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We construct here a conformally invariant differential operator on alge-
braic Weyl tensors that gives special curved analogues of certain opera-
tors related to the deformation complex and that, upon application to the
Weyl curvature, yields the (Fefferman–Graham) ambient obstruction ten-
sor. This new definition of the obstruction tensor leads to simple direct
proofs that the obstruction tensor is divergence-free and vanishes identi-
cally for conformally Einstein metrics. Our main constructions are based on
the ambient metric of Fefferman–Graham and its relation to the conformal
tractor connection. We prove that the obstruction tensor is an obstruction to
finding an ambient metric with curvature harmonic for a certain (ambient)
form Laplacian. This leads to a new ambient formula for the obstruction in
terms of a power of this form Laplacian acting on the ambient curvature.
This result leads us to construct Laplacian-type operators that generalise
the conformal Laplacians of Graham–Jenne–Mason–Sparling. We give an
algorithm for calculating explicit formulae for these operators, and this is
applied to give formulae for the obstruction tensor in dimensions 6 and
8. As background to these issues, we give an explicit construction of the
deformation complex in dimensions n ≥ 4, construct two related (detour)
complexes, and establish essential properties of the operators in these.

1. Introduction

The Bach tensor [1921] has long been considered an important natural invariant
in 4-dimensional Riemannian and pseudo-Riemannian geometry and continues to
play an interesting role. See [Anderson 2005; Tian and Viaclovsky 2005], for
example. It is conformally invariant, vanishes for metrics that are conformal to
Einstein metrics, and arises as the total metric variation of the action

∫
|C |

2, where
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C denotes the Weyl curvature. From the latter and the conformal invariance of
the Weyl curvature, it follows that it is a symmetric trace-free 2-tensor involving 4
derivatives of the metric. An explicit formula for the Bach tensor in terms of the
Weyl curvature C , the Ricci tensor, and the Levi-Civita connection is very simple:

(1) Bab = ∇
c
∇

dCacbd +
1
2 Riccd Cacbd .

In higher even dimensions n, an analogue of the Bach tensor was discovered by
Fefferman and Graham [1985]; it arose as an obstruction to their ambient metric
construction. This Fefferman–Graham obstruction tensor, which we denote Oab (or
sometimes On

ab), shares many of the properties of the Bach tensor. It is a trace-free
symmetric 2-tensor that vanishes for conformally Einstein metrics. The obstruction
tensor has the form 1n/2−2

∇
c
∇

dCacbd + lots. Here “lots” indicates lower order
terms. There is strong evidence that the obstruction tensor will be as important in
each even dimension as the Bach tensor is in dimension 4. Very recently Graham
and Hirachi [2005] have shown that Oab is the total metric variation of

∫
Q, where

Q is Branson’s Q-curvature [Branson 1995; Branson and Ørsted 1991]. This gen-
eralises the situation in dimension 4, since in that case

∫
Q and

∫
|C |

2 agree up
to a multiple. There is a direct link between the obstruction tensor and the nonex-
istence of certain operators on conformal manifolds which also generalises the
4-dimensional setting [Gover and Hirachi 2004] and further indicates the critical
role of the obstruction tensor.

Despite this progress, the obstruction tensor has remained somewhat mysterious,
partly due to the lack of a general formula. In the next section we explain that
there is a fundamental difference between the Bach tensor in dimension 4 and the
obstruction tensor in even dimensions 6 and greater. The idea is as follows. From
the Bianchi identities, the expression (1) for the Bach tensor can be written as

∇
(c
∇

d)Cacbd +
1
2 Riccd Cacbd ,

where the parentheses indicate symmetrisation over the index pair cd. The differen-
tial operator ∇

(c
∇

d)
+

1
2 Riccd is a conformally invariant operator which acts on the

bundle of “algebraic Weyl tensors” (the bundle whose sections are 4-tensor fields
with the same conformal weight and algebraic symmetries as the Weyl curvature)
and takes values in a (density weighted) irreducible tensor bundle. One might
hope that a similar result would hold in higher dimensions. This is not the case.
In Proposition 2.1, we establish that in dimensions n ≥ 6, the obstruction tensor
cannot arise in this manner from a conformally invariant operator that acts between
irreducible tensor bundles. This is an easy consequence of representation theory
results of Boe and Collingwood [1985] that give a classification of conformally
invariant operators on the sphere. (See [Eastwood and Slovák 1997] and references
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therein.) One focus of this article is to describe the correct generalisation of the
described construction of the Bach tensor. This is Theorem 2.3, one of the main
results.

In the conformally flat setting, the conformally invariant operator defined in the
previous paragraph is the formal adjoint of an operator in the so-called (confor-
mal) deformation complex. This is a complex of conformally invariant differen-
tial operators arising in connection with infinitesimal deformations of a conformal
structure based at a conformally flat metric. The linearisation of the obstruction
tensor, which we denote by B, is an operator in a class of conformally invariant
operators acting between bundles in the complex. These “long operators” are pre-
dicted by the Boe–Collingwood classification. In Proposition 2.2, we show that
the linearised obstruction operator and another long operator denoted by L factor
through operators from the complex. For example, we obtain that B = GC, where
C is the linearised Weyl curvature operator and G is a gauge companion operator
for L. That is, L and G have the same domain space (algebraic Weyl tensors), the
system (L,G) gives a conformally invariant equation, and in Riemannian signature
this system is elliptic. Theorem 2.3 gives a curved analogue of this picture. The
theorem describes a conformally invariant differential operator B which, on general
conformal manifolds of even dimension, acts on algebraic Weyl tensors and takes
values in a reducible bundle. In dimensions n ≥ 6, composing this with projection
to a quotient gives a conformally invariant operator L which takes algebraic Weyl
tensors to weighted algebraic Weyl tensors; L generalises L to conformally curved
manifolds. This operator annihilates the Weyl curvature C , and B(C) is the ob-
struction tensor. An application of these results is given in Proposition 2.4, which
in the conformally flat setting relates the conformally invariant null space of the
system (L,G) to the cohomology of the deformation complex.

For a conformal structure of dimension n, the ambient metric is an associated,
suitably homogeneous, and Ricci-flat metric on an (n+2)-manifold. In [Fefferman
and Graham 1985], Oab arose as an obstruction in even dimensions to the existence
of a formal power series solution for this ambient metric. In Section 3B, we show
that the obstruction tensor may equivalently be viewed as a formal obstruction
to having the ambient curvature harmonic for a certain ambient form-Laplacian
1/ . This leads to a new proof that the obstruction tensor is an obstruction to the
ambient metric (see (v) of Theorem 4.4) and a very simple ambient formula for
the obstruction. Let R denote the curvature of the ambient metric. Then 1/ n/2−2 R
is a disguised form of the obstruction. This is also established in Theorem 4.4 and
in the same place used to give a new proof that the obstruction is divergence-free,
i.e. that ∇

aOab = 0. (An alternative proof of this last result is given in [Graham
and Hirachi 2005], and it also follows from the variational characterisation given
in the same work. See [Branson 2005].)
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An interpretation of these results on the underlying conformal manifold can be
achieved via tractor bundles. The standard tractor bundle is a vector bundle with
a conformally invariant connection that we may view as arising as an induced
structure from the Cartan bundle with its normal conformal Cartan connection. On
the other hand, this rank n + 2 vector bundle also arises in a simple way from the
tangent bundle of the ambient manifold. Using this observation, in Theorem 4.1
and Proposition 4.8 we construct families of conformally invariant operators with
leading term a power of the Laplacian; these act between arbitrary tractor bundles
of an appropriate density weight and generalise the GJMS operators of [Graham
et al. 1992]. In Theorem 4.2, we show that the obstruction tensor is obtained by
applying one of these operators, namely �/ n/2−2, which has the form1n/2−2

+lots,
to the tractor field W that corresponds to R. Thus the problem of finding formulae
for the obstruction tensor is reduced to understanding the special case �/ n/2−2 of
the generalised GJMS-type operators �/ k .

There is a one-to-one correspondence between Einstein metrics and a class of
parallel standard tractors [Gauduchon 1990; Gover and Nurowski 2006]. With the
tractor formula for the obstruction �/ n/2−2W , this forms the basis of the proof of
Theorem 4.3, which shows that the obstruction vanishes for conformally Einstein
metrics.

Theorem 4.1 constructs a very general class of Laplace type conformal oper-
ators. The inductive steps leading to Theorem 4.1 yield a simple and effective
algorithm for calculating explicit formulae for the conformal Laplacian operators
of that theorem. Hence by Theorem 4.2, they give an algorithm for calculating
explicit formulae for the obstruction. This algorithm is efficient in the sense that
it does not entail constructing the ambient manifold but uses just its existence; the
algorithm recovers only those invariants of the ambient metric that actually turn up
in the final formula for the operator. In Section 4B, explicit tractor formulae for
conformal Laplacian operators are given. See expressions (59) and (62). These are
then applied to the W -tractor to give formulae for the obstruction in dimensions 6
and 8. Tractor formulae are given in (60) and (64), and formulae in terms of the
Levi-Civita connection and its curvature are given in (61) and on page 348.

The next section establishes the basic background and notation before construct-
ing the conformal deformation complex and introducing some related operators. It
is a pleasure to thank Tom Branson and Robin Graham for helpful discussions.

2. Relationship to the conformal deformation complex

We first sketch here notation and background for conformal structures. Further
details may be found in [Čap and Gover 2003], [Gover and Peterson 2003] or
[Branson and Gover 2005]. We mainly follow the notational conventions of the
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last of these. Let M be a smooth manifold of dimension n ≥ 3. To simplify our
discussions we assume M is orientable. Recall that a conformal structure on M is
a smooth ray subbundle Q ⊂ S2T ∗M whose fibre over x consists of conformally
related metrics at the point x . The principal bundle π : Q → M has structure
group R+, and so each representation R+ 3 x 7→ x−w/2

∈ End(R) induces a natural
line bundle on (M, [g]) that we term the conformal density bundle E[w]. We shall
write E[w] for the space of sections of this bundle. Here and throughout the article,
sections, tensors, and functions are always smooth. When no confusion is likely
to arise, we will use the same notation for a bundle and its section space.

We write g for the conformal metric, the tautological section of S2T ∗M ⊗ E[2]

determined by the conformal structure. This will be used to identify T M with
T ∗M[2]. For many calculations we will use abstract indices in an obvious way.
Given a choice of metric g from the conformal class, we write ∇ for the corre-
sponding Levi-Civita connection. With these conventions the Laplacian1 is given
by 1 = gab

∇a∇b = ∇
b
∇b . Note that E[w] is trivialised by a choice of metric g

from the conformal class, and we write ∇ for the connection corresponding to this
trivialisation. It follows immediately that (the coupled) ∇a preserves the conformal
metric.

The curvature Rab
c

d of the Levi-Civita connection is known as the Riemannian
curvature and is defined by

[∇a,∇b]v
c
= Rab

c
dv

d ,

where [ · , · ] indicates the usual commutator bracket. The Riemannian curvature
can be decomposed into the totally trace-free Weyl curvature Cabcd and a remain-
ing part described by the symmetric Schouten tensor Pab using Rabcd = Cabcd +

2gc[aPb]d + 2gd[bPa]c, where [ · · · ] indicates the antisymmetrisation over the en-
closed indices. The Schouten tensor is a trace modification of the Ricci tensor Ricab

and vice versa: writing J for the trace Pa
a of P, then Ricab = (n − 2)Pab + J gab.

Under a conformal transformation we replace a choice of metric g by the metric
ĝ = e2ωg, where ω is a smooth function. Explicit formulae for the correspond-
ing transformation of the Levi-Civita connection and its curvatures are given, for
example, in [Bailey et al. 1994a; Gover and Peterson 2003]. We recall that in
particular the Weyl curvature is conformally invariant, that is, Ĉabcd = Cabcd .

A tensor T a···b
c···d of weight w and with k contravariant indices and ` covariant

indices has total order `− k −w. For example, the Weyl curvature, the Schouten
tensor, and the scalar curvature all have total order 2. The conformal metric gab
has total order zero, and so the total order of any tensor is unchanged by the raising
and lowering of indices using the conformal metric.
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A differential operator P is a natural differential operator if it can be written as
a universal polynomial in covariant derivatives with coefficients depending polyno-
mially on the metric, its inverse, the curvature tensor, and its covariant derivatives.
The coefficients of natural operators are called natural tensors. In the case that
they are scalar they are often also called Riemannian invariants. Note that if T is a
tensor with total order t then ∇T has total order t +1. It follows immediately that
for any natural differential operator P that has T in its domain, the total order of
PT is at least t . We say P is a conformally invariant differential operator if it is
well-defined on conformal structures, i.e., is independent of a choice of conformal
scale.

We will use Ek as a convenient alternative notation for ∧
k T ∗M . The tensor

product of Ek
⊗ E`, `≤ n/2, k ≤ dn/2e, decomposes into irreducibles. We denote

the highest weight component by Ek,`. (Here “weight” does not refer to conformal
weight, but rather to the weight of the inducing O(n)-representation.) We realise
the tensors of Ek,` as trace-free covariant (k + `)-tensors Ta1···akb1···b` which are
skew on the indices a1 · · · ak and also on the set b1 · · · b`. Skewing over more
than k indices annihilates T , as does symmetrising over any 3 indices. Then we
write, for example, Ek,`

[w] as a shorthand for the tensor product Ek,`
⊗E[w]. The

space of sections of each of these bundles is indicated by replacing E with E. The
sections of E2,2

[2] are the algebraic Weyl tensors as discussed in the introduction,
that is, tensors uabcd with the same symmetries and weight as the Weyl curvature. In
particular, the Weyl curvature itself is a section in E2,2

[2]. We will also often use the
notation Ek,`[w] as a shorthand for Ek,`

[w+2k+2`−n]. This notation is suggested
by the duality between Ek,`

[w] and Ek,`[−w]; for ϕ ∈ Ek,`
[w] and ψ ∈ Ek,`[−w],

with one of these compactly supported, there is the natural conformally invariant
global pairing

ϕ,ψ 7→ 〈ϕ,ψ〉 :=

∫
M
ϕ ·ψ dµg,

where ϕ ·ψ ∈ E[−n] denotes a complete contraction between ϕ and ψ .
Since the Weyl curvature is conformally invariant, it follows easily that the lin-

earisation (at a conformally flat metric) of the nonlinear operator g 7→Cg
∈ E2,2

[2],
with Cg the Weyl curvature of the metric g, is a conformally invariant operator
C : E1,1

[2] → E2,2
[2]. The formal adjoint of a conformally invariant operator is

again conformally invariant. In particular, the formal adjoint of C is conformally
invariant:

C∗
: E2,2[−2] → E1,1[−2].

Now observe that in dimension 4 we have E2,2
[2] = E2,2[−2], and so C∗ acts on

the space of algebraic Weyl tensors E2,2
[2]. It is given explicitly up to a multiple

by Uabcd 7→ (∇(a
∇

c)
+ Pac)Uabcd . It is straightforward to verify directly using

(34) or the transformation formulae from [Gover and Peterson 2003] that this is
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also conformally invariant in the general curved case, and this operator applied to
the Weyl curvature gives the Bach tensor.

On conformally flat structures of dimension at least 4, the null space of C locally
agrees with the range of the conformal Killing operator K : E1

[2] → E1,1
[2] given

by va 7→ ∇(avb)0 , where ( · · · )0 indicates the symmetric trace-free part. These
operators give the initial sequence of the conformal deformation complex. On
oriented structures of dimension 4 this complex is simply

E1
[2]

K
→ E1,1

[2]
C
→ E2,2

[2]
C∗?
→ E1,1[−2]

K∗

→ E1[−2],

where ? is the (conformal) Hodge star operator. Recall that in even dimensions
this gives an isomorphism on the space of middle forms ? : En/2

→ En/2, and so it
also gives an isomorphism ? : En/2,2

[2] → En/2,2
[2].

The situation is more complicated in higher dimensions. In the deformation
complex, the operator C is followed by the Weyl–Bianchi operator Bi from E2,2

[2]

to E3,2
[2], given (in a conformal scale) by

(2) Uabcd 7→ (n − 3)∇[aUbc]de − gd[a∇|s|Ubc]
s

e + ge[a∇|s|Ubc]
s

d .

Here | · | indicates that the enclosed indices are omitted from the skew-symmetrisa-
tion process. (Note that an easy consequence of its symmetries is that the operator
(2) is trivial in dimension 4.) On oriented structures the formal adjoints of these
operators conclude the complex, and so we have the picture

·
K
→ E1,1

[2]
C
→ E2,2

[2]
Bi
→ E3,2

[2] → · · · → E3,2[−2]
Bi
→ E2,2[−2]

C∗

→ E1,1[−2]
K∗

→ ·

Here we have omitted the initial section space E1
[2] and terminal section space

E1[−2], since they are outside the main focus of our discussions. In dimensions
other than 6, Bi is Bi∗. In dimension 6, Bi means the composition Bi∗?. The
Hodge star is also implicitly used in interpreting the diagram in dimension 5. In
this case it gives isomorphisms ? : E2,2

[2]→ E3,2[−2] and ? : E3,2
[2]→ E2,2[−2],

and under these Bi is identified modulo a sign with Bi∗. In dimensions at least 5,
C∗ is given by Uabcd 7→ (∇(a

∇
c)

+ Pac)Uabcd , the same formula as in dimension
4. In even dimensions n ≥ 8, the centre of the pattern consists in an obvious
way of operators Bi(k) : Ek,2

[2] → Ek+1,2
[2] for k = 3, . . . , n/2 − 1, their formal

adjoints Bi∗(k) : Ek+1,2[−2] → Ek,2[−2] for k = 3, . . . , n/2 − 2, and Bi∗(n/2−1)? :

En/2,2
[2] → En/2−1,2[−2]. The operators Bi(k) generalise (2), which can be viewed

up to a constant multiple as the “k = 2 case”. For U ∈ Ek,2, an explicit formula
is (Bi(k)U )a0a1···akb1b2 = Proj(∇a0Ua1···akb1b2), where Proj is the bundle morphism
which executes the projection into Ek+1,2

[2]. In odd dimensions at least 7, we
have the operators Bi(k) for k = 3, . . . , bn/2 − 1c and their formal adjoints for
k = 3, . . . , bn/2 − 2c. (The operator Bi(bn/2−1c) is formally self-adjoint).
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In each dimension, the operators of the deformation complex are all conformally
invariant, and the complex is locally exact and extends to give a resolution (on the
sheaves of germs of smooth sections) of the sheaf of conformal Killing fields.
This is a particular generalised Bernstein–Gelfand–Gelfand (gBGG) resolution.
These resolutions are well understood and classified through the dual theory of
generalised Verma modules, and the explicit construction of the complex above is
an immediate consequence of the local uniqueness of the operators in the relevant
gBGG resolution, along with explicit verification of the conformal invariance and
nontriviality of the operators mentioned. See [Gasqui and Goldschmidt 1984] for
an alternative construction of the complex via a theory of overdetermined systems
of partial differential equations based around Spencer cohomology.

According to the results of [Boe and Collingwood 1985], in even dimensions
the operators of the deformation complex are not the only conformally invariant
operators between the bundles involved. There are also “long operators” from
Ek,`

[2] to Ek,`[−2], and an additional pair of operators about the centre of the
pattern. We obtain the operator diagram

·
K
→ E1,1

[2]
C
→ E2,2

[2]
Bi
→ E3,2

[2] → · · · → E3,2[−2]
Bi
→ E2,2[−2]

C∗

→ E1,1[−2]
K∗

→ ·

6
B

6L 6

for dimensions 10 or greater. The operators in this diagram are unique up to multi-
plying by a constant, and the diagram indicates by arrows all the operators between
the bundles explicitly presented. Thus, by implication, all compositions vanish.
The same diagram applies in dimensions 8 and 6 with minor adjustments. In di-
mension 8 there are two “short” operators with domain E3,2

[2] and two with range
E3,2[−2]. From these there is one nontrivial composition E3,2

[2]→E3,2[−2]. Sim-
iliarly in dimension 6 we have ?Bi :E2,2

[2]→E3,2
[2] and Bi∗ :E3,2

[2]→E2,2[−2],
as well as the operators indicated, and L=Bi∗Bi. In dimension 4 the corresponding
diagram is

·
K
→ E1,1

[2]

C
→
→

?C

E2,2
[2]

C∗?
→
→

C∗

E1,1[−2]
K∗

→ ·

6B

and in this case B := C∗C. Evidently on even-dimensional conformally flat struc-
tures there are detour complexes [Branson and Gover 2005], where one shortcuts
the deformation complex via a long operator. The examples relevant here are

(3) E1
[2]

K
→ E1,1

[2]
B

−→ E1,1[−2]
K∗

→ E1[−2]
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and in dimensions n ≥ 6,

E1
[2]

K
→ E1,1

[2]
C
→ E2,2

[2]
L

−→ E2,2[−2]
C∗

→ E1,1[−2]
K∗

→ E1[−2].

These have applications in constructing torsion quantities which generalise Chee-
ger’s de Rham half-torsion [Branson and Gover, in progress].

According to [Fefferman and Graham 1985], the obstruction tensor Oab is a
trace-free symmetric 2-tensor of weight 2 − n. In other words, it is a section of
E1,1[−2]=E1,1

[2−n]. From the general theory in [Eastwood and Slovák 1997], we
know that all the operators indicated explicitly by arrows in the diagrams above
admit curved analogues, that is, generalisations to general conformal structures.
(In fact, the formulae given above for K, C∗, and Bi give conformally invariant
operators on general structures. We will continue to use this notation for these
operators even in the conformally curved setting.) From the diagrams, however,
the difference between dimension 4 and higher even dimensions is clear. In dimen-
sion 4 there is a conformal operator E2,2

[2]→ E1,1[−2] that yields the Bach tensor,
as described above. In higher dimensions the conformally invariant C∗ does not
have E2,2

[2] as its domain. These observations establish the following key point.

Proposition 2.1. In even dimensions n ≥ 6, there can be no conformally invariant
differential operator E2,2

[2] → E1,1[−2] that recovers the obstruction tensor upon
application to the Weyl curvature C.

If there were such an operator, then by Theorem 4.4 or by [Graham and Hirachi
2005], it would necessarily have as highest order term 1n/2−2

∇
a
∇

cUabcd . Its
linearisation would therefore be an operator E2,2

[2] → E1,1[−2]. But there is
no operator between these bundles in the diagram.

This brings us to the question of whether there can be any conformally invariant
operator that yields the obstruction tensor in dimensions n ≥ 6. We will see that
there is, and we will construct the operator. To understand how this works, it is
helpful to expose some properties of the operators B and L.

Proposition 2.2. The operators B : E1,1
[2] → E1,1[−2] and L : E2,2

[2] → E2,2[−2]

are formally self-adjoint. In each even dimension n ≥ 6, there is a natural linear
differential operator H : E2,2

[2]→ E2,2[−2] such that B is given by the composition

B = C∗HC,

and there is a natural linear differential operator N : E3,2
[2] → E3,2[−2] such that

L is given by the composition
L = Bi∗NBi.

We prove this in Section 4 using the geometric tools developed below. The
factorisations described in the proposition can also be established via central char-
acter arguments; see also [Branson and Gover 2005]. Note that L is only defined
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in even dimensions n ≥ 6. In dimension 6, N is the identity. Otherwise, from the
classification of conformally invariant operators on conformally flat manifolds, as
discussed above, it follows that the operators H and N are not conformally invariant.

On conformally flat structures the operator G :=C∗H is not conformally invariant
(n 6= 4). It is, however, conformally invariant on the range of the linearised Weyl
curvature, and we have B = GC. On the other hand, L annihilates the range of C.
The next theorem gives special curved analogues of these operators.

We need some further notation. On conformal manifolds of dimension n there
is a natural reducible, but indecomposable, bundle W2,2 that has the composition
series E2,2[−2]

�� E2,1[−2]
�� E1,1[−2]. This means that E1,1[−2] is a (con-

formally invariant) subbundle and that E2,1[−2] is a subbundle of the quotient
W2,2/E1,1[−2]. The bundle W2,2, which is a subbundle of a certain tractor bundle,
is constructed explicitly in proof of Theorem 2.3 in Section 4. It decomposes as
[W2,2]g = E2,2[−2] ⊕ E2,1[−2] ⊕ E1,1[−2], given a choice of metric g from the
conformal class. Let us write I∗ and P for the respective canonical bundle maps
W2,2 → E2,2[−2] and W2,2 → E2,2[−2]

�� E2,1[−2] which are unique up to a
constant multiple.

Theorem 2.3. On conformal manifolds of even dimension n ≥ 6 there is a natural
nontrivial conformally invariant linear differential operator

B : E2,2
[2] → W2,2 = E2,2[−2]

�� E2,1[−2]
�� E1,1[−2]

with the following properties:

(i) The composition (I∗B =: L) : E2,2
[2] → E2,2[−2] is a nontrivial conformally

invariant differential operator of order n − 4.

(ii) There is a linear differential operator B such that BB = 1` + lots. Thus on
Riemannian signature conformal structures, B is graded injectively elliptic.

(iii) For the Weyl curvature C ∈ E2,2
[2] we have B(C) ∈ E1,1[−2]. The natural

conformal invariant Oab ∈ E1,1[−2] given this way agrees with the obstruction
tensor.

We prove the theorem in Section 4. Note that there is a degenerate version of the
theorem for dimension 4; see expression (28) and the comments that follow it.

From the uniqueness of L it is clear that on conformally flat manifolds L recovers
L up to a constant multiple. However L is a special curved generalisation of L, since
the property L(C) = 0 generalises to arbitrary conformal structures the vanishing
of the composition LC. Since L(C) vanishes, it follows from the composition series
for W2,2 that the component of B(C) in E2,1[−2] is a natural conformal invariant.
That this also vanishes is a special property of B that, in a sense, carries to general
structures the nonexistence of an operator E1,1

[2] → E2,1[−2]. It follows that on
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conformally flat structures the composition BC determines a nontrivial operator
E1,1

[2] → E1,1[−2] which therefore agrees with B. If, for each metric g in the
conformal class, we write G for the composition of B followed by projection to
the component E1,1[−2] (we have such a projection since, recall, W2,2 completely
decomposes given a conformal scale), then by construction, G is a curved analogue
of the operator G. That is, the restriction of G to conformally flat structures is G.
Note that G has the special property that G(C) = O, and as we will see from
the construction of W2,2, although G is not conformally invariant, the conformal
variation of G under g 7→ e2ωg is only quadratic in ω. Since G also has this sort
of variation, this is optimal.

In the conformally flat case, it is easily shown that PB can be reexpressed as a
composition UL. Here U is the operator (35) below, except withw set to 6−n. This
result follows from the nonexistence of a nontrivial conformal operator E2,2

[2] →

E2,1[−2]. It follows from this and (ii) that in even dimensions n ≥ 6, (L,G) is a
right factor of a Laplacian. That is, there are linear differential operators L and G

such that

(L , G)

(
L

G

)
=1` + lots.

Since also G is conformally invariant on the null space of L, it follows that G is a
conformal gauge companion operator in the sense of [Branson and Gover 2002];
see also [Branson and Gover 2005]. Thus in Riemannian signature, the operator
pair (L,G) is an elliptic system. Since L has Bi as a right factor, the system (Bi,G)

is also elliptic and has a conformally invariant null space. Let us denote this by
H2

G , and note that on compact manifolds, H2
G is finite-dimensional. This is closely

related to the second cohomology of the deformation complex. For example, from
Proposition 2.2 and an easy adaption of the proof of Proposition 2.5 in [Branson
and Gover 2005], we obtain the following result, which suggests that H2

G is a
candidate for a space of conformal harmonics. Here we write H i , i = 1, 2, for the
first and second cohomology spaces in the deformation complex, and H 1

B for the
first cohomology of the detour complex (3).

Proposition 2.4. On even-dimensional conformally flat manifolds of dimension
n ≥ 6, there is an exact sequence

0 → H 1
→ H 1

B → H2
G → H 2,

where the last map H2
G → H 2 is simply 8 7→ [8], the middle H 1

B → H2
G is the

map on the quotient N(B)/R(K) induced by the restriction of C to N(B), the null
space of B, and the first map H 1

→ H 1
B is inclusion.

There are further results concerning the relationship of H 1
B to H 1 and H2

G to H 2,
but this will be taken up elsewhere; see also [Branson and Gover 2002].
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3. The ambient construction and tractor calculus

In the subsequent sections we will explore the relationship between the Fefferman–
Graham ambient metric construction [Fefferman and Graham 1985] and tractor
calculus as derived in [Čap and Gover 2003; Gover and Peterson 2003]. The no-
tation and conventions for the ambient metric closely follow [Branson and Gover
2005].

For π : Q → M a conformal structure of signature (p, q), use ρ to denote the R+

action on Q given by ρ(s)(x, gx) = (x, s2gx). An ambient manifold is a smooth
(n+2)-manifold M̃ endowed with a free R+-action ρ and an R+-equivariant em-
bedding i : Q → M̃ . We write X ∈ X(M̃) for the fundamental field generating the
R+-action: for f ∈ C∞(M̃) and u ∈ M̃ , we have X f (u) = (d/dt) f (ρ(et)u)|t=0.
For an ambient manifold M̃ , an ambient metric is a pseudo–Riemannian metric h
of signature (p + 1, q + 1) on M̃ satisfying the conditions: (i) LX h = 2h, where
LX denotes the Lie derivative by X ; (ii) for u = (x, gx) ∈ Q and ξ, η ∈ TuQ,
we have h(i∗ξ, i∗η) = gx(π∗ξ, π∗η); (iii) Ric(h) = 0 up to the addition of terms
vanishing to order n/2 − 1 if n is even or Ric(h)= 0 to all orders if n is odd; and
(iv) h(X, ·)=

1
2 d Q to all orders.

If M is locally conformally flat, then there is a canonical solution to the ambient
metric problem to all orders. This is simply a flat ambient metric. This is forced
by (i)–(iii) in odd dimensions, but in even dimensions this extends the solution;
see comments in [Branson and Gover 2005]. When discussing the conformally flat
case, we assume this solution.

We write ∇ for the ambient Levi-Civita connection and use uppercase abstract
indices A, B, etc., for tensors on M̃ . The ambient Riemann tensor will be denoted
RAB

C
D . Since LX h = 2h, it follows that

∇X = h,(4)

X A RABC D = 0.(5)

Equalities without qualification, as here, indicate that the results hold to all orders
or identically on the ambient manifold.

3A. Tractor bundles. Let Ẽ(w) denote the space of functions on M̃ which are
homogeneous of degree w ∈ R with respect to the action ρ. More generally, a
tensor field F on M̃ is said to be homogeneous of degree w if ρ(s)∗F = swF , that
is, LX F =wF . Just as sections of E[w] are equivalent to functions in Ẽ(w)|Q, the
restriction of a homogeneous tensor field to Q has an interpretation on M . Denote
by T the space of sections of T M̃ which are homogeneous of degree −1 and write
T (w) for sections in T ⊗Ẽ(w), where here ⊗ indicates a tensor product over Ẽ(0).
From [Čap and Gover 2003] we have the following results: We may identify the
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standard tractor bundle T with T M̃ |Q modulo a suitable R+-action, so that sections
of T are in one-one correspondence with sections in T . Thus we write T for the
space of sections of the standard tractor bundle. The filtration of T, which we
traditionally indicate by a composition series,

(6) T = E[1]
�� E1

[1]
�� E[−1],

reflects the vertical subbundle of T Q and T Q as a subbundle of T M̃ |Q. Then since
the ambient metric h is homogeneous of degree 2, it descends to give a metric on
T. This is the usual tractor metric. Sections of T may be characterised as those
sections of T M̃ which are covariantly parallel along the integral curves of X , which
on Q are exactly the fibres of π . The normal tractor connection agrees with the
ambient connection as follows. For U ∈ T, let Ũ be the corresponding section of
T |Q. A tangent vector field ξ on M has a lift to a field ξ̃ ∈ T (1) on Q, which is
everywhere tangent to Q. This is unique up to adding f X , where f ∈ Ẽ(0). We
extend Ũ and ξ̃ smoothly and homogeneously to fields on M̃ and form ∇ξ̃ Ũ |Q; this
section is independent of the extensions and independent of the choice of ξ̃ as a
lift of ξ and is exactly the section of T (0)|Q corresponding to ∇ξU where ∇ here
indicates the tractor connection.

When abstract indices are required, the section spaces of the tractor bundle and
its dual can also be denoted TA and TA. A choice of metric g from the conformal
class determines a canonical splitting of the composition series (6), by [Bailey
et al. 1994a; Čap and Gover 2000]. Via this splitting, direct sums ⊕ replace the
semidirect sums

�� in that series, and we introduce g-dependent sections Z Ab in
TAb

[−1] and Y A in TA
[−1] that describe the decomposition of T into the direct

sum E[1]⊕ Ea[1]⊕ E[−1]. According to V A
= Y Aσ + Z Abµb + X Aρ, a section

V ∈ T then corresponds to a triple [V ]g = (σ, µ, ρ) of sections, and in these
terms the tractor metric is given by h(V, V ) = gabµaµb + 2σρ. Thus the tractor
contractions of the projectors are

(7) X AYA = 1, Z Ab Z Aa = δb
a ,

and 0 for the other pairings.
If Ŷ A and Ẑ A

b are the projectors for the metric ĝ = e2ωg, then we have

(8) Ẑ Ab
= Z Ab

+ϒb X A, Ŷ A
= Y A

−ϒb Z Ab
−

1
2ϒbϒ

b X A.

Here ϒ := dω. In terms of this splitting, determined by g, the tractor connection
is given by

(9) ∇a X A = Z Aa , ∇a Z Ab = −Pab X A − YA gab , and ∇aYA = Pab Z A
b.

We use the notation T̃8 to denote an arbitrary ambient tensor bundle (with T̃0

meaning the trivial bundle) and write T 8(w), w ∈ R, for the subspace of 0(T̃8)
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consisting of sections S satisfying ∇X S = wS; we will say such sections are ho-
mogeneous of weight w. From the constructions above, it follows that the sections
in T 8(w)|Q are equivalent to sections of a tractor bundle that we denote T8[w].
We write T8

[w] for the section space of the latter.
A basic example of interest is the bundle of k-form tractors Tk , which is the k-th

exterior power of the bundle of standard tractors. It is straightforward to verify that
this has a composition series which, in terms of section spaces, is given by

(10) Tk
=3kT ∼= Ek−1

[k]
�� {Ek

[k] ⊕ Ek−2
[k − 2]}

�� Ek−1
[k − 2].

Also of direct relevance to our constructions below are the bundles denoted by
T2,2

[w], which are the subbundles of T2
⊗ T2

⊗ E[w] consisting of tractors of
weight w and Weyl-tensor-type symmetries, that is, trace-free Riemann-tensor-
type symmetries. We write T2,2

[w] for the section space of T2,2
[w] and note that

(with notation as in Section 2) it has the composition series

(11)

E2,2
[w+ 4]

⊕

E2,1
[w+ 4] E2

[w+ 2] E2,1
[w+ 2]

E1,1
[w+ 4]

�� ⊕
�� ⊕

�� ⊕
��E1,1

[w].

E1
[w+ 2] E1,1

[w+ 2] E1
[w]

⊕

E[w]

A comment on punctuation is in order: here the columns represent composition
factors, decomposed into O(g)-irreducibles, and these are separated by

�� ’s which
indicate the composition structure. This series may be obtained by any so(n+2) to
so(n) branching-rule algorithm or, alternatively, by simply considering the possible
contractions of the projectors X , Y , and Z into a typical element of T2,2

[w].

3B. Operators and invariants via the ambient metric. An operator P acting be-
tween ambient tensor bundles is said to be homogeneous of weight u ∈ R if
[∇X , P]= u P . Operators homogeneous in this sense map homogeneous tensors of
weightw to homogeneous tensors of weightw+u. On the other hand, a differential
operator P is said to act tangentially along Q, as an operator on some domain
space, if we have P Q = Q P ′ for some operator P ′ (or equivalently [P, Q] = Q P ′′

for some P ′′). Of particular interest are linear differential operators P which are
both homogeneous and also act on some homogeneous tensor space T 8(w) as
domain tangentially along Q. Each such operator P clearly determines a well-
defined operator on T 8(w)|Q, and hence determines an operator on the equivalent
weighted tractor bundle section space T8

[w]. If the operator P is natural as an
operator on the ambient manifold, then since the ambient construction is not de-
pendent on a choice of metric from the conformal class, it follows that the induced
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operator on weighted tractor fields is conformally invariant. The remaining issue
is whether this induced operator is natural for the underlying conformal structure.
For the operators we are interested in here, we solve this by giving an algorithm for
expressing the induced operator as a formula in terms of known natural operators.
This solves two problems, since one of our aims is to obtain explicit formulae for
the operators concerned.

Before we construct examples of such operators, we require some further back-
ground. First note that from (4), we have

(12) [1, X] = 2∇, where 1 := ∇
A
∇A,

and ∇A Q = 2X A. Both identities hold to all orders. Thus ∇X Q = 2Q; Q is
homogeneous of weight 2. A short computation shows that if U is an ambient
tensor field, then

(13) [1, Q]U = 2(n + 2∇X + 2)U.

It follows that for any positive integer `, if an ambient tensor field U is O(Q`),
then 1U and ∇U are both O(Q`−1).

Now we define an operator D (or DA when indices are used). Let

(14) DV := ∇(n + 2∇X − 2)V − X1V,

for any ambient tensor field V . It is readily verified that D is homogeneous of
weight −1. By (12) we also have the equivalent formula

(15) DV = ∇(n + 2∇X)V − 1XV .

Using either of these with the computations above, we obtain DQV = Q DV +

4Q∇V , and so D acts tangentially. For later use we note that for any integer `≥ 2,
if V is O(Q`), then DAV is O(Q`−1).

Since D acts tangentially on any ambient tensor bundle, it follows that for every
tractor bundle T8 and w ∈ R we obtain an operator

D : T8
[w] → T ⊗ T8

[w− 1]

equivalent to D as an operator T 8(w)|Q →T ⊗T 8(w−1)|Q. It is straightforward
to prove (see [Čap and Gover 2003; Gover and Peterson 2003]) that D is the usual
tractor-D operator of [Thomas 1926; Bailey et al. 1994a]. For a choice of metric
g from the conformal class and for any V ∈ T8

[w], D is given explicitly by

(16) D AV := (n + 2w− 2)wY AV + (n + 2w− 2)Z Aa
∇a V − X A�V,

where �V := 1V +wJV . We note that D is a natural differential operator. A
differential operator taking values in a tractor bundle (or acting between tractor
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bundles) is said to be natural if the so(g)-irreducible components of the operator
are natural.

Acting on T 8(1 − n/2), the operator D is simply −X1, and correspondingly
D simplifies to −X� on T8

[1 − n/2]. Thus 1 acts tangentially on T 8(1 − n/2)
and as an operator on the restriction of this space to Q, is equivalent to the tractor-
coupled conformal Laplacian

(17) � : T8
[1 − n/2] → T8

[−1 − n/2].

Many identities involving D are obtained most easily by calculating with D on
M̃ . For example, a short calculation using (4) and (12) shows that

(18) DA X AV = (n + 2w+ 2)(n +w)V − Q1V

for any V ∈ T 8(w). Hence for any V ∈ T8
[w], we have

(19) DA X AV = (n + 2w+ 2)(n +w)V .

An observation key to the next section is that the ambient curvature R is “har-
monic” for a certain Laplacian, at least at low orders. Before we construct this
Laplacian we need some further notation. Write ] (hash) for the natural tensorial
action of sections A of End(T M̃) on ambient tensors. For example, on an ambient
covariant 2-tensor TAB , we have A]TAB = −AC

ATC B − AC
B TAC . If A is skew

for h, then at each point, A is so(h)-valued. The hash action thus commutes with
the raising and lowering of indices and preserves the SO(h)-decomposition of ten-
sors. For example, A] maps trace-free symmetric tensors to trace-free symmetric
tensors. As a section of the tensor square of the h-skew bundle endomorphisms of
T M̃ , the ambient curvature has a double hash action on ambient tensors; we write
R]]T . As a point on punctuation, it should be noted that we will treat tensors in
composite expressions as multiplication operators. A composition of operators L ,
M , and N acting on S denoted L M N S means L(M(N (S))). For example, ∇R]]T
has the same interpretation as ∇(R]]T ).

From the Bianchi identities, we have that on any Riemannian or pseudo-Rie-
mannian manifold,

(20) 4∇A1∇B1RicA2 B2

= 1RA1 A2 B1 B2 +
1
2 R]]RA1 A2 B1 B2 − RicC A1 RC

A2 B1 B2 + RicC B1 RC
B2 A1 A2 .

Remark. In (20) we adopt the convention that sequentially labeled indices in
the subscript position (such as A1 and A2) are implicitly skew-symmetrised. This
convention applies throughout this paper unless noted otherwise.
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Let us define a Laplacian operator 1/ by the formula

1/ := 1 +
1
2 R]].

Then from (20) and the conditions on Ric(h) for the ambient metric, we have

(21) 4∇A1∇B1RicA2 B2 = 1/ RA1 A2 B1 B2 + O(Qn/2−1)

in even dimensions. Therefore

(22) 1/ RBC DE = 0

modulo O(Qn/2−3) in even dimensions and to infinite order in odd dimensions.

Remarks. 1. The operator 1/ is a type of form-Laplacian. On a Riemannian or
pseudo-Riemannian manifold, suppose U is any tensor with Riemann tensor type
symmetries. A short calculation shows that

1/U = −
1
2

(
δ∇

1 d∇

1 + d∇

1 δ∇

1 + δ∇

2 d∇

2 + d∇

2 δ∇

2
)

U,

where d∇

i is the Levi-Civita connection-coupled exterior derivative, δ∇

i is its formal
adjoint, and the index i is 1 or 2 according to whether we regard U as a 2-form
with values in a tensor bundle on the first pair of indices or the last pair. In terms
of the Levi-Civita connection ∇, we have (d∇

1 U )A0 A1 A2 B1 B2 = 3∇A0UA1 A2 B1 B2 and
(δ∇

2 U )A1 A2 B2 = −∇
B1UA1 A2 B1 B2 , for example.

Returning to the ambient manifold, note that from these observations, the results
concerning the degree to which the ambient curvature is 1/ -harmonic are manifest,
since on the one hand d∇

1 and d∇

2 annihilate R by the Bianchi identity and on
the other hand δ∇

1 R and δ∇

2 R are O(Qn/2−2) (or O(Q∞) in odd dimensions) by
dint of the contracted Bianchi identity and the condition (iii) on the ambient Ricci
curvature.

2. Note that from (20), if Ric vanishes to all orders on the ambient manifold, then
it is immediate that 1/ R vanishes to all orders. Conversely, if 1/ R vanishes to all
orders, then so does 4∇A1∇B1RicB2 A2 + RicC A1 RC

A2 B1 B2 − RicC B1 RC
B2 A1 A2 . On

the other hand, contracting the latter with X A1 X B1 and using (4) and (5) yields
2RicA2 B2 . Thus on the ambient manifold, the vanishing of Ric to all orders is
equivalent to the vanishing of 1/ R to all orders.

We may view the operator 1/ as the special case α =
1
2 of the family of ambient

Laplacians

(23) 1α := 1 +αR]], α ∈ R,

which also includes the ambient form Laplacian at α = 1 and the usual ambient
Bochner Laplacian at α = 0. While the latter was used in the constructions of
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[Graham et al. 1992] giving conformal operators between densities, the general-
isation to the ambient form Laplacian proved appropriate in [Branson and Gover
2005] for the study of conformal operators on (weighted) differential forms. It
seems likely that others in the family will also have important roles, and so much
of the discussion in the next section allows for the possibility of any α ∈ R. Certain
key identities for 1 are unaffected by the addition of the R]] term. In particular,
since X A RABC D = 0 it follows that

(24) [1α, X] = [1, X] = 2∇.

Using this, or even more simply by noting that [R]], Q] = 0, we obtain

(25) [1α, Q] = [1, Q] = 2(n + 2∇X + 2).

A point of departure is [1α,∇]. Observe that if VBC ···E is any ambient tensor, then
by the Ricci-flatness of the ambient metric,

(26) [1,∇A]VBC ···E

= −2RA
P

B
Q
∇P VQC ···E − 2RA

P
C

Q
∇P VB Q···E − · · · − 2RA

P
E

Q
∇P VBC ···Q .

This equality holds modulo O(Qn/2−2) in even dimensions and to infinite order in
odd dimensions.

Using the results above and the Bianchi identities, it is straightforward to verify
that if we define the ambient homogeneous (of weight −2) tensor field

(27) W A1 A2 B1 B2 :=
3

n − 2
DA0 X A0 RA1 A2 B1 B2,

then in dimensions other than 4, we have W |Q = (n − 4)R|Q. Note that W is
well-defined in all dimensions and by construction is conformally invariant. Thus
the equivalent tractor field WABC E is conformally invariant and of weight −2. In
dimensions other than 4, it is immediate that this has Weyl tensor type symmetries.
(Recall that R|Q is trace-free.) In fact, it has these symmetries in all dimensions
and is a natural tractor field. In a choice of conformal scale, WABC E is given by

(28) (n − 4)
(
Z A

a Z B
b ZC

c Z E
eCabce − 2Z A

a Z B
b X[C Z E]

e Aeab

− 2X[A Z B]
b ZC

c Z E
e Abce

)
+ 4X[A Z B]

b X[C Z E]
e Beb,

where Aabc is the Cotton tensor,

(29) Aabc := 2∇[bPc]a,

and

(30) Bab := ∇
c Aacb + PdcCdacb.



THE OBSTRUCTION TENSOR AND DEFORMATION COMPLEX 327

Note that from (28) it follows that in dimension 4, Beb is conformally invariant.
This is the Bach tensor: from the contracted Bianchi identity, we have

(31) (n − 3)Aabc = ∇
dCdabc,

and so in dimension 4, (30) agrees with (1). In other dimensions n ≥ 3 we also
refer to Bab as defined in (30) as the Bach tensor. The tractor field W first appeared
in [Gover 1999, 2001]. The connection to the ambient curvature was derived in
[Čap and Gover 2003], where the above results are treated in detail.

4. Conformal Laplacians and the ambient obstruction

In this section we show how one can obtain the ambient obstruction tensor by
applying a conformally invariant operator �/ n/2−2 of the form 1n/2−2

+ lots to the
natural tractor field W defined above. For any integer m ≥ 1, we let

�/ m := �1/2
m ,

where �
1/2
m is the case α = 1/2 of the operator �α

m of Theorem 4.1. We prove
Theorem 4.1 in Section 4A. The inductive nature of this proof will show that one
can construct explicit tractor formulae for the operators �α

m in terms of X , D, W ,
h, and h−1. One may thus use Theorem 4.2 together with a choice of conformal
scale and the formula for W given in (28) to construct a tractor formula for Oab. It
is then easy to expand this tractor formula to a formula in terms of the Levi-Civita
connection and its curvature.

In what follows, the phrase “generic n-even case” refers to the case in which n
is even and M is conformally curved.

Theorem 4.1. For every integer m ≥ 1 and for every α ∈ R, there exists a confor-
mally invariant operator �α

m : T8
[m−n/2]→ T8

[−m−n/2] having leading term
1m . The operator �α

m is natural in the following cases: in odd dimensions and for
conformally flat M for all m ≥ 1; in the generic n-even case for 1 ≤ m ≤ n/2−2, if
α = 0 for 1 ≤ m ≤ n/2−1, if T8

[m −n/2] = T[m −n/2] for 1 ≤ m ≤ n/2−1, or
if T8

[m − n/2] = T0
[m − n/2] for 1 ≤ m ≤ n/2. In these cases there is a tractor

formula for �α
m given by a partial contraction polynomial in �, D, W , X , h, and

h−1, and this polynomial is linear in U. In the tractor formula for �α
mU , each free

index appears either on U or on a W -tractor.

We believe the operators �/ m will be important for many problems. For our
current purposes, we are primarily interested in them when n is even, m = n/2−2,
and the domain bundle is T2,2

[−2]. In particular, we have the following result,
which is an immediate consequence of Theorem 4.4.
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Theorem 4.2. Let M be a conformal manifold of dimension n even. Then

(32) �/ n/2−2WA1 A2 B1 B2 = K (n)X A1 Z A2
a X B1 Z B2

bOab.

Here K (n) is a known nonzero constant depending on n, and Oab ∈ E(ab)0[2−n] is
the Fefferman–Graham obstruction tensor. It is conformally invariant and natural.

We have K (4) = −8. In dimensions at least 6, the constant K (n) is given by
(n − 4)k(n), where k(n) is given in (38). Note that �/ n/2−2W ∈ T2,2

[2−n]. The
theorem states that its components vanish in all factors of the composition series
(11) for T2,2

[2−n], except for the (injecting) factor E1,1[−2] = E1,1
[2−n], and the

term here is the obstruction, up to scale.

Theorem 4.3. The obstruction tensor Oab vanishes on conformally Einstein mani-
folds.

Proof. A conformally Einstein manifold M admits a parallel standard tractor I (see
[Gover and Nurowski 2006]) such that σ := IA X A 6= 0 is an Einstein scale. It
follows immediately that I annihilates the tractor curvature �bc

D
E :

∇cID
= 0 H⇒ �bc

D
E IE

= [∇b,∇c]I
D

= 0.

Also since I is parallel, viewing it as a multiplication operator, it is clear that
[D, I] = 0. From (27) (see also [Čap and Gover 2003]) we have WA1 A2

D
E =

(3/(n − 2))D A0 X A0 Z A1
b Z A2

c�bc
D

E . Thus WBC DE IE
= 0.

By Theorem 4.1 there is a formula for �/ n/2−2WA1 A2 B1 B2 which is polynomial
in �, D, W , X , h, and h−1, and in this formula each of the indices A1, A2, B1,
and B2 appears on a W tractor. On the other hand, since I is parallel and of weight
0, it commutes with the operators in this expression for �/ n/2−2WA1 A2 B1 B2 . Thus

(33) IB1�/ n/2−2WA1 A2 B1 B2 = 0,

since IAWABC D = 0.
From [Gover and Nurowski 2006] we have IA

= (1/n) D Aσ . Thus from the
expression (16) for the tractor-D operator, we have the expression

[IA
]g = σY A

− (1/n) Jσ X A

for IA in terms of the (Einstein) metric g := σ−2 g. (Recall that if ∇ is the Levi-
Civita connection determined by g = σ−2 g, then tautologically ∇σ = 0.) In
particular, in this scale, we have IA Z A

a
= 0. Thus from Theorem 4.2 above,

4(K (n))−1 Z A2
a Z B2

bIA1IB1�/ n/2−2WA1 A2 B1 B2 = σ 2Oab.

But from (33), the left-hand side vanishes, and hence Oab = 0 on M . �
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Obtaining the obstruction tensor via a conformally invariant operator on a trac-
tor field as in Theorem 4.2 enables us to relate it to other conformally invariant
operators associated with the deformation complex, by ideas along the lines of the
curved translation principle of Eastwood [1996] and collaborators. This is the idea
behind Theorem 2.3, which we are now ready to prove. Related generalisations
of the curved translation principle have been explored in depth in the setting of
operators on differential forms [Branson and Gover 2005].

Proof of Theorem 2.3. We first construct B and prove (iii). Let W 2,2 denote
the quotient of T2,2

[−2] by the subbundle which is the kernel of the bundle map
T2,2

[−2] → T3
⊗ T3 given by

UA2 A3 B2 B3 7→ X A1 X B1UA2 A3 B2 B3 .

We write W2,2 for the subbundle of T2,2
[2−n] consisting of tractors which are

annihilated by any contraction with X , and write W2,2 and W2,2 for the section
spaces of W 2,2 and W2,2, respectively. Note that complete contractions between
elements of T2,2

[−2] and sections of T2,2
[2−n] take values in E[−n]. Hence there

is a conformally invariant pairing between T2,2
[−2] and T2,2

[2−n]. It is clear that
the contractions between elements of T2,2

[−2] and sections of T2,2
[2−n] induce

a well-defined bundle map

〈 · , · 〉 : W 2,2
⊗ W2,2 → E[−n],

and so there is also a conformally invariant pairing between W2,2 and W2,2.
Given a section UABC D ∈ T2,2

[−2], let [UABC D] be its image in the quotient
space W2,2. From the tractor composition series (6) (see also (10) and the discus-
sion there), it follows easily that the space W2,2 has a composition series

E1,1
[2]

�� E2,1
[2]

�� E2,2
[2]

and that the injection I : E2,2
[2] → W2,2 is given by

uabcd 7→ [Z A
a Z B

b ZC
c Z D

duabcd ].

The differential operator D : W2,2
→ T2,2

[−2] given by

[UA2 A3 B2 B3] 7→
9

n(n − 2)
Y2,2 D A1 DB1 X A1 X B1UA2 A3 B2 B3

is clearly well-defined and conformally invariant. Here Y2,2 is the bundle map
executing the projection of T2

[−1] ⊗ T2
[−1] onto the direct summand T2,2

[−2].
We write D∗ for the formal adjoint of D. This is a conformally invariant operator

D∗
: T2,2

[2−n] → W2,2.
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On the other hand, from Theorem 4.1 there is a conformally invariant Laplacian-
type operator �/ n/2−2 : T2,2

[−2] → T2,2
[2−n]. Thus we have the composition

D∗�/ n/2−2D : W2,2
→ W2,2.

The operator B in the theorem is (up to a constant multiple) simply the composition

(D∗�/ n/2−2DI =: B) : E2,2
[2] → W2,2.

By construction this is natural and conformally invariant.
Now in a conformal scale, (DI(u))BC E F is given explicitly by

(34) (n − 4)
(
(n − 3)Z B

b ZC
c Z E

e Z F
f ubce f − 2Z B

b ZC
c X[E Z F]

f
∇

eue f bc

− 2X[B ZC]
c Z E

e Z F
f
∇

bubce f
)

+ 4X[B ZC]
c X[E Z F]

f (∇(b
∇

e)ubce f + (n − 3)Pbeubce f ).

Thus from (28) and a minor calculation, D(I(C))ABC D = (n − 3)WABC D, where
C is the Weyl curvature. So by Theorem 4.2, we have

(�/ n/2−2DIC)A2 A3 B2 B3 = (n − 3)K (n)X A2 Z A3
a X B2 Z B3

bOab.

That is, �/ n/2−2DIC takes values in the factor E1,1[−2] in the composition series
for T2,2

[2−n]. (Note that this factor is a conformally invariant subspace.) Now the
formal adjoint of the tractor-D operator is again the tractor-D operator [Branson
and Gover 2001]. So

D∗X A2 Z A3
a X B2 Z B3

bOab =
9

n(n − 2)
X B1 X A1 DB1 DA1 X A2 Z A3

a X B2 Z B3
bOab.

But a short calculation using (9) and (16) shows that this operation just returns
4(n −4)(n −3)X A2 Z A3

a X B2 Z B3
bOab, and this proves part (iii) of the theorem. All

nonvanishing multiples can be absorbed into the definition of B.
We treat now part (i). We need to show that I∗B has order n−4 and is nontrivial.

Since by construction there is a universal natural expression for the operator L , it
is sufficient to establish this on the standard conformal sphere. Recall that �/ n/2−2

has leading term1n/2−2. Thus �/ n/2−2 is elliptic, since the sphere has Riemannian
signature. From (34) it is clear that DI :E2,2

[2]→T2,2
[−2] is a differential splitting

operator; there is a bundle homomorphism J : T2,2
[−2] → E2,2

[2] such that JDI
is the identity on E2,2

[2]. Thus on any manifold, R(DI : E2,2
[2] → T2,2

[−2]) is
infinite-dimensional, and it follows immediately that �/ n/2−2DI is nontrivial on
the standard conformal sphere. The action of �/ n/2−2DI on E2,2

[2] takes val-
ues in T2,2

[2−n]. The composition series for T2,2
[2−n] is given by (11) with

w = 2 − n. From this we see, for example, that there is a canonical projection
from T2,2

[2−n] to E1,1
[6−n] = E1,1[2] with which one can compose the operator
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�/ n/2−2DI : E2,2
[2] → T2,2

[2−n]. By construction, this is a conformally invariant
operator E2,2

[2] → E1,1[2]. On the other hand, from the classification of operators
on conformally flat structures discussed in Section 2, the only conformally invariant
operators on E2,2

[2] taking values in irreducible bundles are as follows: there is an
operator E2,2

[2] → E3,2
[2] and an operator E2,2

[2] → E2,2[−2]. From elementary
weight considerations, we know the latter has order n−4. Thus the composition de-
scribed must be trivial. Continuing in this fashion and using (8), one concludes that
�/ n/2−2DI takes values in the subspace W2,2 = E2,2[−2]

�� E2,1[−2]
�� E1,1[−2],

and the composition of �/ n/2−2DI with projection to E2,2[−2] is necessarily non-
trivial. This composition is thus up to scale the unique conformally invariant op-
erator between these bundles (on the conformal sphere). To finish, note that on
the one hand, I∗D∗ is the formal adjoint of a splitting operator for E2,2

[2] and
therefore acts as a multiple of the identity on the component E2,2[−2]. On the
other hand, I∗D∗ must annihilate the components E2,1[−2] and E1,1[−2], since
these have higher total order than the target bundle E2,2[−2] for the composition
and a natural differential operator cannot lower order.

Finally, we consider (ii). Let us first consider the case of a flat Riemannian
or pseudo-Riemannian structure. Thus all curvature will vanish, until we note
otherwise. If Fa1a2 is a 2-form, then 1n/2−2 D A0 X A0 Z A1

a1 Z A2
a2 Fa1a2 is well un-

derstood as a special case of [Branson and Gover 2005, Proposition 4.6]. The
nonzero components of this have values in a subbundle of T2

[2−n] with compo-
sition series E2 ⊕ E1. These components are (up to an overall nonzero constant
multiple ((δd)n/2−2 F, aδ(dδ)n/2−2 F), where d is the exterior derivative, δ its for-
mal adjoint, and a is a nonzero constant. Composing these components on the left
with (δd , (1/a) d) yields (δd + dδ)n/2−1 F = (−1)n/2−11n/2−1 F . Now on flat
structures we have the identity

(n − 2)
(
DI(u)

)
A1 A2 B1 B2

= 3D A0 X A0 Z A1
a1 Z A2

a2Ua1a2 B1 B2,

where u ∈ E2,2
[2] and Ua1a2 B1 B2 is the conformally invariant form-tractor given in

scale by letting w equal 2 in the formula

(35) Ua1a2 B1 B2 = (n +w− 5)Z B1
b1 Z B2

b2ua1a2b1b2 + 2X B1 Z B2
b2∇

b1ua1a2b2b1 .

Thus by viewing U as a 2-form with values in a tractor bundle and replacing ∇,
d , and δ with their tractor connection coupled variants in the argument above, we
conclude that there is an operator A such that

A1n/2−2DI(u)=
3

n − 2
A1n/2−2 D A0 X A0 Z A1

a1 Z A2
a2Ua1a2 B1 B2 =1n/2−1U.

We continue with similar considerations, except that now we view ua1 a2b1b2 as a
2-form on the b1b2 index pair that takes values in End(T M). If F now indicates a
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2-form of weight w′, we have

K(F) := (3/(n + 2w′
− 2)) D A0 X A0 Z A1

a1 Z A2
a2 Fa1a2

= (n +w′
− 4)Z A1

a1 Z A2
a2 Fa1a2 + 2X A1 Z A2

a2∇
a1 Fa2a1 .

So if w′
= 1 in particular, then the formula on the right-hand side agrees with

(35) with w = 2. In formally calculating 1n/2−1U a1 a2 B1 B2 using the identities
(9) and the Leibniz rule to obtain a formula polynomial in u, ∇, the metric g,
its inverse, and the projectors X , Y , and Z , we may ignore the a1 and a2. Their
contribution is buried in the meaning of the Levi-Civita connection ∇. Now for a
2-form F of weight 1, we have that on flat structures, 1n/2−1K(F) takes values
in E2[−1]

�� E1[−1] and has the form
(
((3−n)(δd)n/2−1

+ (dδ)n/2−1)F, ∗
)

up
to an overall nonzero multiple [Branson and Gover 2005]. Here ∗ indicates some
term, the details of which will not concern us. We note that the first entry gives
an elliptic operator on F ; we may act on this with the operator δd + (3 − n)dδ to
yield (3 − n)(−1)n/21n/2 F . Thus there is a linear differential operator A2 such
that A21

n/2−1U =1n/2u.
Combining these observations, we see that there is a linear differential operator

A3 such that A31
n/2−2DI(u) =1n/2u. Finally, one can easily verify directly that

D∗ is differentially invertible as a graded differential operator on the subspace W2,2.
(That is, its inverse is also a graded differential operator. The point is that in terms
of a splitting of W2,2 determined by a choice of conformal scale, a straightforward
calculation shows that D∗ takes (u, v, w) to (ku, `v+ δ · u,mw+ δ · v+ δ · δ · u),
where k, `, and m are nonzero integers, δ· indicates a divergence operator, and δ ·δ·
a double divergence operator.) Thus with B defined to be the necessary multiple of
A3(D

∗)−1, we have (ii) for flat structures. But now the result follows in general,
since moving to curved structures yields the same formal calculation, except that
at each stage the differential operators concerned may have additional lower order
terms involving curvature. It is easily checked that these terms can only yield terms
of order lower than n in the final calculation of BB. �

Proof of Proposition 2.2. We treat L first. We already have L = Bi∗Bi in dimension
6, and so we shall assume that n ≥ 8. Let us denote by

U : E2,2
[2] → E2

⊗ T2

the conformally invariant operator given by (35). We write d∇ for the tractor con-
nection coupled exterior derivative and δ∇ for its formal adjoint. Thus for example
for U ∈ E2

⊗ T2 we have (d∇U )a0a1a2 B1 B2 = 3∇a0Ua1a2 B1 B2 . It is straightforward
using (9) to verify that on conformally flat structures, the composition d∇U can
be reexpressed in the form MBi, where M : E3,2

[2] → E3
⊗ T is a conformally

invariant first-order differential splitting operator.
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There are conformally invariant formally self-adjoint operators Lk : Ek
→ Ek ,

0 ≤ k ≤ n, with leading term (δd)k . These are the “long operators” for the de
Rham complex given in [Branson and Gover 2005]. It is shown there that there are
natural linear differential operators Qk+1 such that Lk = δQk+1d .

Now suppose we are on a contractible (conformally flat) manifold. This suffices
for our present purposes. Then the tractor bundle is flat and trivial. It follows that
there are conformally invariant and formally self-adjoint tractor-coupled variants
of the Lk ,

L∇

k : Ek
⊗ T2

→ Ek ⊗ T2.

These are obtained by starting with the natural formulae for Lk = δQk+1d and
formally replacing each instance of d , δ, and the Levi-Civita connection with, re-
spectively, d∇ , δ∇ , and the Levi-Civita tractor-coupled connection. By construction
the result has a factorisation L∇

k = δ∇ Q∇

k+1d∇ for some differential operator Q∇

k+1.
Observe that by composition, we have a formally self-adjoint conformally in-

variant operator U∗L∇

2 U : E2,2
[2] → E2,2[−2], where U∗ is the formal adjoint of

U. We will reexpress this. By taking formal adjoints, we have U∗δ∇ = Bi∗M∗ from
d∇U = MBi. Thus we obtain an operator

Bi∗M∗Q∇

3 MBi : E2,2
[2] → E2,2[−2].

The result follows from the uniqueness of L, provided the displayed operator is
nontrivial. It is clearly sufficient to establish this for Riemannian signature struc-
tures and at a flat metric within the conformal class. We use the alternative ex-
pression U∗δ∇ Q∇

3 d∇U = Bi∗M∗Q∇

3 MBi. On flat structures, Q3 = (dδ)n/2−3,
and so Q∇

3 = (d∇δ∇)n/2−3. It follows that for u ∈ E2,2
[2] of compact support,

δ∇(d∇δ∇)n/2−3d∇U(u) vanishes if and only if d∇U(u) vanishes, since the tractor
connection is flat. (Suppose d∇U(u) 6= 0. Then there exists a parallel T ∈ T2 such
that T B1 B2(d∇U(u))a0a1a2 B1 B2 6= 0. In other words, if fa1a2 := T B1 B2U(u)a1a2 B1 B2 ,
then d f 6=0. But on the other hand, if 0=T B1 B2(δ∇(d∇δ∇)n/2−3d∇U(u))a0a1a2 B1 B2 ,
then (δd)n/2−2 f = 0 which implies d f = 0.) This is equivalent to MBi(u) van-
ishing. Since M is a differential splitting operator, this in turn is equivalent to
Bi(u)= 0. Thus the composition δ∇ Q∇

3 d∇U : E2,2
[2]→ E2⊗T2 is nontrivial. Now

it is easily verified that E2,2[−2] turns up with multiplicity 1 in the composition
series for E2 ⊗ T2. It follows by an exact analogue of the argument used on page
331 that δ∇ Q∇

3 d∇U only takes values in E2,2[−2] and composition factors of higher
total order. Thus on the range of this operator, U∗ acts as a nonzero multiple of
the projection to the component E2,2[−2]. (Recall that U∗ is the formal adjoint
of a differential splitting operator U : E2,2

[2] → E2
⊗ T2, and so it must act as a

nonzero multiple of the identity on the component E2,2[−2]. On the other hand, it
is differential, so it cannot lower total order.)
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Now we consider the situation for B. We require a conformally invariant dif-
ferential splitting operator 0 : E1,1

[2] → E1
⊗ T2 that will in this case play a role

analogous to U above. This is easily constructed explicitly and directly, and can be
obtained from a composition of the related operators in Section 5.1 of [Branson and
Gover 2002], so we omit the details. Since 0 has values in a weight zero adjoint
tractor-valued bundle of 1-forms it is clear that the composition d∇0 is conformally
invariant. This is easily verified nontrivial. On the other hand, in terms of a metric
g, the tractor curvature is given by

Z B1
b1 Z B2

b2Ca1a2b1b2 +
2

n − 3
X B1 Z B2

b2∇
b1Ca1a2b2b1 .

Thus the linearisation, at a conformally flat metric g0, of the tractor curvature
is (1/(n−3))UC. This is manifestly nontrivial, and so via arguments used sev-
eral times already concerning the uniqueness of irreducible conformally invariant
operators, it is straightforward to verify that this operator must agree with d∇0

(on conformally flat structures), at least up to scale. We set the scale of 0 so
that d∇0 = (1/(n−3))UC. On flat manifolds, Q2 = (dδ)n/2−2, and so by almost
the same argument as for L, we conclude that on conformally flat manifolds, the
formally self-adjoint conformally invariant operator C∗U∗Q∇

2 UC is nontrivial. �

The next theorem shows that for n even, if the ambient curvature is formally
Ricci-flat to O(Qn/2−1), then a tensor part of the coefficient of Qn/2−1 is a natural
conformal invariant of the underlying manifold and so is an obstruction to finding
an ambient metric which is Ricci-flat to higher order. For our purposes, the main
point is that this is achieved by Theorem 4.4(iii), which recovers this obstruction
via a tangential operator acting on the ambient curvature.

Theorem 4.4. For a conformal manifold M of even dimension n, let h be an
associated ambient metric satisfying Ric(h)= Qn/2−1 B. Then we have

(i) B|Q is equivalent to a tractor BAB ∈ E(AB)0[−n] such that X A BAB = 0.

(ii) The weighted tensor Z A
a Z B

b BAB =: Oab is a section of E(ab)0[2−n].

(iii) For n ≥ 6, we have

1/ n/2−2 RA1 A2 B1 B2 = k(n)X A1 X B1 B A2 B2 + O(Q),

where k(n) is the dimension dependent nonzero constant given above. In di-
mension 4,

3DA0 X A0 RA1 A2 B1 B2 = 16X A2 X B1 B A1 B2 + O(Q).

(iv) The tensor Oab is divergence-free.

(v) The weighted tensor Oab is a nontrivial natural conformal invariant of the
form 1n/2−2

∇
c
∇

dCcadb + lots = (n − 3)1n/2−2(1Pab − ∇a∇bJ)+ lots (up
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to a constant multiple), and so is an obstruction to finding an ambient metric
which is Ricci-flat modulo O(Qn/2).

Remarks. 1. The statement of the theorem up to the definition of Oab in (ii) is
a characterisation of the Fefferman–Graham obstruction tensor (Graham, private
communication; see also [Fefferman and Graham, in progress]). This gives a com-
plete obstruction to the ambient metric in the sense that if this vanishes, then the
ambient construction may be continued to all orders [Fefferman and Graham 1985].
Hence Oab is the usual obstruction tensor, as claimed in Theorem 4.2. Thus part
(iii), above, gives a new ambient formula for the Fefferman–Graham obstruction
tensor.

2. From (25) it follows easily that Oab may be equally viewed as an obstruction
to obtaining an ambient metric which is harmonic for 1/ in the sense that 1/ R
vanishes to all orders. See also the remark on page 325.

3. It should be pointed out that

(36) 1n/2−31/ RA1 A2 B1 B2 = k(n)X A1 X B1 B A2 B2 + O(Q)

is an alternative ambient formula for the obstruction, and we could replace the
1n/2−3 by 1n/2−3

α in this formula.

Proof of Theorems 4.2 and 4.4. As above, we write Ric for Ric(h). It is im-
mediate that B is symmetric and homogeneous of weight −n. Also from (5) it
follows that X A B AB = 0. So B|Q is equivalent to a tractor field BAB ∈ T(AB)[−n]

satisfying X A BAB = 0. From this last equality and (8), it is clear that Oab is
conformally invariant, while from the weight and symmetry of BAB , it follows that
Oab ∈ E(ab)[2−n]. For parts (i) and (ii), it remains to show that both BAB and Oab

are trace-free.
First we consider the case n 6= 4. Note that since ∇A Q = 2X A, we have

(37) ∇A1∇B1RicA2 B2 = (n − 2)(n − 4)Qn/2−3 X A1 X B1 B A2 B2 + O(Qn/2−2).

From (21) and (25) together with a short computation, it follows that

1/ n/2−2 RA1 A2 B1 B2 = k(n)X A1 X B1 B A2 B2 + O(Q),

as claimed in (iii), where

(38) k(n)= (n − 2)(n − 4)(−1)n/2−32n−4((n/2 − 3)!
)2
.

(Note that (21) and (25) also give the alternative formula in Remark 3, above.)
Since (n−4)R|Q is equivalent to the tractor field W , it follows from Proposition

4.8 that (n − 4)1/ n/2−2 R|Q descends to the natural tractor field �/ n/2−2W . On the
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other hand, using δB
A
= X AYB+Y A X B+Z A

a Z B
bδb

a and the fact that X A BAB =0,
we see that

(39) X A1 X B1 BA2 B2 = X A1 Z A2
a X B1 Z B2

bOab.

Therefore, X A1 X B1 B A2 B2 |Q is equivalent to the tractor field X A1 Z A2
a X B1 Z B2

bOab.
This establishes (32) of Theorem 4.2.

Since the left-hand side of (32) is natural, it follows that X A1 X B1 BA2 B2 is natu-
ral. Hence Oab = Z A2 a Z B2 b BA2 B2 = 4Y A1Y B1 Z A2 a Z B2 b X A1 X B1 BA2 B2 is likewise
natural, as claimed in (v) and Theorem 4.2.

Next we show that BAB and Oab are trace-free. According to Theorem 4.1, the
operators �/ m preserve tensor type. Since WA1 A2 B1 B2 is trace-free, it follows that
�/ n/2−2WA1 A2 B1 B2 is completely trace-free. Thus h A1 B2 X A1 X B1 BB2 A2 = 0, by (32)
and (39). Since BC D is symmetric and X A BAB = 0, it follows that h AB BAB = 0
as claimed. Now using (7) and again that X A BAB = 0, we see that gabOab = 0.

We must obtain the corresponding results in dimension 4. First observe that in
any dimension,

3DA0 X A0 RA1 A2 B1 B2 = (n − 2)
(
(n − 4)RA1 A2 B1 B2 + 2X A1∇

C RA2C B1 B2

)
+ O(Q),

by (15) and (18). From the contracted Bianchi identity, we have for n = 4,

3DA0 X A0 RA1 A2 B1 B2 = 8X A2∇B1RicA1 B2 + O(Q)= 16X A2 X B1 B A1 B2 + O(Q).

Relating W to the left-hand side via (27), we conclude that in dimension 4,

WA1 A2 B1 B2 = −8X A1 X B1 BA2 B2 .

Comparing this with (28), we have −2X A1 X B1 BA2 B2 = X A1 Z A2
a X B1 Z B2

b Bab.
Thus Oab is a scalar multiple of the Bach tensor, Oab = −

1
2 Bab, which is natural

and trace-free, by (1). Also, since W is trace-free and X A BAB = 0, it follows that
BAB is trace-free.

It is well known (and easily verified) that the Bach tensor in dimension 4 is
divergence-free. For (iv) we need the analogous result in other dimensions. First
note that a short calculation using the formula (16) for the tractor-D operator and
the identities (9) for the connection shows that

2D A1 X A1 Z A2
a X B1 Z B2

bOab = (n − 4)X A2 X B1 Z B2
b
∇

aOab.

So in dimensions other than 4, it follows that D A1 X A1 X B1 BA2 B2 and equivalently
(DA1 X A1 X B1 B A2 B2)|Q, vanish if and only if ∇

aOab = 0. On the ambient manifold,
by (36), DA1 X A1 X B1 B A2 B2 is

DA11n/2−31/ RA1 A2 B1 B2 + O(Q),
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up to a nonzero multiple, since D acts tangentially. We ignore terms O(Q) for
much of the remainder of this calculation. The preceding display expands to

(4 − n)∇A11n/2−31/ RA1 A2 B1 B2 − 1X A11n/2−31/ RA1 A2 B1 B2 .

From (5) and (24) we obtain

(40) (4 − n)[∇A1,1]1n/2−41/ RA1 A2 B1 B2

+ (6 − n)1[∇
A1,1]1n/2−51/ RA1 A2 B1 B2

+ · · · − 41n/2−4
[∇

A1,1]1/ RA1 A2 B1 B2

− 21n/2−3(
[∇

A1,1]RA1 A2 B1 B2 +
1
2∇

A1(R]]RA1 A2 B1 B2)
)
,

after some reorganisation. It remains only to observe that all the terms in this sum
are O(Q). First we note that from (21) and (37), it is clear that

1/ RA1 A2 B1 B2 = K Qn/2−3 X A1 X B1 B A2 B2 + O(Qn/2−2),

for some constant K . Thus by (25), each term 1k
[∇

A1,1]1`1/ RA1 A2 B1 B2, for
k + `= n/2 − 4, is some number times

(41) 1k
[∇

A1,1]Qn/2−3−`X A1 X B1 B A2 B2 + O(Q),

since [∇
A1,1] is a first-order operator. Now consider the identity obtained from

(26) by including the O(Qn/2−2) terms which were omitted. From this identity,
(5), and the fact that ∇Q = 2X , it follows that [[∇

A1,1], Q] = 0 identically on
the ambient manifold. Thus (41) is O(Q).

Now consider the last term in (40). By direct calculation, we have

[∇
A1,1]RA1 A2 B1 B2 = −

1
2∇

A1(R]]RA1 A2 B1 B2)+ O(Qn/2−2),

and so as required,

1n/2−3(
[∇

A1,1]RA1 A2 B1 B2 +
1
2∇

A1(R]]RA1 A2 B1 B2)
)
= O(Q).

Finally, we must show that in general Oab is nontrivial. Up to scale, Oab is
given by 4Y A1Y B1 Z A2 a Z B2 b�/ n/2−2WA1 A2 B1 B2 . From (28) and (31), it is clear that
4Y A1Y B1 Z A2 a Z B2 bWA1 A2 B1 B2 is at leading order a nonzero multiple of ∇

d
∇

cCcadb.
Using that �/ n/2−2 has leading term 1n/2−2 and (9) to verify that the commutator
of 1n/2−2 with 4Y A1Y B1 Z A2 a Z B2 b generates only lower order terms, we conclude
that Oab = `(n)1n/2−2

∇
d
∇

cCcadb + lots, where `(n) is a nonzero constant. Given
the form of the leading term, an elementary exercise shows that this natural tensor
cannot vanish in general. �
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4A. Conformal Laplacian operators on tractor fields. It remains to prove Theo-
rem 4.1. Our strategy is to first define the operators �α

m , which we do via powers
of the ambient Laplacian 1α in Proposition 4.8, and then rewrite each such power
as a combination of compositions of low order tangential operators, each of which
has an immediate interpretation as an operator on a tractor bundle. This leads to a
simple algorithm for rewriting any operator of this form in terms of basic tractor
operators using only the existence of an ambient metric. Two of the key tools
are Theorem 4.7, which explains how ambient derivatives of the ambient curvature
can be reexpressed in terms of low order tangential operators, and Proposition 4.10,
which describes harmonic extensions of tensor fields along Q.

Almost all of the subsequent discussion concerns the ambient manifold M̃ with
metric as discussed in Section 3. Occasionally we pause to interpret results on the
underlying conformal manifold M .

In the generic n-even case, some identities, such as (22) and (26), hold to only
finite order in Q. In many proofs, we will apply the operators ∇ and 1 to both sides
of an identity, and this will reduce the order to which the identity holds. Thus we
must keep track of the number of times that we apply ∇ and 1. In odd dimensions
and in the conformally flat case, this is unnecessary since the identities hold to
all orders. For simplicity, many of the proofs that follow explicitly treat only the
generic n-even case. The proofs in the other cases are essentially the same, except
that they do not require the operator counts. In addition, we have stated some of
the results themselves in the generic n-even case only. All results hold as stated.
Propositions 4.5 and 4.6, Theorem 4.7, and Lemma 4.11 also hold in general; they
hold to all orders in both the odd-dimensional case and the conformally flat case,
where the upper bounds stated in the hypotheses of the results no longer apply.

We will often use abbreviated notations. We may abbreviate (26) by writing
[1,∇]V =

∑
R∇V . It is easily verified that (26) generalises to

(42) [1α,∇]V =
∑

R∇V +α
∑
(∇R)V,

which also holds modulo O(Qn/2−2) in even dimensions and to infinite order in
odd dimensions. For example, let V be any symmetric ambient 2-tensor. In this
case (42) stands for

[1α,∇A]VBC = 2(α− 1)RA
P

B
Q
∇P VQC

+ 2(α− 1)RA
P

C
Q
∇P VB Q − 2α(∇A RB

P
C

Q)VP Q,

which holds to the appropriate order. If the V on the left-hand side of (42) has
any free indices, then in every term of the right-hand side of (42), each such index
either remains attached to V in its original position or moves onto an R. Some
of the proofs in Section 4 will use this fact, which follows immediately from (26)
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and the definition of R]]. The expressions we treat will often involve iterations of
operators. To indicate how many operators we are composing in such an iteration,
we will use exponents. For example, we might indicate ∇A∇B RC DE F by writing
∇

2 R. We will often use the symbol P to denote a partial contraction polynomial.
The same P may denote different polynomials in different parts of a discussion.

We often use the identities (13) and ∇Q = 2X without explicit mention.
The proof of Theorem 4.1 begins with the development of a useful ambient

calculus. This involves a sequence of results.

Proposition 4.5. Suppose that n is even and M is generic. Let an integer ` be
given, and suppose that 0 ≤ `≤ n/2 − 4. Then on the ambient manifold,

(43) 1∇
`R =

∑
(∇ p R)(∇q R)+ O(Qn/2−3−`),

where p+q = `. If the R on the left-hand side of (43) has any free indices, then for
every term in the summation, these indices appear on an R (as opposed to a ∇).

Proof. We use induction. The case ` = 0 follows from (22). Suppose next that
0 ≤ m ≤ n/2 − 5 and that the result holds for ` = m. From this assumption and
(26), we have

1∇
m+1 R = ∇1∇

m R +
∑

R(∇m+1 R)+ O(Qn/2−2)

= ∇

(∑
(∇ p R)(∇q R)+ O(Qn/2−3−m)

)
+

∑
R(∇m+1 R)+ O(Qn/2−2)

=
∑
(∇s R)(∇t R)+ O(Qn/2−3−(m+1)).

Here p + q = m and s + t = m + 1. The use of the inductive assumption and (26)
never moves a free index from an R onto a ∇. �

Proposition 4.6. Suppose that n is even and M is generic. Let an integer ` be
given, and suppose that 0 ≤ `≤ n/2 − 3. Then

1`R =
∑
(∇v1 R) · · · (∇v j R)+ O(Qn/2−2−`).

The number of factors in a term may vary from term to term, but in any case, vi ≤ `

for 1 ≤ i ≤ j . If A, B, C , and D denote the indices of the R on the left-hand side,
then for each term in the sum, these indices are on an R.

Proof. We again use induction. Suppose that 0 ≤ m ≤ n/2 − 4 and that the result
holds for `= m. Then

(44) 1m+1 R = 1
(∑

(∇v1 R) · · · (∇v j R)+ O(Qn/2−2−m)
)
.

By expanding the right-hand side above using the Leibniz rule and the formula
1 = ∇

A
∇A, we obtain an expression

∑
(∇u1 R) · · · (∇uk R) + O(Qn/2−2−(m+1))

plus a sum of the form
∑
(1∇

t0 R)(∇t1 R) · · · (∇ts R). In each case, ui ≤ m + 1
and ti ≤ m. But by Proposition 4.5, 1∇

t0 R =
∑
(∇ p R)(∇q R)+ O(Qn/2−3−t0),
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where p + q = t0 ≤ m. Thus 1∇
t0 R =

∑
(∇ p R)(∇q R)+ O(Qn/2−2−(m+1)). The

use of the inductive assumption and Proposition 4.5 never moves an index from an
R onto a ∇. �

Theorem 4.7. Suppose that n is even and M is generic. Let h be an ambient
metric for a conformal manifold of dimension n. Given t ≥ 0 and u ≥ 0, suppose
that t + u ≤ n/2 − 3. Then there is a partial contraction P, polynomial in DA,
RABC D , X A, hAB , and its inverse hAB , such that

(45) ∇
t1u R = P + O(Qn/2−2−t−u).

Each term of P is of degree at least 1 in RABC D . If , in (45), R has any free indices,
then in P these indices always appear on an R.

Proof. By Proposition 4.6, we may write

∇
t1u R =

∑
(∇v1 R) · · · (∇v j R)+ O(Qn/2−2−u−t),

where vi ≤ t + u for each i . If the R on the left-hand side has any free indices,
then for each term in the sum, these indices always appear on an R; this follows
from Proposition 4.6. To complete the proof, we show that if 0 ≤ `≤ n/2−3, then
∇
`R = P + O(Qn/2−2−`). We use induction. Suppose that 1 ≤ m ≤ n/2 − 3, and

suppose that ∇
`R = P + O(Qn/2−2−`) whenever 0 ≤ `≤ m − 1. By (14) we have

DA∇
m−1 R = (n − 2m − 4)∇A∇

m−1 R − X A1∇
m−1 R.

Note that n − 2m − 4 > 0. Also observe that each R has the same indices. From
this equation and Proposition 4.5, we conclude that

∇
m R = DA∇

m−1 R + X A
( ∑

(∇ p R)(∇q R)+ O(Qn/2−3−(m−1))
)
,

where p + q ≤ m − 1. Also note that if R on the left-hand side of this equation
has any free indices, then in each term of the right-hand side, these indices always
appear on an R. We now see that ∇

m R = P + O(Qn/2−2−m), from our inductive
assumption. �

Remark. Theorem 4.7 shows that when n 6= 4, an ambient partial contraction
∇

t1u R|Q is equivalent to a conformal invariant which is obtained by taking a
partial contraction polynomial in D, W , X , h, and its inverse h−1. Moreover in
each case, via the inductive steps of the proof, one obtains the explicit formula for
the invariant as a partial contraction of these quantities. More generally, this shows
that any “Weyl invariant” [Bailey et al. 1994b; Fefferman 1979] arising from a
complete (partial) contraction of ambient tensors of the form (45) is contained in the
space of invariants generated by complete (partial) contractions of the expressions
polynomial in the tractor operators and fields D, W , X , h, and h−1. Furthermore,
there is an explicit algorithm for finding the tractor formula, given the formula for
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the ambient invariant. This is a slight generalisation of a result along these lines
obtained in [Čap and Gover 2003].

The next proposition is a simple generalisation of results in [Branson and Gover
2005; Graham et al. 1992].

Proposition 4.8. For every integer m ≥ 1 and every ambient homogeneous tensor
space T 8(m − n/2),

1m
α : T 8(m − n/2)→ T 8(−m − n/2)

is tangential and so determines a conformally invariant operator

�α
m : T8

[m − n/2] → T8
[−m − n/2].

Proof. By construction, the operators 1α preserve tensor type (with respect to
pointwise SO(h) tensor decompositions) and lower homogeneity weight by 2.
Hence 1m

α maps T 8(m − n/2) to T 8(−m − n/2).
To show that 1m

α acts tangentially, we calculate 1m
α Q A for A of homogeneity

m − 2 − n/2. Without any homogeneity assumption, we have

[1m
α , Q] =

∑m−1
p=0 1m−1−p

α [1α, Q]1p
α .

Acting on T 8(w), the p-th term on the right acts as 2(2(w−2p)+n +2)1m−1
α by

(25). Hence [1m
α , Q] acts as 2m(2w−2m +n+4)1m−1

α . This vanishes identically
if w = m − 2 − n/2. Thus 1m

α is tangential on T 8(m − n/2) as desired. �

The remainder of this section is concerned with obtaining tractor formulae for
the operators in the previous theorem. A key idea is to assume that the ambient
tensor field being acted on is suitably “harmonic” as in the following lemma. Since
tangential operators do not depend on how the field is extended off Q, this involves
no loss of generality.

Lemma 4.9. Suppose k ≥ 2 is an integer. In the generic n-even case, suppose
k ≤ n/2 − 1 or that α = 0 and k ≤ n/2. Given S ∈ T 8(k − n/2), suppose 1αS is
O(Qk−1). Finally, let v, 0 ≤ v ≤ k − 1, be given. Then there is a linear differential
operator P of order at most 2v given by a partial contraction formula polynomial
in X A, DA, RABC D , hAB , and hAB , such that

(46) ∇
vS = PS + O(Qk−v).

If , on the left-hand side of (46), S has any free indices, then in every term of PS,
each of them appears either on S in its natural position or on R.

Proof. We will assume that n is even and M is generic. For v = 1, observe that by
(14) and (23) we have

2(k − 1)∇S = DS −αX R]]S + X1αS.
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This is in the required form, since 1αS = O(Qk−1).
We now proceed by induction on v. Suppose that 1 ≤ m < k − 1 and that (46)

holds for 1 ≤ v ≤ m. By (14) it follows that

(47) 2(k − m − 1)∇m+1S = D∇
m S −αX R]]∇m S + X1α∇

m S.

If S on the left-hand side has any free indices, then in every term of the right-
hand side, each of these indices appears on an S in its natural position or on an
R. From the inductive assumption and the properties of D, it then follows that
D∇

m S −αX R]]∇m S is of the form PS +O(Qk−(m+1)), where P is as described
in the statement of the lemma. On the other hand, by (42),

(48) 1α∇
m S = ∇

m1αS +
∑
(∇ p R)(∇q S)

+α
∑
(∇ p+1 R)(∇q−1S)+ O(Qn/2−2−(m−1)),

where p + q = m, p ≥ 0, and q ≥ 1. When we use (42) to construct (48), each
index attached to S on the left-hand side of (48) either remains fixed or moves onto
an R. Note that ∇

m1αS is O(Qk−(m+1)) and that n/2−2−(m −1)≥ k −(m +1).
Thus 1α∇

m S =
∑
(∇x R)(∇y S)+ O(Qk−(m+1)). Here x + y = m, x ≤ m, and

y ≤ m. If α = 0, then we have 1 ≤ y and x ≤ m − 1. By Theorem 4.7 and by our
inductive assumption, it follows that 1α∇

m S = PS +O(Qk−(m+1)), where P is as
in the statement of the lemma. �

The usefulness of Lemma 4.9 results from the next proposition, which gener-
alises to ambient tensors and 1α-Laplacians a result of [Graham et al. 1992].

Proposition 4.10. Let k ≥ 1 be an integer. Then for any T ∈ T 8(k −n/2), there is
an S ∈ T 8(k − n/2) such that T − S is O(Q) and 1αS is O(Qk−1).

Proof. Let w := k − n/2. Suppose that Sm−1 ∈ T 8(w) is such that T − Sm−1 is
O(Q) and 1αSm−1 = Qm−1 E . (Then E ∈ T 8(w− 2m).) If A ∈ T 8(w− 2m),
then Sm := Sm−1 + Qm A ∈ T 8(w) and T − Sm is O(Q). We have 1αSm =

Qm−1 E + 1αQm A. Now 1αQm A =
∑m−1

i=0 Qi
[1α, Q]Qm−i−1 A + O(Qm), and

from (25) and the homogeneity of A and Q this becomes

1αQm A =
∑m−1

i=0 2(n + 2w− 4i − 2)Qm−1 A + O(Qm)

= 4m(w+ n/2 − m)Qm−1 A + O(Qm).

Thus if m 6=w+n/2 (i.e. m 6= k), then setting A = −[4m(w+n/2−m)]−1 E gives
1αSm = O(Qm). �

Note that the proof establishes much more than we require in the proposition. It
shows that the 1α-harmonic extension of T |Q only fails at O(Qk), and that past
this the extension continues. Also, if we allow w such that w+ n/2 /∈ {1, 2, . . . },
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then for any T ∈ T 8(w) and any integer `≥ 0, there is S ∈ T 8(w) such that T −S
is O(Q) and 1αS is O(Q`).

Remark. Recall that one of our central aims (at least for n ≥ 6) is to understand
the result of applying 1/ n/2−2 to the ambient curvature R. For this it would appear
that we do not need Proposition 4.10, since by (22), the ambient curvature already
has the property we require of S, namely, that 11/2 R = 1/ R = O(Qn/2−3). On
the other hand, we prefer here to treat 1/ n/2−2 R in two steps. First, we derive a
tractor formula for the conformally invariant operator �/ n/2−2 on T2,2

[−2]. For
this we will use Proposition 4.10. This operator arises from 1/ n/2−2 on T 2,2(−2).
Then finally we may apply the operator �/ n/2−2 to the tractor field W ; see (28).
Proceeding in this way, we can be sure that the tractor formula that we obtain for
the ambient quantity 1/ n/2−2 R|Q is precisely the tractor formula for �/ n/2−2 on
T2,2

[−2] applied to W .

Next, we need to understand how powers of the 1α-Laplacian are related to
iterations of D. We begin with a lemma which indicates the impact of moving
Laplacians to the right of ∇’s.

Lemma 4.11. Suppose that n is even and M is generic. Let α ∈ R, w ∈ R, and
T ∈ T 8(w) be given. Let

(49) S = 1t1
α∇

u1 · · · 1
tp
α ∇

u p T,

where ti + ui ≥ 1 for each i . Suppose that k :=
∑p

i=1(ti + ui )≤ n/2 − 1. Then

(50) S =
∑
(∇v11w1

α R) · · · (∇vq 1
wq
α R)(∇vq+11

wq+1
α T )+ O(Qn/2−k),

where v j +w j ≤ k for each j . If T has any free indices in (49), then in (50) these
indices appear either on T in their original position or on an R.

Proof. We proceed by induction on k. Suppose that 1 ≤ m ≤ n/2 − 2. Suppose
the result holds whenever 1 ≤ k ≤ m, and let S be as in (49) with k = m + 1. If
t1 =0, then by our inductive assumption we see immediately that (50) holds modulo
O(Qn/2−(m+1)). On the other hand, suppose t1 > 0. Then by our inductive as-
sumption, S = 1α

(∑
(∇v11w1

α R) · · · (∇vq 1
wq
α R)(∇vq+11

wq+1
α T )+ O(Qn/2−m)

)
,

where v j + w j ≤ m for each j . Suppose we use the Leibniz rule to expand
1(∇v11w1

α R) · · · (∇vq 1
wq
α R)(∇vq+11

wq+1
α T ). Then each term in the resulting sum

will either contain two factors of the form ∇
v j +11

w j
α P or one factor of the form

1∇
v j 1

w j
α P , where P denotes R or T in each case. But 1∇

v j 1
w j
α P equals

1α∇
v j 1

w j
α P − αR]]∇v j 1

w j
α P , and by (42) we may write 1α∇

v j 1
w j
α P in the

form ∇
v j 1

w j +1
α P +

∑
(∇v′

` R)∇v′′

`1
w j
α P + O(Qn/2−(m+1)). Here v′

` + v′′

` = v j .
When we use (42), any given index attached to P either remains fixed or moves
onto an R. This completes the induction. �
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Lemma 4.12. Suppose ` is an integer and ` ≥ 1. In the generic n-even case,
suppose also that `≤ n/2 − 1. Let T ∈ T 8(`− n/2) be given. Then

(51) 1`−1
α DT = −X1`

αT +
∑
(∇v11w1 R) · · · (∇vp1wp R)(∇vp+11

wp+1
α T )

+αX
∑
(∇r11s1 R) · · · (∇rq 1sq R)(∇rq+11

sq+1
α T )+ O(Q).

Here vi +wi ≤ `−1 for 1 ≤ i ≤ p+1, and ri +si ≤ `−1 for 1 ≤ i ≤ q +1. If α= 0,
then vi +wi ≤ `−2 for 1 ≤ i ≤ p, and vp+1 +wp+1 ≤ `−1. If T on the left-hand
side has any free indices, then on the right-hand side these indices always appear
on R or in their natural positions on T .

Proof. Suppose that n is even and M is generic. If ` = 1, the result follows from
(14). Now suppose that `≥ 2. From (14) and (24) we have

1`−1
α DAT = 2(`− 1)1`−1

α ∇AT − 1`−1
α X A1αT +α1`−1

α X A R]]T
= 2(`− 1)1`−1

α ∇AT − [1`−1
α , X A]1αT − X A1`−1

α 1αT

+α[1`−1
α , X A]R]]T +αX A1`−1

α R]]T

= −X A1`
αT + 2(`−1)1`−1

α ∇AT −
∑`−2

i=0 1`−2−i
α [1α, X A]1i

α1αT

+α
(∑`−2

i=0 1`−2−i
α [1α,X A]1i

α

)
R]]T +αX A1`−1

α R]]T

= −X A1`
αT + 2(`− 1)1`−1

α ∇AT − 2
∑`−2

i=0 1`−2−i
α ∇A1i

α1αT

+ 2α
(∑`−2

i=0 1`−2−i
α ∇A1i

α

)
R]]T +αX A1`−1

α R]]T .

Each of the original indices on T remains fixed in this calculation except in the
terms of R]]T , where it may either remain in its original position on T or move
onto an R. By (42), we may reexpress this in the form

(52) 1`−1
α DT = −X1`

αT +
∑

1
s j
α R∇1

t j
α T +α

∑
1

s j
α (∇R)1t j

α T

+α1`−2
α ∇R]]T +α

∑
1pi
α R∇1qi

α R]]T

+α
∑

1pi
α (∇R)1qi

α R]]T +αX1`−1
α R]]T + O(Q),

where s j + t j = `− 2 for each j and pi + qi = `− 3 for each i . When we use
(42) to construct (52), each index on T or R either remains fixed or moves onto
an R. In the right-hand side of (52) the coefficient of X1`

αT is exact. Otherwise,
no attempt has been made to present the coefficients precisely. At this point we
need only the general form of the expression. Where α appears as a coefficient,
this means as usual that all terms of this form have coefficient a multiple of α.

For ambient tensors U and V ,

1αU V = (1U )V + (∇U )∇V + U1αV + RU V .

Thus by using the definition of 1α together with the Leibniz rule, we may reexpress
the right-hand side of (52) in the form given on the right-hand side of (51), except
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that on each R or T , the operators ∇, 1, and 1α may not be in the order given
in (51). But by Lemma 4.11, we may indeed reexpress the right-hand side of (52)
in the form given on the right-hand side of (51). In doing this, we may move an
index that was originally attached to an R or a T , but we always move the index
onto an R. In the new expression, we have vi +wi ≤ `− 1 for 1 ≤ i ≤ p + 1 and
ri + si ≤ `−1 for 1 ≤ i ≤ q +1; this follows from Lemma 4.11. In the α = 0 case,
the fact that vi +wi ≤ `−2 for 1 ≤ i ≤ p follows from the fact that (52) simplifies
to 1`−1 DT = −X1`T +

∑
1s j R∇1t j T + O(Q) when α = 0. �

We are now ready to show that the powers of the 1α-Laplacian can be reex-
pressed as a sum of compositions of tangential operators.

Proposition 4.13. Suppose k ≥1 is an integer. Letw= k−n/2, and let V ∈T 8(w)

be given. In the generic n-even case, suppose that k ≤ n/2 − 2, or α = 0 and
k ≤ n/2 − 1, or T 8(w) = T (w) and k ≤ n/2 − 1, or T 8(w) = T 0(w) and
k ≤ n/2. Then

(−1)k−1 X A1 · · · X Ak−11
k
αV = 1DA1 · · · DAk−1 V + PV + O(Q),

where P is a linear differential operator of order less than 2k given as a partial
contraction polynomial in X A, DA, RABC D , hAB , and hAB . If V has any free
indices, then for every term of PV , these indices appear either on R or in their
natural position on V . The indices Ai are not skew-symmetrised.

Proof. The case of V ∈ T 0(w) is treated in [Gover and Peterson 2003]. For the
remaining cases, we assume, as usual, that we are in the generic n-even setting.

We begin with the case k ≤ n/2−2 and the case α = 0 and k ≤ n/2−1; we use
induction on k. Suppose that 1 ≤ m ≤ n/2 − 3 or that α = 0 and 1 ≤ m ≤ n/2 − 2,
and suppose the result holds whenever k = m. Let V ∈ T 8(m + 1 − n/2). By
Proposition 4.10, there exists an S ∈ T 8(m + 1 − n/2) such that V − S is O(Q)
and 1αS is O(Qm). Then by our inductive assumption,

(53) (−1)m−1 X A1 · · ·X Am−11
m
α (DAm S)=1DA1 · · ·DAm−1(DAm S)+PS+O(Q),

where P is of order less than 2m. If S on the left-hand side of (53) has any free
indices, then in each term of PS, these indices appear either on R or in their natural
position on S. Now apply Lemma 4.12 with `= m + 1 and T = S. We find that

(54) 1m
α DAm S = −X Am 1m+1

α S + O(Q)

+
∑
(∇v11w1 R) · · · (∇vp1wp R)(∇vp+11

wp+1
α S)

+αX
∑
(∇r11t1 R) · · · (∇rq 1tq R)(∇rq+11

tq+1
α S).

Here vi +wi ≤ m for 1 ≤ i ≤ p + 1, and ri + ti ≤ m for 1 ≤ i ≤ q + 1. If α = 0,
then vi +wi ≤ m −1 for 1 ≤ i ≤ p and vp+1 +wp+1 ≤ m. If, on the left-hand side
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of (54), S has any free indices, then on the right-hand side of this equation these
indices appear on R or in their natural positions on S. Since 1αS is O(Qm), we
may assume that wp+1 = tq+1 = 0 in (54). Thus by Theorem 4.7 and Lemma 4.9,
we have

(55) 1m
α DAm S = −X Am 1m+1

α S + PS + O(Q).

Since vp+1 ≤ m and rq+1 ≤ m in (54), it follows that the order of P is at most 2m
in (55). If S in (55) has free indices, then in PS these appear either on R or in
their natural positions on S. From (53) and (55) it now follows that

(56) (−1)m X A1 · · · X Am 1m+1
α S = 1DA1 · · · DAm S + PS + O(Q).

But DA acts tangentially along Q, and 1 acts tangentially on fields homogeneous
of degree 1−n/2. Thus 1DA1 · · · DAm +P acts tangentially on S. By Proposition
4.8, 1m+1

α also acts tangentially on S, and so we may replace S with V on both
sides of (56). This completes the induction.

Finally, suppose that T 8(w) = T (w). By the Ricci-flatness of the ambient
metric, it follows that R]]V is O(Qn/2−1). Thus for 1 ≤ k ≤ n/2 − 1 we see that
1k
αV = 1k V + O(Q), and the result follows from the case α = 0. �

We are now ready to prove Theorem 4.1 and at the same time describe tractor
formulae for the operators �α

m . We begin with the tractor formulae.

Theorem 4.14. Via the algorithm implicit in the inductive steps above, the op-
erators �α

m have tractor formulae (for m in the ranges given in Theorem 4.1) as
follows:

(57) (−1)m−1 X A1 · · · X Am−1�
α
mU = �DA1 · · · DAm−1U + P8,m

A1···Am−1
U,

where the differential operator P8,m is a partial contraction polynomial in X , D,
W , h, and h−1. Thus for m 6= n/2,

(58) (m − 1)!
(∏m

i=2(n − 2i)
)
�α

mU

= D Am−1 · · · D A1�DA1 · · · DAm−1U + D Am−1 · · · D A1P8,m
A1···Am−1

U.

The indices attached to U on the left-hand side appear, in each term of P8,mU ,
on U in their original position or on W . The indices Ai in (57) and (58) are not
skew-symmetrised.

Proof of theorems 4.1 and 4.14. Recall that 1 : T 8(1 − n/2) → T 8(−1 − n/2)
descends to the generalised conformal Laplacian operator � and D descends to D;
see (17). Thus (57) is an immediate consequence of Proposition 4.13. From this
the claims of naturality are immediate from the naturality of X , �, D, W , h, and
h−1. That the �α

m have leading term 1m follows easily from the expression (16)
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for D and the identities (9) for the tractor connection. Then note that (58) follows
from (57) and (19). �

4B. Calculating explicit formulae; examples. One can easily compute explicit
formulae for the obstruction tensors in low dimensions. From the proof of theo-
rems 4.2 and 4.4, we know that in dimension 4, Oab is simply −(1/2) Bab, where
Bab is the Bach tensor as given in (1).

In dimension 6, we have m = 1, and the relevant ambient operator from Propo-
sition 4.8 is 1/ : T 2,2(−2)→ T 2,2(−4), which descends to

(59) � +
1
4 W]]=: �/ 1 : T2,2

[−2] → T2,2
[−4].

The left-hand side of (59) is the tractor formula for �/ 1. By Theorem 4.2, applying
this to W yields the obstruction tensor via the identity (32); see (28). That is,
26 X A1 Z A2

a X B1 Z B2
bO6

ab =�W +
1
4 W]]W , where we have used the fact that k(6)=

26. Thus

64Oce X[B ZC]
c Z[E

e X D]

= �WBC DE − W A
C B

F WF ADE − W A
C D

F WB AF E − W A
C E

F WB ADF .

But 4Y BY D ZC
a Z E

b X[B BC][E X D] = Oab. Thus, in any conformal scale, Oab is
given by

(60) 1
16 Y BY D ZC

a Z E
b

× (�WBC DE − W A
C B

F WF ADE − W A
C D

F WB AF E − W A
C E

F WB ADF ).

If one expands using (9), (28) and the definitions of � and the tractor metric, it is an
entirely mechanical process to rewrite (60) in terms of the Levi-Civita connection
and its curvature (with metric contractions). A computation using this process
together with Mathematica and J. Lee’s Ricci software package [Lee 1998] shows
that

(61) O6
ab =

1
161Bab −

1
4 JBab +

1
8 BcdCa

c
b

d
−

1
2 Pcd∇

c A(ab)
d

+
1
4 Acad Ac

b
d
−

1
2 Acad Ad

b
c
−

1
4 A(ab)c∇

cJ +
1
4 PcdPd

eCa
c

b
e,

where A and B are respectively the Cotton and Bach tensors as given in (29) and
(30). This formula for O6

ab agrees up to a constant factor with the formula given in
[Graham and Hirachi 2005].

In dimension 8, we find that Oab = (1/384)T(ab), where Tab is as given on the
next page. To see that O8

ab =T(ab), up to a constant factor, we begin by constructing
a tractor formula for �/ 2 on T2,2

[−2]. Let T ∈ T 8(−2) be an extension of any
element of T2,2

[−2]. By Proposition 4.10 we may assume that 1/ T = O(Q). Thus
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−Bab|c
c

d
d
+ 10Bab|c

cJ − 28Bab|cdPcd
+ 24Bac|bdPcd

− 4Bcd |e
eCa

c
b

d
− 24Bac|dPb

c
|
d
− 24Bcd |aPb

c
|
d
+ 56Bac|dPb

d
|
c

− 6Bab|cJ|
c
+ 12Bac|bJ|

c
+ 24Bcd |aPcd

|b − 32Bac|dPcd
|b

− 4Bcd |eCa
c

b
d
|
e
+ 4BabJ|c

c
− 16BcdPcd

|ab − 40BcdPab|
cd

+ 56BcdPa
c
|b

d
− 8Bac Bb

c
+ 3Bcd Bcd gab − 24BabJ2

− 64BacPbdPcd

+ 76BabPcdPcd
+ 28Bcd gabPc

ePd e
+ 16BcdJCa

c
b

d
+ 32BcdPaeCb

cd e

− 24BcdPc
eCa

d
b

e
+ 4BcdCae

c
i Cb

ed i
− 8BcdCae

c
i Cb

i d e
− 8AacbJ|d

d c

− 32Aacb|d ePcd
|
e
− 16Aacd |e Ab

cd
|
e
+ 16Acd a |e Acd

b|
e
− 32Aacb|dJ|

cd

+ 32Acad |ePb
ePcd

− 64Aabc|dPcdJ − 128Aacd |ePb
dPce

− 128Acad |ePb
dPce

− 608Aacb|dPc
ePd e

− 32Acad |bPc
ePd e

+ 32Aacd |ePe
i Cb

cd i

+ 32Acad |ePe
i Cb

cd i
+ 32Aacd |ePd

i Cb
cei

+ 32Acad |ePd
i Cb

cei

− 64Aabc|dPei Cced i
+ 32PcdPei Ca

c
b

e
|
d i

+ 32PcdJ|eCa
c

b
e
|
d

+ 32Acd ePd
i Ca

c
b

e
|
i
+ 32Acd ePd

i Ca
c

b
i
|
e
+ 64AacdPei Cb

cd e
|
i

+ 64AcadPei Cb
cd e

|
i
+ 8J|cJ|dCa

c
b

d
− 16Pcd |ePc

i |
eCa

d
b

i

+ 32AcadJ|eCb
cd e

− 32AcadJ|eCb
ecd

− 16Acd e Acd
i Ca

i
b

e

+ 32Acd e Ad c
i Ca

i
b

e
− 32Aacd Ae

d
i Cb

eci
− 32Acad Ad

ei Cb
eci

− 32Acad Aei
cCb

i d e
+ 64Acad Aebi Ccd ei

− 32Acad Aebi Cced i
− 64AacdPb

dJ|
c

− 64AcadPb
dJ|

c
− 32AabcJJ|

c
− 16Acd aPcdJ|b − 224AacbPc

dJ|
d

− 96Acad Ae
cdPb

e
− 192Acad Acd

ePb
e
− 224AacbPd ePcd

|
e

− 96Aabc Ad
c

ePd e
− 320Acad Aeb

dPce
+ 736Acad Ad

bePce

− 96AacdPb
d
|ePce

− 96AcadPb
d
|ePce

− 192Acad Ac
bePd e

+ 16PcdPc
eCai

d
j Cb

i e j
− 32PcdPc

eCai
d

j Cb
j ei

− 32PcdPei Ca j b
cCd ei j

+ 4gabPcdPei Cc
j
e

kCd i j k
− 4gabPcdPei Cce

j kCd j i k
− 32PcdPei Pei Ca

c
b

d

+ 32PcdPc
eJCa

d
b

e
− 224PcdPei PceCa

d
b

i
+ 150gabPcdPei Pe

j Cci d j

+ 150gabPcdPei Pc
j Cd ei j

− 32PacPd ePc
i Cb

d ei
− 64PacPd ePd

i Cb
eci

A tensor Tab such that O8
ab =

1
384 T(ab). Here Bab|cd := ∇d∇c Bab, etc.

by (14), (22), and (24), we first obtain

1/ DATBC DE = −X A1/ 2TBC DE + 2[1,∇A]TBC DE + R]]∇ATBC DE

−
1
4 X A(R]]R)]]TBC DE + X A(∇|I | R)]]∇|I |TBC DE + O(Q).

Here the | · | indicates that the enclosed index is not involved in the hash action,
and (R]]R)]]TBC DE denotes the double hash of R]]R with TBC DE . From this
equation together with (5), (14), (22), and (26), it follows that
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1/ DATBC DE = −X A1/ 2TBC DE − 2RA
P

B
Q DP TQC DE − 2RA

P
C

Q DP TB Q DE

− 2RA
P

D
Q DP TBC QE − 2RA

P
E

Q DP TBC DQ

+
1
2 R]]DATBC DE −

1
4 R]]X A R]]TBC DE

−
1
4 X A(R]]R)]]TBC DE +

1
4 X A(D|I | R)]]D|I |TBC DE

−
1
8 X A X I (R]]R)]]D|I |TBC DE

−
1
8 X A X I (D|I | R)]]R]]TBC DE + O(Q).

Since the dimension is 8, it follows from (14) that X A DAV = −4V + O(Q) for
all V ∈ T 8(−2). Thus from the definition of 1/ we see that

X A1/ 2TBC DE = −1DATBC DE − 2RA
P

B
Q DP TQC DE − 2RA

P
C

Q DP TB Q DE

− 2RA
P

D
Q DP TBC QE − 2RA

P
E

Q DP TBC DQ

−
1
4 R]]X A R]]TBC DE +

1
4 X A(R]]R)]]TBC DE

+
1
4 X A(D|I | R)]]D|I |TBC DE +

1
2 X A R]]R]]TBC DE

+ O(Q).

We restrict this to Q and then attach Y A. The result is that for any T ∈ T2,2
[−2],

(62) �/ 2TBC DE = −Y A�DATBC DE −
1
2 Y AWA

P
B

Q DP TQC DE

−
1
2 Y AWA

P
C

Q DP TB Q DE −
1
2 Y AWA

P
D

Q DP TBC QE

−
1
2 Y AWA

P
E

Q DP TBC DQ −
1
64 Y AW]]X AW]]TBC DE

+
1

64(W]]W )]]TBC DE +
1
16(D|I |W )]]D|I |TBC DE

+
1

32 W]]W]]TBC DE .

We use this to construct a tractor formula for O8
ab. From Theorem 4.2 we have

(63) O8
ce = −

1
384 Y B ZC

cY D Z E
e �/ 2WBC DE .

A short computation shows that W]]W]]WBC DE = (W]]W )]]WBC DE . Thus
from (62) and (63) we have

(64) O8
ab =

1
24576 Y B ZC

aY D Z E
b

(
64Y A�DAWBC DE

+ 32Y AWA
P

B
Q DP WQC DE + 32Y AWA

P
C

Q DP WB Q DE

+ 32Y AWA
P

D
Q DP WBC QE + 32Y AWA

P
E

Q DP WBC DQ

+ Y AW]]X AW]]WBC DE − 3W]]W]]WBC DE

− 4(D|I |W )]]D|I |WBC DE

)
.

By using the same techniques as in our derivation of (61), we see that O8
ab = T(ab).
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