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Abstract TheAlzheimer’s DiseaseNeuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter

study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detec-

tion and tracking of Alzheimer’s disease (AD). The study aimed to enroll 400 subjects with early mild

cognitive impairment (MCI), 200 subjectswith earlyAD, and 200 normal control subjects; $67million

fundingwas provided by both the public and private sectors, including theNational Institute onAging,

13 pharmaceutical companies, and 2 foundations that provided support through the Foundation for the

National Institutes of Health. This article reviews all papers published since the inception of the

initiative and summarizes the results as of February 2011. The major accomplishments of ADNI

have been as follows: (1) the development of standardized methods for clinical tests, magnetic reso-

nance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF)
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biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and

CSF biomarker measurements in control subjects,MCI patients, andADpatients. CSF biomarkers are

consistent with disease trajectories predicted by b-amyloid cascade (Hardy, J Alzheimers Dis

2006;9(Suppl 3):151–3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atro-

phy and hypometabolism levels show predicted patterns but exhibit differing rates of change depend-

ing on region and disease severity; (3) the assessment of alternative methods of diagnostic

categorization. Currently, the best classifiers combine optimum features from multiple modalities,

including MRI, [18F]-fluorodeoxyglucose-PET, CSF biomarkers, and clinical tests; (4) the develop-

ment of methods for the early detection of AD. CSF biomarkers, b-amyloid 42 and tau, as well as

amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymp-

tomatic subjects, and are leading candidates for the detection of AD in its preclinical stages; (5) the

improvement of clinical trial efficiency through the identification of subjects most likely to undergo

imminent future clinical decline and the use of more sensitive outcome measures to reduce sample

sizes. Baseline cognitive and/or MRI measures generally predicted future decline better than other

modalities, whereas MRI measures of change were shown to be the most efficient outcome measures;

(6) the confirmation of the AD risk loci CLU, CR1, and PICALM and the identification of novel

candidate risk loci; (7) worldwide impact through the establishment of ADNI-like programs in

Europe, Asia, and Australia; (8) understanding the biology and pathobiology of normal aging,

MCI, and AD through integration of ADNI biomarker data with clinical data from ADNI to stimulate

research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD,

thereby advancing efforts to find disease-modifying drugs for AD; and (9) the establishment of infra-

structure to allow sharing of all raw and processed data without embargo to interested scientific inves-

tigators throughout theworld. TheADNI studywas extended by a 2-year GrandOpportunities grant in

2009 and a renewal of ADNI (ADNI-2) in October 2010 through to 2016, with enrollment of an

additional 550 participants.

Published by Elsevier Inc. on behalf of The Alzheimer’s Association.
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1. Introduction to Alzheimer’s Disease Neuroimaging

Initiative: Goals, history, and organization

1.1. Background

Alzheimer’s disease (AD), the most common form of de-

mentia, is a complex disease characterized by an accumula-

tion of b-amyloid (Ab) plaques and neurofibrillary tangles

composed of tau amyloid fibrils [1] associated with synapse

loss and neurodegeneration leading to memory impairment

and other cognitive problems. There is currently no known

treatment that slows the progression of this disorder. Accord-

ing to the 2010 World Alzheimer report, there are an esti-

mated 35.6 million people worldwide living with dementia

at a total cost of more than US$600 billion in 2010, and

the incidence of AD throughout theworld is expected to dou-

ble in the next 20 years. There is a pressing need to find bio-

markers to both predict future clinical decline and for use as

outcome measures in clinical trials of disease-modifying

agents to facilitate phase II-III studies and foster the devel-

opment of innovative drugs [2]. To this end, Alzheimer’s

Disease Neuroimaging Initiative (ADNI) was conceived at

the beginning of the millennium and began as a North Amer-

ican multicenter collaborative effort funded by public and

private interests in October 2004. Although special issues fo-

cused on North American ADNI have been published in Alz-

heimer’s and Dementia [3] and Neurobiology of Aging [4] in

addition to a number of other review articles [5–12], the

purpose of this review is to provide a detailed and

comprehensive overview of the approximately 200 papers

that have been published as a direct result of ADNI in the

first 6 years of its funding.

1.2. Disease model and progression

One approach toward a greater understanding of the events

that occur in AD is the formulation of a disease model [3,12–

16]. According to the Ab hypothesis, AD begins with the

abnormal processing of the transmembrane Ab precursor

protein. Proteolysis of extracellular domains by sequential

b and g secretases result in a family of peptides that form

predominantly b-sheets, the b-amyloids (Ab) (Fig. 1). The

more insoluble of these peptides,mostlyAb42, have a propen-

sity for self-aggregation intofibrils that form the senile plaques

characteristic ofADpathology. Subsequently, it is thought that

themicrotubule-associated tau protein in neurons becomes ab-

normally hyperphosphorylated and forms neurofibrillary tan-

gles that disrupt neurons. However, although ADNI and

other biomarker data support this sequence of events, by direct

examination of postmortem human brains, Braak andDel Tre-

dici have shown that tau pathology in themedial temporal lim-

bic isocortex precedes the development of Ab deposits with

advancing age in the human brain [17].Downstreamprocesses

such as oxidative and inflammatory stress contribute to loss of

synaptic and neuronal integrity, and eventually, neuron loss
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results in brain atrophy. Jack et al [14,16] presented

a hypothetical model for biomarker dynamics in AD

pathogenesis. The model begins with the abnormal

deposition of Ab fibrils, as evidenced by a corresponding

drop in the levels of soluble Ab42 in cerebrospinal fluid

(CSF) and increased retention of the positron emission

tomography (PET) radioactive tracer [11C]-labeled

Pittsburgh compound B (11C-PiB) in the cortex. Sometime

later, neuronal damage begins to occur, as evidenced by

increased levels of CSF tau protein. Synaptic dysfunction

follows, resulting in decreased [18F]-fluorodeoxyglucose

(FDG) uptake measured by PET. As neuronal degeneration

progresses, atrophy in certain areas typical of AD becomes

detectable by magnetic resonance imaging (MRI). The

model provided by Jack et al [14] is highly relevant to many

papers reviewed in section 4 (Studies of the ADNI cohort),

which often provide empirical evidence to support it. An ex-

ample of a model that proposes a series of pathological events

leading to cognitive impairment and dementia is summarized

in Fig. 2.

1.3. Mild cognitive impairment

Similar to many disease processes that originate in micro-

scopic environments and are asymptomatic until the start of

organ failure, the course of AD pathology is likely to be 20 to

30 years. It is now generally accepted that the initial AD pa-

thology develops in situ while the patient is cognitively nor-

mal, sometimes termed the “preclinical stage” [18,19]. At

some point in time, sufficient brain damage accumulates to

result in cognitive symptoms and impairment. Originally

defined in 1999, this has been classified in a number of

ways, including as predementia AD or as mild cognitive

impairment (MCI), a condition in which subjects are

usually only mildly impaired in memory with relative

preservation of other cognitive domains and functional

activities and do not meet the criteria for dementia [5], or

as the prodromal state AD [18]. Epidemiological studies of

participants aged 70 to 89 years who were nondemented

found the prevalence of MCI in this population to be approx-

imately 15%, with an approximate 2:1 ratio of two identified

phenotypes, amnestic and nonamnestic [20,21]. Studies

showed that MCI patients progressed to AD at a yearly

rate of 10% to 15%, and that predictors of this conversion

included whether the patient was a carrier of the 34 allele

of the apolipoprotein E (APOE) gene, clinical severity,

brain atrophy, certain patterns of CSF biomarkers and of

cerebral glucose metabolism, and Ab deposition [5].

1.4. History of biomarker development

Although the etiology ofADwas not known, therewas suf-

ficient knowledge of the mechanisms of AD pathology at the

beginning of the past decade to allow the development of

newdrugs.Once transgenicmice expressingAb in their brains

were available [22], development of treatments to slow the

progression of AD began in earnest. Although considerable

work had been done to develop quantitative measurements

of cognitive function and activities of daily living for clinical

trials of symptomatic treatments such as acetylcholinesterase

inhibitors, it was recognized that changes in cognition did

not necessarily signify “disease modification.” Therefore,

investigators from academia and the pharmaceutical industry

became interested in how “disease modification” of AD could

be detected using a variety of biomarkers, includingbrainMRI

scanning, and blood and CSF analytes. This led to a decision

by the National Institute on Aging (NIA) to fund the ADNI

and to structure it as a public–private partnership.

The development of AD biomarkers for clinical trials,

both for use in subject selection and as outcome measures,

is paramount to the success of ADNI. During the genesis

of the initiative, Frank et al [23] described the importance

of biomarkers to ADNI and to clinical trials. In the first paper

to come out of ADNI, Trojanowski [24] reviewed candidate

Fig. 1. Generation of soluble b-amyloid (Ab) fragments from amyloid precursor protein. Reproduced with permission from Ref [7].
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AD biofluid biomarkers thought to be most promising at the

time, homocysteine, isoprostanes, sulfatide, tau, and Ab, and

described how ADNI was poised, as a large public–private

collaboration, to identify and validate the best candidate

AD biomarkers. Mueller et al [25] reported on the scientific

background at the beginning of ADNI and the limitations of

the clinical and neuropsychological tests available for mon-

itoring disease progression at that time. Principally, a defini-

tive diagnosis of AD required severe cognitive deficits and

autopsy confirmation, whereas the clinical criteria for the

detection of the MCI transitional phase were much less cer-

tain. Accordingly, outcome measures for assessing the effi-

cacy of new drugs relied primarily on neurocognitive tests

such as ADAS-cog (cognitive subscale of the Alzheimer’s

Disease Assessment Scale), the efficacy of which was lim-

ited by substantial ceiling effects and variability in subject

performance over time. There was a clear need to develop

biomarkers, biological tools that “mark” the presence of

pathology, for the early diagnosis of AD and for measuring

clinical drug trial outcomes [8].

Relatively early in the initiative, a major concern was

developing an AD biomarker that distinguished AD from

other dementias, such as Lewy body dementia, frontotempo-

ral degeneration, and Parkinson disease with dementia [10].

Based on a model of AD pathogenesis fundamentally similar

to that described in the paper by Jack et al [14], Shaw et al

[10] reviewed a number of potential biomarkers, including

some, such as isoprostanes and total plasma homocysteine,

that did not subsequently prove to be of use. Others, such

as levels of soluble Ab42 or tau protein in CSF, reflected

the increase in deposition ofAb in fibrillar plaques or the later

release of tau protein as a result of neuronal damage. Neuro-

nal metabolism and neuronal degeneration could be mea-

sured using FDG-PET and by examining the concentrations

of total tau protein (t-tau) and tau phosphorylated at serine

181 (p-tau181p) in CSF, respectively. Volumetric changes to

brain structure could be assessed by MRI of specific regions

such as the hippocampus, entorhinal cortex, temporal and

parietal lobes, and ventricles. Additional potential risk bio-

markers included genetic susceptibility factors, such as the

APOE genotype, plasma homocysteine levels, and isopros-

tanes as non-AD-specific indicators of oxidative stress. By

the following year, the wide range of potential biomarkers

had been substantially narrowed to include CSF Ab42,

t-tau and p-tau181p hippocampal volume, voxel-based volu-

metry, deformation-based morphometry (DBM), functional

MRI, and FDG-PET [26]. In tandem with the development

of these biomarkers, a new imaging technology using
11C-PiB in PET scans was being developed [27,28], and the

possibility of a diagnostic approach predicated on the

concept of certain combinations of biomarkers providing

complementary information was raised [8,26].

In 2008, twin reviews were published in Neurosignals

[8,15] by members of the ADNI Biomarker Core at the

University of Pennsylvania. The first paper reviewed

potential biomarkers for the early detection of AD. In

addition to the potential biomarkers described previously,

these included MRI T1r relaxation times to image neuritic

plaques and single-photon emission computed tomography

(SPECT) using a 125I-labeled imidazole derivative (6-iodo-

2-(4’-dimethylamino-)phenyl-imidazo[1,2]pyridine) as an

alternative approach to amyloid PET imaging [29]. The sec-

ond paper distinguished between diagnostic biomarkers and

risk biomarkers, such as the APOE 34 allele and plasma total

homocysteine levels, suggesting that although they were not

sufficiently sensitive for diagnostic purposes, they were

Fig. 2. Model for Alzheimer’s disease (AD) progression. Reproduced with permission from Ref [14].
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indicative of increased risk for AD and were predictive of

disease progression. Finally, in 2010, Hampel et al [7] pre-

sented a review that updated our current understanding of

tau and Ab biomarkers, including levels of Ab42 and activ-

ity of BACE1 (the major amyloid precursor protein-cleaving

b-secretase in the brain) in CSF, blood plasma levels of

Ab40 and Ab42, and human antibodies against Ab-related

proteins. Thus, the search for biomarkers to fulfill a variety

of niches is an ongoing quest and is without doubt set to

evolve even further as research progresses.

1.5. Goals of ADNI

A comprehensive description of the goals of ADNI is

given in papers by Mueller et al [2] and Weiner et al [3].

At initiation, ADNI had the overall objective of characteriz-

ing clinical, genetic, imaging, and biochemical biomarkers

of AD and identifying the relationships between them over

the course of disease progression from normal cognition to

MCI to dementia. Specific goals of ADNI included the

development of optimized and standardized methods for

use across multiple centers, the enrollment of a large cohort

(.800) of healthy elderly subjects, MCI patients, and AD

patients for baseline characterization and longitudinal stud-

ies, and the establishment of repositories of data and biolog-

ical samples, both of which were to be accessible to the

wider scientific community without embargo. A specific pre-

specified goal was to identify those imaging (MRI and PET)

and image analysis techniques and blood/CSF biomarkers

that had the highest statistical power to measure change

(defined as the sample size required to detect a 25% reduc-

tion of rate of change in 1 year) and thus, it was hoped, detect

effects of treatments that would slow the progression of AD.

With these goals, ADNI hoped to identify a combination of

biomarkers that could act as a signature for a more accurate

and earlier diagnosis of AD, and that could be used to mon-

itor the effects of AD treatment [2,3].

When originally conceived, ADNI had not included aims

around genetic or proteomic analysis. Additional add-on

studies supported the evolution of the Genetics Core (see

later in the text) and the study of protein changes in plasma

and CSF. Plasma proteomic data from a 190-analyte multi-

plex panel have been posted to the ADNI Web site and are

available for additional data mining.

1.6. The evolution of an idea: ADNI-1, ADNI Grand

Opportunities, and ADNI-2

Drs. Neil Buckholz and William Potter had discussed the

overall concept of a large biomarker project to study AD for

many years. Dr. Buckholz convened an NIAmeeting focused

onAD biomarkers in 2000. In 2001, Drs.MichaelWeiner and

Leon Thal (since deceased) proposed a longitudinal MRI

study of AD, MCI, and control subjects. Subsequently,

Dr. Buckholz brought together a number of investigators

from the field of AD as well as industry leaders, all of

whom strongly supported the overall concept. The NIA pub-

lished a Request for Applications, and ADNI was funded in

2004. The initial ADNI was projected to run for 5 years and

to collect serial information, every 6months, on cognitive per-

formance; brain structural and metabolic changes; and bio-

chemical changes in blood, CSF, and urine in a cohort of

200 elderly control subjects, 200 MCI patients, and 400 AD

patients [2–4]. It was funded as a public–private partnership,

with $40 million from the NIA and $27 million from 20

companies in the pharmaceutical industry and 2 foundations

for a total of $67 million, with the funds from private

partners provided through the Foundation for the National

Institutes of Health. An interesting perspective of the

process by which potential competitors in the race to develop

new drugs for AD were brought together in a consortium

under the auspices of the Foundation for the National

Institutes of Health is given in the paper by Schmidt et al

[30], who emphasize the importance of the cooperative, pre-

competitive nature of ADNI. When the ADNI grant was first

submitted and funded, the significance and impact of 11C-PiB

[27,28] studies were not fully appreciated, and there was no

infrastructure to conduct multisite clinical trials with 11C-

PiB. Therefore, Ab imaging with 11C-PiB was not included

in the application. However, after the first year of funding,

Chet Mathis proposed adding an 11C-PiB substudy to

ADNI, whichwas funded by theAlzheimer’s Association and

General Electric. In addition, further industry and foundation

funding was secured to allow supplemental or “add-on”

genomewide association studies (GWAS), and for additional

lumbar punctures to obtain CSF, as new technologies

emerged to make these studies feasible in a large-scale initia-

tive such as ADNI.

In 2009, toward the end of the ADNI study, a Grand

Opportunities grant, ADNI-GO, was secured to extend the

original ADNI-1 studies with both longitudinal studies of

the existing cohort and the enrollment of a new cohort of

early MCI patients to investigate the relationship between

biomarkers at an earlier stage of disease progression. Techni-

cal advances made it possible to add analyses of the new

cohorts using AV45 (Florbetapir; Eli Lilly, Indianapolis,

IN) amyloid imaging. Additional experimental MRI se-

quences included for evaluation of ADNI-GO and ADNI-2

are arterial spin labeling perfusion imaging and diffusion ten-

sor imaging. The development of the [18F]-labeledAV45 am-

yloid imaging agent with a substantially longer radioactive

half-life than the 11C form made it practicable to extend am-

yloid imaging studies to additional sites beyond those under-

taken in ADNI-1 [7].

A competitive renewal of the ADNI-1 grant, ADNI-2,

was awarded with total funding of $69 million on October

1, 2010, together with funding from the pharmaceutical

industry in a cooperative agreement similar to the original

initiative, to further extend these studies with additional

cohorts [3,4,31]. It is anticipated that the study of very

mild MCI patients in ADNI-GO and ADNI-2 will help iden-

tify subjects at risk who are candidates for preventative
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therapy when they are mildly symptomatic or asymptomatic

[30]. Table 1 summarizes details of the three initiatives.

1.7. Structure and organization of ADNI

A full description of ADNI structure is given in the paper

by Weiner et al [3]. Briefly, ADNI is governed by a Steering

Committee that includes representatives from all funding

sources as well as principal investigators of the ADNI sites

and is organized as eight cores, each with different responsi-

bilities, under the direction of an Administrative Core, led by

Dr. Weiner, as well as a Data and Publications Committee

(DPC), led by Dr. Green (Fig. 3). The eight cores comprise

(1) the Clinical Core, led by Drs. Aisen and Petersen, respon-

sible for subject recruitment, collection and quality control

of clinical and neuropsychological data, testing clinical hy-

potheses, and maintaining databases; (2) the MRI and (3)

PET Cores, led by Drs. Jack and Jagust, respectively,

responsible for developing imaging methods, ensuring qual-

ity control between neuroimaging centers, and testing imag-

ing hypotheses; (4) the Biomarker Core, led by Drs. Shaw

and Trojanowski, responsible for the receipt, storage, and

analysis of biological samples; (5) the Genetics Core, led

by Dr. Saykin, responsible for genetic characterization and

analysis of participants as well as banking DNA, RNA,

and immortalized cell lines at the National Cell Repository

for Alzheimer’s Disease; (6) the Neuropathology Core, led

by Drs. Morris and Cairn, responsible for analyzing brain

pathology obtained at autopsies of ADNI participants; (7)

the Biostatistics Core, led by Dr. Beckett, responsible for sta-

tistical analyses of ADNI data; and (8) the Informatics Core,

led by Dr. Toga, responsible for managing data sharing func-

tions [2,3]. A schematic of ADNI structure is given in Fig. 3.

1.8. Data sharing and informatics

An objective of ADNI, in addition to its scientific goals

outlined in section 1.5, was to make data available to the

Table 1

Comparison of ADNI-1, ADNI-GO, and ADNI-2

Study characteristics ADNI-1 ADNI-GO ADNI-2

Primary goal Develop CSF/blood and

imaging biomarkers as

outcome measures

Act as bridging grant

between ADNI-1 and

ADNI-2, examine

biomarkers in earlier stage

of disease progression

Develop CSF/blood and

imaging biomarkers as

predictors of cognitive

decline, and as outcome

measures

Funding $40 million federal (NIA),

$20 million industry and

foundation, $7 million

industry for supplemental studies

$24 million American Recovery

Act funds (stimulus finds)

$40 million federal (NIA),

$27 million expected

industry and foundation

Duration/start date 5 years/October 2004 2 years/September 2009 5 years/September 2011

Cohort 200 elderly control subjects

200 MCI

400 AD

Existing ADNI-1 cohort plus:

200 EMCI

Existing ADNI-1 and

ADNI-GO cohort plus:

150 elderly control

subjects

100 EMCI

150 MCI

150 AD

Study techniques

MRI X X X

fMRI X X

FLAIR (microhemorrhage

detection)

X X

T2* GRE (microhemorrhage

detection)

X X

Vendor-specific protocols (1)

resting state (task-free) fMRI

to Phillips systems, (2) perfusion

imaging (ASL) to Siemens, and

(3) DTI to General Electric

X X

FDG-PET X X X

AV45 X X

Biosamples X X X

“Add-on” studies GWAS, PiB-PET,

lumbar puncture

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADNI-GO, Grand Opportunities grant; CSF, cerebrospinal fluid; NIA, National Insti-

tute on Aging; MCI, mild cognitive impairment; AD, Alzheimer’s disease; EMCI, early mild cognitive impairment; MRI, magnetic resonance imaging; fMRI,

functional magnetic resonance imaging; FLAIR, fluid attentuated inversion recovery; T2* GRE, T2* gradient echo; ASL, arterial spin labeling; DTI, diffusion

tensor imaging; FDG-PET, [18F]-fluorodeoxyglucose-positron emission tomography; GWAS, genomewide association studies; PiB-PET, Pittsburgh compound

B-positron emission tomography.
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scientific community, without embargo. To this end, DPC, in

conjunction with the Bioinformatics Core of ADNI at the

Laboratory of Neuroimaging (LONI) at UCLA, has devel-

oped policies and procedures for immediate, open-access

data sharing on a previously unprecedented scale. The prin-

ciples for this data sharing were developed in the initial

months of the ADNI project by the DPC in consultation

with the Executive Committee and presented to the Steering

Committee for adoption in the first year. The infrastructure

for implementing this policy is through the LONI data ar-

chive (LDA), enabling the widespread sharing of imaging,

clinical, genetics, and proteomic ADNI results, while over-

coming fundamental hurdles such as the question of owner-

ship of the disseminated scientific data, and the collection of

data from multiple sites in a form that supports data analysis

[32]. Briefly, LONI has developed automated systems that

deidentify and upload data from the 57 ADNI sites, ensure

quality control of images before removing them from quar-

antine status and make them available for download, manage

preprocessing and postprocessing of images and their link-

age to associated metadata, support search functions, and

manage user access and approval. Clinical data are collected

by the Alzheimer’s Disease Cooperative Study through their

online data capture system and transferred to the ADNI

repository at LONI through nightly data transfers. After

these data are received at LONI, portions of the clinical

data are used to update data in the ADNI repository to ensure

consistency of demographic and examination data and to

update the status of image data based on quality assessment

results. Additional nightly processes integrate other clinical

data elements, so they may be used in querying the data in

the repository. Any researcher who has been granted access

to ADNI data is able to analyze any part of the available data

and can post results to LONI. In addition to ADNI data, LDA

also contains data from the parallel Australian Imaging Bio-

markers and Lifestyle (AIBL) Flagship Study of Ageing,

which were collected using protocols comparable with those

of ADNI. To date, from 35 countries worldwide, more than

1300 investigators from academic and governmental institu-

tions, the pharmaceutical and biotechnology industries, and

the scanner manufacturing sector have accessed ADNI data

through the LDA [32]. The number of downloads of ADNI

data has increased yearly since 2006, and in 2010, more

than 400,000 images, 1416 sets of clinical data (including

cognitive tests and levels of CSF biomarkers), 781 numeric

summary results for all analyses, and 33,620 genetic single-

nucleotide polymorphism (SNP) results were downloaded.

AlthoughLONI acts as theADNI data repository, theDPC

is responsible for developing policy around data access and

publication, granting access to the data to investigators

around the world, and reviewing publications that result

from this data use. Briefly, members of the scientific commu-

nity can apply for access to ADNI data for either research or

teaching purposes and must submit a data use agreement

(available at: http://adni.loni.ucla.edu/wp-content/uploads/

how_to_apply/ADNI_Data_Use_Agreement.pdf) for ap-

proval. As of April 2011, 1590 data applications from across

theworld had been approved, predominantly from academia,

but also from the biotechnology, pharmaceutical, and other

industries. Part of the data use agreement requires applicants

to include certain language in manuscripts prepared from

ADNI data, including citing “for the Alzheimer’s Disease

Neuroimaging Initiative” as an ADNI group ack-

nowledgment, and the recognition of ADNI’s role in data

gathering in the Methods section and of ADNI’s funding in

the Acknowledgments. Manuscripts must be submitted for

approval to the DPC before publication. The full publication

policy can be found at: http://adni.loni.ucla.edu/wp-content/

uploads/how_to_apply/ADNI_DSP_Policy.pdf. The role of

the DPC in this step is primarily to check that manuscripts

are compliant with ADNI publication policy, and not to pro-

vide a scientific peer review. Papers found to be noncompli-

ant are returned to the authors for editing and can

subsequently be resubmitted for approval. This process is pri-

marily designed to track, tabulate, and standardize the publi-

cation of manuscripts using ADNI data.

1.9. The ADNI special issue of Alzheimer’s and Dementia

Weiner et al [3] introduced the special ADNI issue of Alz-

heimer’s and Dementia in 2010 with an overview of ADNI’s

background, rationale, goals, structure, methods, impact, and

future directions. A set of papers followed highlighting the

achievements of individual ADNI cores and perspectives of

Fig. 3. Alzheimer’s Disease Neuroimaging Initiative (ADNI) structure and

organization.
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the Industry Scientific Advisory Board (or ISAB), which is

now referred to as the Private Partner Scientific Board (or

PPSB). Jack et al [33] described the achievements of the

MRI Core of ADNI in areas ranging from the development

ofMRI technology to the elucidation ofADbiology, and con-

cluded that this Core had succeeded in demonstrating the fea-

sibility of multicenter MRI studies in ADNI and validity of

this method as a biomarker in clinical trials. The progress

of the PET Core of ADNI in developing FDG-PET and
11C-PiB PET protocols, ensuring quality control, and acquir-

ing and analyzing longitudinal data was reviewed by Jagust

et al [34], who similarly concluded that the Core had success-

fully demonstrated both the feasibility of this technology in

a multicenter setting and the potential of FDG-PET to reduce

sample sizes in clinical trials. Trojanowski et al [12] reviewed

progress by the Biomarker Core of ADNI in developing pro-

files of CSF or plasma biomarkers that would act as a “signa-

ture” of mild AD or predict future MCI to AD conversion.

Moreover, the reviewdescribed studies in support of a tempo-

ral sequence of changes in individual biomarkers that

reflected proposed trajectories of Ab deposition and the for-

mation of neurofibrillary tangles inADprogression [14]. The

accomplishments of the Clinical Core of ADNI were

reviewed by Aisen et al [35], who reported that the Core

had successfully recruited a cohort of.800 subjects, charac-

terizing them both clinically and cognitively at baseline and

following them longitudinally over the course of the study.

As the Clinical Core provided data management support to

ADNI, this review also reported on the contribution of

ADNI biomarker andMRIfindings to improving clinical trial

design by determining the most powerful outcome measures

and reducing sample size using subject selection strategies.

The contribution of the Genetics Core of ADNI to untangling

the apparently complex genetic contributions to AD was

reviewed bySaykin et al [6],who reported considerable prog-

ress in the identification of novel AD susceptibility loci and

of candidate loci worthy of further investigation, often using

AD biomarkers as quantitative traits (QTs) in imaging genet-

ics and GWAS. The role of the Neuropathology Core in de-

veloping procedures to improve the autopsy rate of ADNI

patients and to standardize neuropathological assessment

was reviewed by Cairns et al [36]. Finally, Schmidt et al

[30] discussed the contributions of the Industry Scientific

Advisory Board, including acting as a conduit of information

to and from sponsoring companies and foundations, support-

ing add-on studies, and contributing to the scientific reviewof

protocols and procedures.

2. Development and assessment of treatments for AD:

Perspectives of academia and the pharmaceutical

industry

Given that the ultimate goal of ADNI is to develop bio-

markers to facilitate clinical trials of AD therapeutics, it is

germane to consider the perspective of investigators from

academia and the pharmaceutical industry on the develop-

ment of these biomarkers. The aim of this section is to review

those papers that focus on this issue.

Although ADNI is a natural history study, and it is not

known whether its biomarkers can measure the effect of can-

didate treatments in drug trials, the primary focus of ADNI

has been the development of diagnostic biomarkers for the

early detection of AD and development of prognostic bio-

markers that would be used to monitor disease progression

[37]. Mueller et al [38] and Weiner et al [3] reaffirmed the

definition of an ideal biomarker formulated at the first meet-

ing of the NIA working group on AD biomarkers, which

proposed that an ideal AD biomarker should detect a funda-

mental feature of AD pathology; be minimally invasive, sim-

ple to analyze, and inexpensive; and meet criteria with

regard to specificity and sensitivity outlined in Table 2. Prog-

nostic biomarkers should be representative of a stage of AD

at which the treatment has maximal effect, and also be rep-

resentative of the proposed mechanism of action of the treat-

ment [3,38].

Both diagnostic and prognostic biomarkers are required

for clinical trials. To date, such clinical trials have been frus-

tratingly unsuccessful. It was thought that the failures of

phase III clinical trials of high-profile putative antiamyloid

therapies, flurizan and Alzhemed, were in part due to meth-

odological difficulties, such as the initial subject selection,

and the statistical comparison of results from multiple cen-

ters [7,9,39]. In the case of the first generation of clinical

trials focusing on patients with MCI, there was a lack of

consistency in numbers of patients progressing to AD over

a certain period, likely due to the heterogeneous nature of

MCI; it is possible that one-half of study participants did

not have underlying AD pathology [7,11,40]. Correctly

distinguishing patients with AD pathology is critical,

especially considering the overlap that exists between

various late-life neurodegenerative pathologies. For exam-

ple, the Lewy bodies that characterize Parkinson’s disease

are found in .50% of patients with AD, in addition to neu-

ritic plaques and tangles. Therefore, there is a real need for

biomarkers that reliably distinguish between different types

of dementias [8,10].

Diagnostic biomarkers that meet the criteria outlined pre-

viously are urgently needed for subject selection, thereby

Table 2

Characteristics of an ideal biomarker

Characteristic Ideal

Sensitivity: % of patients correctly identified

as having AD

.80%–85%

Specificity: % of patients correctly identified

as not having AD.

.80%

Positive predictive value: % of patients who

are positive for biomarker and have

definite AD pathology at autopsy

.80%

Negative predictive value: % of patients who,

at autopsy, prove not to have the disease

.80%

NOTE. Adapted from Refs [7] and [10].
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allowing the stratification and enrichment of clinical trials.

There is a need to select subjects at an early stage of the Alz-

heimer’s continuum who are likely to progress through MCI

to dementia, and also to eliminate subjects with other pathol-

ogies. In phase I, II, and III trials, biomarkers that detect the

earliest indications of AD pathology, Ab deposition, such as

CSF Ab42, and 11C-PiB PET are most likely to be useful.

FDG-PET as a measure of metabolism could also have

potential [41].

The biomarkers used in a clinical trial will differ depend-

ing on the mechanism of action of the therapeutic, the goals

of the trial, and questions at hand. In small, short phase I tri-

als, CSF and plasma measures can be used to monitor Ab

turnover in healthy subjects. In phase II proof-of-principle

or proof-of-concept trials, Ab biomarkers in brain can be

used to confirm the mechanism of action of a new treatment

and “target engagement.” For phase II and III trials, CSF tau

and phosphorylated tau, MRI, and Ab PET can be used to

determine whether there is evidence of an effect of treatment

on disease progression. Clinical MRI is used routinely for

subject selection, to exclude confounding medical condi-

tions, and for detection of vasogenic edema as a safety end

point of “immune”-based treatments [41]. Finally, Ab PET

imaging, MRI, CSF and plasma biomarkers, and FDG-

PET are candidates as prognostic biomarkers in phase II

trials for selection of nondemented subjects at risk for devel-

oping AD to test whether treatments have the potential of

preventing or delaying the onset of AD. The predictive

power of these biomarkers in isolation or in combination

varies and will need to be factored into consideration.

None of the current generation of treatments proposed to

modify the progression of AD is free of safety concerns.

Estimation of the probability of developing AD will be

required for assessing the risk versus possible benefit of par-

ticipating in research trials [41]. Figure 4 shows ADNI bio-

markers that could be used at different stages of the drug

development process.

Looking at drug development as a whole, Cummings [37]

saw a wide variety of roles for biomarkers, from identifying

disease pathology and tracking disease progression, to dem-

onstrating pharmacokinetic effects of the body on the drug,

to facilitating proof-of-principle and determining doses for

subsequent trials, to determining drug efficacy, and, finally,

to contributing to corporate decision making, such as

whether to proceed with riskier and more expensive later-

phase trials (Fig. 5). Fleisher et al [9] reviewed progress in

developing neuroimaging biomarkers, either alone or in con-

junction with CSF biomarkers, for subject selection, and in

developing biomarkers functioning at later stages in disease,

such as MRI measures of brain atrophy or changes in cere-

bral glucose metabolism detected by FDG-PET as outcome

measures. This review also highlighted the need for bio-

markers in drug development and discussed the use of imag-

ing biomarkers in replacing cognitive end points in clinical

trials.

Both common sense and regulatory policies of the Food

and Drug Administration (FDA) and regulators in other

countries require that treatment trials need to demonstrate

a significant effect on cognition and function. Although ef-

fects on biomarkers would provide additional evidence of

treatment effect and evidence of disease modification, there

are no validated surrogates for AD trials, and such surrogates

will take many years to develop. Different biomarkers are

likely to be effective over different phases of the disease

[11,41]. To be used as surrogates for clinical measures,

biomarkers would need to be validated as reflecting

clinical and/or pathological disease processes with a high

degree of specificity and sensitivity. To qualify for

validation as an outcome measure, the biomarker must be

shown to predict clinical outcome over several trials and

several classes of relevant agents by following subjects

through disease progression and even possibly to autopsy

[3,9,37]. This validation process is likely to be aided by

the contribution of ADNI to standardizing procedures,

particularly for imaging techniques, to reduce

measurement errors in clinical trials [42]. A review by

Petersen and Jack [11] discussed neuroimaging and chemi-

cal biomarkers, either alone or in combination, for the pre-

diction of the development of dementia in MCI patients.

These authors provided an excellent and succinct summary

of the issues facing clinical trials for AD-modifying drugs

and the role of both U.S. and worldwide ADNI in developing

biomarkers to facilitate these trials.

Fig. 4. AD drug development. Black arrows show the phases of drug devel-

opment; the brick-colored arrows show the ADNI biomarkers that could be

used in that stage. Reproduced with permission from Ref [37].

Fig. 5. Roles of biomarkers in AD drug development. Abbreviations: AD-

MET, absorption, distribution, metabolism, excretion, toxicity; BBB,

blood–brain barrier; POP, proof of principle. Reproduced with permission

from Ref [37].
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A detailed discussion of the position of the FDA on bio-

marker validation is given by Carrillo et al [31], and it is

likely that the process will require a wider population of

well-characterized subjects than is available through

ADNI. To this end, and for the further study of therapeutic

interventions for AD, Petersen [40] proposed the establish-

ment of a national registry of aging. In their editorial in

the Journal of the American Medical Association, Petersen

and Trojanowski [39] introduced a paper that reports on

the evaluation of CSF biomarkers in a large multicenter

study. Placing this in the context of other work in the same

area, and in research undertaken as part of ADNI, they con-

cluded that as biomarkers become more sophisticated, they

will play even greater roles in AD clinical trials, and may

one day be of use in clinical practice in a diagnostic capacity.

Hill [41] concluded in his perspective on neuroimaging and

its role in assessing safety and efficacy of disease-modifying

therapies for AD: “..there is now sufficient experience of

imaging for Alzheimer’s disease in both natural history

and therapeutic trials for a clear recipe for success to be

emerging.”Weiner [43] concluded that the use of biomarkers

to select cognitively normal subjects who have AD-like pa-

thology and as validated outcome measures in clinical trials

“is the path to the prevention of AD.”

ADNI has proven to be a rich data set for industry-

sponsored research, including an assessment of disease pro-

gression in the AD population [44]. ADNI data have been

combined with additional placebo data from clinical trials

conducted in AD and are publicly available on the Coalition

Against Major Disease Web site (http://www.c-path.org/

CAMDcodr.cfm) for additional data mining. Modeling

efforts have highlighted the importance of age, baseline cog-

nitive status, and APOE status on disease progression rates;

a model is currently under qualification review through

newly developed European Medicines Agency (EMA) and

FDA qualification procedures. These types of models will

inform clinical trial design and streamline analysis for

drug studies conducted in mild-to-moderate AD.

ADNI has also enabled clinical studies in predementia,

and many have been posted to www.clinicaltrials.gov, high-

lighting the use of CSF and amyloid PET biomarkers in cog-

nitively impaired subjects to enrich for predementia clinical

trials. Application to registration-level, phase III studies re-

mains a challenge, as the biomarkers in ADNI have not yet

been qualified for use or received regulatory approval. To ad-

dress some of the remaining challenges, precompetitive and

industry-sponsored initiatives were recently conducted to

qualify CSF Ab-42 and t-tau as biomarkers for enrichment

in predementia study with the EMA, and a positive qualifica-

tion opinion was posted on the EMA site for these particular

biomarkers. Additional efforts are ongoing with the FDA.

For the most part, industry has been using the biomarkers

as enrichment tools in predementia and mild-to-moderate

AD studies, and as secondary or exploratory efficacy mea-

sures to assess impact of exploratory drugs on biomarker

measures of disease progression.

3. Methods papers

A considerable proportion of papers published as a result

of ADNI concerns the development and testing of methods

for use in ADNI, in the cohorts of other studies, or in clinical

trials. These run the gamut from papers examining the best

way to reduce differences between scanners in multicenter

studies to those describing a new way to discriminate

between AD, MCI, and control subjects, to methods for

enriching clinical trials to reduce required sample sizes

and therefore the associated cost, to new methods for exam-

ining genotype–phenotype relationships in neuroimaging

GWAS. This section presents an overview of these papers.

3.1. Standardization of ADNI procedures

3.1.1. Magnetic resonance imaging

3.1.1.1. Assessment of scanner reliability

A key feature of assessing the reliability of scanner hard-

ware over longitudinal scans is the use of a high-resolution

geometric “phantom” that can detect linear and nonlinear

spatial distortion, signal-to-noise ratio, and image contrast,

allowing these artifactual problems to be identified and sub-

sequently eliminated. Although these are commonly used

for periodic adjustments to quality control, they are scanned

after every patient in the ADNI MRI protocol. Gunter et al

[45] estimated that these artifactual problems would contrib-

ute to .25% imprecision in the metric used, and found that

phantom analysis helped correct scanner scaling errors and/

or miscalibration, thereby increasing the potential statistical

power of structural MRI for measuring rates of change in

brain structure in clinical trials of AD-modifying agents.

The utility of a scanner phantom was once again under-

scored by Kruggel et al [46], who examined the influence

of scanner hardware and imaging protocol on the variability

of morphometric measures longitudinally and also across

scanners in the absence of a phantom in a large data set

from the ADNI cohort. Using different acquisition condi-

tions on the same subject, the variance in volumetric mea-

sures was up to 10 times higher than under the sample

acquisition conditions, which were found to be sufficient

to track changes. Their results suggested that the use of

a phantom could reduce between-scanner imaging artifacts

in longitudinal studies. Kruggel et al [46] also investigated

the effect of scanner strength and the type of coil used on im-

age quality and found that a 3.0-T array coil system was op-

timal in terms of image quality and contrast between white

matter (WM) and gray matter (GM). Ho et al [47] similarly

tested the ability of 3.0-T and 1.5-T scanners to track longi-

tudinal atrophy in AD and MCI patients using tensor-based

morphometry (TBM). They saw no significant difference on

the ability of either scanner type to detect neurodegenerative

changes over a year, and found that TBM used at both field

strengths gave excellent power to detect temporal lobe atro-

phy longitudinally.

M.W. Weiner et al. / Alzheimer’s & Dementia 8 (2012) S1–S68S10

http://www.c-path.org/CAMDcodr.cfm
http://www.c-path.org/CAMDcodr.cfm
http://www.clinicaltrials.gov


While the scanning of a geometric phantom helps elimi-

nate artifacts introduced by the machine, Mortamet et al

[48] described an automated method for accounting for pa-

tient artifacts that can affect image quality, such as edge,

flow, and aliasing artifacts. They developed two quality indi-

ces and tested their ability to differentiate between high- and

low-quality scans, as assigned by an expert reader at the

ADNI MRI center. Both indices accurately predicted the

“gold standard” quality ratings (sensitivity and specificity

.85%), and the authors proposed that this method could be

integrated into a real-time or online MRI scanning protocol

to eliminate the need to rescan at a later date due to a poor-

quality scan, in keeping with the goal of placing as minimal

burden on the patient as possible. Clarkson et al [49] exam-

ined within-scanner geometric scaling drift over serial MRI

scans, as assessed by geometric phantoms, and developed

a nine degrees-of-freedom registration algorithm to correct

these scaling errors in longitudinal brain scans of patients.

They found that the nine degrees-of-freedom registration

was comparable with geometric phantom correction, allow-

ing atrophy to be measured accurately, and the authors sug-

gest that this registration-based scaling correction was the

preferred method to correct for linear changes in gradient

scaling over time on a given scanner. This in turn could obvi-

ate the need for scanning a phantomwith every patient. Bauer

et al [50] assessed the utility of collecting whole brain quan-

titative T2 MRI from multiple scanners using fast spin echo

(FSE)/dual spin echo sequences, which have been shown to

be useful in the early detection of AD pathology in MCI pa-

tients. Although FSE–T2 relaxation properties were related

to the global dementia status, the authors concluded that

the utility of the method was affected by the variability be-

tween scanners. Several papers were aimed at reducing

between-scanner effects, including those by Gunter et al

[45] and Clarkson et al [49]. Leung et al [51] presented

amethod aimed at overcoming variability in serialMRI scans

for the detection of longitudinal atrophy by modifying the

boundary shift integral (BSI) method of image analysis.

Two improvements to the BSI method were made: (1)

tissue-specific normalizationwas introduced to improve con-

sistency over time, and (2) automated selection of BSI pa-

rameters was based on image-specific brain boundary

contrast. The modified method, termed KN-BSI, had en-

hanced robustness and reproducibility and resulted in a reduc-

tion in the estimated sample sizes, required to see a 25%

reduction in atrophy in clinical trials ofAD-modifying drugs,

from 120 to 81 AD patients (80% power, 5% significance).

3.1.1.2. Development of protocols

Jack et al [52] described the development of standard-

ized MRI procedures for use in the multiple ADNI centers,

a process guided by the principle of maximizing the scien-

tific benefit of a scan while minimizing the burden on the

patient. Using technology widely available in 2004 to

2005, and limiting scanner platforms to three vendors,

they succeeded in developing a protocol that could be run

in ,30 minutes and that included the use of a phantom

scan to monitor scanner performance over time and across

different centers, back-to-back T1-weighted magnetization-

prepared rapid gradient echo scans to capture structural in-

formation while minimizing the need to rescan patients due

to technical difficulties, and T2-weighted dual-contrast FSE

sequences for the detection of pathologies. Postacquisition

corrections were instituted to remove certain image arti-

facts. Serial MRI scans, such as those used in ADNI, often

suffer from problems associated with the uniformity of sig-

nal intensity that introduce artifacts into the results. Boyes

et al [53] tested the ability of nonparametric nonuniform in-

tensity normalization (N3) to eliminate these artifacts on

higher-field 3-T scanners, which had a newer generation

of receiver coils, in serial 2-week scans of healthy elderly

control subjects. They found that the robustness and reli-

ability of the N3 correction were highly dependent on the

selection of the correct mask to identify the region of the

scan over which the N3 worked, and on the smoothing pa-

rameter used for head scans at different pulse sequences.

Leow et al [54] also used serial scans, 2 weeks apart, of

healthy elderly control subjects to investigate the stability

of different pulse sequences. They used TBM to generate

maps of computed changes that could be statistically ana-

lyzed and to give information on MRI reliability, reproduc-

ibility, and variability. This optimization of pulse sequences

contributed to the design of the ADNI MRI protocol, and

authors concluded that TBM is a useful tool for the study

of longitudinal changes in brain structure.

3.1.2. Ab- and FDG-PET

Variability across scanners is also a major factor in ADNI

PET studies, which are spread over 50 different centers and

involve 15 different scanner/software combinations. Joshi

et al [55] tackled the problem of reducing between-scanner

variability in PET images that has been observed despite

the use of standardized protocols. Major sources of

between-scanner variability are high-frequency differences,

mostly related to image resolution, and low-frequency dif-

ferences, mostly related to image uniformity and also to cor-

rections for scatter and attenuation. Joshi et al [55] scanned

a Hoffmann phantom at each participating center, and by

comparing the scans to the Hoffman “gold standard” digital

phantom, they developed corrections for both types of vari-

ability, which were tested on scans from the ADNI cohort.

They found that the high-frequency correction, by smooth-

ing all images to a common resolution, reduced interscanner

variability by 20% to 50%, but that the low-frequency cor-

rection was ineffective, perhaps due to differences in geom-

etry between the Hoffman phantom and the human brain.

Jagust et al [34] reported the development of a standardized

protocol for the acquisition of FDG-PET and 11C-PiB PET

data that first granted approval to participating sites based

on the results from a pair of phantom scans on the three-

dimensional (3-D) Hoffman brain phantom using defined

acquisition and reconstruction parameters. These were
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assessed for image resolution and uniformity using a quality

control process that used the digital gold standard phantom

for comparison. In this way, corrections were made for dif-

ferences in PET images across sites.

3.1.3. Biomarkers

The measurement of CSF concentrations of Ab-42, t-tau,

and p-tau is recognized to reflect early AD pathology.Within

ADNI, levels of these analytes are measured by flow cytom-

etry using monoclonal antibodies provided in the INNO-

BIA Alz Bio3 immunoassay kit (Innogenetics, Ghent,

Belgium) with xMAP technology (Luminex, Austin, TX)

[56,57]. The Biomarker Core of ADNI has worked to

make this a standardized procedure across multiple ADNI

sites, and Shaw et al [56] presented an analysis of within-

site and intersite assay reliability across seven centers using

aliquots of CSF from normal control subjects and AD

patients. Five CSF pools were tested, each pool made up

of either AD patients (n5 2) or controls (n5 3). Each center

performed three analytical runs using separate fresh aliquots

of each CSF sample and data were analyzed using mixed-

effects modeling to determine assay precision. The coeffi-

cient of variation was 5.3% for Ab-42, 6.7% for t-tau, and

10.8% for p-tau within center, and 17.9% for Ab-42,

13.1% for t-tau, and 14.6% for p-tau between centers. The

authors concluded that although they found good within-

laboratory assay precision, the reason for the reduced inter-

laboratory precision is not fully understood and may be

caused by many sources of variability.

3.2. Methods for MRI image preparation and processing

A large portion of ADNI research relies on the extraction

of information from MRI images; therefore, the develop-

ment of automated methods to reliably and robustly process

thousands of scans from multiple centers is vital to the pro-

ject. Processing steps include whole brain extraction, image

registration, intensity normalization, tissue classification

(segmentation), cortical thickness estimation, and brain atro-

phy estimation [58].

3.2.1. Whole brain extraction

The separation of brain from nonbrain voxels in neuroi-

maging data, known as whole brain extraction or “skull-

stripping,” is an important initial step in image analysis.

Inaccuracies at this step can lead to the introduction of arti-

facts adversely affecting further analysis; therefore, a robust

and accurate automated method for this step is highly desir-

able. To this end, Leung et al [58] compared the accuracy of

a technique, multiatlas propagation and segmentation

(MAPS), previously developed for hippocampal segmenta-

tion ([59]; see later section), with three other widely used au-

tomated brain extraction methods: brain extraction tool,

hybrid watershed algorithm, and brain surface extractor.

They found that compared with the semiautomated “gold

standard” segmentation, MAPS was more accurate and reli-

able than the other methods and that its accuracy approached

that of the gold standard, with a mean Jaccard index of 0.981

using 1.5-T scans and 0.980 using 3-T scans of control, MCI,

and AD subjects.

3.2.2. Automated registration and segmentation

As manual registration and segmentation of images into

WM, GM, and CSF is time-consuming, rater-dependent,

and infeasible for a large study because of its often prohibi-

tive cost, a number of studies have focused on developing

automated registration and segmentation methods.

3.2.2.1. Atlas-based registration

Wolz et al [60] offered a solution in which atlases are

automatically propagated to a large population of subjects

using a manifold learned from a coordinate embedding sys-

tem that selects similar images and reduces the potentially

large deformation between dissimilar images, thereby reduc-

ing registration errors. This learning embeddings for atlas

propagation method resulted in a more accurate segmenta-

tion of the hippocampus compared with other multiatlas

methods [60].

The use of more than one atlas on which to register brain

images has been recognized as a powerful way to increase

accuracy of the automatic segmentation of T1-weighted

MRI images, as it addresses the problem of brain variability.

The steps of the process have been described by Lotjonen

et al [61] and are presented in Fig. 6. Initially, multiple

atlases are nonrigidly registered to the patient image, after

which majority voting is applied to produce class labels

for all voxels. Then, postprocessing by a variety of algo-

rithms takes into account intensity distributions of different

structures.

The addition of atlases has been found to increase seg-

mentation accuracy in a logarithmic manner, that is, rapidly

at first, but eventually slowing toward a maximum. This in-

creased accuracy must be balanced by the increased compu-

tation time required for each additional atlas [61]. Lotjonen

et al [61] obtained the best segmentation accuracy with rel-

atively few [8–15] atlases, and, additionally, found that

postprocessing using either the graph cuts or expectation

maximization algorithms contributed to an optimized

multiatlas segmentation method that balanced accuracy

and computation times. They also found that the use of

normalized intensity differences in the nonrigid registration

step produced segmentation accuracy similar to that found

using the more computationally intensive normalized

mutual information method.

The selection of the atlases is a critical step. Heckeman

et al [62] described the case in which the use of atlases based

on the brains of young people resulted in occasional gross

segmentation failures due to ventricular expansion in the

older AD subjects. To overcome this problem, they modified

a hierarchical registration approach by changing the first

three levels to a tissue classification algorithm, instead of

using native magnetic resonance (MR) intensity data. This
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multiatlas propagation with enhanced registration approach

was found to create accurate atlas-based segmentations and

was more robust in the presence of pathology than previous

approaches.

Leung et al [58] generated multiple segmentations using

nonlinear registration to best-matched manually segmented

library templates and combined them using a simultaneous

truth and performance level estimation algorithm. MAPS

was then used to measure volume change over 12 months

by applying the BSI. The accuracy of MAPS was found to

compare favorably to manual segmentation, with a mean dif-

ference between automated and manual volumes of approxi-

mately 1% and a Dice score of 0.89 compared with other

methods developed by ADNI (0.86: Morra et al [63]; 0.85:

Wolz et al [64]; and 0.89: Lotjonen et al [61]).

3.2.2.2. Other registration methods

In addition to registration of images to one ormore atlases,

segmentation of images may use image statistics to assign la-

bels for each tissue or use geometric information such as

deformable models or active contours [65]. A method that

combines elements of these two approaches was described

by Huang et al [65], who used an edge-based geodesic active

contour. They found that this method segmented a range of

images more accurately and robustly than those using indi-

vidual statistical or geometric features only.

Calvini et al [66] developed software for the automatic

analysis of the hippocampus and surrounding medial tempo-

ral lobe (MTL) and the calculation of a novel statistical

indicator, theD-box, computed on intensities of the automat-

ically extracted regions Their method did not directly seg-

ment the hippocampus, relying instead on the use of the

D-box to assess intensities after a manual extraction step.

A computational processing application to measure sub-

tle longitudinal changes using nonlinear registration to the

baseline image was described by Holland and Dale [67].

This method, called quantitative anatomical regional change

(QUARC), used nonrigid 12-parameter affine registration,

image smoothing minimization, normalization of local in-

tensity nonuniformity, direct calculation of the displacement

field of the region of interest (ROI) rather than the Jacobian

field, and bias correction. When QUARC was compared

with four other common registration methods used on

ADNI data, it produced significantly larger Cohen d effect

sizes in several ROIs than FreeSurfer v4.3 (Athinoula A.

Martinos Center for Biomedical Imaging, Massachusetts

General Hospital, Boston, MA; http://surfer.nmr.mgh.

harvard.edu/), voxel-based morphometry, and TBM, and

a similar whole brain effect size to the standard KN-BSI

method. Although, unlike the other methods, the signal-to-

noise ratio of the raw images obtained using QUARC was

enhanced by back-to-back repeat scans, the authors con-

cluded that QUARC is a powerful method for detecting lon-

gitudinal brain morphometric changes in levels varying from

the whole brain to cortical areas to subcortical ROIs.

3.2.3. Automated temporal lobe and hippocampal

segmentation

In AD, atrophy in MTL and, in particular, the hippocam-

pus is associated with declining cognitive function. It is not

surprising, then, that a substantial body ofwork has been pub-

lished on the subject of analyzing structural MRI

Fig. 6. Steps of multiatlas segmentation. (I) nonrigid registration used to register all atlases to patient data, (II) classifier fusion using majority voting for pro-

ducing class labels for all voxels, and (III) postprocessing of multiatlas segmentation result by various algorithms, taking into account intensity distributions of

different structures. Reproduced with permission from Ref [61].

M.W. Weiner et al. / Alzheimer’s & Dementia 8 (2012) S1–S68 S13

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/


T1-weighted measurements of this region. Chupin et al [68]

developed a fully automated method for hippocampal seg-

mentation based on probabilistic information derived from

an atlas built from the manually segmented hippocampi of

16 young subjects and anatomical information derived

from stable anatomical patterns. Wolz et al [64] used a fully

automated four-dimensional (4-D) graph-cut approach to

hippocampal segmentation that segmented serial scans of

the same patient. Power analysis of the method revealed

that a clinical trial for an AD-modifying drug would require

67AD or 206MCI patients to detect a 25% change in volume

loss (80% power and 5% significance). Morra et al [69] de-

veloped the auto context model (ACM), a fully automated

method to segment the hippocampus, based on the machine

learning approach, AdaBoost. After training the classifier

on a training set, ACM was able to discriminate between

AD, MCI, and control groups, suggesting that the automatic

segmentation is sufficiently sensitive to detect changes in

hippocampal volume over the course of disease progression.

Thismethodwas comparedwithmanual and other automated

methods for hippocampal segmentation, and also with TBM,

whichwas used to assess whole brain atrophy in an earlier pa-

per by the same group [63]. These authors found that ACM

compared well with hand-labeled segmentation and that the

volume atrophy over clinical groups and correlation with

clinical measures with ACM were comparable with that

found with other automated methods and better than TBM,

suggesting that the latter method may not be optimal for

assessing hippocampal atrophy.

Automatic image segmentation is prone to systematic er-

rors, which are introduced when these mostly knowledge-

based protocols mistranslate manual segmentation protocols

into the automatic format. Wang et al [70] presented a wrap-

per algorithm that can be used in conjunction with automatic

segmentation methods to correct such consistent bias. The

algorithm uses machine learning methods to first learn the

pattern of consistent segmentation errors and then applies

a bias correction to the mislabeled voxels detected in the ini-

tial step. When the algorithm was applied to four different

segmentation methods, it decreased the number of misla-

beled voxels by 14% (multiatlas hippocampal segmentation)

to 72% (FreeSurfer hippocampal segmentation) and resulted

in a higher Dice overlap than other hippocampal segmenta-

tion methods, including some of those by Leung et al, Chu-

pin et al, andMorra et al, described in this review [59,68,69].

Beyond volumetric analysis of ROIs, recent research has

focused on extracting more meaningful information from

the shape of brain structures, but most studies have not con-

sidered the pose, or location and orientation of the structure.

Bossa et al [71] presented amethod for the statistical analysis

of the relative pose of subcortical nuclei. The framework of

the analysis was a variety of approaches based on similarity

transformations with Reimannian metrics. Significant group

differences were found between control subjects, MCI

patients who did or did not subsequently convert to AD

(MCI-c and MCI-nc, respectively), and AD patients, and

the authors suggested that the method may be particularly

useful as an AD biomarker in conjunction with shape analy-

sis, as both approaches leverage complementary information.

3.2.4. TBM and DBM

Bossa et al [72] used themethod of TBM,which examines

the deformation fields generated when an image is registered

to a template. Previous work used large deformation algo-

rithms for the nonrigid registration step, as they have the flex-

ibility to characterize anatomical variability in cross-sectional

studies. These algorithms are, however, computationally

intensive, and the authors proposed a simplified version of

the large deformation algorithms, stationary velocity field dif-

feomorphic registration. When the method was evaluated us-

ing ADNI subjects, it provided brain atrophy maps at high

spatial resolution with lower computational requirements.

Hua et al [73] examined two methods of image registration

in TBM and found that the method in which each image is

aligned to a single template was a more effective measure

of brain deterioration. They also found TBM to be better

suited to analyzing morphometric changes over larger areas,

such as the entire temporal lobe, rather than specific ROIs,

such as the hippocampus, and that atrophic changes detected

by their method correlated well with clinical measures of

brain deterioration (Mini-Mental State Examination

[MMSE] and clinical dementia rating [CDR] scores).

Yushkevich et al [74] examined the use of DBM, a tech-

nique closely related to TBM in estimating longitudinal hip-

pocampal atrophy in the ADNI cohort. They found that

without a correction for asymmetry that arises during longitu-

dinal image registration, substantial bias can result in the

overestimation of the rate of change of hippocampal atrophy.

Park and Seo [75] tackled the problem of accurate registration

algorithms required in DBM to compute the displacement

field. They proposed a method that uses multidimensional

scaling to improve the robustness of the registration step,

and found that thismethod improves the ability ofDBMto de-

tect shape differences between patients.

3.2.5. Quantification of brain morphometric changes

Several papers have focused on the development of

methods for quantifying structural changes across the whole

brain from structural MRI scans. Chen et al [76] developed

a semiquantitative brain and lesion index based on T1- and

T2-weighted imaging. They found that both the T1-based

and T2-based scores correlated with age and cognitive per-

formance and differentiated between control, MCI, and AD

subjects. Acosta et al [77] presented a new accurate and com-

putationally efficient voxel-based method for 3-D cortical

measurement. The method, which uses an initial Lagrangian

step to initialize boundaries using partial volume information

and a subsequent Eulerian step to compute the final cortical

thickness, offered higher statistical power to detect differ-

ences between clinical groups with a slight increase in com-

putational time compared with methods using only the

Eulerian step. The authors proposed that the increased
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accuracy and precision are attributable to the Lagrangian

step, which effectively achieves subvoxel accuracy.

3.2.6. Fractal analysis

A different approach for detecting atrophy in disease

progression based on fractal analysis has been described

by King et al [78]. Recognizing that the cerebral cortex

has fractal properties, such as being statistically self-

similar, this group investigated the effect of AD on gyrifi-

cation using fractal analysis. They found that fractal

analysis of cortical ribbons was able to discriminate be-

tween AD and control subjects in all of the seven regions

tested, apart from the hippocampus, and suggested that

this method may play a complementary role to ROI ap-

proaches, especially at earlier stages of disease progres-

sion. In a subsequent work, King et al [79] presented

a new method for fractal dimension analysis of the cortical

ribbon that also measured cortical thickness. When this

method was compared with gray/white and pial surface

cortical models, they found that it was the only measure-

ment to have a significant correlation with cortical thick-

ness and ADAS-cog scores, and that it best discriminated

between control subjects and AD patients. The authors con-

cluded that the fractal dimension of the cortical ribbon has

strong potential as a quantitative marker of cerebral cortex

atrophy in AD. Li et al [80] presented a method to reliably

measure cortical thickness for longitudinal studies by in-

corporating 4-D information from successive scans directly

into processing steps. In the absence of a gold standard

against which to test their method, they used power analy-

sis of the correlation between cortical thickness and the

MMSE to show that this method improved longitudinal sta-

bility compared with 3-D methods that do not take the tem-

poral factor into account.

3.2.7. Other MRI methods

Risser et al [81] presented a new method to compare

imaged shapes, either longitudinally or against an atlas, on

several different scales simultaneously, and to quantify the

deformations on a single scale using large-scale deformation

diffeomorphic mapping. When the method was applied to

examine hippocampal atrophy in ADNI patients using base-

line and 24-month scans, it was found to be able to extract

information at the desired scale among all the scales.

A modification of the voxel-based analysis and statistical

parametric mapping method for the detailed spatial analysis

of image data without a priori defined ROIs was proposed by

Zhang and Davatzikos [82]. Their method, optimally

discriminative voxel-based analysis, uses non-negative dis-

criminative projection applied to the spatial neighborhood

around each voxel to find the optimally discriminative direc-

tion between two groups, determines a statistic for each

group, and obtains a statistical parametric map of group dif-

ferences. Optimally discriminative voxel-based analysis was

found to perform well compared with traditional statistical

parametric mapping using an ADNI data set.

3.3. Methods for AD classification from imaging data

The development of automatic methods for the accurate

classification of patients into clinical groups from imaging

data has been the aim ofmultipleADNI studies.Many of these

classification methods are based on support vector machines

(SVMs), a set of algorithms that uses supervised learning of

pattern recognition in a training set to build a classifier to pre-

dict the category to which a new example belongs. Some

methods condense imagingdata into one score that is reflective

of brain abnormalities associated with AD to allow the direct

comparison of patients, thereby facilitating their classification

into patient group [83–85], whereas others examine which

combination of imaging, CSF biomarkers, genetics, and

other factors results in the most accurate classifiers [86,87],

or formulate novel approaches for identifying AD-like pat-

terns [87–90]. Other methods leverage the changes in spatial

connectivity between different areas of the brain that most

likely occur, as functional connectivity becomes affected

during disease progression [65,83]. Finally, some methods

[91,92] use an alternative approach to machine learning,

a relevance vector machine (RVM), which, unlike the binary

SVM, is a probabilistic machine learning algorithm. A brief

description of these methods is given later in the text, and

their results are presented and compared with existing

methods of classification in section 5.4.1.

3.3.1. Magnetic resonance imaging

Fan et al [83] used an SVM to construct a classifier based

on patterns of spatial distribution of brain tissue from T1-

weighted MRI scans of control subjects and AD patients

and applied this classifier to scans of MCI patients. The clas-

sifier, which acts as an indicator of how the structural profile

of an individual fits that of AD or control subjects, also pro-

duced a structural phenotypic score (SPS) that allowed direct

comparison of patients. This approach differs from ROI or

voxel-based analyses, as it examines spatial patterns of atro-

phy rather than individual brain regions, and is also able to ex-

amine functional connectivity. Shen et al [89] also developed

a method that integrated feature selection into the learning

process, but used sparse Bayesian learning methods instead

of an SVM. They reported that their automatic relevance

determination and predictive automatic relevance determina-

tion, in general, outperformed the SVM used for comparison

and classified patients more accurately than the method of

Hinrichs et al [88]. Stonnington et al [91] used regression

analysis based on an RVM to analyze T1-weighted MRI

data and predict clinical scores, whereas Franke et al [92]

used an RVM combined with an automatic preprocessing

step and dimension reduction using principal component

analysis to estimate the age of healthy subjects from T1-

weightedMRI data, and found the method to be reliable, effi-

cient, and scanner independent. In contrast to the supervised

SVMsused in the aforementioned studies, FilipovychandDa-

vatzikos [93] used a semisupervised SVM to classify MCI-c

and MCI-nc patients. In the supervised approach, there is an
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assumption that patterns in a heterogeneous construct like

MCI are known, but in a semisupervised approach, only

some of the data, in this instance, baselineMRIs fromAD pa-

tients and control subjects, are labeled, whereas scans ofMCI

patients are left unlabeled. Using a leave-one-out approach,

scans were then classified as having a degree of AD-like or

normal-like anatomic features, as defined by Fan et al [83].

Amore data-driven approach for patient classification that

circumvents the need for a priori definedROIs by using an ini-

tial independent component analysis (ICA) stepwas proposed

byYang et al [94]. Their preliminary study combined the ICA

step to extract defining neuroimaging features with a subse-

quent SVM for classification of scans intoAD,MCI, and con-

trol subjects, and the resulting method was tested on two

cohorts, including ADNI. Pelaez-Coca et al [95] compared

ability of anatomical versus statistically defined ROIs to dis-

criminate between control andADsubjects.Using a variety of

classifiers, they sought to restrict the number of features using

principal component analysis and found that a higher number

of features did not necessarily correspond with higher classi-

fication accuracy.When generalizability of the algorithmwas

tested by analyzing classification performance of 20 different

experiments inwhich different subsets of the cohortwere used

as training and testing sets, they found that the resulting var-

iability was larger than within the different classifiers used.

Finally, they found that statistically definedROIs representing

voxelswith the largest significance difference in a group com-

parisonwith an unbiased atlas (belonging to voxels in the hip-

pocampi and amygdalae) resulted in better classification

accuracy than anatomically predefined ROIs in the hippo-

campi, lateral ventricles, and amygdalae.

3.3.2. [
18F]-fluorodeoxyglucose-positron emission

tomography

Haense et al [84] also used a discrimination procedure,

developed by the European Network for Standardization of

Dementia Diagnosis, which generates a measure reflective

of scan abnormality from FDG-PET data. This measure,

AD t-sum, is calculated from the sum of abnormal t-values

in voxels known to be affected by AD, and was used for dis-

crimination of clinical groups. A similar approach was used

byChen et al [85], who developed an automatically generated

hypometabolic convergence index (HCI) reflective of the

degree to which the patient’s pattern and magnitude of cere-

bral hypometabolism corresponded to that of probable AD

patients.Huang et al [65] identified changes in spatial connec-

tivity patterns based on sparse inverse covariance estimation

using FDG-PET data. Salas-Gonsalez et al [90] developed

an automated procedure to classify AD patients from FDG-

PET data using a t test to select voxels of interest and factor

analysis to reduce feature dimension. The resulting factor

loadings were tested on three different classifiers, two Gauss-

ian mixture models with either linear or quadratic discrimi-

nant functions and an SVM. Lemoine et al [87] used

a combination of feature selection and data fusion to construct

SVMs from both FDG-PET and clinical data. To extract the

most meaningful features from FDG-PET scans, they used

an evolutionary algorithm inwhich each feature corresponded

to one gene, the number of features was arbitrarily selected to

be 30, and which was complete when an area under the curve

(AUC) of 0.98 was achieved on the training data set. SVMs

were also constructed for a range of clinical features, and

the results of these and the FDG-PET classifiers were

weighted and data finally fused to create a final classifier.

3.3.3. Cognitive methods

Llano et al [96] developed a cognitive test based on

ADAS-cog as an alternative to imaging or CSF biomarkers

for use as an outcome measure or for subject enrichment

in clinical trials. The ADAS.Tree composite was derived

by weighting test components of ADAS-cog based on their

ability to discriminate between control, MCI, and AD sub-

jects of the ADNI cohort using a Random Forests tree-

based algorithm. ADAS.Tree discriminated between patient

groups as well as, or better than, the best imaging or CSF

biomarkers or cognitive tests. Optimal sets of markers for

the prediction of 12-month decline were then determined

using machine learning algorithms, and performance of the

derived cognitive marker was found to be comparable

with, or better than, other individual or composite baseline

CSF or neuroimaging biomarkers. The authors suggest that

the ADAS.Tree might prove more widely applicable than

expensive and/or invasive imaging or CSF biomarkers.

3.3.4. Combined modalities

The new machine learning algorithm of Hinrichs et al

[88], which uses data from both MR and FDG-PET images,

integrates a spatial discrimination step to identify

AD-related patterns in different brain regions, rather than as-

sessing these relationships at the pre- or postprocessing steps.

3.4. Other imaging methods

Rousseau [97] presented a method for generating a high-

resolution image from a low-resolution input, using jointly

one low-resolution image and intermodality priors from

another high-resolution image to create a super-resolution

framework, for instance, a high-resolution T1-weighted

image and a low-resolution T2-weighted image from the

same patient. The method, when tested on clinical images

from ADNI data, automatically generated high-resolution

images from low-resolution input, and the authors suggest

that this method may permit the investigation of multimodal

imaging at high resolution.

The problem of representing a high dimensionality of

brain images amassed in common neuroimaging applica-

tions was tackled by Gerber et al [98], who proposed that

these images can be approximated by a low-dimensional,

nonlinear manifold representative of variability in brain

anatomy. They constructed a generative manifold model

through kernel regression and tested this using ADNI data,

and their finding was that important clinical trends were
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captured by this manifold when learned manifold coordi-

nates and clinical parameters were subjected to analysis by

linear regression.

3.5. Statistical methods

Interpretationof imagingdata is a key facet in the process of

extracting meaningful information from these scans. As the

volume of neuroimaging data generated byADNI studies bur-

geons, there is an obvious need formore sophisticated analysis

techniques. Habeck and Stern [99] reviewed advances in mul-

tivariate analysis techniques that are being developed to super-

sede the more commonly used univariate, voxel-by-voxel

analysis of imaging data. By evaluating the correlation or co-

variance of activation across brain regions, these multivariate

techniques produce results that can be interpreted as neural

networks, thereby addressing brain functional connectivity.

Habeck and Stern [99] directed this review specifically at neu-

roscientists to explain the “bewildering variety of (multivari-

ate) approaches .presented.typically by people with

mathematics backgrounds.” In an effort to further spread the

word to neuroscientists about this technique, a video article

is also available [100].

Wu et al [101] presented a method to assess the reliability

of hypometabolic voxels during the statistical inference

stage of analysis. The aim of this method was to incorporate

the differential involvement of each voxel into the multiple

comparison correction, as opposed to current methods in

which each location is treated equally. They used statistical

parametric mapping and bootstrap resampling to create

a bootstrap-based reliability index and compared this

approach with the commonly used type I error approach,

and found a strong, but nonlinear, association between the

two methods. The authors suggest that this approach could

have utility in both cross-sectional and longitudinal studies,

in the early detection of AD, and in tracking disease progres-

sion in clinical trials.

Singh et al [102] presented a new method to relate com-

plex anatomical changes observed in AD patients with

changes in cognition based on a statistical analysis of large

deformation diffeomorphic metric mapping. In this method,

the diffeomorphic transformations were analyzed using

a multivariate and partial least squares approach without

segmentation or the use of a priori defined ROIs. They found

that this approach associated ventricular expansion, cortical

thinning, and hippocampal atrophy with worsening scores

on neuropsychological variables such as ADAS-cog, Rey

Auditory Verbal Learning Test (AVLT), and clinical demen-

tia rating-sum of boxes (CDR-SB), confirming that this data-

driven approach was able to reach similar conclusions as

other studies based on predefined ROIs.

3.6. Genetics methods

Genetic contributions to AD are being revealed by GWAS

that search for associations between QTs in the form of

imaging or biomarker data and genetic loci. The standard

approach (mass univariate linear modeling), which com-

pares each phenotype–genetic loci pair individually and

then ranks the association in terms of significance, is

extremely computing-intensive and can miss information

from areas surrounding a particular association. Vounou

et al [103] proposed a new method, sparse reduced rank

regression, which overcomes these problems by enforcing

sparsity of regression. They found sparse reduced rank

regression to be less computing-intensive and to have better

power to detect deleterious genetic variants than mass uni-

variate linear modeling. An alternative approach to reducing

computational requirements, while retaining a high degree

of significance to AD, has been presented by Chen et al

[104], who used each of 142 preselected imaging ROIs as

QTs in a GWAS. Heat maps and hierarchical mapping

were then used to organize and visualize results and to select

target SNPs, QTs, or associations for further analysis.

In addition to computational challenges, imaging genetics

studies with multiple testing are also prone to false-positive

results, and both familywise error and false discovery rate cor-

rections are used to adjust significance thresholds acrossmul-

tiple voxels. Silver et al [105] measured false-positive rates

using VBM to investigate the effect of 700 null SNPs on

GM volume in the ADNI cohort. They found that although

false-positive rates were generally found to be well con-

trolled, under certain conditions, such as under low cluster-

forming thresholds, the false-positive rates were substantially

elevated. Consequently, they proposed the use of parametric

randomfield theory cluster size inference and alternative non-

parametric methods under different circumstances.

3.7. Methods papers: Summary and conclusions

Papers focused on method development have been instru-

mental in facilitating ADNI research thus far and promise to

deliver improvements in reliability, efficiency, and effective-

ness in ADNI-GO and ADNI-2. The establishment of stan-

dardized protocols that account for problems of variability,

both across the multicenter setting of ADNI and longitudi-

nally, has been a primary accomplishment. Likewise, the de-

velopment of methods for automatic tissue registration and

segmentation that avoid the necessity of time-consuming

and costly manual segmentation is critical for the analysis

of ADNI data. The majority of these approaches are atlas-

based, although statistically based registration has also

been proposed. Automatic segmentation of the hippocam-

pus, a prominent AD biomarker, poses particular challenges

because of its size and location, and several studies have

made contributions to the analysis of its volume, shape,

and pose. TBM and DBM methods and fractal approaches

offer an alternative to volumetric ROI analysis. Methods to

allow the classification of patients according to disease sta-

tus have primarily been based on SVMs and the related

RVMs, which are used to build classifiers that can include

MRI, FDG-PET, biomarker, APOE 34, and cognitive data.
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Finally, statistical methods have been developed to deal with

the complexities of the volume and diverse types of data gen-

erated by ADNI studies.

4. Studies of the ADNI cohort

4.1. Clinical characterization

Central to achieving the goals of ADNI was the recruit-

ment of a study population that mirrors cohorts used in

MCI and mild AD trials. Petersen et al [106] presented

a baseline and 12-month longitudinal clinical characteriza-

tion of the ADNI cohort, comprising 229 normal control

subjects, 398 subjects with MCI, and 192 subjects with

mild AD, and provided clear support for the success of

ADNI in this regard. The demographic characteristics of

the participant groups, given in Table 3, indicate that the co-

hort was mostly white and well educated, and that there were

a high proportion of APOE 34 carriers, consistent with pop-

ulations recruited for clinical trials. At baseline, each study

group differed significantly in a range of cognitive measures,

with the MCI group intermediate between the control and

AD groups in measures of memory impairment and in levels

of CSF biomarkers (Table 4). In contrast to AD subjects who

were impaired in virtually all cognitive measures, MCI sub-

jects were only mildly impaired in nonmemory cognitive

measures. After 12 months, 16.5% of MCI subjects had con-

verted to AD, and a greater increase in the ADAS-cog was

seen in the AD group compared with the MCI group. Little

change was observed in control subjects. The study also

found that baseline Ab-42 levels were predictive of the pro-

gression of clinical measures over 12 months.

4.2. Medication use

Medication use among the ADNI cohort was investigated

by Epstein et al [107]. They found a high rate of polyphar-

macy, with 85% of participants taking more than four med-

ications, the average being eight (SD 5 4). Moreover, 22%

of participants reported taking one or more Beers list medi-

cations deemed to be potentially dangerous in the elderly

population. The most common medications for symptomatic

treatment of AD or MCI were the cholinesterase inhibitor

donepezil and the N-methyl-D-aspartate partial receptor ag-

onist memantine, which were frequently taken as a combina-

tion therapy. Despite the lack of FDA approval for use of

these drugs to treat MCI, donepezil, memantine, and other

cholinesterases were commonly used by MCI patients.

Women, less educated, and more elderly participants were

less likely to receive treatment. Schneider et al [108] focused

on the use of cholinesterase inhibitors and memantine in the

ADNI cohort. They found that 44% ofMCI patients and 85%

of mild AD patients were treated with cholinesterase inhib-

itors, and that 11% of MCI patients and 46% of mild AD pa-

tients were treated with memantine. In both patient groups,

use of these medications was associated with increased cog-

nitive impairment at baseline, a higher rate of clinical de-

cline over 2 years, and a more rapid progression to

dementia in MCI patients. Cholinesterase inhibitors and

memantine appeared to be more frequently prescribed to pa-

tients diagnosed as having MCI due to AD, despite a lack of

evidence from clinical trials and lack of FDA approval for

this treatment. The authors suggested that use of these med-

ications may affect the interpretation of clinical trial out-

comes.

Table 3

Demographic characteristics of ADNI participant groups

Characteristic Control subjects (n 5 229) MCI group (n 5 398) AD (CDR: 1.0) group (n 5 192) P value P , .05*

Age, mean 6 SD, years 75.8 6 5.0 74.7 6 7.4 75.3 6 7.5 .137

Education, mean 6 SD, years 16.0 6 2.9 15.7 6 3.0 14.7 6 3.1 ,.001 b, c

Years from symptom onset Not available Not available 3.9 6 2.5 NA

% Female 48.0 35.4 47.4 .002 a, c

Marital status, % .002 a

Married 80.2 81.2

Widowed 17.5 12.1 10.4

Divorced 7.4 6.3 4.7

Never married 6.6 1.5 3.6

Unknown 0.4 0 0

APOE 34, % ,.001 a, b, c

Carriers 26.6 53.3 66.1

Noncarriers 73.4 46.7 33.9

Ethnicity

American Indian 0 0.3 0

Asian American 1.3 2.3 1.0

African American 7.0 3.5 4.2

Hispanic 0.9 3.5 2.1

White 90.8 90.5 92.2

Other 0 0 0.5

NOTE. Reproduced with permission from Ref [106].

*Multiple comparisons abbreviated as: (a) control subjects differ from subjects with AD, (b) subjects with MCI differ from subjects with AD, (c) control

subjects differ from subjects with MCI.
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4.3. Baseline and longitudinal studies of brain

morphometric changes during disease progression

ADNI has afforded a unique opportunity to examine brain

morphometric changes that occur during disease progression

in a large, well-defined cohort. Using MRI data,

cross-sectional and longitudinal studies focused either on

evaluating spatial pattern and regional rates of atrophy or

on characterizing biomarkers for varying disease stages

have together resulted in amore detailed and coherent picture

of this complex process.

A cross-sectional study by Fennema-Notestine et al [109]

examined the feasibility of high-throughput image analysis

to detect subtle brain structural changes in the early stages

of AD. They further divided the MCI group, based on neuro-

psychological performance, into single-domain and multi-

domain groups, which they proposed represented earlier

and later stages in disease progression, respectively. Using

comparisons of cortical thickness, they found a pattern of

progressive atrophy from normal control subjects to

single-domain MCI subjects, to multidomain MCI subjects,

and finally to subjects with AD (Fig. 7). When ROIs were ex-

amined, they found that the regions that differed between the

control group and the single-domain MCI group included

not only the hippocampus and entorhinal cortex, which

had the largest effect sizes, but also other temporal regions,

the temporal horn of the lateral ventricle, rostral posterior

cingulate, and several parietal and frontal regions. Relative

to control subjects, multidomain MCI patients had greater

differences in the same regions as well as in the lateral infe-

rior, middle, and superior temporal gyri and fusiform corti-

ces. Additional atrophy was seen in AD patients relative to

control subjects in the inferior parietal, banks of the superior

temporal sulcus, retrosplenial, and some frontal regions.

Similar results were reported in a cross-sectional study by

Table 4

Baseline assessments of the ADNI cohort

Assortment variable

Control subjects MCI AD

P value P , .05*Mean SD Mean SD Z score MCI–control Mean SD Z score AD–MCI

MMSE score 29.1 6 1.0 27.0 6 1.8 218.8 23.3 6 2.1 221.3 ,.001 a, b, c

CDR global score 0.0 6 0.0 0.5 6 0.0 397 0.7 6 0.3 13.4 ,.001 a, b, c

CDR-SB 0.0 6 0.1 1.6 6 0.9 34.9 4.3 6 1.6 21.3 ,.001 a, b, c

Memory 0.0 6 0.0 0.6 6 0.2 61.3 1.0 6 0.3 16.5 ,.001 a, b, c

Orientation 0.0 6 0.0 0.2 6 0.3 17.5 0.8 6 0.4 17.7 ,.001 a, b, c

Judgment 0.0 6 0.1 0.4 6 0.3 21.8 0.8 6 0.4 14.6 ,.001 a, b, c

Community affairs 0.0 6 0.0 0.2 6 0.2 13.1 0.7 6 0.4 16.9 ,.001 a, b, c

Hobbies 0.0 6 0.0 0.2 6 0.3 15.1 0.8 6 0.5 15.9 ,.001 a, b, c

Personal care 0.0 6 0.0 0.1 6 0.2 4.4 0.2 6 0.4 4.3 ,.001 a, b, c

Hachinski score 0.6 6 0.7 0.6 6 0.7 0.8 0.7 6 0.7 0.7 .418 NA

GDS score 0.8 6 1.1 1.6 6 1.4 7.3 1.7 6 1.4 0.6 ,.001 a, b

FAQ 0.1 6 0.6 3.9 6 4.5 16.2 13.0 6 6.9 16.8 ,.001 a, b, c

ADAS-cog total 6.2 6 2.9 11.5 6 4.4 18.1 18.6 6 6.3 14.0 ,.001 a, b, c

ADAS word list immediate recall 2.9 6 1.1 4.6 6 1.4 16.8 6.1 6 1.5 12.2 ,.001 a, b, c

ADAS word list recognition 2.6 6 2.3 4.6 6 2.7 10.1 6.6 6 2.8 8.2 ,.001 a, b, c

ADAS-cog without word list 0.8 6 0.9 2.3 6 2.0 12.9 5.9 6 4.1 11.4 ,.001 a, b, c

ADAS word list delayed recall 2.9 6 1.7 6.2 6 2.3 20.8 8.6 6 1.6 15.0 ,.001 a, b, c

AVLT trials 1-5 43.3 6 9.1 30.7 6 9.0 216.7 23.2 6 7.7 210.4 ,.001 a, b, c

AVLT delayed recall 7.4 6 3.7 2.87 6 3.3 215.6 0.7 6 1.6 210.3 ,.001 a, b, c

AVLT DR/trial, 5% 65.8 6 27.6 32.1 6 33.1 213.9 11.2 6 22.0 29.3 ,.001 a, b, c

Trails A 36.5 6 13.2 44.9 6 22.8 5.9 68.0 6 36.9 8.0 ,.001 a, b, c

Trails B 89.2 6 44.3 130.7 6 73.5 8.8 198.9 6 87.2 9.2 ,.001 a, b, c

Category fluency (animal) 19.9 6 5.6 15.9 6 4.9 29.1 12.4 6 4.9 28.1 ,.001 a, b, c

Category fluency (vegetable) 14.7 6 3.9 10.7 6 3.5 212.7 7.8 6 3.3 29.8 ,.001 a, b, c

Number cancellation 0.4 6 0.7 1.0 6 0.9 8.0 1.8 6 1.3 7.6 ,.001 a, b, c

Boston Naming Test 27.9 6 2.3 25.5 6 4.1 29.4 22.4 6 6.2 26.2 ,.001 a, b, c

Digit backward 7.2 6 2.2 6.2 6 2.0 26.0 5.0 6 1.8 27.2 ,.001 a, b, c

Clock drawing 4.7 6 0.7 4.2 6 1.0 27.6 3.4 6 1.3 27.5 ,.001 a, b, c

CSF biomarkers (pg/mL) (n 5 114) (n 5 199) (n 5 102)

Tau 69.7 6 30.4 101.4 6 62.2 6.0 119.1 6 59.6 2.4 ,.001 a, b

Ab242 205.6 6 55.1 162.8 656.0 26.6 143.0 6 40.8 23.5 ,.001 a, b, c

p-tau181P 24.9 6 14.6 35.5 6 18.0 5.7 41.6 6 19.8 2.6 ,.001 a, b, c

Abbreviations: GDS, Geriatric Depression Score; FAQ, Functional Activities Questionnaire; ADAS-cog, cognitive subscale of the Alzheimer’s Disease As-

sessment Scale; AVLT, Rey Auditory Verbal Learning Test; CDR-SB, clinical dementia rating-sum of boxes.

NOTE. Reproduced with permission from Ref [106].

*Multiple comparisons abbreviated as: (a) control subjects differ from subjects with MCI, (b) control subjects differ from subjects with AD, (c) subjects with

MCI differ from subjects with AD.
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Karow et al [110], who found a pattern of atrophy spreading

from the mesial temporal lobe in MCI patients to widespread

areas in AD patients. Fennema-Notestine et al [109] also ex-

plored the trajectories of change of ROIs over the course of

the disease and found that although some regions, such as

mesial temporal regions, exhibited a linear rate of atrophy

through both MCI stages to AD, other regions, such as the

lateral temporal middle gyrus, retrosplenial cortex, inferior

parietal cortex, and rostral middle frontal cortex, exhibited

accelerated atrophy later in the disease.

The idea that rates of change of atrophy are not uniform

but vary by disease stage is supported by several studies.

When MCI groups were classified according to subsequent

clinical outcome, Leung et al [59] found higher rates of hip-

pocampal atrophy in MCI-c than MCI-nc patients.

McDonald et al [111] examined regional rates of neocortical

atrophy in the ADNI cohort, dividing MCI subjects into two

groups by their CDR-SB scores. The less impaired MCI

group had CDR-SB scores of between 0.5 and 1.0, whereas

the more impaired group had CDR-SB scores of between

1.5 and 2.5 (AD subjects had CDR-SB scores of .2.5).

They found that over the course of disease progression, atro-

phy changed from the medial and inferior lateral temporal,

inferior parietal, and posterior cingulate cortices initially,

to the superior parietal, prefrontal, and lateral occipital corti-

ces, and finally to the anterior cingulate cortex (Fig. 8).More-

over, the rates of change differed among the three groups. The

least impairedMCI patients showed the greatest rates of atro-

phy in the medial temporal cortex, whereas later in disease

progression, rates of atrophy were higher in the prefrontal,

parietal, and anterior regions. Similar patterns were found

by several other groups using a range of MRI methods. Hua

et al [112] and Leow et al [113] both used TBM to create 3-D

maps of structural changes over 12 months. Risacher et al

[114,115] examined a variety of structural MRI markers for

their sensitivity to longitudinal change and clinical status

using multiple methods, including VBM and ROIs,

whereas Schuff et al [116] focused on changes in hippocam-

pal volume, and McEvoy et al [117] calculated an atrophy

score based on ROIs most associated with AD atrophy. Col-

lectively, these studies showed atrophy spreading from the

MTL to the parietal, occipital, and frontal lobes over the

course of the disease, with MCI patients, in general, having

a more anatomically restricted AD-like pattern of change.

MCI subjects who converted to AD within the time frame

of the study (MCI-c) had a more AD-like pattern of atrophy,

and nonconverters (MCI-nc) had a pattern more intermediate

between control and AD subjects (Fig. 9). Several stud-

ies [114,115,118,119] divided the MCI group into those

patients who converted to AD within a year and those who

remained stable. Each group had distinct profiles when

assessed using a score derived from patterns of structural

abnormality, the future converters having mostly positive

scores that reflected a largely AD-like pattern of brain atro-

phy. Conversely, the distribution of abnormality scores in

the MCI-nc group was bimodal, reflecting the heterogeneity

of this group that appears to contain some members who,

with abnormality scores close to those of AD patients, are

likely to convert in the near future.

The highest rates of change occurred in AD subjects and

MCI-c patients in measures of hippocampal volume and en-

torhinal cortex thickness [115,120]. Schuff et al [121] found

that atrophy was detectable at 6 months and accelerated with

time to 12 months in MCI and AD subjects, with the highest

rates of atrophy seen in AD patients (Fig. 10). Hua et al [120]

used TBM to examine the effects of age and sex on atrophic

rates and found that the atrophic rates of women were 1% to

1.5% higher than for men. They also observed a 1% increase

in atrophic rate and a 2% increase in ventricular expansion

for every 10-year decrease in age, with correlations strongest

in the temporal lobe.

A different data-driven approach to determining the time

course of brain volume changes in healthy elderly, MCI, and

AD subjects without using a priori models was taken by

Schuff et al [116]. Using generalized additive models to an-

alyze serial MRI scans over 30 months, they found that atro-

phy rates varied nonlinearly with age and cognitive status,

most noticeably in temporal regions, and that atrophy tended

Fig. 7. Group differences in average thickness (mm) for left hemisphere.

Top row: NC vs. SMCI; middle row: normal controls (NC) vs. MMCI; bot-

tom row: NC vs. AD. Left mesial views, right lateral views. The scale ranges

from , 20.3 (yellow) to . 10.3 (cyan) mm thickness. Areas on the red-

yellow spectrum indicate regions of thinning with disease: approximate

color scale in mm is20.05 to20.15 dark red,20.20 bright red,20.25 or-

ange, and , 20.30 yellow. For thicker regions: 10.05 to 10.15 blue. Any

differences smaller than 6 0.05 mm are gray. Reproduced with permission

from Ref [109].
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to level off in control and MCI-nc subjects, but decline fur-

ther in MCI-c and AD patients. The authors suggest that

these differences are a reflection of the different processes

involved in healthy versus disease-related neurodegenera-

tion. The regions with the greatest effect sizes between

young control and AD subjects were the entorhinal cortex,

the hippocampus, and the lateral ventricles, suggesting that

rates of change in these regions have potential as biomarkers

for the early detection of AD.

Beyond simple volumetric analysis, one approach to an-

alyzing brain morphometric changes in greater detail has

been to assess changes in shape of ROIs. Qiu et al [122]

used large deformation diffeomorphic metric mapping to re-

veal that the anterior of the hippocampus and the basolateral

complex of the amygdala had the most surface inward defor-

mation in MCI and AD patients, whereas the most surface

outward deformation was found in the lateral ventricles

(Fig. 11). These results are in agreement with the volumetric

findings of Apostolova et al [123] and also with many find-

ings documenting the enlargement of the lateral ventricles

with disease progression.

4.4. Associations between characteristics of the ADNI

cohort

A major area of focus in research using ADNI data has

been the elucidation, both at baseline and longitudinally, of

associations between various imaging, CSF, genetic, and

clinical correlates in different clinical groups to gain a better

understanding of the interplay of biomarkers throughout dis-

ease progression.

4.4.1. Magnetic resonance imaging

4.4.1.1. Temporal lobe

Structures within the temporal lobe have long been asso-

ciated with AD decline because of their critical role in the

Fig. 8. Annual atrophy rates as a function of degree of clinical impairment. Clinical impairment measured using baseline clinical dementia rating-sum of boxes

(CDR-SB) scores. Mean atrophy rates are represented as a percent change in neocortical volume and mapped onto the lateral (left), ventral (middle), and medial

(right) pial surface of the left hemisphere. These data demonstrate that atrophy rates are most prominent in posterior brain regions early in the course of disease,

spreading to anterior regions as the level of impairment increases, with relative sparing of sensorimotor regions. Reproduced with permission from Ref [111].
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formation of long-term memory, one of the first functions to

be affected in disease progression. Leow et al [113] found

temporal lobe atrophy to be associated with increased cogni-

tive impairment in MCI patients, as indicated by changes in

CDR, MMSE scores, and the AVLT (Fig. 12). Among the

structures of the temporal lobe, hippocampal atrophy is the

best studied structural biomarker, as it is one of the earliest

structures to degenerate in AD. In a small initial study,Morra

et al [63] found that bilateral hippocampal atrophy at baseline

was strongly correlated with both MMSE and CDR-SB

(Table 5). A further larger study by the same group [124] ex-

amined rates of hippocampal atrophy over 12 months and

found that these correlated with both baseline cognitive

scores on MMSE and global and sum of boxes CDR and

with longitudinal change in these measures (Table 5). Wolz

et al [64] also revealed significant correlations between rates

of hippocampal atrophy and both baseline MMSE and CDR,

and changes in these measures over 12months (Table 5). Ad-

ditionally, a study by Schuff et al [121] found that rates of

change of MMSE and ADAS-cog were associated with rates

of hippocampal atrophy (Table 5). Using TBM,Hua et al [73]

found that baseline temporal lobe atrophy was associated

with both baseline and change in the CDR-SB in MCI and

AD patients, but with change in the MMSE only in the AD

group, providing further evidence for the acceleration of atro-

phic change with disease progression.

The relationships between hippocampal volume and

memory retention were examined by Apostolova et al

[123], who found that MCI patients had bilateral associa-

tions between hippocampal volume and radial distance and

three tests of delayed recall (DR): ADAS-cog-DR, AVLT-

DR, and the Wechsler Logical Memory Test II-DR, whereas

associations between these tests in AD patients were stron-

ger in the left hippocampus both at baseline and at the

12-month follow-up (Table 5). In addition, they found highly

significant regional associations for memory performance,

especially in the CA-1 subregion and the subiculum on the

anterior hippocampal surface. Associations between tempo-

ral lobe degeneration and memory performance (Wechsler

Memory Scale-Revised—Logical Memory, immediate

recall and DR) were also found by Hua et al [73]. Along

with hippocampal atrophy, ventricular expansion is a hall-

mark of brain morphometric changes that occur during AD

progression and has great potential as a structural biomarker,

as the lateral ventricles are comparatively easy to measure,

because of their high contrast underMRI, and are highly sen-

sitive to disease progression. Evans et al [125] found that

ventricular expansion differentiated between patient groups

was associated with ADAS-cog scores in AD patients, and

that MCI-c patients had higher rates of ventricular expansion

than MCI-nc patients. Chou et al [126] automatically map-

ped ventricular geometry and examined correlations

between surface morphology, clinical decline, and CSF bio-

markers. They found that ventricular enlargement at base-

line correlated with diagnostic group, depression severity,

both baseline and rates of change of cognitive function

(MMSE and CDR-SB), and lower CSF Ab-42. In a subse-

quent study by the same group [127] using automated radial

mapping to generate statistical maps, ventricular enlarge-

ment was found to correlate with a large number of measures

of clinical decline as well as with lower levels of CSFAb-42

and the APOE 34 allele (Fig. 13). Chou et al [126] also noted

expansion of the posterior regions of the ventricles in MCI

patients and in the frontal regions of the superior horns in

AD patients compared with control subjects, suggesting a to-

pographic sequence of morphometric change throughout

disease progression.

The studies of Morra et al [124], Wolz et al [64], Hua et al

[112], and Risacher et al [115] all found that carriers of the

APOE 34 allele had higher rates of hippocampal atrophy

than noncarriers. In contrast, Schuff et al [121] found that

increased rates of hippocampal atrophy were associated

with APOE 34 in the AD, but not MCI or control, group. Us-

ing Structural Abnormality Index (STAND) scores to reflect

the overall level of AD-like anatomic features, Vemuri et al

[128] also found that the APOE 34 allele contributed to

MRI atrophy. Hua et al [112] found that the APOE 34 allele

had a dose-dependent detrimental risk with greater atrophy

in the hippocampus and temporal lobe in homozygotes

than heterozygotes in MCI and AD groups (Fig. 13). The re-

cently identified AD risk allele GRIN2b was associated with

higher rates of temporal lobe atrophy in the pooled group, but

moreweakly thanAPOE 34 [120]. Other thus far unidentified

genetic risk factors likely contribute to AD, with epidemio-

logical studies suggesting maternal history of the disease

Fig. 9. Distribution of atrophy scores used to classify subjects with MCI.

MCI atrophy score was derived from LONI data archive trained on data

from all control subjects and subjects with AD. Discriminant model as-

sumed equal prior group probabilities. Individuals were classified as having

control phenotype if their scores were above –0.33. Cutoff score was chosen

to maximize overall accuracy of classifying control subjects and subjects

with AD on whom this model was trained. Average atrophy score for sub-

jects with MCI was –0.50. Atrophy score is not normally distributed (Kol-

mogorov–Smirnov test 5 0.73, df 5 175, P 5 .025) but shows evidence of

bimodal distribution. Reproduced with permission from Ref [117].
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increases the risk of developing AD. Andrawis et al [129] ex-

amined the influence of maternal history of dementia on hip-

pocampal atrophy and found smaller baseline and 12-month

follow-up hippocampal volumes inMCI patients with mater-

nal, but not paternal, history. APOE 34-positive patients

also had decreased hippocampal volumes, regardless of pa-

rental history. These results suggest the involvement of ma-

ternally inherited genetic material, encoded on either the X

chromosome or mitochondrial genome. The latter may be

more likely, given that decline in mitochondrial function

has been found to lead to increased generation of reactive

oxygen species, enhanced apoptosis, cell loss, and brain atro-

phy [129].

4.4.1.2. Other ROIs

Although the caudate has not been the subject of intensive

AD research, it plays a crucial role in the formation of new

associations required for the acquisition of explicit memo-

ries. Madsen et al [130] found that baseline caudate atrophy

was associated with a number of clinical and biochemical

measures, including, most strongly, body mass index

(BMI), in the AD group alone and in the pooled sample,

and CDR-SB and MMSE scores at baseline (Table 5). There

appeared to be preferential right caudate atrophy in AD pa-

tients, and the authors proposed that caudate atrophy might

function as a complementary biomarker to other structural

measures. The inferior parietal lobe (IPL) is involved in

Fig. 10. Individual trajectories of hippocampal volume change. Thick black lines indicate themean trajectory change of each group.Reproducedwith permission

from Ref [121].

Fig. 11. Group differences in regional shape deformations. Abbreviations: Am, amygdala; Hp, hippocampus; V, ventricles; iLV, inferior lateral ventricles; Cd,

caudate; Pu, putamen; Pa, globus pallidus; Th, thalamus. Reproduced with permission from Ref [122].
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Fig. 12. Cumulative distribution function (CDF) plots for voxelwise correlation of progressive temporal lobe tissue loss in MCI, AD, and pooled groups. (A)

Correlations with various biomarker indices, including Ab-42 (AB142), tau protein (TAU), phosphorylated-tau 181 (PTAU), tau/Ab-42 ratio (TAUAB), and p-

tau/Ab-42 ratio (PTAUAB), and (B) correlations with various clinical measures. Reproduced with permission from Ref [113].
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Table 5

Associations between biomarker and clinical measures in ADNI cohort (correlation coefficients)

Biomarker N

Clinical

group

Clinical correlates

ReferenceMMSE DMMSE CDR-SB DCDR-SB ADAS-cog

DADAS-

cog

LM-II-

DR AVLT

TMTA

and B

Hippocampal

volume (L/R)

21 Pooled

sample

0.423*/0.529y 20.369*/20.705y [63]

12-month hippocampal

atrophy rate (L/R)

490 Pooled

sample

20.191y

/20.168y
0.117y/

0.136y
0.173y/

0.181y
20.174y/

20.171y
[124]

12-month hippocampal

atrophy rate (L/R)

555 Pooled

sample

20.52z

/20.43z
0.36z/

0.30z
0.47z/

0.38z
20.27z/

20.21z
[64]

Hippocampal radial

distance (L/R)

245 MCI 20.20y/20.17y 0.24x/0.31x 0.27x/0.25x [123]

98 AD 20.21*/NS NS/NS 0.21*/NS

Hippocampal atrophy

rate

498 Pooled

sample

0.18* [121]

607 MCI Learning Retention [140]

0.36z 0.37z

Cortical thickness

Entorhinal 0.33z 0.33z

Parahippocampal 0.22z 0.23z

Frontal caudal middle 0.16z NS

Rostral middle 0.23z 0.16c

Lateral orbitofrontal 0.16z NS

Inferior parietal 0.24z 0.17z

Precuneus 0.25z 0.16z

Cortical thickness

(L/R)

536 Pooled

sample

Posterior cingulate 0.14z/0.13y 0.22y/0.19y [138]

Caudal middle NS/NS 0.17y/0.15y High EF: TM A

1 B Low EF:

AVLT

Rostral middle 0.30y/0.13z 0.18y/0.21y

Superior frontal NS/0.13y 0.16y/0.17y

Operculum NS/NS 0.14y/0.16y

Lateral bifrontal NS/NS 0.15y/NS

Frontal polar NS/NS 0.17y/NS

STAND score 399 Pooled

sample

20.50z 0.59z [132]

192 MCI 20.19y 0.26z

98 AD 20.29y 0.34z

Ab242 399 Pooled

sample

0.31z 20.37z

192 MCI NS NS

98 AD NS NS

Caudate volume 400 Pooled

sample

0.175* 20.209* [130]

Hippocampal volume

[130]

0.349* 20.365*

Ventricular volume 20.205* 0.225*

(Continued )
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Table 5

Associations between biomarker and clinical measures in ADNI cohort (correlation coefficients) (Continued )

Biomarker N

Clinical

group

Clinical correlates

ReferenceMMSE DMMSE CDR-SB DCDR-SB ADAS-cog

DADAS-

cog

LM-II-

DR AVLT

TMTA

and B

Predicted scores from

whole brain gray

matter volumes

586 Pooled

sample

[91]

MMSE 0.47z

ADAS-cog 0.49z

AVLT NS

Biomarker N

Clinical

group

Clinical correlates

MMSE DMMSE CDR-SB DCDR-SB FAQ ADAS-cog

LM-II-

DR AVLT

TMTA

and B

FDG 12 months ROI

decline in CMRgl

154 MCI 0.22y 20.19* NS [104]

69 AD NS 20.25* NS

FDG-PET regional-

to-whole brain CMRgl

(L/R)

[134]

Posterior cingulate 298 Pooled

sample

NS 20.47x/NS

Precuneus 0.36x/0.37x 20.46x/20.49x

Parietal 0.26x/0.36x 20.42x/20.47x

Temporal 0.43x/0.32x 20.41x/20.41x

Frontal 0.23x/0.22x 20.24x/20.26x

Medial temporal NS 20.36x/20.41x

Occipital 0.31x/0.22x 20.37x/20.26x

DPiB uptake 61{ Pooled

sample

20.22 (P 5 .09) NS [16]

Ventricular

expansion

20.52y 20.42y

161 Pooled

sample

Learning Recognition [136]

Hippocampal volume 0.35x,** 0.34x,**

Parahippocampal

complex volume

NS 0.17*,**

Precuneus cortical

thickness

0.22y,** NS

Inferior parietal lobe

metabolism

0.23y,** NS

Hippocampal

metabolism

0.15*,** 0.25x,**

APOE genotype NS 0.14*,**

FDG-ROIs baseline 95 AD NS 21.95y,** [135]

DFDG-ROIs 21.21y,** 23.25z,**
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FDG-ROIs baseline 208 MCI 20.88z,** 20.66y,**

DFDG-ROIs NS 21.08z,**

Hypometabolic

convergence index

188 Pooled

sample

20.48 0.54 0.53 20.43 0.45 [85]

50 MCI [155]

Hippocampal volume NS NS 0.41*

Retrosplenial volume 20.42* 20.43* NS

Retrosplenial

metabolism

0.47* NS NS

Entorhinal

metabolism

0.38* NS NS

D LM-II Boston

Naming

Category

fluency

TMT B [142]

Right medial lobe

atrophy rate

20.41z,yy

Left entorhinal cortex 0.47z,yy

Left lateral lobe thinning 0.31z,yy

Left temporal lobe

atrophy rate

0.38z,yy

Left frontal lobe —

pars orbitalis

0.33z,yy

Learning Delayed

recall

[110]

Hippocampal volume 156 MCI 20.388 0.279 0.459

Entorhinal metabolism 20.406 0.175 0.318

Abbreviations: ROI, region of interest; CMR-gl, cerebral metabolic rate for glucose; TMT, Trail Making Test; NS, not significant.

*P , .05.
yP , .01.
zP , .001.
x
P , .0001.
{Includes 23 subjects from the Mayo Clinic Study of Aging.

**b values from regression model.
yyFigures from a mixed effect model that examined baseline level and longitudinal change as independent variables as predictors of change.
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sensory and motor association and possibly comprises part

of the memory circuitry. Greene and Killiany [131] exam-

ined the associations between subregions of the IPL (gyrus,

banks, and fundus) and cognitive measures in control, MCI,

and AD subjects. They found that compared with control

subjects, MCI patients differed only in the thickness of the

banks of the left IPL, a change that correlated with decreased

scores in the AVLT-DR, whereas AD patients had significant

morphometric changes in all subregions of the right IPL.

These results suggest a temporal sequence of changes during

disease progression, with atrophy beginning in the left IPL

and spreading to the right.

4.4.1.3. Multiple ROIs and whole brain studies

Other MRI studies have used approaches based on the

whole brain or multiple ROIs, rather than specific ROIs.

Evans et al [125] examined brain atrophy rates using the

brain BSI technique and found atrophy to be associated

with MMSE and ADAS-cog scores in MCI and AD patients.

Within the MCI group, they found greater rates of change, in

a range similar to that observed in the AD group, in subjects

who converted to AD within the time frame of the study.

Stonnington et al [91] found that whole brain GM at baseline

predicted baseline scores on the ADAS-cog and, MMSE, but

not on the AVLT (Table 5). The latter is a more specific test

of memory, and the authors suggest that whole brain

methods may be preferentially more highly sensitive to tests,

unlike the AVLT, that involve diverse brain regions. Vemuri

et al [132] used STAND scores as a measure of the degree of

AD-like anatomic features to assess correlations between

brain morphometric changes and cognitive scores, and found

that STAND scores were highly correlated with CDR-SB

and MMSE scores in individual groups and the pooled sam-

ple (Table 5). These studies lend support for atrophy of the

whole brain or multiple ROIs as biomarkers, based on their

ability to differentiate between patient groups and healthy

control subjects, and to track disease progression and clini-

cal decline.

A measure derived from a multidimensional scaling

method for quantifying shape differences using DBM [75]

had a strong inverse correlation with the MMSE (r 5

20.53), although the findings were limited by small sample

size. Using the related method of TBM, Ho et al [133] cre-

ated regional maps of changes in brain tissue and used the

Fig. 13. Apolipoprotein E (APOE) gene effects on regional brain volumes. Maps show the mean percent differences in regional brain volumes for four different

group comparisons. Percent differences are displayed on models of the regions implicated: (A) ventricular cerebrospinal fluid (CSF), (B) sulcal CSF, (C) hip-

pocampi, and (D) temporal lobes; dotted lines show the boundary of the hippocampus. Reproduced with permission from Ref [112].

M.W. Weiner et al. / Alzheimer’s & Dementia 8 (2012) S1–S68S28



resulting Jacobian values to represent brain tissue excess or

deficit relative to a template. They found that lower brain

volume in the frontal, parietal, occipital, and temporal lobes

was associated with higher BMI in MCI and AD patients,

and that ventricular expansion correlated with higher BMI

in AD, but not MCI, patients (Fig. 14). Every unit increase

in BMI was associated with a 0.5% to 1.5% decrease in brain

volume in patients of the ADNI cohort.

4.4.2. [
18F]-fluorodeoxyglucose-positron emission

tomography

FDG-PET has been used by several groups to investigate

relationships between cerebral glucose hypometabolism and

other factors, including cognitive measures and CSF bio-

markers. Several papers confirmed that there is a characteristic

regional pattern of hypometabolism in MCI and AD patients.

Wu et al [101] found that hypometabolic voxels were associ-

atedwith the posterior cingulate/precuneus and parietotempo-

ral regions. Lower bilateral cerebralmetabolic rate for glucose

(CMRgl) at baseline in these regions and in the frontal cortex

was associated with higher CDR-SB and lowerMMSE scores

inMCI andADgroups [134] (Table 5).Although the pattern of

hypometabolismwas similar in the two groups, themagnitude

and spatial extent were greater with increasing disease sever-

ity. In the AD group alone, however, lower MMSE correlated

with lower left frontal and temporal CMRgl, suggesting that

the characteristic pattern of baseline reductions in glucoseme-

tabolism shifts to the frontal cortex after the onset of dementia.

Chen et al [104] investigated declines inCMRgl in statistically

predefined ROIs associated with AD over 12 months in the

ADNI cohort and found significant changes in MCI and AD

groups comparedwith control subjects bilaterally in the poste-

rior cingulate, medial and lateral parietal, medial and lateral

temporal, frontal, and occipital cortices. These changes corre-

latedwith CDR-SB, but not ADAS-cog, scores in both groups,

and with MMSE scores in the MCI group (Table 5). Landau

et al [135] found a greater decline in CMRgl in all a priori de-

fined ROIs in AD patients and in a composite score of ROIs in

MCI patients compared with control subjects. Longitudinal

glucose decline was associated with concurrent ADAS-cog

scores and decline on the Functional Activities Questionnaire

(FAQ), validating the relevance of longitudinal measures of

glucose metabolism to both cognitive and functional decline.

The annual decline in the ADAS-cog and FAQ was greatest

in AD patients, followed by the MCI and control groups, in

accordance with an acceleration of the disease process over

time (Table 5). The hypometabolism index reported by Chen

et al [85] correlated with cognitive measures of disease sever-

ity, hippocampal volume, and CSF biomarkers (Table 5).

These papers support the use of glucosemetabolismas a sensi-

tive measure of cognition in AD.

4.4.3. Cognitive

A number of studies have focused on the relationship be-

tween cognitive function and imaging or CSF biomarkers.

Atrophic changes in the episodic memory network

(Fig. 15), which is composed of MTL structures, medial

and lateral parietal cortical areas, and prefrontal cortical

areas and is involved in the formation of new episodic mem-

ories, are presumed to underlie ongoing memory loss in AD.

Walhovd et al [136] studied how baseline brain morphome-

try and metabolismwithin the episodic memory network and

APOE genotype predicted memory, as assessed by the

AVLT. They found that in the total sample of the ADNI co-

hort, hippocampal volume and metabolism, parahippocam-

pal thickness, and APOE genotype predicted recognition,

whereas hippocampal volume and metabolism, cortical

thickness of the precuneus, and inferior parietal metabolism

predicted learning, suggesting that MTL structures are

related to learning, recall, and recognition, whereas parietal

structures are involved solely in learning (Table 5). The

authors concluded that MRI and FDG-PET imaging have

differential sensitivity to memory in AD and thus provide

complementary information. Episodic memory likely

involves a number of different cognitive processes, such as

initial encoding, learning on repeated exposure, and DR,

which may be subserved by disparate components of the ep-

isodic memory network. Wolk and Dickerson [137]

Fig. 14. Association of regional brain tissue volumes with body mass index. These represent the estimated degree of tissue excess or deficit at each voxel, as

a percentage, for every unit increase in body mass index, after statistically controlling for the effects of age, sex, and education on brain structure. Images are in

radiological convention (left side of the brain shown on the right) and are displayed on a specially constructed average brain template created from the subjects

within each cohort (mean deformation template). Reproduced with permission from Ref [133].
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investigated whether verbal episodic memory could be frac-

tionated into dissociable anatomic regions in mild AD pa-

tients, using cortical thickness of predefined “AD

signature” ROIs and hippocampal volume as structural mea-

sures and different stages of the AVLT as a verbal memory

measure. They found that initial immediate recall trials

were most significantly associated with the temporal pole re-

gion, but that regions in the MTL became more significantly

associated in later trials. In tests of DR, only the hippocam-

pus correlated with performance, whereas the perirhinal/en-

torhinal cortex was most strongly associated with delayed

recognition discrimination. The authors concluded that their

results lend support to models hypothesizing that dissociable

brain regions are involved in differential episodic memory

processes. Associations between memory learning and brain

morphometry in the MTL were found in a study by Chang

et al [138]. MCI patients were differentiated into learning-

deficit and retention-deficit subgroups using the AVLT.

Low memory retention was associated with changes in the

medial temporal regions, particularly the hippocampus and

entorhinal cortex, whereas low memory learning correlated

with a more widespread pattern of morphometric changes

beyond the temporal lobe, including areas of the frontal

and parietal lobes (Table 5).While memory loss is a hallmark

of AD, a subset ofMCI patients is impaired primarily in their

executive function. Dickerson and Wolk [139] identified

dysexecutive and amnestic phenotypes in patients with

MCI or very mild AD based on performance on the Trail

Making Test and ADAS-cog subscale: Word recognition.

They found that the memory-impaired group had a more fre-

quent occurrence of the APOE 34 allele status than the dys-

executive group, and that patients with low executive

function had thinner frontoparietal cortical regions and

were more impaired in daily life than those with predomi-

nantly memory impairment. A further study by Chang et al

[140] found that MCI patients with high executive function

performed better on tests of verbal memory than those with

low executive function, and that morphometric measures of

the two groups differed primarily in the dorsolateral prefron-

tal and posterior cingulate cortices, where more thinning was

evident in low executive function patients (Table 5). Results

from both studies suggest that the dysexecutive phenotype

may reflect differences in underlying pathology in brain re-

gions beyond the MTL.

The ideas that different brains regions subserve different

cognitive functions and that MCI is a heterogeneous con-

struct led Wolk et al [141] to examine the influence of

APOE genotype on memory and executive function in AD.

When cortical thickness in predefined ROIs was examined

in carriers and noncarriers of the APOE 34 allele who had

a CSF biomarker profile consistent with AD, carriers were

more impaired in measures of memory retention and had

greater atrophy in medial temporal regions, whereas noncar-

riers were more impaired in tests of executive function,

working memory, and lexical access and had greater fronto-

parietal atrophy. The finding that neuroanatomic regions

thought to subserve different cognitive processes are differ-

entially affected by APOE 34 allele status supports the hy-

pothesis that this allele exerts its effect on AD by

influencing different large-scale brain networks.

The question of whether domain-specific cognitive defi-

cits in MCI are caused by global atrophy or progressive atro-

phy within specific regions was studied by McDonald et al

[142], who examined 2-year regional atrophy rates in MCI

patients. Stepwise regression models revealed that left ento-

rhinal atrophy, left lateral lobe thinning, left temporal lobe

atrophy, left frontal lobe atrophy rate, and the right MTL

atrophy rate were associated with memory decline (Logical

Memory II), naming decline (Boston Naming Test), seman-

tic fluency decline (Category Fluency Test), executive func-

tion (Trail Making Test B; TMT-B), and clinical decline

(CDR-SB), respectively (Table 5). This study affords

a glimpse into the specific structure–function relationships

that occur early in disease progression and enhances our

understanding of the neural basis of cognitive impairments.

Although studies, such as those described previously,

have focused on the relationship between brain atrophy,

APOE 34 status, and cognitive decline, relatively little is

known about the biomarkers of functional decline, a hallmark

ofAD. Accordingly, the rate of decline in the FAQ, ameasure

of the ability of patients tomaintain daily function, and how it

is affected by cerebral atrophy andAPOE 34 allele status, was

studied by Okonkwo et al [143]. They found that AD patients

had a higher rate of functional decline than control subjects,

with the rate of MCI patients intermediate between the two.

Moreover, MCI patients who subsequently progressed to de-

mentia had higher rates of decline on the FAQ than stable

MCI patients. Increasing ventricle-to-brain ratio, the mea-

sure of neurodegeneration chosen for the study, correlated

with increased functional impairment inMCI patients. Those

patients who were both APOE 34-positive and had elevated

ventricle-to-brain ratio were the most functionally impaired.

Fig. 15. The episodic memory network. Along with the hippocampal for-

mation, the cortical areas shown here are part of the episodic memory net-

work. Shown here are pial cortical representations of selected parcellations

in the left hemisphere. From left to right: medial, ventral, and lateral views.

Reproduced with permission from Ref [136].
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These results parallel studies that have shown neurodegener-

ation and APOE 34 status to be associated with cognitive de-

cline. In a further study by the same group, Okonkwo et al

[144] investigated the relationships betweenCSF biomarkers

and everyday function, as assessed by the FAQ. They found

that biomarkers were more sensitive to functional decline

in control subjects and MCI patients than in AD patients,

and that in the latter group, scores on the ADAS-cog were

more highly correlated with functional activity. Combina-

tions of tau and Ab-42 abnormalities had the steepest rates

of functional decline across clinical groups. The authors sug-

gested that the effect of CSF abnormalities on functional de-

cline is partially mediated by their effect on cognitive status.

In elderly populations, in addition to brain atrophy or

genetic studies, BMI has been associated with cognitive

decline. Cronk et al [145] examined the relationship between

BMI and cognition in MCI patients and found that lower

BMI at baseline was associated with a decline in the

MMSE, ADAS-cog, and a global composite of the ADNI

neuropsychological battery, but not with CDR-SB scores

or conversion to AD. The causal relationships between

BMI and cognitive decline in MCI remain to be elucidated,

but the authors suggest either that low BMI is a result of fac-

tors associated with MCI or that MCI patients with low BMI

are predisposed to more rapid disease progression.

4.4.4. CSF biomarkers

The relationship between CSF biomarkers and neuronal

degeneration has been investigated by a number of groups

within and outside ADNI following the seminal publication

by Shaw et al [57], which defined cut points for CSF tau and

Ab-42 based on an ADNI-independent cohort of autopsy-

confirmed AD patients as well as normal control subjects

and then applied these cut points successfully to the ADNI

cohort. Follow-up studies went on to test the hypothesis

that changes in levels of biomarkers occur early in disease

and thus are likely predictive of future brain atrophy, if not

directly associated with all parts of the degenerative process.

For example, Tosun et al [146] examined how rates of re-

gional brain trophy were related to levels of CSF biomarkers

in MCI patients and healthy elderly control subjects. They

found that lower CSF Ab-42 levels and higher tau levels

were associated with increased atrophy in numerous brain

regions, beginning primarily in the temporal and parietal

cortices in MCI patients and extending to regions not nor-

mally associated with amyloid pathology, such as the cau-

date and accumbens areas, in AD patients. Schuff et al

[121] also found that increased rates of hippocampal atrophy

were associated with lower levels of Ab-42 in the MCI, but

not AD or control, group. Leow et al [113] used TBM to ex-

amine rates of atrophy and found that lower CSF Ab-42

levels, higher tau levels, and a higher p-tau/Ab-42 ratio

were significantly associated with temporal lobe atrophy in

the pooled group, and, additionally, that within the AD

group, levels of CSF p-tau and the p-tau/Ab-42 ratio were

also significantly associated. Fjell et al [147] investigated

whether baseline levels of CSF biomarkers were associated

with baseline brain morphometric differences between con-

trol, MCI, and AD subjects, as measured by cortical thick-

ness in a number of ROIs. They found that although CSF

biomarkers levels could not account for baseline differences,

they were moderately associated with longitudinal change in

multiple areas, including medial temporal regions and be-

yond.

A second focus of research into CSF biomarkers has been

how they are modulated by APOE genotype and their asso-

ciation with cognitive measures. Shaw et al [57] reported

that Ab-42 concentrations were dose dependent on the num-

ber of APOE 34 alleles, with the highest concentrations

found in homozygotes. Vemuri et al [128] found that Ab-

42 is more closely associated with APOE genotype than cog-

nitive function (MMSE, CDR-SB), but that APOE genotype

had no significant effect on levels of t-tau (Fig. 16). An ear-

lier study by the same group [132] investigated the relation-

ship between CSF biomarkers and cognitive function

(MMSE and CDR-SB), and found that the CSF biomarkers

Ab-42, t-tau, and p-tau181pwere only significantly correlated

with cognitive function in the pooled sample (Table 5). Ott

et al [148] studied the relationship between CSF biomarkers

and ventricular expansion with the hypothesis that ventricu-

lar dilation may reflect faulty CSF clearance mechanisms re-

sulting in reduced levels of Ab. They found that ventricular

expansion was associated with reduced CSF Ab levels in

normal elderly carriers of APOE 34, but that in APOE 34-

positive AD patients, ventricular expansion was associated

with increased levels of tau and not Ab. The authors sug-

gested that the APOE 34 allele may exert its effect through

modulation of CSF–blood–brain barrier function.

The results from these studies support a model in which

changes in the levels of CSF biomarkers are an early step

in the course of the disease that reflects the degree of AD

pathology, and in which Ab-42 is modulated by the APOE

34 allele, which functions in the early stages of pathology

by reducing the efficiency of Ab-42 clearance. As described

in the Genetics section 5.3, Kim et al [149] performed

a genomewide search for markers associated with CSF ana-

lyte levels in the ADNI cohort. Overall, CSFAb-42 and tau,

in conjunction with imaging measures of atrophy, are prom-

ising biomarkers for early detection of AD.

4.4.5. 11C-PiB PET imaging

A complementary method for assessing amyloid deposi-

tion is 11C-PiB PET imaging. Jack et al [16] investigated the

relationship between amyloid deposition and ventricular ex-

pansion in the ADNI cohort by examining serial 11C-PiB

PET and MRI scans. They found no difference in the rate

of global PiB retention between clinical groups, and

changes in global PiB retention only weakly correlated

with concurrent decline on MMSE and CDR-SB. In con-

trast, ventricular expansion increased from control subjects

to MCI to AD groups and correlated strongly with concur-

rent cognitive decline (Table 5). The relationship between
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PET and CSF biomarkers and cognitive measures in the

ADNI cohort at baseline was investigated by Jagust et al

[150]. CSF Ab-42 and 11C-PiB PET were found to be in

substantial agreement as measures of amyloid deposition,

and neither measure correlated with MMSE scores. In con-

trast, FDG-PET, as a measure of cerebral glucose metabo-

lism, was strongly correlated with MMSE scores, but

much less so with CSF biomarkers (Table 6). Apostolova

et al [151] also examined associations between hippocam-

pal atrophy, CSF biomarkers, and average cortical, precu-

neal, and parietal uptake of 11C-PiB. They found that

although all CSF biomarkers were associated with hippo-

campal atrophy, the strongest correlations were with

p-tau181p and the weakest with Ab-42. Precuneal 11C-PiB

uptake was most strongly associated with hippocampal

atrophy. Jack et al [152] examined the relationship between

log relative hazard of progressing from MCI to AD and both

hippocampal atrophy and amyloid load, measured as a com-

posite of 11C-PiB PET and CSF Ab-42 data. They found

that although the risk profile was linear throughout the

range of hippocampal atrophy, amyloid load reached a ceil-

ing at a certain concentration earlier in disease progression.

These papers support a disease model in which initial amy-

loid deposition occurs in the early stages and does not cor-

relate with cognitive decline, but stabilizes later in disease,

and in which neurodegeneration accelerates with disease

progression with concomitant cognitive decline.

4.4.6. Combined modalities

The dynamics of CSF, MRI, and FDG-PET biomarkers in

the ADNI cohort were studied by Caroli and Frisoni [153] in

an effort to understand how they change over the course of

the disease. Each biomarker differed between clinical

groups after post hoc analysis, and the authors found that

these measures of disease progression fit better in sigmoidal,

rather than linear, models, suggesting that individual bio-

markers vary in their rate of change during disease progres-

sion. Ab-42 imaging signals increased early in disease

progression and then plateaued, whereas CSF Ab-42

declined early and then plateaued, and hippocampal volume

followed a similar trajectory, with volumes increasing later

in disease progression. In contrast, FDG-PET measures of

glucose metabolism and CSF tau began to increase early

in disease progression and only stabilized at later stages of

disease, suggesting that there is an ongoing reduction in

glucose metabolism and tau-mediated neurodegeneration

throughout the early stages of AD (blue line in Figs. 2 and

17). Carriers of the APOE 34 allele had earlier

hippocampal atrophy. A similar study by Beckett et al

[154] also found that measures associated with early disease,

such as Ab-42, had greater changes in MCI patients than in

AD patients, and that those associated with later changes,

such as those in FDG-PET ROIs, were more evident in AD

patients (Table 7). The authors hypothesized that changes

in biomarkers may not be linear and that for each biomarker,

there may be steeper rates of change in some stages of

Fig. 16. Correlations between biomarker levels, structural abnormalities,

and cognitive performance in APOE 34 carriers and noncarriers. Smoothed

biomarker (A and B) or STAND (C) z score curves plotted as a function of

cognitive performance (Mini-Mental State Examination, MMSE). Abbrevi-

ation: STAND, Structural Abnormality Index. Reproduced with permission

from Ref [128].
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disease progression than others. In seeking an optimum

combination of imaging and CSF biomarkers to predict nor-

mal control/AD classification,Walhovd et al [155] examined

the relationships between the best predictive biomarkers and

changes in cognitive scores in the MCI group. They found

that changes in MMSE scores correlated with retrosplenial

volume and metabolism as well as entorhinal volume, but

that only hippocampal volume was associated with the Log-

ical Memory II-DR, and only retrosplenial volumewas asso-

ciated with changes in CDR-SB. No CSF biomarkers were

significantly associated with cognitive scores in this clinical

group (Table 5). Once again, these results are consistent with

the disease progression model in that earlier changes that are

reflected in CSF biomarkers do not correlate with clinical

measures, whereas changes in brain metabolism and mor-

phometry occur at later stages of the disease and therefore

correlate better with cognitive measures. Further support

for this model comes from the study of the annual change

in MRI and CSF biomarkers and how these are influenced

by APOE genotype in control, MCI, and AD subjects

[156]. Levels of neither Ab-42 nor t-tau changed signifi-

cantly over 12 months in any clinical group, but annual

changes in ventricular volume increased with disease sever-

ity and were correlated with worsening cognitive and func-

tional indices. APOE 34 carriers had higher rates of change

in ventricular volume, but not in levels of CSF biomarkers,

consistent with the model in which levels of Ab and tau pla-

teau as neurodegeneration becomes detectable by MR mea-

sures.

The question of whether structural or metabolic measures

are the most sensitive biomarkers of changes associated with

early stages of AD was investigated by Karow et al [110].

Directly comparing the ability of MR and FDG-PET mea-

sures in prespecified ROIs to detect such changes by quanti-

fying and comparing their effect sizes (Cohen d), they found

that largest morphometric effect size (hippocampal volume:

1.92) was significantly greater than the largest metabolic

effect size (entorhinal metabolism: 1.43). Both measures

were significantly associated with ADAS-cog and AVLT

scores in AD patients, but in MCI patients, the relationship

was only maintained with hippocampal volume (Table 5).

The authors concluded that for the detection of early AD,

MRI may be preferable to FDG-PET, as it is more sensitive,

more widely available, less invasive, and less costly.

4.4.7. Summary and conclusions of papers concerning

associations of the ADNI cohort

ADNIhas succeeded in recruitinga cohort ofMCI andmild

AD patients that mirrors populations used for clinical trials of

AD therapies. A number of cross-sectional and longitudinal

studies have lent support to a model of disease progression

in which the earliest indications of neurodegeneration occur

within the MTL, particularly the hippocampus, and atrophy

becomes more widespread in later stages, ultimately encom-

passing areas of the parietal, occipital, and frontal lobes. Rates

of atrophy are initially fastest in the temporal lobe, but accel-

erate in other regions as the disease progresses. Cortical atro-

phy and that of specific regions identified in the model of

disease progression as well as ventricular enlargement have

been correlated with measures of clinical severity. Structure–

function relationships within the brain are being elucidated

with findings that atrophy in dissociable anatomic regions,

especially within the episodic memory network, is associated

with different cognitive functions. Patterns of glucose hypo-

metabolism associated with AD have been identified, with

the precuneus and posterior cingulate typically displaying

the most reduced CMRgl and with reduced metabolism in

these key areas being associated with lower scores on cogni-

tive tests. The differential effects of an SNP in brain-derived

neurotrophic factor suggest that genetics may modulate

Table 6

Associations between imaging, clinical, and CSF biomarkers (correlation coefficients)

Imaging or clinical

biomarker N

Clinical

group

CSF biomarker correlates

ReferenceAb242 t-tau p-tau181p t-tau/Ab242

FDG-PET

composite ROI

Mean cortical

PiB SUVR

Hippocampal

volume (L/R)

388 Pooled

sample

0.11*/0.17y 20.17y/0.21z 20.17y/20.23z 20.17y/20.21z 20.24*/20.23* [151]

Mean cortical PiB

SUVR

55 Pooled

sample

20.73z 20.42x 0.49z 0.28* [34]

FDG-PET

composite ROI

0.33y 0.24 (P 5 .08) 0.34y

MMSE NS 0.26 (P 5 .055) 0.28* 0.63z NS

Ab242 0.38y

APOE 34 77 CN 20.50z NS NS [146]

119 MCI 20.49z 0.39z 0.34y

54 AD 20.53z NS NS

Abbreviations: NS, not significant; SUVR, standard uptake value ratio.

*P , .05.
y
P , .01.
z
P , .001.
xP , .0001.
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glucose metabolism. Levels of CSF biomarkers, particularly

Ab and tau, have been associated with earlier stages of neuro-

degeneration. 11C-PiB PETAb imaging has largely confirmed

that decreased levels of CSFAb and increasing 11C-PiB PET

represent an early event in disease progression, and neither

amyloid imaging nor studies of CSF biomarkers have found

that levels of these biochemicals are strongly associated with

cognitive decline. Levels of CSF biomarkers have been found

tobe abnormal (i.e., decreasedCSFAb and increasedCSF tau)

early in disease and then plateau with little detectable change,

whereas glucosemetabolism remains relatively stable until the

latest stages of disease progression. Presence of the APOE 34

allele has been shown to enhance neurodegeneration and to

modulate levels of CSF biomarkers, but the exact mechanism

bywhich it exerts its effect remains unclear. Likewise, the role

of BMI has been the subject of contradictory reports, and it is

unknown whether changes in BMI influence disease develop-

ment or occur as a result of the disease.

4.5. Diagnostic classification of study participants

The ability to accurately diagnose to which clinical group

a subject belongs is a crucial one in the clinical trial design.

To this end, some researchers have investigated the ability of in-

dividual MRI, FDG-PET, and CSF biomarkers to discriminate

Fig. 17. Biomarker trajectories through disease progression. For each biomarker, individual z scores are plotted against ADAS-cog (cognitive subscale of the Alz-

heimer’sDiseaseAssessment Scale) scores, and the fitted sigmoid curve is displayed. Full circles denote healthy control subjects, full squaresMCI patients converted

toAD, empty circles earlyAD,and full triangles lateADpatients. Sigmoidfittingwasbetter than linearfitting for tau,Ab-42, andhippocampus (for the latter: sigmoid

nonsignificantly better than linear); linear fitting was better for [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET). Reproduced with permission

from Ref [153].

Table 7

Mean (standard deviation) of annualized change for selected ADNI

variables

Variable name

Annualized mean change by diagnosis

Normal control MCI AD

CSF Ab242 20.94 (18) 21.4 (17) 20.1 (14)

CSF tau 3.45 (13) 2.34 (21) 1.24 (24)

PiB 0.098 (0.18) 20.008 (0.18) 20.004 (0.25)

FDG-PET: ROI-avg 20.006 (0.06) 20.015 (0.064) 20.081 (0.047)

Hippocampus 240 (84) 280 (91) 2116 (93)

Ventricles 848 (973) 1551 (1520) 2540 (1861)

ADAS-cog total 20.54 (3.05) 1.05 (4.40) 4.37 (6.60)

MMSE 0.0095 (1.14) 20.64 (2.5) 22.4 (4.1)

CDR-SB 0.07 (0.33) 0.63 (1.16) 1.62 (2.20)

AVLT 5-trial total 0.29 (7.8) 21.37 (6.6) 23.62 (5.6)

NOTE. Reproduced with permission from Ref [154].
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between ADNI AD participants and ADNI control subjects,

and between MCI-c and MCI-nc subjects. Others have tried

to determine the optimum combination of these biomarkers

for ADNI participant classification, with many studies leverag-

ing knowledge of associations between various structural and

fluid biomarkers and the sequence of brain morphometric

change over the course of disease to guide development of

marker combinations. Discrimination between the clinically

distinct ADNI participant groups offers an important first step

in identifying biomarker diagnostic tools that can be validated

in representative population-based studies before clinical use.

4.5.1. Magnetic resonance imaging

4.5.1.1. Temporal lobe structures

Atrophy of the hippocampus, the best studied structure af-

fectedbyAD,has been used in patient classification by anum-

ber of groups. Chupin et al [68] correctly distinguished AD

patients from control subjects 76% of the time, and MCI pa-

tients whowould convert within 18 months from control sub-

jects 71% of the time (Table 8). Karow et al [110] found that

hippocampal volume discriminated between control subjects

and AD patients with an AUC of 0.90, and between control

subjects and MCI patients with an AUC of 0.75 (Table 8).

The discriminative ability of the rate of hippocampal atrophy

was investigated by Wolz et al [64], who found that their

method correctly classified 75% to 82% of AD patients and

70% of MCI patients who converted to AD over 12 months.

Their method was also able to discriminate between MCI-c

and MCI-nc patients at a rate of 64% (Table 8). Calvini et al

[66] derived a statistical indicator from the hippocampus

and other MTL structures and were able to discriminate be-

tween AD and control groups, and between MCI and control

groups, withAUCs of 0.863 and 0.746, respectively (Table 8).

4.5.1.2. Multiple ROIs and whole brain

Other methods have focused on many ROIs across the

brain, using the degree of association with AD to construct

a score reflective of the anatomic profile of AD. These in-

clude temporal, cingulate, and orbitofrontal regions. The

classifier developed by Fan et al [83] produced an SPS that

allowed direct comparison of patients and was able to dis-

criminate between AD and control subjects, between MCI

and control subjects, and between AD and MCI subjects

with AUCs of 0.965, 0.846, and 0.750, respectively (Table

8). Similarly, Misra et al [118] extracted an abnormality

score that discriminated MCI-c patients from MCI-nc

patients with a classification accuracy of 81.5 and an AUC

of 0.77 (Table 8). Using a semisupervised SVM, Filipovych

and Davatzikos [93] discriminated between MCI-c and

MCI-nc patients with an AUC of 0.69, comparing favorably

with fully supervised SVM methods (Table 8). They also

found that 79.4% of all converters were classified as AD-

like (the remainder being classified as normal-like). In addi-

tion, 51.7% of nonconverters were classified as normal-like

and the remainder as AD-like, perhaps representing a propor-

tion of MCI patients who would convert to AD further in the

future. The authors also found that semisupervised SVM

performed better than a fully supervised SVM in instances

when there were a small number of labeled images. The clas-

sifier developed by Yang et al [94], which relied on image

features defined by ICA, discriminated between control

and AD subjects with an accuracy of 80.7%, a sensitivity

of 81.9%, and a specificity of 79.5%, and between control

and MCI subjects with an accuracy of 71.1%, a sensitivity

of 73.2%, and a specificity of 68.6%, based on GM images

and a training set-to-test set ratio of 90%:10% (Table 8).

McEvoy et al [117] presented data from their fully cross-

validated linear discriminant model compared with partially

cross-validated models, and found that the fully cross-

validated model discriminated between AD and control sub-

jectswith an accuracyof 89%, a sensitivity of 83%, a specificity

of 93%, and an AUC of 0.915 (Table 8). They noted that these

numbers were lower than those obtained using the partially

cross-validated model, suggesting that numbers presented by

other studies using partially cross-validated models may be ar-

tificially high. Hinrichs et al [88] used a classifier based onGM

probability maps and found that it discriminated between AD

and control subjects with a sensitivity of 85% and a specificity

of 80%. Park and Seo [75] tested their method of multidimen-

sional scaling (MDS) of DBM and compared it with the ability

of hippocampal volume to discriminate between AD and con-

trol subjects. They found that their MDSmethod outperformed

hippocampal volume, yielding accuracies of 86.3%and 75.0%,

respectively (Table 8). Further details of classifier construction

using SVMs are given in the Methods section 3.3.

Longitudinal measurements of cortical thickness were

the focus of a classifier constructed by Li et al [157]. They

found that although the pattern of cortical thinning was sim-

ilar in all patient groups, the rate of thinning and ratio of

follow-up to baseline measures provided a better tool for dis-

tinguishing between MCI-c and MCI-nc patients. An addi-

tional complementary component in the form of a brain

network feature computed from the correlations of cortical

thickness changes with ROIs further improved classification

accuracy. The final classifier, comprising static, dynamic,

and network measures, discriminated between normal

control subjects and AD patients with an accuracy of

96.1%, and between MCI-c and MCI-nc patients with an

accuracy of 81.7% (Table 8).

4.5.1.3. Comparison of MRI methods

Cuingnet et al [158] directly compared 10methods for the

automatic classification of AD patients from anatomical MR

data using the ADNI database. Five voxel-based approaches,

three cortical approaches, and two methods based on hippo-

campal shape and volume were tested for their ability to dis-

criminate between control, MCI-c, MCI-nc, and AD

subjects. They found that voxel- or cortical thickness-based

whole brainmethods yielded highest sensitivities for ADver-

sus control subjects (maximum of 81%), but that sensitivities

were substantially lower for discriminating between MCI-c

and MCI-nc subjects (maximum of 70%).
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Table 8

Methods for the classification of MCI and AD patients

Method

Control vs AD Control vs MCI Control vs MCI-c MCI-c vs MCI-nc
Cross-

validated? ReferenceSEN SPE ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC

Hippocampal volume 75 77 76 61 71 72 72 67 66 60 [68]

Hippocampal volume 82 89 49 89 62 67 [68]**

12-month hippocampal

atrophy rates

81 83 82 0.88 59 71 63 0.71 73 78 76 62 68 66 [60]

MTL structural atrophy 74 85 0.86 45 85 0.75 85 83 0.88 [66]

SPS score 82 0.97 76 0.85 Yes [83]

SPS score 71 77 70 73 62 69 [83]**

ROI atrophy score 83 93 89 0.92 Yes [117]

DBM-multidimensional scaling 86.3 [75]

ROI atrophy score 81.5 0.70 Yes [118]

Semisupervised SVM, SPS score 79.6 85.7 82.9 0.69 Yes [93]

ICA and SVM–gray matter 81.9 79.5 80.7 73.2 68.6 71.1 [94]

FDG-PET abnormality index 83 78 0.90 [84]

FDG-PET functional connectivity 88 88 Yes [65]

FDG-PET factor analysis

feature selection

98.1 92.5 95.2 91.2 80.8 88.0 Yes [90]

AD-like brain regions Yes [88]

MRI 85 80 82 0.88

FDG-PET 84 82 84 0.87

Hippocampal volume [110]

MRI 0.90 0.75

Entorhinal metabolism

FDG-PET 0.71 0.63

AD-like brain regions–

Bayesian approach

87.6 [89]

Hippocampal volume,

ventricular expansion,

APOE, age

82 0.95 Yes [86]

Hippocampal volume,

ventricular expansion, age

71 0.86

T-tau 69.3 92.3 80.6 0.83 [57]

Ab242 96.4 76.9 87.0 0.91

p-tau181p 67.9 73.1 70.4 0.75

t-tau/Ab242 85.7 84.6 85.2 0.92

p-tau181p/Ab242 91.1 71.2 81.5 0.86

LRTAA model 98.2 79.5 89.9 0.94

Cortical normalized thickness

index (NTI)

0.76 Yes [165]

AVLT 0.67

ADAS-cog–DR 0.67

MMSE 0.64

Longitudinal cortical thickness:

static, dynamic, and

network features

96.1 81.7 0.88 [225]
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MRI: Hippocampal volume,

entorhinal thickness,

retrosplenial thickness

85.0 [155]

FDG-PET: Entorhinal, retrosplenial,

lateral orbitofrontal metabolism

82.5

CSF: t-tau/Ab242 81.2

Combination: Hippocampal volume,

retrosplenial thickness; entorhinal,

retrosplenial, orbitofrontal

metabolism, t-tau/Ab242

88.8

t-tau/Ab–42, left entorhinal

cortex, hippocampal volume

82.5 90.1 86.7 Yes [161]

t-tau/ Ab242, RAVLT

immediate and delayed recall,

TMT2B*

93.8 95.6 94.8

LTRAA, left entorhinal cortex,

hippocampal volume

90.1 92.1 91.1

LTRAA, left entorhinal cortex,

hippocampal volume, RAVLT

immediate and delayed recall, TMT-B

92.2 97.5 95.2

ADAS-cog 0.93 Yes [87]

FDG-PET–30 best features 0.94

Combined classifier 0.97

Abbreviations: t-tau, total tau; SEN, sensitivity; SPE, specificity; ACC, accuracy; AUC, area under the curve; SPS, structural phenotypic score; MTL, medial temporal lobe; DBM, deformation-based mor-

phometry; SVM, support vector machine; ICA, independent component analysis.

*MRI measures no longer significant in this model ** in [158].
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4.5.2. [18F]-fluorodeoxyglucose-positron emission

tomography

AsAD affects not only morphology but alsometabolism in

the brain, Haense et al [84] used theAD t-summeasure of scan

abnormality fromFDG-PET data to discriminate betweenAD

and control subjects with a sensitivity of 83% and a specificity

of 78% (Table 8). The HCI of Chen et al [85], which also cap-

italized on hypometabolism data across the entire brain, was

significantly different in control,MCI-nc,MCI-c, andADsub-

ject groups. Themethod ofHinrichs et al [88], described in the

MRI section, was also used with FDG-PET data and was able

to discriminate between AD and control subjects with a sensi-

tivity of 78% and a specificity of 78% (Table 8). Huang et al

[65] used FDG-PET data to examine functional connectivity

between brain regions and then leveraged the patterns they

found to be typical of AD for classification purposes. They

found that compared with control subjects, AD patients had

decreased temporal lobe inter-regional connectivity, espe-

cially in the hippocampus, and weaker between-lobe and

between-hemisphere connectivity. In contrast, MCI patients

had increased connectivity between occipital and frontal lobes

compared with control subjects, illustrating the uniqueness of

this condition. This method discriminated between AD and

control subjects with a specificity of 88% and a sensitivity of

88% (Table 8). Using their method based on feature selection

using factor analysis and an SVM, Salas-Gonzalez et al [90]

discriminated between AD and control subjects with sensitiv-

ity, specificity, and accuracy of 98.1%, 92.5%, and 95.2%, re-

spectively, and between MCI and control subjects with

sensitivity, specificity, and accuracy of 92.1%, 80.8%, and

88.0%, respectively (Table 8). Having identified entorhinal

metabolism as the FDG-PET measure with the largest effect

size for the detection of early AD, Karow et al [110] found

that this measure discriminated between control and AD sub-

jects with an AUC of 0.71, and between control andMCI sub-

jects with an AUC of 0.63 (Table 8). Mormino et al used
11C-PiB PET imaging to deduce a cutoff point to optimally

separate PiB-positive from PiB-negative MCI patients, and

found that PiB-positive MCI patients had lower hippocampal

volumes and greater episodic memory loss compared with

MCI patients with 11C-PiB levels below the cutoff point

of 1.465.

4.5.3. CSF biomarkers

Shaw et al [57] examined CSF biomarkers in the ADNI

cohort as well as in a cohort of non-ADNI autopsy-con-

firmedADpatients, with the goal of developing a “biomarker

signature” best able to predict AD and to classify patients

correctly. Like many smaller studies, they found that t-tau

and p-tau181p, as well as the t-tau/Ab-42 and p-tau181p/Ab-

42 ratios, all increased in MCI patients compared with con-

trol subjects, whereas CSFAb-42 decreased. The best single

measure for discriminating between AD and control subjects

was CSFAb-42, which had an AUC of 0.913, a sensitivity of

96.4%, a specificity of 76.0%, and an accuracy of 87%

(Table 8). Linear regression analyses determined which vari-

ables, including APOE genotype, contributed most to the

discrimination, and a final linear regression model, which

included Ab-42, APOE 34 carriers, and t-tau (LRTAAmodel),

resulted in enhanced discrimination over individual factors

(Table 8). De Meyer et al [159] used an unsupervised

learning method that did not presuppose clinical diagnosis

to identify biomarkers of AD. A mixture modeling approach

derived a signature, consisting of both Ab-42 and t-tau

concentrations, which had a sensitivity of 94% in

autopsy-confirmed AD patients from an independent

cohort and was present in 90%, 72%, and 36% of patients

with AD, MCI, and no cognitive impairment, respectively

(Fig. 18). APOE 34 carriers were over-represented in those

patients with the AD biomarker signature by a factor of

6.88:1. Interestingly, when modeling single biomarkers,

the cutoff concentration of Ab-42 that optimally delineated

AD patients from healthy elderly subjects was found to be

188 pg/mL, close to that found by Shaw et al [57] and Schott

et al [160]. Moreover, the proportion of healthy elderly sub-

jects with an identifying AD CSF biomarker signature was

similar to that found by Schott et al [160], and likely reflects

a proportion of cognitively normal elderly subjects who will

progress to MCI and AD in the future. Further, De Meyer

et al [159] examined another data set with MCI patients

(n5 57) followed up for 5 years, and they showed that their

model had a sensitivity of 100% in patients progressing to

AD. The finding that AD pathology is detectable in signifi-

cant numbers of healthy elderly control subjects has impor-

tant implications for future clinical trials and suggests the

possibility of presymptomatic treatment studies of potential

AD-preventive compounds.

4.5.4. Clinical

Llano et al [96] compared the ADAS-cog andMMSE tests

with a new form of ADAS-cog in which the subscores were

given weights using a Random Forests tree algorithm, thereby

resulting in a new metric, the composite ADAS.Tree. There-

fore, ADAS.Tree represents a multivariate model in which

subscales have been weighted according to their importance

in discriminating between AD and control subjects. When

the ability of ADAS.Tree to classify control, MCI, and AD

subjects was compared with that of ADAS-cog and MMSE,

the composite model generated a numerically highest test sta-

tistic. The authors suggest that this derivative of an internation-

ally recognized and easily administered test may offer a more

widely useful and less expensive approach to other imaging

and CSF biomarkers that can be invasive and/or expensive.

4.5.5. Combined modalities

The approach of Kohannim et al [86] combined multiple

factors, including MRI and FDG-PET measures, CSF bio-

markers, APOE genotype, age, sex, and BMI, to enhance

machine learning methods for AD diagnosis. They found

that the optimum combination of factors to discriminate be-

tween AD and control subjects—hippocampal volume, ven-

tricular expansion, APOE genotype, and age—yielded an
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AUC of 0.945 with an accuracy of 82%, whereas to detect

MCI patients, the optimum combination of hippocampal

volume, ventricular expansion, and age yielded an AUC of

0.860 and an accuracy of 71% (Table 8). Walhovd et al

[155] likewise sought the optimum discriminatory combina-

tion of biomarkers. They found that the best MRI combina-

tion to discriminate between AD and control subjects

consisted of hippocampal volume, entorhinal thickness,

and retrosplenial thickness (85% accuracy); the best FDG-

PET combination was entorhinal, retrosplenial, and orbito-

frontal metabolism (82.5% accuracy); and the best CSF

combination was t-tau/Ab-42 (81.2% accuracy). Using step-

wise linear regression, they developed a final model that in-

cluded retrosplenial thickness and the t-tau/Ab-42 ratio as

predictors and which achieved 88.8% accuracy in the classi-

fication of AD versus control subjects. For the discrimina-

tion of MCI from control subjects, the optimum

combination of factors was found to be hippocampal volume

and the t-tau/Ab-42 ratio, with an accuracy of 79.1 %

(Table 8). Ewers et al [161] tested a variety of cross-

validated models of single or multiple predictors for their

ability to discriminate between control and AD subjects.

They found that the addition of neuropsychological tests,

specifically the AVLT immediate free recall and DR and

the TMT-B, to models that included only CSF and/or genetic

biomarkers and imaging measures resulted in increased

overall classification accuracy. The best model, which in-

cluded CSF t-tau/Ab-42, the number of APOE 34 alleles

(the previously described LRTAAmodel [57]), left entorhinal

volume, and hippocampal volume, in addition to the afore-

mentioned neuropsychological tests, resulted in an accuracy

of 95.2%, a sensitivity of 92.2%, and a specificity of 97.5%

(Table 8). Van Gils et al [162] also demonstrated that cogni-

tive tests such as the CDR, MMSE, and the neuropsycholog-

ical battery comprised the most important feature category

of all classifiers designed to discriminate between different

patient groups. The classifier constructed by Lemoine et al

[87] from data fusion of both FDG-PETand clinical data dis-

criminated between control and AD subjects with an AUC of

0.97, an improvement over the best single FDG-PET classi-

fier (AUC5 0.94) or the best clinical classifier (derived from

ADAS-cog data: AUC5 0.93) (Table 8). Vemuri et al [132]

compared STAND score measures from MRI with CSF and

concluded that CSF and MRI biomarkers independently

contribute to intergroup diagnostic discrimination, and the

combination of CSF and MRI provides better prediction

than either source of data alone.

4.5.6. Summary and conclusions of diagnostic classification

papers

Avariety of approaches have been used to diagnose MCI

and AD, some based on single measures, others on compos-

ite scores of a single modality, and still others on a combina-

tion of factors from different modalities. It should be

emphasized that ADNI was not designed as a diagnostic

classification study; none of the imaging methods used in

ADNI is as accurate as a clinical diagnosis, and the enrolled

cohort represents typical cases rather than the types of diffi-

cult diagnostic problems that clinicians often confront. How-

ever, a number of conclusions can be drawn from the results

of these studies. Single features, such as hippocampal vol-

ume, are not as accurate as multiple features, such as whole

brain or cortical thickness measurements. The best classi-

fiers combine optimum features from different modalities,

including CSF biomarkers, MRI, FDG-PET, and cognitive

measures, as well as factors such as age and APOE 34 allele

status. The most discriminative measures include hippocam-

pal volume, entorhinal cortical thickness, entorhinal metab-

olism, the t-tau/Ab-42 ratio, and ADAS-cog scores. In some

of these models, FDG-PET measures appear to lose

Fig. 18. Separation of control, MCI, and AD subjects using a CSFAb-42/t-tau mixed model signature. A combined CSFAb-42/t-tau mixed model was applied

to the subject groups. Densities of each signature are represented with confidence ellipses, and signature membership of the subject based on the mixture is

indicated with the corresponding color (signature 1 is the AD signature [red]; signature 2 is the healthy signature [green]). Reproduced with permission

from Ref [159].
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significance to cognitive and MRI measures; however, glu-

cose hypometabolism alone has been shown to have high

classification accuracy. ADAS-cog scores, either used di-

rectly or in a model using weighted components, appear to

be an excellent diagnostic tool, although the highest accura-

cies were found with the addition of MRI measures.

Although most classifiers used baseline measurements, there

is some evidence to suggest that longitudinal data may pro-

vide even more accurate diagnoses, but it remains to be seen

whether this approach is more generally applicable to other

modalities. Currently, the best classifiers are able to discrim-

inate between control and AD subjects with accuracies in the

mid-90% range, but have considerably lower accuracies

when discriminating between control and MCI subjects or

between MCI-nc and MCI-c subjects, although data for the

latter diagnoses, arguably the more important distinction to

make, are far less reported. It is as yet unknown whether

the application of some of the promising classifiers to these

problems will result in increased diagnostic accuracy. An-

other key question is how methods that perform well in

ADNI, with its sharply delineated diagnostic groups and ex-

clusion of mixed dementias and borderline cases, will trans-

late to the community or general clinic setting for wider

diagnostic use. Validation studies in population-based sam-

ples will be required to address this issue.

4.6. Improvement of clinical trial efficiency

One of the primary goals of ADNI is to improve the effi-

ciency of clinical trials of AD-modifying treatments. Selec-

tion of the study population and development of more

sensitive outcome measures are two approaches to increas-

ing the power of clinical trials and therefore reducing the

number of participants required, the length of time required

before a disease-modifying effect is observed, and therefore

the overall cost. This section details the results of studies ex-

amining the use of structural, fluid, and genetic biomarkers

in the improvement of clinical trial efficiency.

4.6.1. Prediction of cognitive decline

Beyond the simple classification of clinical trial partici-

pants, an important strategy for increasing clinical trial effi-

ciency is the enrichment of clinical trial populations,

normally MCI patients, with participants who are likely to

progress to AD within a short time frame. In particular, the

early and reliable detection of MCI subjects who convert

early to AD could support clinical decisions for or against

therapy with disease-modifying drugs. Many studies have

therefore focused on identifying baseline predictors of future

decline, with “future decline” meaning both decline in clin-

ical measures such as the MMSE, ADAS-cog, and CDR-SB,

and conversion of MCI to AD status. However it is mea-

sured, it is desirable for appreciable decline to occur over

a relatively short time frame, typically 12 months. Imaging

measures, CSF biomarkers, and APOE 34 allele status, in

combination or alone, have been identified as baseline future

predictors, and several studies have focused on determining

the optimum combination of all modalities that results in the

most power for clinical trials.

4.6.1.1. Magnetic resonance imaging

4.6.1.1.1. Temporal lobe

Hua et al [112] used TBM to create Jacobian maps of

temporal lobe atrophy at baseline and examined the relation-

ship between the maps and cognitive decline over the follow-

ing year, as assessed by both the CDR-SB and the MMSE.

They found that baseline temporal lobe atrophy predicted

decline in the MMSE in AD patients and also predicted

the conversion of MCI to AD over 12 months (Fig. 19;

Table 9). Baseline atrophy of MTL structures was also found

to best predict the progression of MCI patients to AD in

a study by Desikan et al [163]. These measures, including

the volumes of the hippocampus and amygdala and the

thickness of the entorhinal cortex, temporal lobe, and para-

hippocampal gyrus, were found to be better predictors of

clinical decline than levels of CSF Ab-42 or FDG-PET

ROIs. The combination of CSF biomarkers and FDG-PET

ROIs predicted time to progression of MCI to AD with an

AUC of 0.70, a sensitivity of 93%, and a specificity of

48% compared with MRI temporal lobe factors, which had

an AUC of 0.83, a sensitivity of 87%, and a specificity of

66%. The addition of CSF or FDG-PET measures to the

combined Cox proportional hazards model did not signifi-

cantly increase prediction accuracy, with the combined

model predicting conversion with an AUC of 0.83,

Fig. 19. Association between temporal lobe atrophy and conversion to AD.

Subjects who converted from MCI to AD over a period of 1 year after their

first scan were coded as “1”; nonconverters were coded as “0.” A negative

correlation suggests that temporal lobe degeneration predicts future conver-

sion to AD. Reproduced with permission from Ref [112].
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Table 9

Predictors of future decline

Predictor Measurement of decline Statistical measurement Patient group Cross-validated? Reference

Baseline temporal lobe measures MMSE P , .05 MCI [112]

MCI to AD

conversion

P , .05 MCI

CDR-SB P , .05 CN, MCI, AD

Baseline temporal

lobe measures

CDR-SB AUC 5 0.83, SEN

5 87%, SPE 5 66%

MCI Yes [163]

CSF biomarkers 1

FDG-PET ROIs

AUC 5 0.70, SEN

5 93%, SPE 5 48%

TL measures 1 CSF

1 FDG-PET ROIs

AUC 5 0.83, SEN 5

90%, SPE 5 69%

Baseline hippocampal,

amygdala, temporal horn

volume

MMSE b (P) 5 0.14 (.04), 0.18

(.004), 20.2 (.003)

Pooled sample [164]

CDR-SB b (P) 5 20.19 (.005),

20.12 (.06), 0.2 (.005)

Baseline hippocampal

volume

MCI to AD

conversion

Cohen d 5 0.603 MCI-nc vs MCI-c [114]

Baseline inferior temporal

gyrus volume

Cohen d 5 0.535

Baseline middle temporal gyrus

volume

Cohen d 5 0.529

Baseline entorhinal cortical

volume

Cohen d 5 0.493

Baseline ventricular expansion MMSE, global

CDR, CDR-SB

P , .05 Pooled sample [126]

Baseline ventricular expansion MMSE, global

CDR, CDR-SB

P , .05 Pooled sample [127]

Baseline right caudate volume MMSE P , .05 Pooled sample [130]

MCI to AD

conversion

P , .05

Baseline cortical thickness

in ROIs

MCI to AD

conversion

Accuracy 5 76% MCI Yes [165]

Baseline cortical thickness

in ROIs

[147]

Longitudinal cortical thickness MCI to AD

conversion

Accuracy 5 81.7% MCI Yes [157]

Baseline white matter hyperintensity

volume

ADAS-cog b (P) 5 0.34 (.05) Pooled sample [166]

MMSE b (P) 5 20.096 (,.001)

Multiple ROI atrophy score MMSE r (P) 5 0.39 (,.001) MCI [117]

Structural phenotypic score MCI to AD

conversion

AUC 5 0.77 MCI Yes [118]

STAND score CDR-SB MCI, AD [167]

MCI to AD

conversion

Cox proportional

hazards ratio 5 2.6

MCI

Log (t-tau/Ab242) MCI to AD

conversion

Cox proportional

hazards ratio 5 2.0

SPARE-AD score MCI to AD

conversion

AUC 5 0.734, SEN 5

94.7%, SPE 5 37.8%

MCI Yes [119]

MMSE P , .05

FDG-PET hypermetabolic

convergence index

MCI to AD

conversion

Cox proportional

hazards ratio 5 7.38

MCI [85]

FDG-PET HCI 1 hippocampal

volume

Cox proportional hazards

ratio 5 36.72

Ab load MCI to AD

conversion

75th vs 25th percentile

Cox HR 5 2.6

(P , .001)

MCI [152]

Baseline hippocampal volume 25th vs 75th percentile

Cox HR 5 2.6 (P, .001)

Baseline ADAS-cog (from

meta-analysis)

ADAS-cog Slope of disease progression

5 5.49 points/yr, baseline

five point increase in ADAS-

cog effect on slope 5 0.669/yr

MCI, AD [171]

(Continued )
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a sensitivity of 90%, and a specificity of 69% (Table 9).

Similar structures were found to predict future decline in

cognitive status by Kovacevic et al [164], who used high-

throughput volumetry to segment ROIs in control, MCI,

and AD subjects. They found that after adjusting for age, ed-

ucation, and APOE genotype, smaller baseline volumes of

the hippocampus and the amygdala and larger temporal

horn volume predicted 6-month decline in both the MMSE

(b [P] 5 0.14 [.04], 0.18 [.004], and 20.2 [.003], respec-

tively) and CDR-SB (b [P] 5 20.19 [.005], 20.12 [.06],

and 0.2 [.005], respectively) in all groups (Table 9). Risacher

et al [114] also found atrophy of structures within the MTL

to be the best antecedent of imminent conversion of MCI to

AD. The largest effect sizes were for hippocampal and

amygdalar volume and cortical thickness of the entorhinal

cortex and inferior, middle, and superior gyri (Fig. 20;

Table 9).

4.6.1.1.2. Ventricles

Baseline ventricular morphology has been shown to pre-

dict future clinical decline in studies of the ADNI cohort.

Chou et al [126] found that this measure predicted decline

in MMSE, global CDR, and CDR-SB over 12 months

(Fig. 21; Table 9). These findings were confirmed in a subse-

quent larger study by the same group [127], and further ex-

tended by examining additional cognitive criteria. Only right

ventricular baseline anatomy was correlated with future

decline in DR memory scores, but there was no correlation

between ventricular anatomy and changes in depression

scores, despite a baseline association between these mea-

sures (Table 9).

4.6.1.1.3. Other regions

Targeting the caudate, a region not traditionally associ-

ated with AD,Madsen et al [130] found that baseline atrophy

in the right caudate predicted both the conversion ofMCI pa-

tients to AD and cognitive decline of this group, as assessed

by the MMSE (Fig. 22; Table 9). Querbes et al [165] created

a normalized thickness index, which was derived from the

cortical thicknesses of regions most likely to show atrophy

in AD and to distinguish between MCI-c and MCI-nc pa-

tients, primarily the left lateral temporal, right medial tem-

poral, and right posterior cingulate. They found that the

normalized thickness index predicted conversion of MCI pa-

tients to AD with 76% accuracy compared with accuracies

ranging from 63% to 72% by cognitive scores (Table 9).

The additional dimension of time increased the ability of

cortical thickness measurements to predict the conversion

of MCI to AD in a study by Li et al [157]. By incorporating

both static baseline and follow-up measures, dynamic mea-

sures of thinning speed, the ratio of follow-up to baseline

thicknesses in ROIs, and a network feature that examined

Table 9

Predictors of future decline (Continued )

Predictor Measurement of decline Statistical measurement Patient group Cross-validated? Reference

Baseline ADAS.Tree MCI to AD

conversion

P 5 6.23E-10,

AUC 5 0.746

MCI Yes [96]

Baseline MMSE P 5 .0188, AUC 5 0.589

Baseline hippocampal volume CDR-SB, MMSE, LM

delayed change

r5 20.29, 0.29, 0.41 MCI [155]

Baseline entorhinal volume r 5 20.17, 0.23, 0.34

Baseline retrosplenial volume r 5 20.43, 0.42, 0.35

Baseline entorhinal metabolism r 5 20.30, 0.38, 0.28

Baseline retrosplenial volume r 5 20.22, 0.47, 0.11

t-tau/Ab242 r 5 0.02, 0.08, 20.23

APOE 341 Hippocampal volume

change (P, .05).

Multivariate model

Coefficient of effect on

annual change 5 20.36

MCI [154]

FDG-PET ROI-avg Coefficient of effect on

annual change 5 9.3

CSF tau Coefficient of effect on

annual change 5 28.7

AD

FDG-PET ROIs MCI to AD

conversion

b (SE) 5 1.00 (0.51),

Cox HR 5 2.72

MCI [173]

AVLT b (SE) 5 1.46 (0.64),

Cox HR 5 4.30

FDG-PET ROIs ADAS-cog b (SE) 5 1.26 (0.43)

p-tau181/Ab242 b (SE) 5 1.10 (0.53)

Right entorhinal cortical

volume

MCI to AD

conversion

Prediction accuracy (95% CI)

5 68.5% (59.5, 77.4)

MCI Yes [161]

TMT-B test Prediction accuracy

5 64.6% (55.5, 73.4)

p-tau181/Ab242,

hippocampalvolume,

TMT2B, age

Prediction accuracy

5 76.3 (68.4, 84.2)
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correlations between longitudinal thickness change in differ-

ent ROIs, Li et al constructed a classifier that correctly iden-

tified 81.7% of MCI-c patients 6 months ahead of their

conversion (Table 9).

White matter hyperintensities (WMH) may represent an

accrual of nonspecific neuronal injury over a lifetime. Car-

michael et al [166] investigated the relationship between

WM disease and cognition over a year, and found that

both baseline and longitudinal change in WMHwere associ-

ated with worsening of ADAS-cog and MMSE scores over

12 months (Table 5), raising the possibility of the use of

WMH as a biomarker and highlighting its ability to predict

future clinical decline (Table 9).

A number of studies have leveraged information on atro-

phy frommultiple brain regions to distill a number or a score

that is more predictive of future clinical decline than single

regions alone. McEvoy et al [117] found that an atrophy

score derived from mesial and lateral temporal, isthmus cin-

gulate, and orbitofrontal areas was predictive of 1-year de-

cline in MMSE scores and progression of MCI patients to

AD. They found that the atrophy score was a better predictor

than right or left hippocampal volume or the thickness of the

left or right entorhinal cortex (Table 9). Similarly, a structural

abnormality score extracted from baseline MRI data by

Misra et al [118] was higher in MCI patients who converted

to AD over the following year than stable MCI patients, and

an SPS derived by Fan et al [83] from a complex pattern of

spatial atrophy predicted decline in MMSE scores within

a year from baseline (Table 9). Vemuri et al [167] found

that STAND scores that reflected greater baseline atrophy

in regions associated with AD predicted greater subsequent

decline on the CDR-SB and also a shorter time to conversion

for MCI patients than CSF analytes (Table 9). Davatzikos

et al [119] focused on structural changes occurring at the

early stages of AD and derived SPARE-AD scores (Spatial

Pattern of Abnormalities for Recognition of Early AD)

largely from changes in the temporal regions, posterior cin-

gulate cortex, precuneus, and orbitofrontal cortex. They

found that higher SPARE-AD scores predicted conversion

of MCI to AD (Table 9).

McEvoy et al [168] also investigated enrichment strate-

gies for constraining recruitment into clinical trials by

selecting MCI patients most likely to progress. Their first

strategy, which selected MCI patients with an APOE 34

allele, reduced sample sizes by an estimated 10% to 40%,

but this was discounted because of the possibility that re-

stricting patient genotype may invalidate trial findings. Their

second strategy, based on baseline MRI atrophy in regions

previously shown to be predictive of disease progression,

Fig. 20. Effect size of imaging biomarkers for MCI converters versus MCI

nonconverters. Effect sizes (Cohen d) of the comparison between MCI sta-

ble (MCI nonconverter) and MCI converter groups evaluated for selected

imaging biomarkers. Reproduced with permission from Ref [114].

Fig. 21. Significance maps of correlation between ventricular shape and cognitive decline. Significance maps correlate baseline ventricular shape with subse-

quent decline, over the following year, in three commonly used clinical scores. Reproduced with permission from Ref [126].

M.W. Weiner et al. / Alzheimer’s & Dementia 8 (2012) S1–S68 S43



resulted in an estimated sample size reduction of 43% to

60% (Table 11).

4.6.1.2. [18F]-fluorodeoxyglucose-positron emission

tomography

Chen et al [85] reported that their HCI outperformed

other measures such as hippocampal volume, cognitive

scores, APOE genotype, and CSF biomarkers in the predic-

tion of conversion of MCI patients to AD. In a univariate

model, patients with an HCI above a predefined cutoff had

an average Cox proportional hazards ratio for the estimated

risk of conversion to probable AD within 18 months of 7.38

compared with 6.34 for hippocampal volume, 4.94 for

p-tau181p, and 3.91 for ADAS-cog, the most significant of

the other measures tested. Moreover, patients with a combi-

nation of both high HCI score and hippocampal volume

below a similarly defined threshold value had a Cox propor-

tional hazards ratio of 36.72 (Table 9). This study suggests

that data from FDG-PET analyses represent a powerful

tool for the prediction of future decline in AD that is comple-

mentary to MRI data.

4.6.1.3. CSF biomarkers

Vemuri et al [167] examined the ability of CSF bio-

markers to predict decline in CDR-SB and MMSE scores

over 2 years and the time to conversion from MCI to AD.

Although all CSF biomarkers were predictive of future de-

cline, the best predictor was log (t-tau/Ab-42), which was

comparable with the MRI-derived STAND scores. In con-

trast, Ab-42 alone was only weakly predictive of conversion

to AD, reflecting its status as a marker of early AD pathol-

ogy. Used in combination with STAND scores, only log

(t-tau/Ab-42) improved the predictive ability of the MRI

measure (Table 9). Jack et al [152] compared the ability of

amyloid load, measured either by levels of CSF Ab-42 or

by 11C-PiB PET imaging, and hippocampal volume to pre-

dict MCI to AD progression. Using a new method to pool

CSF and 11C-PiB PET data [169] and to extract a score rep-

resentative of Ab load from the pooled information, they

found that the group of MCI patients classified as being

Ab positive had higher frequencies of the APOE 34 allele

and smaller baseline hippocampal volumes and a threefold

higher chance of progressing to AD within 3 years than

the Ab-negative group (Fig. 23; Table 9). Thus, both base-

line hippocampal atrophy and Ab load were significant pre-

dictors of future decline. Interestingly, when risk profiles

were constructed from the log relative hazard of progressing

and degree of hippocampal atrophy or Ab load, the relation-

ship was linear for hippocampal atrophy, but plateaued at

Fig. 22. Maps of associations with MMSE scores at baseline and 1 year later, MCI-to-AD conversion, and CSF concentrations of tau. Three-dimensional maps

show areas of significant associations between local volumetric atrophy in the caudate and MMSE scores at baseline and after a 1-year follow-up interval, with

P values color-coded at each surface voxel. Reproduced with permission from Ref [130].
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higher Ab loads, consistent with a model in which Ab depo-

sition is an early event in AD progression, whereas neurode-

generation, as evidenced by hippocampal atrophy, occurs

later and is thus a better indicator of progression toward de-

mentia.

Using the ADNI database, Schneider et al [170] empiri-

cally tested the recommendation that low Ab-42 and

a high t-tau/Ab-42 ratio can help select those MCI patients

most likely to progress to AD throughout the course of a clin-

ical trial. After statistically simulating a number of different

clinical trial scenarios with MCI patients with or without

biomarker enrichment, they found that selection with either

of the biomarker criteria resulted in only minor increases in

power for the trial, and concluded that the use of these crite-

ria would likely not result in more efficient clinical trials. In

contrast, Beckett et al [154] calculated that restricting a trial

population to MCI subjects with CSFAb-42 levels of,192

pg/mL would reduce the sample size required from 375 to

226 subjects per arm to detect a 25% change using ADAS-

cog as an outcome measure, demonstrating a clear beneficial

use of CSF biomarkers in clinical trial population selection

(Table 10). Schott et al [160] tested the use of the same cutoff

point of CSFAb-42 levels in cognitively normal elderly sub-

jects as a selection tool for presymptomatic treatment studies

in AD. Those participants with CSF Ab-42 levels of ,192

pg/mL had higher levels of t-tau and p-tau and higher ratios

of tau/CSFAb-42 and p-tau/CSFAb-42, were more likely to

be carriers of the APOE 34 allele, and had significantly

higher whole brain atrophy, ventricular expansion, and hip-

pocampal atrophy over 1 year than participants with higher

CSF Ab-42 levels. Of the six participants who later con-

verted to MCI or AD, five had low or borderline baseline

CSF Ab-42 levels, suggesting that the roughly one-third of

healthy elderly subjects with a CSF profile consistent with

AD were at greater risk for development of the disease.

When sample sizes for clinical trials were calculated for

both CSF Ab-42 levels and APOE 34 genotype as selection

criteria and using whole brain atrophy, ventricular expan-

sion, or hippocampal atrophy as the outcome measure, the

smallest size per arm [140] was calculated using selection

by CSFAb-42 levels and whole brain atrophy as an outcome

measure (Table 10).

4.6.1.4. Cognitive

Ito et al [171] evaluated disease progression in clinical

studies and drug trials performed between 1990 and 2008

by using a model to assess the effect of cholinesterase inhib-

itors and placebos on longitudinal ADAS-cog scores in

mild-to-moderate AD patients. They found no significant

differences in the rate of disease progression between pa-

tients taking the placebo versus patients receiving cholines-

terase treatment. The only significant covariate in disease

Table 10

Comparison of methods for increasing power in clinical trials: sample sizes per arm required to detect a 25% reduction in atrophy with 80% power, 5%

significance

Strategy

Outcome measure: MCI (AD)

ReferenceADAS-cog CDR-SB Whole brain Ventricular expansion Hippocampal volume Entorhinal complex

Subject selection by multiple

biomarker classifier

,40 (,40) [86]

No baseline adjustments,

no aging

149 (81) 234 (118) 201 (88) [174]

Best baseline adjustments,

no aging

122 (68) 167 (84) 178 (74)

No baseline adjustments,

with aging

739 (235) 944 (254) 648 (179)

Best baseline adjustments,

with aging

605 (197) 675 (181) 573 (150)

Ab242 ,192 pg/mL 141 225 467 [160]

Normal elderly

APOE 34 carrier 224 222 703

Normal elderly

All MCI 834 674 [172]

Screening in, best

enrichment

260* 191y

Screening out, best

enrichment

517* 351z

All MCI 978 437 181 161 186 140 [168]

APOE 34 enrichment 774 397 135 129 133 100

Atrophy enrichment 458 191 141 121 107 67

All MCI 375 [154]

Enrichment with Ab242 225

*FDG-PET.
yHippocampal volume.
z11C-PiB-PET.
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progression was baseline ADAS-cog score, suggesting that

those patients with a higher (worse) ADAS-cog score at

baseline had a significantly worse prognosis and higher rates

of cognitive deterioration than those with lower (better)

baseline scores (Table 9). Llano et al [96] used a new Ran-

dom Forests tree-based multivariate model of ADAS-cog

in which the subscores had been weighted according to their

contribution to patient discrimination. This model, ADAS.-

Tree, predicted conversion of MCI to AD more accurately

than baseline MMSE or ADAS-cog and, in addition, was

Table 11

Comparison of outcome measure methods in clinical trials: sample size estimates per arm required to detect a 25% reduction in atrophy with 80% power, 5%

significance

Outcome measure Method tested Sample size AD Sample size MCI Reference

Hippocampus Two scans, 0–6 months 462 949 [121]

Three scans, 0–6–12 months 255 673

Three scans 1 Markov Chain 1 APOE 34 86 341

Clinical ADAS-cog two tests, 0–6 months 745 4663

ADAS-cog three tests, 0–6–12 months 569 8354

MMSE two tests, 0–6 months 1280 6300

MMSE three tests, 0–6–12 months 780 3353

Hippocampal atrophy 12-(24)-month 67 (46) 206 (121) [64]

Hippocampal atrophy 12-month 78 285 [59]

Ventricular expansion 6-month change 342 1180 [175]

Clinical MMSE 7056 7712

ADAS-cog 1607 .20,000

MRI (Model T/Model D) Entorhinal 45/65 135/241 [176]

Inferior temporal 79/117 199/449

Fusiform 72/114 185/485

Mid temporal 83/122 229/501

Hippocampus 67/118 179/510

Inferior lateral ventricle 76/157 160/550

Whole brain 101/189 158/541

Ventricles 86/240 189/1141

Clinical (Model T/Model D) CDR-SB 226/236 490/551

ADAS-cog 324/283 1232/804

MMSE 482/494 1214/1304

Whole brain atrophy KN-BSI 81 NA [51]

Classic-BSI 120 NA

TBM 1.5-T MRI/3.0-T MRI 37/48 107/159 [47]

SIENA* 1.5-T MRI/3.0-T MRI 116/92 207/265

TBM sKL-MI S6L8y 48 88 [177]

Clinical ADAS-cog 619 6797

MMSE 1078 3275

CDR-SB 408 796

TBM Gray matter atrophy 43 86 [120]

Temporal lobe atrophy 43 82

CSF biomarkers Ab242 5,721,531 75,816

t-tau 81,292 19,098

t-tau/Ab242 66,293 533,091

PET ROI-avgz 4605 [154]

logSumZ2PNSx 2176

logSumZ2PRx 1629

DD-fROI{ 249

MRI VBSI** 284

Ventriclesyy 277

Hippocampusyy 202

BSIzz 177

DD-ROIy 73

*Structural Image Evaluation, using Normalization, of Atrophy (SIENA). See text for more details.
yA nonlinear registration algorithm driven by mutual information cost function and with a regularizing term based on the symmetric Kullback–Leibler (sKL)

distance.
zJagust laboratory method.
xFoster laboratory method, measures of glucose hypometabolism, log transformed.
{Reiman laboratory method, data-driven summaries applied to independent test set.

**Fox laboratory method, ventricular boundary shift interval as a percentage of baseline brain volume.
yySchuff laboratory method (FreeSurfer).
zzFox laboratory method, brain shift interval.
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a better predictor of conversion than the best single imaging

(left inferior temporal cortex), metabolism (left precuneus),

or CSF (p-tau181p/Ab-42) biomarkers. The significance of

association varied by several orders of magnitude, with the

ADAS.Tree four orders of magnitude higher than the next

MRI marker, and FDG-PET and CSF biomarkers several or-

ders of magnitude lower than theMRI marker. Moreover, the

addition of these markers to the ADAS.Tree model did not

result in substantial improvement, providing support for

this modified form of ADAS-cog as a useful and effective

predictor of future decline (Table 9).

4.6.1.5. Combined modalities

Lorenzi et al [172] tested two strategies for the enrich-

ment of MCI patients in clinical trials using changes in brain

structure or metabolism, or changes in CSF biomarkers well

known to herald future disease progression. They used hip-

pocampal atrophy (MRI); temporoparietal hypometabolism

(FDG-PET); CSFAb-42, t-tau, and p-tau; and cortical amy-

loid deposition (11C-PiB PET) as biomarkers to either screen

in MCI-c or screen out MCI-nc. Although both strategies

substantially reduced the estimated sample sizes required,

the authors found that there was a trade-off between the

high proportion of converters screened out in the first strat-

egy and the decreased power and increased estimated sample

sizes using the second strategy (Table 10). Kohannim et al

[86] investigated the utility of their machine learning classi-

fier, based on MRI hippocampal and ventricular summaries,

APOE genotype, and age as features, in subject stratification

and found that it reduced the numbers of AD and MCI

patients required to detect a 25% slowing of temporal lobe

atrophy with 80% power to fewer than 40, a substantial

reduction over other methods (Table 10). Walhovd et al

[155] examined baseline MRI, FDG-PET, and CSF bio-

marker data to determine the optimum combination of these

biomarkers for the prediction of decline over 2 years. They

found that in MCI patients, retrosplenial and cortical thick-

ness predicted decline on the CDR-SB, retrosplenial and

entorhinal metabolism predicted decline on the MMSE,

and hippocampal volume predicted decline in delayed logi-

cal memory. The tau/Ab-42 ratio also predicted decline in

the CDR-SB and MMSE, but less significantly than the

MRI and FDG-PET measures (Table 9). Beckett et al

[154] found that in MCI and AD patients, baseline glucose

metabolism in a range of ROIs predicted cognitive decline,

as measured by ADAS-cog in a multivariate model. In uni-

variate models, hippocampal and ventricular volume, Ab-

42, and tau also predicted cognitive decline in MCI patients

(Table 9). Both papers support the idea that reduced metab-

olism and greater brain atrophy at baseline are associated

with more rapid cognitive decline, and that CSF biomarkers

are less useful indicators of future change. A degree of

agreement with these results was found by Landau et al

[173], who studied a range of predictors of conversion to

AD and cognitive decline, including FDG-PET measures,

CSF biomarkers, APOE 34 status, and hippocampal atrophy,

that were defined dichotomously according to their ability to

separate AD and control subjects. Although all biomarkers

were predictive of decline in univariate models, only

reduced glucose metabolism and episodic memory (mea-

sured by the AVLT) predicted conversion to AD and, in con-

trast to the studies by Beckett et al [154] and Walhovd et al

[155], only p-tau181p/Ab-42 predicted decline in ADAS-cog

scores in multivariate models (Table 9). Ewers et al [161]

compared the effectiveness of single variables and multiple

variables in predicting the conversion of MCI to AD. They

found that these best single predictors (right entorhinal cor-

tex and the TMT-B) were comparable in accuracy with the

best multiple predictor models, which included right hippo-

campal volume, CSF p-tau181p/Ab-42, TMT-B, and age

(Table 9).

4.6.2. Adjustments for normal aging and baseline

characteristics

McEvoy et al [168] also examined the effect of normal

aging on the detection of longitudinal change and found

that although this did not affect clinical outcome measures

such as ADAS-cog and CDR-SB, neuroimaging outcome

measures were far more sensitive to atrophy associated

with normal aging. They suggested that larger sample sizes

are required in clinical trials to account for this effect, and

that clinical trials run the risk of being severely

Fig. 23. Pittsburgh compound B-positron emission tomography (PiB-PET)

and magnetic resonance imaging (MRI) comparisons of MCI converters

versus MCI nonconverters. Left: MCI progressor. Top: positive PiB-PET.

Bottom: MRI illustrating atrophic hippocampi and ventricular enlargement.

Right: MCI nonprogressor. Top: negative PiB-PET with nonspecific white

matter retention but no cortical retention. Bottom: MRI illustrating normal

hippocampi and no ventricular enlargement. Reproduced with permission

from Ref [152].
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underpowered if normal aging is not taken into account.

Schott et al [174] proposed an alternative method for in-

creasing the statistical power of clinical trials without resort-

ing to subject selection procedures that can potentially limit

the applicability of studies. They found that by statistically

adjusting for a range of baseline characteristics that might

account for interindividual differences, and also for normal

aging, sample sizes were reduced by 15% to 30% in AD sub-

jects and by 10% to 30% in MCI subjects (Table 10).

4.6.3. Biomarkers as outcome measures

A number of studies have focused on determining the

effectiveness of different biomarkers as outcomes in clinical

trials by calculating sample size estimates for a hypothetical

clinical trial, per arm at either 90% (N90) or 80% (N80)

power to detect a 25% improvement in annual rate of

decline. Schuff et al [121] used hippocampal volume loss

over time, assessed by MRI, as an outcome measure and

found that the greatest reductions in sample size were

achieved when three serial scans (0, 6, and 12 months)

were combined with APOE 34 data usingMarkov chain anal-

ysis to exploit correlations between observations (Table 11).

The inclusion of Ab-42 level data did not further reduce

sample size. All MRI hippocampal measures were substan-

tially better than cognitive measures (ADAS-cog and

MMSE) as outcome measures. Wolz et al [64] used a 4-D

graph cut method to segment the hippocampus and subse-

quently calculated N80s in the same range as the best com-

binations of Schuff et al [121] (Table 11). Nestor et al [175]

investigated the use of ventricular expansion as an outcome

measure and found that ventricular expansion over 6 months

was sufficiently sensitive to produce N80s for a hypothetical

trial at least an order of magnitude lower than clinical scores

(MMSE and ADAS-cog). Moreover, sample sizes were fur-

ther reduced when the trial population of AD subjects was

restricted to carriers of the APOE 34 allele (Table 11).

Holland et al [176] examined the utility of longitudinal vol-

umetric change in a variety of ROIs as an outcome measure

with which to measure putative disease-modifying medica-

tions for AD and MCI. ROIs, including temporal lobe struc-

tures and ventricles, and whole brain atrophy were compared

with clinical measures in two separate models, one in which

the putative drug was presumed to affect both disease and

aging-related changes (model T for “total”), and one in

which the drug putatively affected only disease-specific

changes (model D for “disease-specific”). They found that

although imaging measures generally resulted in smaller

sample sizes than cognitive measures in both models, model

T was the more conservative model for cognitive measures,

whereas model D was more conservative for imaging mea-

sures. The authors emphasized the importance of comparing

both models when comparing across imaging and cognitive

outcome measures (Table 11).

Hua et al [177] compared a variety of nonlinear registra-

tion methods used in TBM with standard clinical outcome

measures and found that a substantial reduction in sample

size at 80% power (N80s) was achieved over clinical mea-

sures using all TBM methods, with the best TBM measure

presenting an eightfold improvement over the best clinical

measure (CDR-SB) (Table 11). The same group [120] subse-

quently compared the use of TBM to measure GM of the en-

tire brain and WM atrophy in the temporal lobe with 1-year

changes in CSF biomarkers as outcome measures in a hypo-

thetical clinical trial. The N80s for CSF biomarkers were

much larger than those from neuroimaging measures,

reflecting their poorer reproducibility, especially in later

stages of the disease process (Table 11). Ho et al [47] com-

pared 3.0-T and 1.5-T MRI for tracking disease progression

using TBM and an alternative method for measuring the

overall percentage brain volume change, Structural Image

Evaluation, using Normalization, of Atrophy. The lowest

calculated N80 resulted from using TBM on a 1.5-T MRI

scanner to detect changes in brain atrophy as an outcome

measure (Table 11). Leung et al [51] estimated N80s for

both the classic brain BSI MRI technique and their improve-

ment on this, the KN-BSI method, and found that the

improved method resulted in lower N80s (Table 11). More

recently, using a newly revised TBM method that enforces

inverse consistency, Hua et al [178] reported that to demon-

strate a 25% slowing of atrophic rates with 80% power, 62

AD and 129 MCI subjects would be required for a 2-year

trial and 91 AD and 192 MCI subjects for a 1-year trial.

Beckett et al [154] compared a number of promising MRI

and FDG-PET outcome measures. They calculated the sam-

ple size that would be required in a two-arm, 1-year clinical

trial with 80% power to detect a 25% effect, and found that

MRI measures of overall brain change, using either ROIs or

BSI techniques, or hippocampal volume required fewest

subjects. Brain metabolism measures were generally less ef-

fective, requiring substantially larger sample sizes, although

the best FDG-PET measure, a data-driven functional ROI,

was comparable with many of the MRI measures (Table 11).

4.6.4. Summary and conclusions of papers focused on the

improvement of clinical trial efficiency

Strategies for the reduction of sample sizes in clinical tri-

als by the selection of subjects with a significantly worse

prognosis and through the use of more effective outcome

measures have been developed over the course of ADNI.

Studies have found that baseline MRI measures, particularly

of hippocampal volume and of whole brain atrophy, outper-

form measures of glucose hypometabolism or CSF bio-

markers in the prediction of future decline. In one instance,

a score derived from AD-like patterns of hypometabolism

outperformed other singleMRI, cognitive, or CSF biomarker

measures, but this too was enhanced by the addition of MRI

measures. Of the CSF biomarkers, the t-tau/Ab-42 ratio and

the use of a cutoff value of approximately 192 pg/mL Ab-42

have been shown to best predict future decline. In a manner

similar to classification of AD subjects, the use of multiple

modalities appears to enhance the prediction of future de-

cline. Interestingly, a weighted version of the ADAS-cog
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[96] has been shown to outperform any single MRI measure

tested as a predictor of future change and was not improved

by the addition of any MRI measure tested. In contrast,

MRI and FDG-PET, which have strikingly better signal-to-

noise ratios, clearly outperformed cognitive tests as outcome

measures of rates of change. Calculated sample sizes for clin-

ical trials required to see a 25% effect at 80% power were

lowest for MRI measures of overall morphometric change

or of hippocampal volume, followed by those for hypometab-

olism ROIs and cognitive scores. CSF biomarkers were the

least effective outcomemeasures by several orders of magni-

tude. Finally, it also will be necessary to study the compara-

tive effectiveness and cost-effectiveness of the AD

biomarkers studied in ADNI to determine the optimal way

to make use of these biomarkers in the diverse applications

needed in AD research. For example, based on the recent

studies of Wiegand et al [169], it is possible to impute Ab

measures determined byAb imaging using far less expensive

measures of CSFAb-42 levels. Additional similar studies as

well as others focused on the economics of the use of bio-

markers in clinical trials and clinical practice are needed.

5. Identification of genetic risk factors for AD

The influence of genetics on the dynamic trajectory of

brain development and aging is well established, if not

well understood. Studies of twins have estimated the herita-

bility of AD to be between approximately 60% and 80%

[179], and until recently the only established genetic risk

factor for AD was the APOE 34 allele, which accounts for

approximately 50% of AD heritability [180]. The question

of accounting for the up to 30% of heritability remaining

has only begun to be addressed, and although there have

been a number of candidate genes proposed, the majority

of them await independent confirmation. ADNI is in the

unique position of providing a large cohort with genotype in-

formation in addition to imaging and biochemical data that

can be leveraged as QTs in uncovering new genetic associa-

tions, and as such plays an increasingly important role in the

discovery and confirmation of novel genetic risk alleles.

Three main approaches have been taken to investigating

the genetic basis of AD. Case–control studies that search

for loci with differential frequency between patient groups

have identified a number of candidate genes. Typically,

markers are used to tag susceptibility loci, usually in 10-kb

to 20-kb regions in the genome, that are rarely found to be

causal. Using this method, the association of APOE 34 allele

with AD has been confirmed, and three new risk loci, CLU,

PICALM, and CR1, have been identified and confirmed

[181–183]. Further studies have focused on examining

relationships between SNPs in a limited number of genes

of interest and quantifiable phenotypic characteristics or

QTs, such as imaging data or levels of CSF biomarkers.

GWAS evaluate a large and dense set of SNP markers

distributed throughout the genome, providing an unbiased

search for the discovery of new candidate genes. With

more than 500,000 markers typically included in a GWAS,

a stringent correction for multiple testing is required with

typical thresholds of P , 1028 used to reduce false

detections. These stringent corrections also greatly reduce

power and require extremely large sample sizes to achieve

significance in case–control designs. However, the use of

quantitative phenotypes such as cognitive, imaging, and

fluid biomarker measures can greatly increase the power to

detect associations. Where a binary case–control design

might require many thousands of samples to detect a gene

effect, samples on the scale of ADNI are sufficient for

detecting associations with quantitative phenotypes [184].

The emerging field of imaging genetics, which uses

imaging data as QTs in GWAS, promises the power to reveal

patterns of genetic associations throughout the brain, but is

hampered by the computational load required for such

high-dimensional studies. Further development of this field,

including improvement of existing GWAS methods, is a ma-

jor goal of the Genetics Core of ADNI [6].

5.1. Case–control studies

Jun et al [185] conducted a meta-analysis case–control

study of AD patients and healthy elderly control subjects

from 12 different studies, including ADNI, to examine the

association of APOE 34, CLU, PICALM, and CR1 with

AD. They found that CLU, PICALM, and CR1 were signif-

icantly associated with AD only in Caucasian populations.

In contrast, APOE 34 was significantly associated with AD

in all ethnic groups and with PICALM in white populations,

suggesting that APOE 34 and PICALM act synergistically

and may participate in a common pathological pathway

(Table 12). Two of the largest case–control GWAS studies

of AD were recently published as companion reports in Na-

ture Genetics [186,187]. Both reports included the ADNI-1

data in their analyses (Table 12). These multistage meta-

analytic reports included discovery and replication data

sets and confirmed each other. These new results bring the

total set of confirmed and replicated candidate genes to 10

(APOE/TOMM40, ABCA7, BIN1, CD2AP, CD33, CLU,

CR1, EPHA1, MS4A4/MS4A6A, PICALM).

Mitochondrial genes are also of great interest in AD, and

Lakatos et al [188] studied the incidence ofAD in patients be-

longing to different subgroups (HV, JT, UK, and IWX) of mi-

tochondrial haplogroup N in the ADNI cohort. They found

that haplogroup UK had the strongest association with AD,

and that this relationship remained significant after adjusting

forAPOE 34 allele dose. Additionally, they identified fivemi-

tochondrial SNPs that were associated with increased risk of

AD and suggested that, given the vital role ofmitochondria in

maintaining cellular energy balance, dysfunctional mito-

chondria may contribute to AD by causing neuronal oxida-

tive damage. In another case–control design, Kauwe et al.

[189] attempted to replicate a study that found that epistatic

linkage between two SNPs in the transferrin and hemochro-

matosis genes was associated with AD risk, suggesting a role
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Table 12

AD susceptibility and quantitative trait loci identified by genetic studies of ADNI cohort

SNP

Location

of SNP* Protein

Putative protein

function

P value/odds

ratio (OR) Cohort (N)

QT of

association

Significant

association

of APOE? Study type Reference

rs11136000 CLU Clusterin Clearance of Ab 0.91y ADNI 1 11

others (3055

AD, 8169 CN)

N/A Meta-analysis,

case–control

[185]

rs3818361 CR1 Complement

component

[3b/4b]

receptor

Clearance of Ab 1.14y

rs3851179 PICALM Phosphatidylinositol-

binding clathrin

assembly protein

Synaptic vesicle

cycling and/or

affects APP

processing via

endocytic pathways

0.89y

rs104926 TF Transferrin Increased redox-active

iron 1 oxidative

stress

.00016 ADNI 1 2 others

(1161 AD, 1342

CN)

Association

between

two genes

Synergy

factor

analysis

[189]

rs1800562 HFE Hemochromatosis

rs2986017 CALHM1 Calcium homeostasis

modulator 1

Increase Ab through

lower intracellular

[Ca21]

.042 ADNI 1

1 other

(251 AD,

351 CN)

CSF Ab242 Limited loci [192]

rs1868402 PPP3R1 Protein

phosphatase B

Affects tau

phosphorylation

1.17! 1025 ADNI 1 2

others (1106 AD,

1216 CN

CSF P-tau181 Limited loci [191]

rs1868402 PPP3R1 Protein

phosphatase B

Affects tau

phosphorylation

6.2! 1025 ADNI 1 1

other (776)

CSF T-tau,

P-tau181

Limited loci [190]

rs17030379 PPP3CA Protein

phosphatase B

Affects tau

phosphorylation

2.05! 1024

rs1408077 CR1 Complement

component

[3b/4b] receptor

Clearance of Ab .03 ADNI (171

AD, 364 MCI,

205 CN)

ECTz Limited loci [193]

rs3851179 PICALM Phosphatidylinositol-

binding clathrin

assembly protein

Synaptic vesicle

cycling

and/or affects APP

processing through

endocytic pathways

.05, .01 ECTz, HVx

rs7561528 BIN1 Myc box-dependent-

interacting protein

1

Synaptic vesicle

endocytosis

.03, .01 TPT{, ECTz

rs10501927 CNTN5 Contactin-5 Neurite growth .002, .05, .02, .02 WML**, PGTyy,

TPT{, ECTz

rs2899462 CYP19A1 Cytochrome P450,

family 19, subunit

a, polypeptide 1

Conversion of

androgens

to estrogens

1.9! 1027 ADNI (176

AD, 115

MCI, 119 CN)

CSF Ab242 GWAS [199]
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rs1022422 NCAM2 Neural cell adhesion

molecule 2

Neural adhesion,

fasciculation of

neurons

2.75! 1027

rs2075650 TOMM40 Translocase of outer

mitochondrial

membrane

Protein transport

across

mitochondrial

membrane

3.03! 1027

rs2075650 TOMM40 Translocase of outer

mitochondrial

membrane

Protein transport

across

mitochondrial

membrane

,1027 ADNI (96 AD,

176 MCI,

102 CN)

Ab242,

ptau181/

Ab242,

t2tau/Ab242

Yes GWAS [149]

rs439401 LOC100129500 Unknown function,

overlaps with

APOE

Unknown ,1027 Ab242

rs2121433,

rs1374441,

rs449362,

rs10171238

EPC2 Enhancer of polycomb

homolog 2

Formation of

heterochromatin

,1027 t-tau

rs2075650 TOMM40 Translocase of outer

mitochondrial

membrane

Protein transport

across

mitochondrial

membrane

7.48! 1027 ADNI (172

AD, 208 CN)

HV** GWAS [184]

rs1082714 CAND1 Cullin-associated and

neddylation-

associated 1

Ubiquination,

apoptosis

4.93! 1026

rs11525066 MAGI2 Membrane associated

guanylate kinase

Ubiquination,

dementia

2.85! 1026

rs337847 ARSB Arylsulfatase b Oxidative necrosis,

dementia

6.71! 1026

rs10781380 PRUNE2 Prune homolog 2 Apoptosis 7.13! 1027

rs12654281 EFNA5 Ephrin-A5 Hippocampal

development

3.72! 1027

rs11129640 ARPP-21 Cyclic AMP-regulated

phosphoprotein, 21

kD

Cellular cAMP

signaling pathway

5.57! 1028 ADNI and 1

other (236

AD, 424 MCI,

279 CN)

ECTz No GWAS [197]

rs1925690 ZNF292 Zinc finger protein

292

Expressed in brain 2.6! 1028 Entorhinal

cortical

volume

rs3851179 PICALM Phosphatidylinositol-

binding clathrin

assembly protein

Synaptic vesicle

cycling and/or

affects APP

processing via

endocytic

pathways

1.9! 1028 ECT

(Continued )
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Table 12

AD susceptibility and quantitative trait loci identified by genetic studies of ADNI cohort (Continued )

SNP

Location

of SNP* Protein

Putative protein

function

P value/odds

ratio (OR) Cohort (N)

QT of

association

Significant

association

of APOE? Study type Reference

rs2075650 TOMM40 Translocase of outer

mitochondrial

membrane

Protein transport

across

mitochondrial

membrane

,1026 ADNI (166 AD,

346 MCI,

203 CN)

Multiple

brain

regions

GWAS [194]

rs6463843 NXPH1 Neurexophilin 1 Dendrite-axon

adhesion

,1026

rs10932886 EPHA4 EPH receptor A4 Synapse morphology ,1026

rs7610017 TP63 Tumor protein 63 Unknown ,1026

rs1085480 GRINB N-methyl-D-aspartate

glutamate receptor

Learning, memory,

excitotoxic cell

death

1.26! 1027 ADNI (742

AD, MCI,

CN)

Temporal

lobe volume

GWAS [196]

rs476463 CSMD2 CUB and sushi

domain-containing

protein 2

Oligodendroglioma

suppressor?

1.27! 1026 ADNI (173

AD, 360 MCI,

206 CN)

Voxels of

entire brain

Voxelwise GWAS [195]

rs2429582 CADPS2 Calcium-dependent

secretion activator

2

Synaptic vesicle

priming

6.46! 1027

rs4938933 MS4A4A Membrane spanning 4

domains subfamily

A, member 4

Cell surface protein-

receptor?

1.7! 1029 ADNI 1 8 others

(8309 AD,

7366 CN)

N/A Meta-analysis, case–

control

[186]

rs9349407 CD2AP CD2-associated

protein

Regulation of

receptor-mediated

endocytosis

8.6! 1029

rs3865444 CD33 Siglec-3 Clathrin-independent

endocytosis

1.6! 1029

rs11967557 EFHA1 EF-hand domain

family member

A1

Regulation of cell

morphology and

motility in

epithelial tissues

6.0! 10210

rs3764650 ABCA7 ATP-binding cassette

subfamily A

member 7

Membrane transporter

highly expressed

in brain

4.5! 10217 ADNI 1 3

others (6688

AD, 13685 CN)

N/A Meta-analysis, case–

control

[187]

rs610932 MSA4 Membrane spanning 4

domains subfamily

A gene cluster

Cell surface protein–

receptor?

1.8! 10214

rs2075650 TOMM40 Translocase of outer

mitochondrial

membrane

Protein transport

across

mitochondrial

membrane

,1028 ADNI (742

AD, MCI,

CN)

Rate of change in

hippocampal

volume

GWAS [6]
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for iron in AD pathology. Using synergy factor analysis, they

found significant association between bicarriers of the minor

alleles of both SNPs and risk for AD in several U.S. and Eu-

ropean study populations, including ADNI, providing sup-

port for the iron hypothesis (Table 12).

5.2. Studies of limited loci using quantitative phenotypes

Several studies have used knowledge of the model for AD

progression by testing the associations between genes poten-

tially involved in AD pathology and CSF biomarkers. Cru-

chaga et al [190] examined associations between SNPs in

35 genes putatively involved in tau posttranslational modifi-

cation and CSF levels of p-tau181p. They found that SNPs in

the gene for protein phosphatase B were associated with

higher levels of p-tau181p, and that an SNP in the regulatory

subunit of protein phosphatase B was more highly expressed

in AD patients compared with control subjects (Table 12).

These results suggest that genetic variants that alter the

activity of protein phosphatase B could contribute to AD pa-

thology by affecting tau phosphorylation. A further study by

the same group [191] found that the SNP in the regulatory

subunit of protein phosphatase B was associated with the

rate of disease progression, and not with the age of onset

or risk of AD. In contrast, APOE 34 was associated with

lower levels of CSFAb-42, increased disease risk, and lower

age of onset, providing support for a model in which amyloid

deposition is an early event in disease progression and accu-

mulation of hyperphosphorylated tau occurs at a later stage

(Table 12). Kauwe et al [192] also used levels of CSF bio-

markers as a QT to investigate the predicted biological

effects of SNPs in three genes associated with AD. They

found that a nonsynonymous coding substitution in the

gene for calcium homeostasis modulator 1 (CAHLM1), pro-

posed to affect levels of Ab by modulating intracellular cal-

cium levels, was associated with increased CSF levels of

Ab-42 (Table 12). Associations between levels of CSF bio-

markers and SNPs in the two other genes for growth factor

receptor-bound protein-associated binding protein 2

(GAB2; proposed to influence tau phosphorylation) and

sortilin-related receptor (SORL1; an apoE receptor proposed

to bind Ab) were not found, perhaps because of power lim-

itations of the study.

Using six imaging measures reflective of AD pathology

as QTs, Biffi et al [193] searched for associations between

these and SNPs in a range of established and candidate genes

for AD risk. They first sought to confirm associations of

APOE, PICALM, CLU, and CR1 with AD, and found that

although APOE had a strong association with diagnosis, of

the remaining identified risk alleles, only CR1 was associ-

ated with AD in the ADNI cohort, possibly reflecting sample

size limitations for case–control studies. Two novel loci,

CNTN5 and BIN1, were also found to have significant asso-

ciation with AD (Table 12). When the relationship of APOE

34, CR1, CNTN5, and BIN1 with imaging measures was

examined, it appeared that APOE 34 was associated withrs
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virtually all brain regions, whereas the other loci had a more

limited pattern of association, consistent with APOE 34 be-

ing the primary AD genetic risk factor and other loci making

more modest contributions to the disease.

5.3. GWAS of quantitative phenotypes

In the first ADNI GWAS using the ADNI AD cases and

control subjects, Potkin et al [184] confirmed the association

of APOE with AD and identified a novel AD risk gene,

TOMM40, encoding a regulatory subunit of a protein

translocase in the outer mitochondrial membrane, as being

significantly associated with AD. A further GWAS using

VBM-derived estimates of hippocampal volume as a QT iden-

tified 21 loci with significant association with hippocampal

volume including, in addition to APOE 34, genes involved in

hippocampal development (EFNA5), ubiquination (MAGI2,

CAND1), apoptosis (PRUNE2, CAND1), necrosis (ARSB),

and dementia (MAGI2, ARBS) (Table 12). The involvement

ofTOMM40 in numerousbrain regionsofADpatientswas con-

firmed by Shen et al [194]. This study used a novel whole brain

set of ROIs frombothVBMandFreeSurfer parcellation asQTs

in a GWAS. Of the three SNPs additionally identified as signif-

icantly associated with brain volumetric changes, only one,

proximal to the NXPH1 gene encoding neurexophilin (known

to promote adhesion between dendrites and axons), had a bilat-

eral pattern of association and was chosen for further study

(Table 12). AD patients homozygous for the T allele at this

locus displayed reduced GMmost significantly in hallmark re-

gions ofADatrophy, such as the hippocampus. This study illus-

trates the potential power of imaging genetics to identify novel

candidate genes that warrant further investigation as AD candi-

dates.

While Shen et al [194] used ROIs covering the brain, Stein

et al [195] further extended the dimensionality of imaging

genetics studies by carrying out a voxelwise GWAS, which

explored associations between hundreds of thousands of

SNPs and each of the nearly 32,000 voxels of the entire brain.

Although noSNPwas found significant at the stringent criteria

used in the study, a number of SNPs of interest were identified

in or near genes known to have functions relating to brain

structure, such as monoamine uptake in neurons (CAPDS2),

psychiatric illness (CSMD2 andCAPDS2), and neurite growth

(SHB and ARP1) (Table 12). In a second GWAS of a targeted

region of TBM-derived structural brain degeneration onMRI,

Stein et al [196] identified anSNP located in thegene encoding

N-methyl-D-aspartate receptor NR2B subunit (GRIN2B) that

was significantly associatedwith lower volumes in the tempo-

ral lobe bilaterally. Risk alleles at this locus were more preva-

lent in AD patients of the AD cohort than in healthy elderly

control subjects and were additionally associated with

decreased MMSE scores (Table 12).

Furney et al [197] also used targeted imaging measures

(entorhinal cortex thickness and volume, hippocampal

volume, whole brain volume, and ventricular volume) as

QTs in a large GWAS involving two cohorts (AddNeuroMed

and ADNI). In addition to confirming a role of PICALM as

a susceptibility gene for AD and as related to entorhinal

thickness, they identified two other loci, ZNF292 and

ARPP-21, as potential candidate genes based on associations

of flanking SNPs with entorhinal cortex thickness and

volume (Table 12).

Most imaging GWAS reports have addressed baseline

ADNI data; however, genetic variants predicting rate of pro-

gression are of great interest. Saykin et al [6] reported an ini-

tial longitudinal analysis of hippocampal volume and GM

density using baseline and 12-month scans. In a candidate

gene analysis [198], five AD genes from the AlzGene data-

base (alzgene.org) were found to have significant SNPs asso-

ciated with hippocampal volume or GM density changes,

after accounting for APOE, baseline diagnosis, and other

factors (NEDD9, SORL1, DAPK1, IL1B, and SORCS1).

Next, a longitudinal GWAS was performed on hippocampal

volume and GM density, using theMRI measures reported in

the paper by Risacher et al [115]. A number of interesting

potential candidate genes were identified by this GWAS.

In addition to APOE and TOMM40, an SNP (rs12449237)

located at 16q22.1 between CDH8 (cadherin 8, type II)

and LOC390735was strongly associated with change in hip-

pocampal volume. CDH8 codes for a calcium-dependent

cell adhesion protein related to synaptic integrity (neuronal

adhesion and axonal growth and guidance). Although the

cadherin protein has been implicated in AD and is known

to interact with presenilin, this was the first indication that

genetic variation in CDH8 may be associated with rate of

neurodegenerative changes in the hippocampus. Several

other markers did not reach genomewide significance but

also showed association signals worthy of follow-up (for

volume change: SLC6A13; for GM density change:

MAD2L2, LOC728574, QPCT, and GRB2).

In a QT GWAS of CSF biomarker levels instead of imag-

ing variables, Kim et al [149] examined levels of Ab-42,

t-tau, and p-tau181p and the ratios of p-tau181p/Ab-42 and

t-tau/Ab-42 in the ADNI cohort. They found five SNPs

that reached genomewide significance for associations

with one or more biomarkers, including the known candi-

dates (APOE and TOMM40) as well as one hypothetical

gene (LOC10012950) that partially overlaps APOE. Most

interestingly, several SNPs in the vicinity of the novel

gene EPC2 (enhancer of polycomb homolog 2) were associ-

ated with t-tau levels. EPC2 is involved in chromatin remod-

eling and has not been previously associated with AD, yet

this gene may be causally associated with mental retardation

in a microdeletion syndrome. Along with EPC2, SNPs near

CCDC134, ABCG2, SREBF2, and NFATC4 approached sig-

nificance (P, 105) in their association with CSF biomarkers

and can be considered potential candidate genes for future

studies (Table 12). Han et al [199] also used levels of CSF

biomarkers as QTs in a GWAS of the ADNI cohort. They

found that increasing APOE 34 allele dose was associated

with lowered Ab-42 and elevated t-tau and p-tau181p levels.

After adjusting for age and APOE genotype, several SNPs
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were found to be significantly associated with increased Ab-

42 levels in normal subjects, the most strongly associated be-

ing within or proximal to the TOMM40, NCAM2, and

CYP19A1 genes (Table 12). NCAM2 encodes neural adhe-

sion molecule 2, a poorly characterized protein implicated

in neuronal adhesion and fasciculation of neurons, whereas

CYP19A1 encodes cytochrome P450 aromatase, an enzyme

that catalyzes the conversion of androgens to estrogens.

5.4. Summary and conclusions of genetic risk factor

studies

Genetic studies of the ADNI cohort have confirmed that

the APOE 34 allele is the major genetic risk factor for late-

onset AD and that it is associated with atrophy in widespread

areas of the brain. Case–control GWAS that have included

ADNI data have also confirmed CLU, CRI, and PICALM

as AD risk loci and identified a number of other candidate

genes. QT GWAS using ADNI phenotypes such as Ab-42

and tau or imaging measures of brain atrophy have detected

genes implicated in the modification or modulation of Ab or

tau proteins, mitochondrial oxidative pathways, iron metab-

olism, neural adhesion and growth, synaptic plasticity, epi-

genetic processes, and memory function. A particular

contribution of ADNI imaging genetic studies has been to

develop methods to expand the dimensionality of GWAS

studies to include all regions or voxels of an imaging scan,

significantly expanding the potential of the field of imaging

genetics to pinpoint specific brain regions influenced by dif-

ferent loci. Although candidate genes await confirmation by

independent studies, they promise to unveil biological mech-

anisms underlying AD pathology.

6. Studies of normal control subjects

With the realization that AD pathologymost likely begins

to accumulate years in advance of any detectable cognitive

effect, a major issue has been determining the proportion of

apparently normal control subjects who harbor preclinical

AD. As more sensitive biomarkers have been developed,

studies have emergedwith the goals of ascertaining the utility

of these biomarkers in healthy elderly subjects and determin-

ing the earliest stage at which incipient AD pathology can be

detected. This clearly has implications for development of

AD therapies: if AD pathology can be reliably detected at

such an early stage, then would existing or novel AD-

modifying treatments be more effective when used before

clinical symptoms become evident? In tandem with these

studies, ADNI’s cohort of well-characterized normal control

subjects has been used to investigate processes occurring in

the brain during healthy aging when there are no clinically

detectable underlying pathologies. These two thrusts are of-

ten interwovenwithin the same study, as it becomesmore ob-

vious that healthy elderly subjects, although cognitively

normal, are in fact a heterogeneous group when examined

by other means.

6.1. MRI studies

The question of whether atrophy observed in normal ag-

ing is due primarily to normal aging processes or to the de-

velopment of underlying pathologies is the subject of much

debate. Fjell et al [200] presented the first detailed longitudi-

nal study of brain atrophy in healthy elderly subjects aimed

at understanding age-related changes in cognitive function.

When volume changes in multiple ROIs and across the entire

cortex were compared in healthy elderly subjects and AD pa-

tients, these authors found that the healthy elderly subjects

had an atrophy rate of about 0.5% per year and that volume

loss was widely distributed across the brain and included

both regions typical of AD-associated atrophy and areas

not typically associated with AD, such as the inferior, supe-

rior, and middle frontal cortices. The rate of change acceler-

ated with age, especially in those regions associated with

AD, possibly because of the existence of preclinical AD

pathology superimposed on normal aging processes. The

authors believe, however, that the majority of volumetric

changes observed in healthy aging are not related to those

caused by degenerative diseases. Davatzikos et al [119]

used the SPARE-AD index (see section 4.4.2.1. for further

description) to examine the degree of AD pathology in

healthy elderly subjects and its association with cognitive

decline in ADNI and another cohort with longitudinal data

available. They found that SPARE-AD scores increased

with age, as did the rate of change of the SPARE-AD score.

When healthy elderly subjects were divided into groups of

high versus low SPARE-AD score, the majority had negative

scores. However, a small group with positive scores had sig-

nificantly lower MMSE scores at baseline, suggesting that

a subset of cognitively normal elderly subjects harbored

underlying AD preclinical pathology.

In response to a paper by Burgmans et al [201] suggesting

that underlying preclinical disorders may lead to the overes-

timation of GM atrophy in normal aging studies, Fjell et al

[202] conducted a meta-analysis of a number of cross-

sectional studies. They found that atrophy correlated with

age in virtually all ROIs studied, even at younger ages, sug-

gesting a linear trajectory of brain atrophy over time. When

2-year follow-up cognitive data of healthy elderly subjects

from the ADNI cohort were used to exclude participants

with any indication of cognitive decline, significant atrophy

in all ROIs was still found in the remaining “super-stable”

cohort. These results support the view that brain atrophy is

part of normal aging and not necessarily caused by underly-

ing neuropathological processes. To detect unusually fast

atrophy in cognitively normal healthy elderly subjects,

Franke et al [92] developed a model of healthy aging by

estimating age from MRI scans of normal brain anatomy.

Their method (described in more detail in section 3.7) accu-

rately estimated the age of healthy subjects (r 5 0.92

between real and calculated ages). Using the same method,

they also estimated ages of patients with early AD and found

that the predicted ages were an average of 10 years higher
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than the actual ages, implying that the pattern of AD atrophy

does accelerate relative to healthy elderly control subjects.

Murphy et al [203] used an automated method to examine

volume changes in 14 cortical and subcortical regions over 6

months in an effort to determinewhether atrophy was detect-

able over the short period in healthy elderly subjects and

whether this atrophy was related to 2-year declines in

memory-specific neuropsychological tests. They found that

volume changes in these regions could be measured and

that they were predictive of future clinical decline. The

most significant associations were found in the MTL, sug-

gesting that this atrophy could represent the earliest stages

of AD and that MRI may be a useful tool in complementing

neuropsychological tests in the early detection of those at

risk for subsequent cognitive decline.

6.2. Studies of CSF biomarkers and amyloid deposition

(
11C-PiB PET)

In a manner similar to the examination ofMRI markers of

AD pathology, there has been interest in assessing the utility

of CSF biomarkers in healthy elderly subjects on the basis

that an “earlier biomarker horizon” [204] would have great

clinical significance. Nettiksimmons et al [204] examined

healthy elderly subjects in the ADNI cohort and found three

clusters of participants when 11 biomarker and imaging

measures were subjected to unsupervised cluster analysis.

The first, compact cluster had the most “normal” CSF and

MRI measures, whereas the measures of the third, more dis-

persed group more closely resembled those of MCI patients

included in the study for comparison (the second cluster was

placed in an intermediate position). The third cluster had

a significantly higher proportion of APOE 34 carriers and

scored worse on tests of cognition (ADAS-cog, AVLT), sug-

gesting that this group may harbor the earliest manifesta-

tions of AD symptoms. These results provide support for

the notion that cognitively normal elderly subjects are in

fact a heterogeneous group, a portion of which may progress

to MCI in the future. In a study of the relationship between

levels of CSF biomarkers and 1-year atrophy in 15 subcorti-

cal and 33 cortical ROIs in healthy elderly subjects, Fjell

et al [205] reached similar conclusions. They found that

levels of CSF biomarkers, especially Ab-42, correlated

with atrophy in many of the regions tested and that atrophy

was not restricted to regions most typically associated with

AD. When Ab-42 concentration was plotted against the per-

centage of annual change in ROIs, there was an inflection

point at approximately 175 pg/mL, below which participants

had larger brain volume changes over a year, suggesting that

Ab-42 may play a role in changes in brain volume observed

in healthy elderly subjects below a certain threshold level.

De Meyer et al [159] found that when a biomarker “signa-

ture” for AD using levels of Ab-42, t-tau, and p-tau181p
was tested in healthy elderly subjects, there was a bimodal

distribution of Ab-42 levels with a separation point at 188

pg/mL. Although it was unknown whether those participants

with low levels of Ab-42 in these two studies would develop

AD pathology, they once again highlighted the heterogene-

ity of the cognitively normal healthy elderly group.

In the current model of AD pathogenesis, it is well estab-

lished that deposition of amyloid plaques is an early event

that, in conjunction with tau pathology, causes neuronal

damage typically beginning in the hippocampus and result-

ing in the first clinical manifestations of the disease in the

form of episodic memory deficits. Mormino et al [206]

investigated the relationship between Ab deposition, as mea-

sured by 11C-PiB PET uptake, hippocampal atrophy, and

episodic memory loss in cognitively normal healthy elderly

subjects. They found an inverse relationship between
11C-PiB uptake and hippocampal volume and that episodic

memory loss was predicted by hippocampal volume, but

not by 11C-PiB uptake. The results suggest that low levels

of Ab-42 accumulation in healthy elderly subjects may

reflect early stages of AD pathogenesis and may subse-

quently mediate dementia through an effect on hippocampal

volume and the resulting declines in episodic memory.

6.3. Genetic studies of normal control subjects

Although the APOE 34 allele has been clearly identified as

an AD risk allele, the question of whether a second variant in

the APOE gene, the 32 allele, confers a protective effect has

been less well studied. Evidence for the protective effect of

the APOE 32 allele came from a study by Hua et al [120],

who found reduced CSF volume in the ventricular system of

healthy elderly subjects who had the highest frequency of

this allele compared with MCI and AD patients. Chiang et al

[207] sought to determine the effect of APOE 32 allele on hip-

pocampal volume and levels of CSF biomarkers in healthy el-

derly subjects. They found that carriers of the APOE 32

genotype, constituting approximately 5% of the population,

had lower rates of hippocampal atrophy and higher Ab-42

and lower t-tau and p-tau181p levels compared with the more

common (w70% of population) APOE 33/ 33 homozygotes,

suggesting that lower rates of atrophy could be related to de-

creased underlying AD pathology and may explain the lower

rates ofADamong carriers of this allele. A similar findingwas

reported by Fan et al [208], who examined the relationship be-

tween cortical thickness at multiple regions across the brain

and APOE genotype in healthy elderly subjects who were

grouped as 32 carriers, 33 homozygotes, and 34 carriers. After

adjusting for multiple comparisons, they found greater thick-

ness in the superior temporal cortex in 32 carriers compared

with 33 homozygotes, and in the dorsolateral prefrontal cortex

in 32 compared with 34 carriers. Moreover, CSF concentra-

tions ofAb-42, t-tau, and p-tau181pwere significantly different

in all groups (Fig. 24), although no differences were found in

the MMSE between groups. The results of these two studies

provided support for the differential effect of APOE alleles

on brain structure and on CSF biomarkers.

In addition to risk factors like age andAPOE genotype, in-

creased BMI has been associated with frontal, temporal, and
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subcortical atrophy and may increase susceptibility to AD.

Recent studies identified a novel obesity genetic risk factor,

a variant of the fat mass and obesity associated (FTO) gene,

carried by almost one-half of Western Europeans. Ho et al

[209] examined the effect of the FTO risk allele on brain vol-

umes in healthy elderly subjects and compared its effects on

brain structure with that of increased BMI. They found that

carriers of the FTO risk allele had an 8% to 12% deficit in

a subset of areas affected by BMI, predominantly in the fron-

tal and occipital lobes, comparedwith noncarriers, suggesting

that the FTO risk allele contributes to, but does not fully ac-

count for, the effect of increasing BMI on brain atrophy. Ber-

tam and Heekeren [198] discussed the findings of the study

and the need for corroborating the results to determine the in-

fluence of genetics on normal brain structure and function.

The idea that common variance in brain structure may be

primarily controlled not by polymorphisms resulting in

altered protein structure, but by changes in regulatory ele-

ments found support in a study by Rimol et al [210]. Using

the ADNI cohort, they found that two SNPs located in non-

exonic regions of genes for primary microencephaly were

correlated with reduced cortical surface in males only,

regardless of disease status, and suggested that these poly-

morphisms may affect gene regulation and result in gross

abnormalities in brain structure observed in this disease.

More data on the role of common genetic sequence variations

in accounting for commonly occurring brain structure varia-

tions came from a study by the same group [211] on

associations between a common haplotype of the MECP2

gene and brain structure. Mutations in MECP2, encoding

methyl-CpG binding protein 2, cause microencephalopathy

and are associatedwith other severe neurodevelopmental dis-

orders, but Joyner et al [211] found that common sequence

variations in this region correlated with reduced cortical sur-

face area in males only of the ADNI cohort. As MECP2 is

thought to transcriptionally activate or repress thousands of

genes, studies of the influence of such common sequence var-

iations may reveal profound insights into brain structure and

development.

6.4. Summary and conclusions of papers focusing on

normal control subjects

Heterogeneity of cognitively normal healthy elderly sub-

jects seems to bewell supported by these studies, with a num-

ber suggesting the existence of a subset of cognitively

normal elderly subjects that bears the hallmarks of early

AD pathogenesis in terms of changes in brain volume and

levels of CSF biomarkers. The extent to which these changes

are separate from those of normal aging remains to be fully

elucidated. Fjell et al [202] concluded, “We need more

knowledge about which factors mediate brain atrophy in

healthy elderly and what consequences the changes have

for cognitive function.” Likewise, several intriguing studies

have pointed to the role of genetics in healthy aging, and sug-

gest a protective effect of the APOE 32 allele and increased

susceptibility to brain atrophy and perhaps AD conferred by

a risk allele at the novel FTO locus. Clearly, studies of the

healthy elderly control subjects are revealing information

not only about the processes of healthy aging but also the ini-

tial development of preclinical AD pathology.

7. Worldwide ADNI

Since the inception of ADNI in North America in 2004,

there has been worldwide interest in creating programs that

are at least partially modeled on the ADNI platform, and

that use protocols developed byADNI for at least part of their

studies. Combined, the initiatives represent a concerted effort

toward globalization of this concept. Society may well reap

the rewards of having not just a well-characterized North

American cohort for the development of AD biomarkers

but also similarly characterized cohorts globally that may

represent diverse ethnic groups, important for determining

the applicability of ADNI findings to the world population.

Like ADNI, these initiatives from Europe, Japan, and Aus-

tralia are predicated on the sharing of data, and infrastructure

is beginning to be developed to allow full transparency of

global results. Future ADNIs are expected to begin in Argen-

tina and China and have recently begun in Korea and Taiwan.

All worldwide ADNIs share common goals of increasing

understanding of AD onset and progression, both cognitively

and physically, establishing globally recognized standards

for diagnosis, and ultimately developing methods to allow

more efficient clinical trials.

7.1. European ADNI

Frisoni [212] provides an overview of all programs, either

completed or underway, in Europe that are in some way

Fig. 24. Mean biomarker levels (t-tau, p-tau, and Ab-42) for the APOE

genotype groups. The APOE 32 carriers are represented in black, the 33 ho-

mozygotes in gray, and the 34 carriers in white. The CSFAb-42 levels show

a significant stepwise trend downward, from APOE 32 carriers to 33 homo-

zygotes to 34 carriers, whereas the t-tau and the p-tau levels show the oppo-

site trend. Reproduced with permission from Ref [208].
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related to ADNI. The ADNI platform was first introduced

into Europe in the form of a small cross-sectional pilot study,

E-ADNI, which aimed to assess the feasibility of importing

ADNI procedures to a European multicenter multicountry

setting [213]. E-ADNI was initiated under the auspices of

the Alzheimer’s Association through the generosity of the

HEDCO Foundation and enrolled 49 control, MCI, and

AD participants over seven sites in seven countries. The pilot

study used all ADNI protocols, with the exception of PET

imaging, the feasibility of which had been previously dem-

onstrated, and MRI sequences for the detection of cerebral

small vessel damage, a slightly different emphasis of the

study. Buerger et al [214] conducted a multicenter feasibility

study within E-ADNI and found that the use of fresh, rather

than frozen, biological samples increased diagnostic accu-

racy. Overall, the study demonstrated that apart from age

and education, the enrolled cohort was similar to the

ADNI cohort in MRI and CSF measures and that implemen-

tation of the ADNI platform in Europe was feasible [213].

Other data collection programs in Europe include (1)

AddNeuroMed, a public–private initiative with a cohort of

700 control, MCI, and AD subjects across Europe that

used ADNI protocols for structural MRI; (2) Pharma-cog,

which overlaps to the greatest extent with ADNI and which

aims to predict cognitive properties of new drug candidates

for neurodegenerative diseases; (3) Swedish ADNI, a small-

scale initiative funded by the Alzheimer’s Association that

used ADNI protocol and which has merged into the larger

Swedish BrainPower initiative; and (4) ItalianADNI, a larger

project with 480 patients enrolled. These initiatives vary in

the size and composition of cohorts enrolled, the length of

study, and the frequency and type of data collection. How-

ever, they all have the use of standardized ADNI protocols

in common for at least some of their data collection [212].

Two additional European programs funded by the Alz-

heimer’s Association focused on harmonization of measure-

ments of both CSF biomarkers [215] and hippocampal

volume [216], aiming to createworldwide protocols for stan-

dardized hippocampal segmentation and measurement of

CSF biomarker concentrations to allow the direct compari-

son of results generated globally.

Finally, initiatives inspired by ADNI to build infrastruc-

ture including a central repository of all data, like that devel-

oped at LONI, have been implemented in Europe. NeuGRID

is being developed at the European equivalent of LONI, and

outGRID aims to synergize neuGRID, LONI, and the Cana-

dian repository CBRAIN and to develop full interoperability.

CATI (Centre pour l’Acquisition et le Traitement de l’Image)

is the French repository for data sets within that country.

ADNI-related programs and initiatives in Europe are

summarized in Table 13.

7.2. AIBL study: The Australian ADNI

Often termed the “Australian ADNI,” the AIBL has sim-

ilar goals to ADNI, namely, to better understand disease

pathogenesis and to develop tests for an earlier diagnosis

of AD, and, to this end, uses ADNI protocols for its imaging

studies [217]. Some methodological differences between the

two studies include the omission of FDG-PET metabolic in-

vestigations and the comparison of amyloid pathology using
11C-PiB PET and Ab-42 levels in blood plasma instead of

from CSF on the basis that obtaining blood plasma is both

less expensive and less invasive than lumbar punctures. Per-

haps the greatest difference between AIBL and ADNI lies in

the approach AIBL is taking to investigating lifestyle factors

involved in AD. By collecting extensive neuropsychological

and lifestyle data, the study aims to understand which health

and lifestyle factors protect or contribute to AD. Like ADNI,

however, all data are made available through LONI and are

funded by the Alzheimer’s Association. Ellis et al [217] re-

ported that one recent finding from the study found that hip-

pocampal atrophy was regionally associated with 11C-PiB

retention only in the inferior lobe, leading to a new hypoth-

esis of how Ab accumulation could disrupt connections be-

tween the hippocampus through accumulation in this area

(Bourgeat et al., Beta-amyloid burden in the temporal neo-

cortex is related to elderly subjects without dementia. Neu-

rology 2010:74:121–7; see Appendix).

Rowe et al [218] reported on the progress of the neuroimag-

ing arm of the AIBL in characterizing a cohort of 177 healthy

elderly subjects, 57 MCI patients, and 53 AD patients. The pa-

tient groups had increasing numbers of APOE 34 carriers, in-

creased hippocampal atrophy, and increased cognitive

impairment with disease progression. The distribution of 11C-

PiBbinding in control subjects did not follow anormal distribu-

tion, andcluster analysis determineda separationpoint between

low and high 11C-PiB binding groups at a neocortical standard-

ized uptake value threshold of 1.5. This bimodal distribution in

normal healthy elderly subjects again echoes the idea of hetero-

geneity within this group and the existence of a subset of pa-

tients with the first manifestations of AD pathogenesis well in

advance of any effects on cognition. 11C-PiB binding may

therefore play a role in populating andmonitoring clinical trials

of antiamyloid therapies. Rowe et al [218] also used 11C-PiB

PET imaging for diagnosis and found that 11C-PiB scans dis-

criminated between AD and control subjects with an accuracy

of 73%, a sensitivity of 98%, and a specificity of 63%, compa-

rable with results obtained using hippocampal volume (accu-

racy5 73%, specificity5 80%, sensitivity5 78%).

7.3. Japanese ADNI

The need for a Japanese ADNI (J-ADNI) was realized in

2006 when ADNI was beginning in North America and at the

end of the Japanese study J-COSMIC (Japan Cooperative

SPECTStudy onAssessment ofMild Impairment of Cognitive

Function) [219]. Iwatsubo [220] reported that J-ADNI was

needed not only to meet requirements for global clinical trials

of AD drugs about to begin in Japan and to develop the neces-

sary infrastructure for these trials, butwas alsomotivated by the

desire of Japanese researchers to improve their clinical science
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Table 13

European initiatives related to ADNI

Purpose Program name Funding agency Time frame Countries

Data collection Pilot E-ADNI Alzheimer’s Association 2006–2007 IT, FR, GE, NL, SW, DE

AddNeuroMed EC Ongoing, 40 months FI, PL, UK, IT, GR, FR

Pharma-Cog

WorkPackage

5 (E-ADNI)

EC IMI Ongoing 5 years SP, IT, GE, FR

Swedish ADNI Alzheimer’s Association 2007–2009 SW

Italian ADNI NHS 2009–2011 IT

SOP development International

harmonization

of CSF Ab42,

t-tau, and p-tau

Alzheimer’s Association 2009–2013 40 laboratories (EU, US,

Japan, Australia, Brazil)

EADC-ADNI

harmonization of

hippocampal volume

Alzheimer’s Association

Lily-Wyeth

2010–2012 24 centers in EU, US, Canada,

Australia

Infrastructure

development

NeuGRID FP7 2008–2011 IT, FR, SP, CH, UK, SW

OutGRID FP7 2009–2011 IT, FR, UK, US, CD

Centre pour l’Acquisition

et le Traitement de l’

Image (CATI)

French National

Foundation on

AD and RD

2010–2013 FR

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; EC, European Commission; IMI, Innovative Medicines Initiatives; NHS, National

Health System; EADC, European Alzheimer’s Disease Consortium; FP7, 7th Framework Programme; AD and RD, Alzheimer’s disease and related diseases;

DE, Denmark; CD, Canada; CH, Switzerland; FI, Finland; FR, France; GE, Germany; GR, Greece; IT, Italy; NL, Netherlands; PL, Poland; SP, Spain; SW,

Sweden; UK, United Kingdom; US, United States.

NOTE. Reproduced with permission from Ref [212].

Fig. 25. Worldwide ADNI sites. Abbreviations: NA-ADNI, North American ADNI; Arg-ADNI, Argentinean ADNI; E-ADNI, European ADNI; C-ADNI, Chi-

nese ADNI; K-ADNI, Korean ADNI; J-ADNI, Japanese ADNI; T-ADNI, Taiwanese ADNI; A-ADNI, Australian ADNI.
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through international collaboration. A special issue of Rinsho

Shinkeigaku near the inception of J-ADNI in 2007 reported

on ADNI and the need for the establishment of a Japanese ver-

sion [221], the goals of early detection of AD and biomarker

development [222], the methods used by ADNI and adopted

by J-ADNI for achieving these goals [219], and the use of

ADNIapproaches for detectingMCI inneuropathological stud-

ies [223]. Funding for J-ADNI was sought and received from

both the public and private sector, including Japanese and inter-

national companies, to a total of approximately U300 million

per year [220]. The study began in 2008 and aimed to recruit

300 amnestic MCI patients, 150 patients with early AD, and

150 healthy elderly control subjects from 30 centers across

Japan by the end of 2010; participants would then be followed

until 2013 using a research protocol designed to maximize

compatibility with ADNI [220,224]. Compatibility with

ADNI protocols was designed to allow sharing and direct

comparison of data and as a way to contribute to global

standardizationof protocols.Arai et al [224] reported that initial

results fromADNI supporting the use of biomarkers in clinical

trials contributed to a paradigm shift in Japanese geriatric med-

icine fromdefiningAD solely by cognitivemeasures to consid-

ering the information available from biomarkers.

7.4. Worldwide ADNI future directions

The establishment of Worldwide ADNI, an umbrella or-

ganization of global ADNI efforts, is coordinated by the Alz-

heimer’s Association and is a direct result of ADNI.

Information on the countries that have established or plan

to establish ADNI sties in their countries can be

found at http://www.alz.org/research/funding/partnerships/

WW-ADNI_overview.asp. (Fig. 25). Information on the

countries that have established or plan to establish ADNI

sties in their countries can be found at http://www.alz.org/

research/funding/partnerships/WW-ADNI_overview.asp.

Using standardized protocols developed by ADNI, these

programs collectively aim to help define the rate of progres-

sion of MCI and AD, and to develop improved methods for

identifying the appropriate patient populations to participate

in clinical trials. It is anticipated that data generated by these

global initiatives will ultimately be shared through a com-

mon infrastructure with international researchers. It is clear

that ADNI has had and will continue to have a profound and

far-reaching impact on the development of methods for the

prediction and monitoring of the onset and progression of

AD and in gaining a worldwide picture of the physical

changes that lead to AD.
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