IFN� of RANKLpretreatedmacrophages
leads to the formation of multinucleated Langhans type giant
cell (LGC) that do not show OCs characteristics [34]. 	us,
RANKL treatment of RAW 264.7 macrophages does not
commit them to become OCs when they are subjected to
LPS/IFN� or IL-4 treatment [34], but it generates two other
forms of M1-derived MGCs showing speci�c immunological
roles.
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When in
ammation is a consequence of infection or
tissues injuries, TLRs are activated. 	e TLRs engagement
leads to the NF-�B activation and production of in
am-
matory mediators by M1 macrophages [40], but at the
same time, TLRs promote the resolution of in
ammation
through the IKK/NF-�B signaling pathway associated with
M2 polarization [41].

	e plasticity of macrophages to switch from M1 to M2
phenotype and vice versa and their potential di�erentiation in
OCs might depend on the activation of di�erent NF-�B sub-
units and/or on its temporal activation. NF-�B is considered
the master regulator of in
ammation, but at the same time
it has gained importance in osteoimmunology. In fact, an
essential role for NF-�B in osteoclastogenesis was discovered
when double-knockout mice for NF-�B p50 and p52 were
generated and found to have severe osteopetrosis because
of the lacking of OCs [42]. 	e p50 NF-�B homodimers
contribute to M2 polarization in vitro and in vivo [43]. 	e
RelA/p50 NF-�B pathway, known as the “canonical” one,
is typically activated through engagement of receptors like
RANK, TNFR, and IL-1R and depends on IKK� and IKK�
activities. In contrast, the RelB/p52 NF-�B “noncanonical”
pathway is activated only by RANK and requires IKK�
[44]. A unique and novel cross talk has been demonstrated
between the canonical and noncanonical NF-�B pathway,
which appears su�cient to induce osteoclast formation in
vitro and bone loss in vivo [45].

Additionally, the two NF-�B subunits RelA [46] and RelB
[47] have been identi�ed as regulators of osteoclast survival
and di�erentiation, respectively. In fact, one of the earliest
responses of pre-OCs to RANKL (1-2 hours a�er its addition)
is the recruitment of RelA/p50 and NFATc2 by the promoter
ofNFATc1, which has been considered themaster regulator of
osteoclastogenesis. In turn, NFATc1 transiently autoampli�es
its own expression [48], accompanied by the downregulation
of constitutively active repressors of RANK signaling [49],
thus allowing osteoclastogenesis to proceed (Figure 2).

4. OsteoMacs: The Bone Macrophages

In physiological conditions, the bone contains resident
macrophages denominated “OsteoMacs” that contribute to
homeostasis and repair of the tissue and increase their
number in the presence of active bone anabolism [14, 50, 51].
	ese tissue-resident macrophages derive from Ly6c “resi-
dent” monocytes that pass from the circulation to tissues
under homeostatic conditions. In mice, OsteoMacs express
numerous myeloid lineage markers such as F4/80, CD115,
Mac3, and CD68 but express very low if any osteoclast
and in
ammatory macrophage markers [50, 52]. In another
study, two types of resident macrophages were found in
the bone. 	e population of TRAP+F4/80− cells expresses
TRAP as a marker for OC activity and consequently pro-
motes bone resorption, while a second population of cells,
named F4/80+CD169+TRAP−, lacks OCs characteristics and
promotes erythropoiesis [53]. Recently, a new population of
pre-OCs has been identi�ed, which shows a mix of M1- and
M2-like phenotypes together with the ability to suppress T
cells using NO-dependent mechanism [54]. 	ese pre-OCs,

phenotypically CD11b−/loLy6chi, are a di�erent population
with respect to the previously identi�ed, since they retain
some plasticity to di�erentiate into macrophages or dendritic
cells (DCs) in the appropriate cytokine environment.

In case of in
ammation due, for example, to bone
fracture, macrophages are recruited in both humans [55] and
animals [56]. 	ese macrophages arise from a distinct pop-
ulation of blood monocytes, which rapidly in�ltrate tissues
compromised by the injury [57] and produce in
ammatory
cytokines generally associated with M1 phenotype. It has
been reported that recruited in
ammatory macrophages are
derived from Mac3+F4/80− monocytes and can di�erentiate
inOCs under in
ammatory conditions, although they are not
considered precursors of OCs under homeostatic conditions.
	erefore, the in
ammatory microenvironment a�ects OCs
di�erentiation via the actions of multiple cytokines and
several studies suggest that pre-OCs can be also altered
by in
ammation. Nevertheless, it cannot be assumed that
recruited in
ammatory macrophages will contribute to bone
repair.

5. Lessons from Inflammatory
Pathological Conditions

In
ammation is a complex set of events that includes in itself
both the origin and the end of the process. 	is implies
that proin
ammatory cytokines and transcription factors
can initiate the reaction and at the same time promote its
switching o�. In the microenvironment of the bone tissue,
in in
ammatory and/or pathological conditions, there exist
signals able to promote the phenotype M1 and at the same
time to induce the switch towards the M2 phenotype. 	e
emerging phenotype greatly depends on the time window
during which the stimulating signals act as well as on the
target cell type (i.e., macrophages, pre-OCs, or other).

A great deal of knowledge about the origin of OCs comes
from the studies on diseases and in
ammatory diseases such
as rheumatoid arthritis (RA) and periodontitis.

An increased number of circulating pre-OCs can be
detected in psoriatic arthritis and RA patients in which
the TNF-� levels are very high [58, 59]. TNF-�, IFN-
�, and other proin
ammatory cytokines have been shown
to promote osteoclastogenesis both directly, by increasing
the number of pre-OC and/or their di�erentiation, and
indirectly, via OBs and other stromal cells, which increase
RANKL production [60, 61]. TNF-� generally stimulates M1
di�erentiation [62] and can promote the switch of M-CSF-
primed M2 into M1 phenotype. It has been reported that
TNF-� and LPS induced the formation ofOCs frompre-OCs,
suggesting that these factors can induce OCs fusion rather
than their di�erentiation [63]. Otherwise, the e�ect of TNF-
� is observed in the late phase of OC di�erentiation charac-
terized by NFATc1 autoampli�cation [48]. Interestingly, the
exposition of pre-OCs to TNF-� before RANKL results in
the inhibition of osteoclastogenesis, possibly because TNF-
�-stimulated pre-OCs are disposed to commit themselves
towards activated macrophages [64] (Figure 4). However,
osteoclastogenesis is promoted when TNF-� is added a�er
RANKL or when pre-OCs are costimulated by TNF-� and
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Figure 4: E�ect of cytokines on the generation of osteoclasts. TNF-� promotes osteoclastogenesis directly, increasing the number of
osteoclasts, and indirectly, increasing RANKL production by osteoblasts. 	e exposition of preosteoclast to TNF-� before RANKL inhibits
osteoclastogenesis. IL-6 promotes osteoclast di�erentiation in the presence of osteoblasts and can synergize with TNF-� to induce
osteoclastogenesis. On the contrary, it directly inhibits the di�erentiation of preosteoclast promoting the production of M1-like macrophage
markers. IL-34 is produced by osteoblasts and recognizes the receptor for M-CSF (c-fms), thus promoting osteoclasts di�erentiation. IL-
33 inhibits osteoclastogenesis addressing the preosteoclast versus M2-like macrophage di�erentiation. IL-10 is a potent anti-in
ammatory
cytokine produced mainly by M2 macrophages, which prevent the di�erentiation of osteoclast progenitors in preosteoclast. IL-4 promotes
the M2 phenotype and inhibits the RANKL-induced osteoclast di�erentiation.

RANKL [48]. Other in
ammatory cytokines can a�ect OC
development in pathological conditions. In in vitro exper-
iments, the pleiotropic cytokine IL-6 indirectly promotes
OCs maturation and activation depending on the presence
of OBs that, ultimately, produce RANKL [65] (Figure 4).
Transgenic mice overexpressing IL-6 showed osteopenia,
unbalanced bone formation, and resorption probably due
to an increased number of OCs and decreased number of
OBs, suggesting a role as a direct inducer of osteoclastic
formation [66]. IL-6 is present in the serum of RA patients
and has an important role in increasing osteoclastic activity
and subsequent bone resorption [67]. Indeed, IL-6 synergizes
withTNF-� to induce osteoclastogenesis and bone resorption
[68]. However, it has been reported that IL-6 targets pre-OCs
and inhibits RANKL-induced osteoclastogenesis, increasing
the expression of macrophage-speci�c markers, such as
CD11b and Emr1, suggesting that IL-6 induces a macrophage
phenotype instead of an osteoclastic one [69] (Figure 4).

Very recently, the novel cytokine IL-34 was shown to
stimulate the viability ofmonocytes andCFU-M fromBMCs.
	e receptor for IL-34 corresponds to the already known
receptor for M-CSF [70]. IL-34, together with RANKL,
induces the formation of OCs from splenocytes as well as
from BMCs in mouse, while in humans it promotes the
OC di�erentiation from peripheral blood mononucleated
cells. 	erefore, this cytokine can replace M-CSF for the
di�erentiation of OCs both in mouse and in humans. IL-34
is produced by OBs [71], suggesting that these cells not only
are devoted to the bone formation but also play an important
regulatory role in bone homeostasis by producing such
cytokines needed to coordinate the di�erentiation process of
bone resorbing OCs [18].

IL-33 is a cytokine belonging to the recently discovered
IL-1 family [72], which is constitutively expressed in various
tissues and released under in
ammatory conditions. Among
others, IL-33 has been described to amplify polarization of
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M2 macrophages [73] and to skew the induction of pre-OCs
toward M2 phenotype thus inhibiting their di�erentiation in
OCs [74]. Moreover, IL-33 inhibits TNF-�-mediated bone
destruction in vivo and directly inhibits early RANKL-
induced osteoclastogenesis in vitro [74]. Recently, it has been
reported that IL-33 acts by interferingwithRANKL-mediated
nuclear translocation of NFATc1 [75].

Interestingly, in in
ammatory conditions, it has been
shown that RANKL generates ROS in both OCs and their
precursors to promote their di�erentiation and bone resorp-
tion [76, 77]. Indeed, it is known that small nontoxic amounts
of ROS may play a role as second messenger in various
signaling pathways, and thus, it can behave as an intercellular
signal mediator for optimal di�erentiation and function of
OCs. Very recently, it has been demonstrated that a new
protein, named the negative regulator of ROS (NRROS),
inhibits ROS production in phagocytes during in
ammatory
response [78]. 	e overexpression of NRROS in M-CSF-
primed BMM attenuates the expression of all the osteoclastic
genes induced by RANKL; in particular NRROS inhibits NF-
�B activation by blocking the degradation of I-�B proteins
[79].

An interesting molecule involved in the regulation of
in
ammatory events, such as obesity and type 2 diabetes, is
GPR120, a G protein-coupled receptor engaged by unsatu-
rated long-chain fatty acids [80]. It is involved in the dif-
ferentiation of macrophages, chondrocytes [81, 82], and OBs
[83, 84]. Very recently, a study demonstrated that GPR120
has a role in bone metabolism and reverses the process of
bone loss through OBs activity [85]. Another study reported
the GPR120 expression in OCs and in a lesser grade in their
progenitors (BMMs), suggesting its negative role in osteoclast
di�erentiation and bone resorbing activity, probably through
the suppression of NFATc1 and inhibition of IkB� [86].

In conclusion, such a dynamic situation is actually �xed
by a static photograph that heavily limits the de�nitive
identi�cation of the precursor of OCs.

6. Concluding Remarks

	e treatment of macrophages with cytokines initiates a sig-
nal cascade that results in di�erential modulation of di�erent
genes. 	e di�erentiation of macrophages induced by subset
of cytokines does not seem stable and irreversible, but rather
it is transient and dependent on the microenvironment, as
recently reported by studies that found a common progenitor
for macrophage, dendritic, and osteoclast cells in human and
mouse [87, 88].

In the bone, depending on the factors present in the
microenvironment and on the cell-cell interactions, the
macrophages are polarized toward M1 or M2 phenotype.
It should be taken into account that in vivo macrophages
are simultaneously exposed to a plethora of agents, which
are capable of a�ecting their functional and phenotypic
characteristics. 	us, it remains to be determined to what
extent distinct subpopulations exist in vivo. Recent attempts
have been made to reclassify macrophage subpopulations
taking into account the many stimuli and the increasingly
complex combination of markers present on their membrane

[89].However, di�erentmacrophages cannot easily be binned
into de�ned groups.

	e evidence given so far leads to the conclusion that
the resident macrophages in the bone tissue with a M2
phenotype (OsteoMacs) can change their phenotype intoM1-
like under conditions of stress or bone fracture. However,
the relationship between M1 macrophages phenotype and
OCs is not always true. In addition, the recent literature
regarding the formation and destruction of bone tissue shows
that OsteoMacs are conditioned by the presence of theirMSC
precursors, which promotes di�erentiation and survival of
OBs through oncostatinM. OBs, in turn, are among the most
important regulators of bone tissue, as they also in
uence
the di�erentiation and the survival of OCs. Despite the large
number of data published on the subject, it is di�cult to draw
�rm conclusions, because the in vivo situation can be very
di�erent from that studied on in vitro models. Furthermore,
the situation under physiological conditions is certainly very
di�erent from that under in
ammatory conditions, thus
requiring additional studies to clarify the nature of OC
precursors.
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