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Abstract: Alvarez and Lohmann lenses are variable focus optical devices 
based on lateral shifts of two lenses with cubic-type surfaces. I analyzed the 
optical performance of these types of lenses computing the first order 
optical properties (applying wavefront refraction and propagation) without 
the restriction of the thin lens approximation, and the spot diagram using a 
ray tracing algorithm. I proposed an analytic and numerical method to select 
the most optimum coefficients and the specific configuration of these 
lenses. The results show that Lohmann composite lens is slightly superior to 
Alvarez one because the overall thickness and optical aberrations are 
smaller. 
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1. Introduction 

In the late sixties Luis Alvarez [1,2] and Adolph Lohmann [3] invented independently new 
types of variable-focus composite lenses based on lateral shifts of two lenses with cubic-
profile surfaces. Interestingly, the motivation that guided both authors for these inventions 
was different; while Alvarez was interested in a varifocal ophthalmic lens for presbyopia 
correction [1], Lohmann pursued a zoom lens system based on lateral rather than longitudinal 
shifts of lenses [3]. The difference between Alvarez and Lohmann lenses is the shape of the 
cubic surface. Figure 1 shows Alvarez and Lohmann cubic profiles. 

 

Fig. 1. (a) Alvarez cubic surface profile. (b) Lohmann cubic surface profile. The colormap 
mapping of the surfaces is proportional to the local curvature. 

Despite of the theoretical advantages of these varifocal lenses, they have been 
implemented in few applications since Alvarez and Lohmann proposed them. Surprisingly (to 
my knowledge) all the applications have used Alvarez design ignoring Lohmann proposal. 
The most widely used implementation of the Alvarez lens is the so called Humphrey analyzer 
[4,5]; but it has been also proposed to be used in scanning microscopes [6], in accommodative 
intraocular lens [7,8] or in spectacle lenses for self adjusting focus [9–11]. 

The lack, in the past, of high quality free-form refractive lenses manufacturing techniques 
explains partially the small number of application that has finally been materialized. However, 
nowadays diamond turning technology allows the production of high performance and low 
cost free-form lenses [12], henceforth overcoming the manufacturing restriction. It should be 
note that and alternative could be to manufacture a Alvarez or Lohmann diffractive type lens 
[13]. Therefore, it is expected that in the near future there will be a revival of these types of 
lenses. 
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In the present manuscript I revisit the theoretical properties of Alvarez and Lohmann 
lenses and analyze some issues that have not been studied before. The paraxial optical power 
of Alvarez and Lohmann lenses were calculated by their inventors [1–3] assuming that these 
lenses can be described as a pure optical phase transformer considering the thin lens 
approximation. The thin lens approximation implies that a ray entering the lens at a specific 
location (x-y coordinates) leaves the lens at its final face at a location with the same x-y 
coordinates. Therefore, the lens simply introduces a phase delayed proportional to the 
thickness of the lens at each location [14]. However, to study the first-order properties, the 
thin lens approximation can be avoided applying the propagation of localized astigmatic 
wavefronts through free-form surfaces. 

There is an extensive literature dealing with refraction and propagation of astigmatic 
wavefronts. Most of the works can be grouped into two main categories: first, those methods 
based on Hamiltonian characteristics functions (see e.g. references [15–18]: ), second the ones 
based on differential geometry (see e.g. references [19–24]: ). Several authors concerned with 
optometry applications have been specially interested in this problem and they have proposed 
to use the concept of optical vergences [25–28]. 

I employed Campbell’s method [28] for wavefront propagation and refraction, because it 
is specially suitable for our purpose. Using the vergence operator concept, the main advantage 
of Campbell’s method is that the action of the refractive surface onto the vergence operator 
can be computed using a surface curvature matrix, where the surface function S(x,y) 
represents the surface profile. The effect of the oblique incidence of the localized wavefronts 
with respect to the local normal of the surface S(x,y) is considered applying a rotating matrix 
operator. Figure 2 visualizes the propagation of two localized astigmatic wavefronts through 
an optical surface. In addition, I also implemented a ray tracing code through free-form 
surfaces to extend the optical analysis of Alvarez-Lohmann lenses beyond first order optics. 

 

Fig. 2. Astigmatic localized wavefronts before and after refraction through an optical surface. 
The arrows represent the base rays associated to each localized wavefront. The colormap is 
proportional to local curvature. 

With all these tools my purpose was to solve several important issues. First, I derived 
complete algebraic expressions to compute first order optical properties of Alvarez-Lohmann 
thick lenses and compare them with the results obtained with the thin lens approximation. 
Alvarez and Lohmann lenses may have some extra coefficients that can be used to improve 
the final optical quality; I derived an analytic and numeric method to select these coefficients. 
I compared the optical performance of the Alvarez versus the Lohmann configuration. Finally, 
the Alvarez and Lohmann lenses have two possible configurations: in the first one, the cubic 
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surfaces are located facing outwards, and in the second one facing inwards (see Fig. 3). I 
analyzed which of the two configurations provides the best optical performance. 

 

Fig. 3. Outer cubic surfaces configuration at: (a) neutral position, (b) negative power addition, 
(c) positive power addition. Inner cubic surfaces configuration at: (d) neutral position, (e) 
negative power addition and (f) positive power addition. Note that for the outer cubic surfaces 
configuration there must be a space between both lenses to avoid collision when the shift is 
done to achieve positive power addition (f). 

2. First order optical properties of Lohmann and Alvarez lenses 

Alvarez and Lohmann configurations contain two separate lenses. Each lens, when 
manufactured by a surface cutting technique, has a cubic-type surface profile represented by 
the following general equation: 

 
3 ' 2 3 ' 2 2 2

x x y yz A x A yx A y A xy Bx Cxy Dy Ex Fy G= + + + + + + + + +   (1) 

In the case that the non-cubic faces are planar surfaces the second order terms of Eq. (1) 
(coefficients B, C and D) are usually set to zero. To simplify our analysis we assume this case, 
(with the exception of the term C to reveal its role in the astigmatism) although the analysis 
could be easily extended to consider non-zero B and D coefficients. 

Alvarez lens satisfies: 
'

0y yA A= = , and Lohmann lens: 
' '

0x yA A= = .  

In the Alvarez configuration the optical power change is induced when the two lenses are 
moved in opposite directions (in the x coordinate following notation of Eq. (1)), or 
alternatively one lens is moved while the other one is kept stationary. In the Lohmann 
configuration [3], a lateral shift in the x coordinate produces a cylindrical optical power; to 
induce a pure spherical power change, the lenses have to be shifted the same amount in both 

the x and y direction, and in addition x yA A=  and E F= . 

For the outer cubic Alvarez configuration (Fig. 2(a).) it can be easily deduced (using Eq. 

(1)) that a shifted distance δ of both lenses induce a total thickness of: 2 22 ( )A x yδ + . 
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Assuming afterwards that the lens behaves as a optical phase transformer the paraxial focal 
length is given by [14]: 

 
1

4 ( 1)
f

A nδ
=

−
  (2) 

As I mentioned in section 1, Campbell’s method [28] can be used to compute all the first 
order properties without these assumptions. Firstly, I computed the surface curvature matrix 
(Eq. (2) in Campbell’s paper [28]). 

In the Alvarez configuration, the sag equation of the first cubic surface with the lateral 
shift is: 

 
3

2( )
( ( ) ) ( ) ( )

3

x
z A x y C x y E x Fy G

δ
δ δ δ

−
= + − + − + − + +   (3) 

And the second cubic surface sag: 

 
3

2( )
( ( ) ) ( ) ( )

3

x
z A x y C x y E x Fy G

δ
δ δ δ

+
= + + + + + + + +   (4) 

Where δ is the lateral shift. The first and second order derivatives of Eqs. (3)-(4) are: 

 

2 2 2 2

2 2

2 2

(( ) )   (1º surf) or  (( ) )  (2º surf)

 (2 )( )  (1º surf) or (2 )( )   (2º surf)

 2 ( ) (1º surf) or 2 ( ) (2º surf)

 (1º & 2

z
A x y Cy E A x y Cy E

x
z

Ay C x F Ay C x F
y

z z
A x A x

x y

z z
C

y x x y

δ δ

δ δ

δ δ

∂
= − + + + + + + +

∂
∂

= + − + + + +
∂

∂ ∂
= = − +

∂ ∂

∂ ∂
= =

∂ ∂ ∂ ∂
º surf) 

 (5) 

In the Lohmann configuration, the sag equation of the first cubic surface with the lateral 
shift is: 

 
3 3( ) ( )

( )( ) ( ) ( )
3 3

x y
z A A C x y E x F y G

δ δ
δ δ δ δ

− −
= + + − − + − + − +   (6) 

And the second cubic surface sag: 

 
3 3( ) ( )

( )( ) ( ) ( )
3 3

x y
z A A C x y E x F y G

δ δ
δ δ δ δ

+ +
= + + + + + + + + +   (7) 

The first and second order derivatives of Eqs. (6)-(7) are: 
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2 2

2 2

2 2

2 2

( ) ( )  (1º surf) or ( ) ( )  (2º surf)

( ) ( )   (1º surf) or ( ) ( )  (2º surf)

 2 ( ) (1º surf) or 2 ( ) (2º surf)

 (1º & 2º

z
A x C y E A x C y E

x
z

A y C x F A y C x F
y

z z
A x A x

x y

z z
C

y x x y

δ δ δ δ

δ δ δ δ

δ δ

∂
= − + − + + + + +

∂
∂

= − + − + + + + +
∂

∂ ∂
= = − +

∂ ∂

∂ ∂
= =

∂ ∂ ∂ ∂
 surf) 

  (8) 

The refraction of the incoming localized wavefront in the outer lens surface is computed 
using the vergence refraction equation derived by Campbell (Eq. (13) in Campbell’s paper 
[28]): 

 

1
1 0 0 0 0 0

1
0 0 0

( , ) ( cos( ) cos( )) ( ) ( , ) ( )

                   ( , ) ( , ) ( , )

ref in s s

in in in in

L x y n R K x y R

R L x y R

ϕ ϕ θ θ

θ ϕ θ ϕ

−

−

= − +ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
  (9) 

Where n  is the refractive index of the lens material, 0Kɶ  is the surface curvature matrix and 

inϕ  and refϕ  are the angles of incidence between the incoming ray and the refracted ray with 

the surface normal respectively. Equations to compute matrices ( )sR θɶ  and ( , )in inR θ ϕɶ  are 

also given in Campbell’s paper. 0Lɶ  and 1Lɶ are the vergence matrices representing the 

incoming and refracted wavefronts respectively. 
The propagation of the wavefront inside the lens is calculated using the following Eq. 

(27): 

 1 0 0 1 0 0
2 1 1

( , ) det( ( , ))
( , )

L x y t L x y I
L x y = −

� �

ɶ ɶ ɶ
ɶ   (10) 

Where 2Lɶ is the vergence matrix after propagation, Iɶ  is the identity matrix, t is the 

propagation distance in the z direction and 2
1 11 ( det )t trL t L� = − +  

Finally the second refraction in the outer lens surface is computed again with Campbell’s 
equation: 

 

1
3 1 1 1 1 1

1
2 1 1

( , ) (cos( ) cos( )) ( ) ( , ) ( )

                  ( , ) ( , ) ( , )

ref in s s

in in in in

L x y n R K x y R

R L x y R

ϕ ϕ θ θ

θ ϕ θ ϕ

−

−

= − +ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
  (11) 

The first order optical properties can be obtained from the final matrix relating 3 1 1( , )L x yɶ  

and 1 1 1( , )L x yɶ . For example, the usual optometric magnitudes: sphere power and cylinder 

power can be obtained using Keating’s Eqs. (25). We have implemented a code written in 
Matlab to evaluate Eqs. (9)-(11). 

2.1 The thin lens and normal incidence approximations 

For simplicity we set that the chief ray passes through 0 1= 0x x= . In the thin lens 

approximation 0t = and 0 1 0 1 & yx x y= = . Therefore Eq. (2) reduces to: 

2 0 0 1 0 0( , ) ( , )L x y L x y=ɶ ɶ . 

Further approximations to reduce the complexity of Eqs. (9)-(11) can be used: the 
inclination angle between the incident and the refracted ray and the normal to the lens surfaces 
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can be neglected cos( ) 1refϕ ≈  & cos( ) 1inϕ ≈ . The rotation angles applied (see section 4 

Campbell’s paper [28]) to set a common local reference axis for the refracting surface and the 

incident and refracted wavefronts can also be neglected 0θ ≈ . With these extra 

approximations (we name it the normal incidence approximation) and using Eqs. (5)-(8), Eqs. 
(9)-(11) are reduced to the following equations. 

 

1 0 0 0 0 0 0 0 0

2

2

0 0 02

2

0 0 0

( , ) ( 1) ( , ) ( , )

(0,0) (0,0)

                  ( 1) ( , )
(0,0) (0,0)

2
                  ( 1) ( , )

2

L x y n K x y L x y

z z

x yx
n L x y

z z

x y y

A C
n L x y

C A

δ
δ

= − + =

 ∂ ∂
 

∂ ∂∂ − + = ∂ ∂ 
 ∂ ∂ ∂ 

− 
− + − 

ɶ ɶ ɶ

ɶ

ɶ

  (12) 

 

3 0 0 1 0 0 1 0 0

2

2

1 0 02

2

1 0 0

( , ) (1 ) ( , ) ( , )

(0,0) (0,0)

                   (1 ) ( , )
(0,0) (0,0)

2
                   (1 ) ( , )

2

L x y n K x y L x y

z z

x yx
n L x y

z z

x y y

A C
n L x y

C A

δ
δ

= − + =

 ∂ ∂
 

∂ ∂∂ − + = ∂ ∂ 
 ∂ ∂ ∂ 

 
− + 

 

ɶ ɶ ɶ

ɶ

ɶ

  (13) 

Equations (12)-(13) are valid for the Alvarez and the Lohmann configurations. Combining 
Eqs. (12)-(13) we get: 

 3 0 0 0 0 0

4
( , ) (1 ) ( , )

4

A C
L x y n L x y

C A

δ
δ

 
= − + 

 
ɶ ɶ   (14) 

Equation (14) provides the equivalent dioptric matrix of the Alvarez and Lohmann lenses 
(outer cubic surfaces configuration) under the thin lens and normal incidence approximation. 

Using Keating’s equations it can be seen that the equivalent focal length f  is the same than 

that of Eq. (2) using the phase transformer approximation. Therefore, this equivalence implies 
that the “phase transformer” reasoning used by Alvarez and Lohmann needs, besides the thin 

lens approximation, an extra approximation ( cos( ) 1refϕ ≈ , cos( ) 1inϕ ≈  & 0θ ≈ ) which we 

have called the normal incidence approximation. 
Because in the Lohmann configuration the shift δ is done in both directions x and y, the 

modulus of the total shift is 2δ , meaning that, if the A coefficient is the same for the 

Alvarez and the Lohmann lens, the Lohmann lens needs larger lateral shifts than the Alvarez 
lens. Or equivalently, for the same total shift, larger A coefficients are needed in the Lohmann 
configuration. However, as shown in Fig. 7 & 8, even having a larger A coefficient, Lohmann 
lens is overall significantly thinner than Alvarez lens. Therefore in terms of physical size 
Lohmann configuration is more efficient than Alvarez lens. 

It also should be noted that the normal incidence approximation can be forced if the 
coefficients C, E & F are conveniently selected. In the case that the chief ray follows the z 

direction (passing through coordinates 0 0 = 0x y= ) this approximation is satisfied if: 

0C F E= = = . 
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2.2 Differences in the optical power between the thin lens and the normal incidence 
approximations and the exact case 

I evaluated the range of validity of the described approximations with respect to the exact 
computations provided by Eqs. (9-11) using two examples proposed by Alvarez [2]. 

Alvarez example lens nº 1: 
3

2( )
0.06( ( ) ) 0.01

3

x
z x y

δ
δ

−
= + − +  

The Alvarez example lens nº 2 introduces a term in x to reduce the lens thickness: 

 
3

2( )
0.06( ( ) ) 0.106( ) 0.01

3

x
z x y x

δ
δ δ

−
= + − − − +  

Figure 4 shows the sphere power versus the lateral shift (δ) computed using the thin lens 
and normal incident approximations (Eq. (2) red line) and using the exact Eqs. (9)-(11) (blue 
line) in: (a) Alvarez example lens nº 1 (b) Alvarez example lens nº 2. In the Alvarez lens nº 1, 
there is a linear relation between the spherical power induced and the lateral shift in both the 
approximated and the exact result (Fig. 3(a).). In addition the approximations provide almost 
the same results than the exact computations. On the other hand, in the Alvarez lens nº2, 
although the linear relation of the sphere power with the lateral shift is preserved (Fig. 3(c).), 
there is a difference of around 0.5 D between the approximated and the exact results. 

The sphere power versus lens thickness (using exact equations) for zero lateral shift (δ) is 
also plotted in Fig. 3. In the Alvarez lens nº1 the sphere power for the neutral position is 
almost zero no matters the thickness of the lens (Fig. 3(b)), but in the Alvarez lens nº2 (Fig. 

3(d)) the sphere power for the neutral position is around −0.5 D, and in addition it changes 
with the lens thickness. These results show that the thin lens and normal incident 
approximation is acceptable for the Alvarez lens nº1 but not for Alvarez lens nº 2. 

This is explained because the Alvarez lens nº 1 obeys the condition for the thin lens and 

normal incidence approximation to be valid: 0C F E= = = . In the Alvarez lens nº2 the 

refraction in the first surface shifts the chief ray from the optical axis causing that the 

intersection of the chief ray in the second Alvarez surface is not in the 0 0 = 0x y=  position, 

and therefore the wavefront refraction in the second surface is different than in the first 
surface. It is important to note that this is the main factor, rather than the effect of non-zero 
lens thickness, to explain why the approximations fail in Alvarez lens nº2. 
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Fig. 4. Sphere power versus lateral shift (δ) computed using the thin lens and normal incident 
approximation (Eq. (2) red line) and using the exact Eqs. (9)-(11) (blue line) in: (a) Alvarez 
example lens nº 1 (c) Alvarez example lens nº 2. Sphere power versus lens thickness for zero 
lateral shift (δ) using exact equations in: (b) Alvarez example lens nº 1 (d) Alvarez example 
lens nº 2. 

3. Ray tracing through Alvarez and Lohmann lenses 

First order optics is useful for a preliminary analysis of the optical performance of the 
Lohmann and Alvarez lenses. However, for a deeper analysis is necessary to implement a real 
ray tracing algorithm. The critical step for this algorithm is to find the intersection point 
between a ray and the cubic-type shifted surfaces. We have developed an iterative algorithm 
based on the following steps: 

(A) Ray equations. 
The trajectory of a ray is represented with the parametric equations: 

 0 0 0                               x x t y y t z z tα β ϕ= + = + = +  

The parameter t represents the travel distance and{ }0 0 0, ,x y z  the coordinates of the object 

point. The estimation of the intersection point between the parametric ray equations and the 

Alvarez-Lohmann surface ( , )s f x y=  is obtained mathematically finding the value of t that 

satisfies ( , )f x y z ε− ≤ , being ε an arbitrary small value that sets the accuracy of the 

estimation. 
(B) Setting the bounds of the parameter t. 
To avoid that the iterative routine could be trapped it is necessary to set bounds to the 

possible values of t. These bounds configure a bounding box in the surface area; typically 
implemented in ray tracing software (see e.g. CODE V, Reference Manual). For the lower 
value tmin, we set the distance from the point z0 to the vertex of the Alvarez surface minus the 
maximum thickness of the Alvarez surface, and for the upper value tmax, we set the square sum 
of distance from the point z0 to the vertex of the Alvarez surface plus the maximum thickness 
of the Alvarez surface and the aperture radius of the Alvarez lens. 

(C) Iterative routine. The flow char of the iterative routine is shown in Fig. 5. 
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Fig. 5. Flow chart of the ray tracing intersection point iterative routine. 

As an example of the ray tracing algorithm Fig. 5 shows a ray tracing through Alvarez lens 
example nº 2. 

 

Fig. 6. Ray tracing through Alvarez lens example nº 2. (a) Lateral view. Blue lines are ray 
trajectories and red stars are intersections of rays with Alvarez surfaces (b) Spot diagram in 
image plane (500 microns scale). 

4. Optimum Alvarez and Lohmann lenses: selection of coefficients 

Alvarez pointed out [2] that the coefficient E (Eq. (3)) can be used to reduce the overall lens 
thickness. Thickness reduction also reduces the difference of curvature between several 
locations of the cubic-type surface, and therefore could be beneficial for the general optical 
performance. In this section, we explore how thickness reduction can improve optical 
performance in terms of the root-mean square error of the ray spot diagram. 

Alvarez used an heuristic procedure to select the optimum value of the E coefficient: it 
was selected such “the maximum thickness along the edge of the lens element was equated to 
the maximum thickness along the x axis” [2]. 

4.1 Analytical estimation 

The overall minimum thickness can be estimated finding the minimum deviation of the cubic-
type sag equation from zero. Mathematically this is obtained by the equations: 
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Where � is the aperture pupil limiting the bundle of rays crossing the cubic-type surface. If � 
is a square pupil of radius R, Eq. (15) reduces to: 
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It should be note that the domain � is defined in the range [0 R] instead of [-R R] because 
the sag function is reflection symmetric with respect to the x and y plane. Solving Eq. (16) for 
E: 

 
2 2

        (Alvarez lens)       (Lohmann lens) 
2 6

AR AR
E E= − = −   (17) 

If � is a round pupil of radius R Eq. (15) reduces to: 
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 (18) 

Solving Eq. (18) for E: 

 
2 22

        (Alvarez lens)       (Lohmann lens) 
3 15

AR AR
E E= − = −   (19) 

4.2 Ray tracing numerical optimization 

The most optimum coefficients can be also obtained through a merit function construction 
based on ray tracing and subsequent optimization of this merit function. The optimum 
coefficients are defined to be the ones that provide the minimum spot diagram at each shift 
value δi used to get the different optical powers. Therefore the merit function is defined as: 

 i
i

MF RMS=∑   (20) 

Where iRMS  is the root-mean square of the spot diagram size for a specific value δi 

In practice it is not necessary to select many different δi because, as shown in Fig. 9, the 

value of the total RMS  is dominated by the small values of δi. The optimization is performed 

using a Quasi-Newton line-search algorithm as implemented by the “fminunc” function in the 
Matlab optimization toolbox (Version 4.0. R2008a). The whole procedure was implemented 
in code written in Matlab. 
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Table 1. Coefficients of the different Alvarez and Lohmann lensesa 

 A C E F 

Alvarez lens nº1 0.06 0 0 0 

Alvarez lens optimized 
with Eq. (19) 

0.06 0 −0.0061 0 

Alvarez lens optimized 
with ray tracing 

0.06 5.01e-10 −0.0056 −7.33e-9 

Lohmann lens 0.0849 0 0 0 

Lohmann lens 
optimized with Eq. 

(19) 

0.0849 0 −0.0034 0 

Lohmann lens 
optimized with ray 

tracing 

0.0849 −1.66e-5 −0.0038 −0.0038 

ª The A coefficient in the Lohmann lens is higher than Alvarez’s one to obtain the same power with 

the same lateral shift. 

As an example I found the optimized coefficients of the Alvarez and Lohmann lenses with 
a pupil radius of 3 mm and 1.5 mm lens thickness. The results are compared with the 
optimized coefficients using Eqs. (17)-(19) in Table 1. The coefficients are very similar; in 
addition, C and F in the Alvarez lens and C in the Lohmann lens are close to zero. Therefore 
Eqs. (17)-(19) are very convenient to design optimized Lohmann-Alvarez lenses. 

Figures 7 & 8 shows the surfaces profiles of the lenses calculated in Table 1. The new 
optimized lenses achieve a considerable reduction of the overall thickness. The Lohmann lens 
is significantly thinner than the Alvarez lens with the same power and lateral shift. 

Figure 9 shows the root mean square error (µm) versus sphere power (D) of all the lenses 
of Table 1. The decrease in the overall thickness shown in the optimized lenses is correlated 

with the improvement of the optical performance. The sRMS are significantly reduced for low 

optical powers. It should be note that the sRMS  are slightly smaller in the Lohmann lenses 

with respect to the corresponding Alvarez lenses. Therefore it can be concluded that Lohmann 
configuration is better than the Alvarez configuration because the necessary thickness is 
smaller and the achieved optical performance is better. 

5. Outer versus inner cubic configurations 

Two different types of composite lens configurations were described in section 1. The outer-
cubic surfaces configuration (Fig. 3 (a)) and the inner cubic surfaces configuration (Fig. 3(d)). 
There is no discussion in the scientific literature about which of these two configurations is 
better; some authors have used the inner configuration [2,6] while others have used the outer 
configuration [7,8]. The total thickness is larger in the outer cubic configuration because there 
must be a space between both lenses to avoid collision when the shift is done to achieve 
positive power addition (see Fig. 3(f).). In applications such as ophthalmic lenses this larger 
thickness is a limitation, but in other applications where the overall thickness is not a 
limitation it is interesting to know which of the two configurations provide better optical 
performance. 

Figure 10 compares the optical performance versus sphere power (D) in the outer and 
inner configuration of two examples of Alvarez and Lohmann lenses. It is shown that the 
optical performance is slightly better in the inner configuration. 

#110214 - $15.00 USDReceived 17 Apr 2009; revised 12 May 2009; accepted 16 May 2009; published 20 May 2009

(C) 2009 OSA 25 May 2009 / Vol. 17,  No. 11 / OPTICS EXPRESS  9387



 

Fig. 7. Alvarez-type surfaces: (a-b-c) Alvarez lens example nº1, (d-e-f) new Alvarez lens 
optimized with ray tracing, (g-h-i) new Alvarez lens obtained with Eq. (19). (a-d-g) 3-D 
surfaces plot. (b-e-h) X-Z lateral view, (c-f-i) Y-Z lateral view. The lateral views show the 2-D 
projection of the intersection between the Alvarez surface and a plane z = 0 (blue area) and a 
plane z = R (violet area). 
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Fig. 8. Lohmann-type surfaces: (a-b-c) Lohmann lens, (d-e-f) new Lohmann lens optimized 
with ray tracing, (g-h-i) new Lohmann lens obtained with Eq. (19). (a-d-g) 3-D surfaces plot. 
(b-e-h) X-Z lateral view, (c-f-i) Y-Z lateral view. The lateral views show the 2-D projection of 
the intersection between the Lohmann surface and a plane z = 0 (blue area) and a plane z = R 
(violet area). 

 

Fig. 9. Root mean square error (µm) versus sphere power (D). Pupil radius: 3 mm. (a) Alvarez 
lens example nº1 (black line), new Alvarez lens obtained with Eq. (19) (red line) and new 
Alvarez lens optimized with ray tracing (blue stars). (b) Lohmann lens (black line), new 
Lohmann lens obtained Eq. (19) (red line) and new Lohmann lens optimized with ray tracing 
(blue stars). 
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Fig. 10. Root mean square error (µm) versus sphere power (D). Pupil radius: 3 mm. (a) New 
Alvarez lens obtained with Eq. (19) using outer cubic configuration (red line) versus inner 
cubic configuration (blue line). (b) New Lohmann lens obtained with Eq. (19) using outer cubic 
configuration (red line) versus inner cubic configuration (blue line). 

6. Summary 

This paper provides useful tools to perform a better and more accurate analysis of the Alvarez 
and Lohmann lenses. The first optical properties of theses lenses can be evaluated without the 
thin lens approximation using the new derived equations. It should be noted that these 
equations are valid in the case that the chief ray travels along the z-axis, but the analysis could 
be extended to other chief rays, henceforth providing an off-axis first order analysis. This 
extension could be useful in wide-angle lens design. The ray tracing algorithms should be 
applied when a complete optical performance analysis is needed. 

One of the anonymous reviewers of this manuscript pointed out a relevant relation 
between the Alvarez and the Lohmann sag equations. Without considering the second order 
terms, the Alvarez sag equation can be obtained from the Lohmann sag equation applying a 

45 degree coordinate rotation and a multiplying scale factor: 2 . This scale factor explains 

the differences between Alvarez and Lohmann lenses. Lohmann lenses are superior to Alvarez 
ones because, with the same amount of lateral shifts, they are thinner lenses and provide better 
optical performance. 

Acknowledgments 

I thank the anonymous reviewer who pointed out the relation between the Alvarez and 
Lohmann sag profiles through coordinate rotation. I also thank Juan Carlos Gonzalez for his 
suggestions in the ray tracing algorithm. I benefit from a Spanish Ministry of Science-UPM 
“Ramon y Cajal” contract. 

#110214 - $15.00 USDReceived 17 Apr 2009; revised 12 May 2009; accepted 16 May 2009; published 20 May 2009

(C) 2009 OSA 25 May 2009 / Vol. 17,  No. 11 / OPTICS EXPRESS  9390


