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Abstract

A new kind of ambiguity function (AF) associated with the linearcanonical transform (LCT) is proposed in this article,
this new AF is defined based on the LCT and the classical AF. Firstly, the main properties and physical meanings of the
newly defined AF are investigated, the results show that this kind of AF can be seen as one generalization of the
classical AF. Then, the newly defined AF is applied to detect the parameters of the linear frequency modulated signals
by combining with the classical Radon transform. The simulations are performed to verify the correctness of the
derived results, and the comparison of the derived results with the common time-frequency analysis tools are also
discussed.
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Introduction
Non-stationary signal processing and analysis is one of the
most hottest research topics in signal processing commu-
nity. A series of novel signal processing theories have been
proposed to analyze the non-stationary signals, such as
the short-time Fourier transform (STFT) [1], the wavelet
transform (WT) [2] and the fractional Fourier transform
(FRFT) [3,4]. As the generalization of the classical Fourier
transform (FT), the FRFT has attracted more and more
attention because of its inherent peculiarity, it is shown
that the FRFT can be seen as a unified time-frequency
transform [4]. The idea of the fractional Fourier opera-
tor is discussed in 1980 by Namias in quantummechanics
[5] and rediscovered in 1987 [6] in applied mathemat-
ics community. It was introduced into signal processing
community by Almeida [7] and Santhanam and McClel-
lan [8]. The discrete and digital computational methods
of the FRFT proposed in [9,10] open the door of its
applications in real practical situations. As further gen-
eralization of the FRFT, the linear canonical transform
(LCT) is shown to play an important role in optics and
signal processing, many concepts associated with the FT
have been generalized to the LCT domain. For example,
the sampling theories [11,12], the eigenfunctions [13], the
convolution theorem [14,15], and the spectral analysis of
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uniform or nonuniform samples [16], are well studied in
the LCT domain. The efficient discrete and digital compu-
tation algorithm of the LCT is introduced in [17,18]. More
results associated with the LCT can be referred to [3,4].
At the same time, the linear frequency-modulated

(LFM) signal, a typical non-stationary signal, is widely
used in communications, radar and sonar system. The
LFM signal processing is so important that many algo-
rithms and methods have been proposed. The ambiguity
function (AF) associated with the FT is one of the most
important time-frequency tools in LFM signal process-
ing [19,20]. Besides, there are also proposed many other
important and useful methods associated with the LFM
signal parameter estimation and spectral analysis, such
as the minimum mean square error (MMSE) estima-
tion [21], the iterative algorithm [22], the generalized FT
associate with the de Branges theory [23], the AF asso-
ciated with the FRFT [24], the Wigner–Hough transform
(WHT) [25], the Chirp FT [26], the Wiger–Ville distri-
bution (WVD) [27] and the Radon-ambiguity transform
(RAT) [28].
Following the classical definition of AF, Pei and Ding

[29] firstly investigate the AF associated with the LCT, and
obtains some important properties. Recently, Zhao et al.
[30] investigates the properties and physical meaning of
the AF associated with the LCT in optical signal process-
ing community. Unlike the definition of AF in [29,30], this
article proposes a new kind of definition for AF associated
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with the LCT, the main properties and the application of
the newly definedAF in the LFM signal processing are also
discussed.
The article is organized as follows: In Section “Pre-

liminary”, we first review the related theory of the LCT,
the classical AF, and the previous research outputs. In
Section “Ambiguity function associated with the LCT”, a
new definition of AF associated with the LCT is proposed,
and its main properties and physical meanings are intro-
duced. The applications of the newly defined AF in the
LFM signal processing is investigated in detail in Section
“The applications of the AFL”. Section “Discussions” dis-
cusses the comparison of the newly defined AF with
the other common time-frequency tools, such as RWT,
RAT, etc. Simulation results are given to show rationality
and effectiveness of the proposed techniques in Section
“Simulations”. Section “Conclusion” is the conclusion.

Preliminary
The LCT
The LCT of a signal f (t) can be defined as [3,4]

F(a,b,c,d)(u) = L(a,b,c,d) [ f (t)] (u)

=

⎧⎪⎨
⎪⎩

√
1

j2πb e
j d2b u

2 ∞∫
−∞

e
j a2b t

2−j utb f (t)dt (b �= 0)
√
dej

cd
2 u2 f (du) (b = 0)

(1)

where a, b, c, d are the real numbers and satisfying ad−bc
= 1.
It is easy to verify that the classical FT, the FRFT, the

chirp operation and the scaling operation are all special
cases of the LCT as shown in the following.
When (a, b, c, d) = (0, 1,−1, 0), the LCT becomes the

FT:

L(0,1,−1,0) [ f (t)] (u) = √−jFT[ f (t)] (u) (2)

When (a, b, c, d) = (cos θ , sin θ ,− sin θ , cos θ), the LCT
becomes the FRFT:

L(cos θ ,sin θ ,− sin θ ,cos θ) [ f (t)] (u) =
√
e−jαFα[ f (t)] (u) (3)

When (a, b, c, d) = (1, 0, τ , 1), the LCT becomes the chirp
operation:

L(1,0,τ ,1) [ f (t)] (u) = e
j
2 τu2 f (u) (4)

When (a, b, c, d) = (σ , 0, 0, σ−1), the LCT becomes the
scaling operation:

L(σ ,0,0,σ−1) [ f (t)] (u) =
√

σ−1f (σ−1u) (5)

Many useful properties about the LCT [3,4] show that
the LCT is one of the most important non-stationary sig-
nal processing tools, the following additivity property and

reversibility property associated with the LCTwill be used
this article.
(1) The additivity property

L(a2,b2,c2,d2) [ L(a1,b1,c1,d1) (f (t))] (u) = L(a3,b3,c3,d3) [ f (t)] (u) (6)

where(
a3 b3
c3 d3

)
=

(
a2 b2
c2 d2

) (
a1 b1
c1 d1

)

(2) The reversibility property

L(d,−b,−c,a) [ L(a,b,c,d) [ f (t)] (u)] (t) = f (t) (7)

Because the LCT can be looked as the generalization of
the classical Fourier and fractional FT, so it can extends
their utilities and applications and solves some problems
that beyond those operations [31]. Without loss of gener-
ality, we only consider the case of b �= 0 in this article,
since the LCT is just a scaling transform operation when
b = 0. For more properties and the relations with the other
transforms about the LCT, one can refer to [3,4].
With the rapid developments of the modern signal pro-

cessing technology, the classical concepts and theories
in the FT domain have been studied extensively in the
LCT domain, for example, the uniform and nonuniform
sampling theories [32-34], the convolution and product
theorems [14,15], the uncertainty principles [35-37] have
been well studied and investigated in the LCT domain.

Ambiguity function (AF)
The instantaneous autocorrelation function of a signal
f (t) is defined as:

Rf (t, τ) = f
(
t + τ

2

)
f ∗ (

t − τ

2

)
(8)

and the classical AF associated with the FT of f (t) is
defined as FT of Rf (t, τ) for t:

AFf (τ ,u) =
∞∫

−∞
Rf (t, τ)e−jutdt (9)

or it can be equivalently defined in the FT domain as:

AFf (τ ,u) =
∞∫

−∞
F

(
p + u

2

)
F∗ (

p − u
2

)
ejpτdp (10)

where F(p) is FT of the signal f(t).
The properties of the classical AF can be listed in the

following

AF(τ ,u) = AF∗(−τ ,−u) (11)

AF(0, 0) =
∞∫

−∞
|f (t)|2dt (12)
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1
2π

∞∫
−∞

∞∫
−∞

AFx(τ ,u)AFz(τ ,u)dτdu = | < x, z > |2 (13)

The AF is one of the classical and important time-
frequency signal processing tools. It is shown in [28] that
the AF of a LFM signal passes through the origin of ambi-
guity plane (τ ,u), and the slope of the projection line is the
frequency rate of the signal. All of these properties of the
AF can help us to obtain good results in the LFM signal
processing and the parameter estimation.

Prior research outputs
Based on the properties of the LCT and the definition
of the AF associated with the FT, Pei and Ding [29] and
Zhao et al. [30] proposed two different definitions of AF
associated with the LCT in the following.
Definition 1 : Suppose the LCT of a signal f (t) with

parameter (a, b, c, d) is F(a,b,c,d)(u), then the AF associated
with the LCT is defined as [29]

AFF(a,b,c,d)(τ ,u) =
∞∫

−∞
F(a,b,c,d)

(
v + τ

2

)
F∗

(a,b,c,d)

×
(
v − τ

2

)
e−juvdv

(14)

It is shown in [29] that this kind of definition of AF has
the following properties

AFF(a,b,c,d)(τ ,u) = AF(dτ − bu,−cτ + au) (15)
AFF(a,b,c,d)(aτ + bu, cτ + du) = AF(τ ,u) (16)

where AF(τ ,u) and AFF(τ ,u) represent the AF of f (t) and
F(a,b,c,d)(v), respectively.
Definition 2 : Suppose the LCT of a signal f (t) with

parameter (a, b, c, d) is F(a,b,c,d)(v), then the linear canoni-
cal AF (LCAF) is defined as [30]

AFM(τ ,u) =
∞∫

−∞
F(a,b,c,d)

(
v + τ

2

)
F∗

(a,b,c,d)

×
(
v − τ

2

)
ejuvdv

(17)

It is shown in [30] that this kind of definition of AF has
the following properties

AFM(τ ,u) = AF(bτ + du,−aτ − cu) (18)

AFM(−u, τ) = AF(dτ − bu,−cτ + au) (19)
The other properties and physical meanings of those

kinds of AF associated with the LCT, are also investigated
in detail in [29,30].
It is easy to see that the generalized AF defined by

Equations (14) and (17) are the FT of the instantaneous
autocorrelation function of LCT signal. They are actually
the linear coordinate transformation of traditional AF in

the FT domain. Unlike the definitions in [29,30], we define
a new kind of AF associated with the LCT in this article,
and the applications of the newly definedAF in LFM signal
processing are also investigated in the following sections.

AF associated with the LCT
The new definition of AF associated with the LCT
From the mathematical view point, many transforms in
signal processing community can be seen as the product
of a signal with a kernel function. They can be also clas-
sified into two kind of definitions: (1) the product of the
local form of a signal with a kernel function, such as STFT,
WVD, etc; (2) the product of the signal and a local kernel
function, such as WT, Gabor transform, etc.
It is easy to see that the generalized AF in [29,30] is

based on the local transform of original signal. The LCT
of original signal is firstly obtained, and then applied the
traditional AF definition, which can be considered as the
first kind of definition. Unlike their definitions, we pro-
pose a new definition of the AF associated with the LCT
following the second kind of definition.
Definition 3: The AF of a signal f (t) associated with the

LCT with parameter A = (a, b, c, d) is defined as

AFL[ f (t)] (τ ,u) = AF(a,b,c,d)(τ ,u)

=
∞∫

−∞
Rf (t, τ)KA(t,u)dt

(20)

where KA(t,u) =
√

1
j2πb e

j d2b u
2
e
j a2b t

2−j utb and Rf (t, τ) =
f (t + τ

2 )f ∗(t − τ
2 ).

From the definition and the physical meaning of the
LCT [3,4], this kind of AF can be interpreted as the affine
transform of the instantaneous autocorrelation function
Rf (t, τ) in the (τ ,u) plane. In order to make it different
from the existing definition associated with the LCT, we
denote the AF of a signal f(t) defined by Equation (20) with
AF(a,b,c,d)(τ ,u), and simplified as AFL, in the following
sections.

The properties of newly defined AFL
If the AFL of a signal f (t) is denotes as AF(a,b,c,d)(τ ,u),
then it is easy to show that the AFL has the following
properties.

Conjugation property
The AFL of f ∗(t) is [AF(a,−b,−c,d)(τ ,u)]∗, the AFL of
f (−t) is [AF(a,−b,−c,d)(τ ,−u)]∗; and the AFL of f ∗(−t) is
AF(a,b,c,d)(τ ,−u).

Shifting property

The AFL of f (t − p) is e−j ac2 p2+jcpuAF(a,b,c,d)(τ ,u − pa),
the AFL of f (t)ejwt is ejwτAF(a,b,c,d)(τ ,u), and the AFL of
f (t)ejwt2 is e−j2dw2τ 2b+j2duwτAF(a,b,c,d)(τ ,u − 2wτb).
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Limited support
If f (t)=0, t /∈[ t1, t2], then AF(a,b,c,d)(τ ,u)=0, τ > t2 − t1.

Anti-derivative property
The signal f(t) can be expressed by the AFL of f(t) by the
following formula:

f (t) = 1
f ∗(0)

∞∫
−∞

AF(a,b,c,d)(t,u)KA−1

(
t
2
,u

)
du.

Special cases
when (a, b, c, d) = (0, 1,−1, 0), the AFL becomes the clas-
sical AF [19],

AF(0,1,−1,0)(τ ,u) = √−jAF(τ ,u),

and when (a, b, c, d) = (cos θ , sin θ ,− sin θ , cos θ), the
AFL becomes the AF associated with the FRFT (AFα(τ ,u)),

AF(cos θ ,sin θ ,− sin θ ,cos θ)(τ ,u) =
√
e−jαAFα(τ ,u).

Energy in time-domain∫ ∞
−∞ |f (t)|2dt = √

j2πAF(0,1,−1,0)(0, 0).

Symmetry
|AF(a,b,c,d)(−τ ,−u)| = |AF(−a,b,c,−d)(τ ,u)|.
Sensitivity for LFM signal

The AFL of a LFM signal f (t) = ej(w0t+m0t2) is

AF(a,b,c,d)(τ ,u)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ej

(
d
2b u

2+w0τ
)√

2π |b|
j δ(u − m0τb)

( a
2b = 0

)

e
j
(

d
2b u

2+w0τ− (m0τ−u/b)2
2a/b

)√
1
a

( a
2b �= 0

) (21)

where w0,m0 represent the initial frequency and frequency rate
of f(t), respectively.

Proof. From the definition of the AFL, we obtain

AF(a,b,c,d)(τ ,u) =
√

1
j2πb

ej
d
2b u

2
∞∫

−∞
e
j a2b t

2−j utb Rf (t, τ)dt

=
√

1
j2πb

ej
d
2b u

2
∞∫

−∞
e
j a2b t

2−j utb ej(a1τ+2a2τ t)dt

=
√

1
j2πb

ej
(

d
2b u

2+a1τ
)∞∫

−∞
e
j a2b t

2

ej
(
2a2τ− u

b
)
tdt

a
2b

= 0,=
√

1
j2πb

ej
(

d
2b u

2+a1τ
)∞∫

−∞
ej

(
2a2τ− u

b
)
tdt

=
√
2πb
j

ej
(

d
2b u

2+a1τ
)
δ(u − 2a2τ)

a
2b

�= 0, =
√

1
j2πb

ej
(

d
2b u

2+a1τ
) ∞∫
−∞

ej
a
2b t

2
ej

(
2a2τ− u

b
)
tdt

=
√

1
j2πb

ej
(

d
2b u

2+a1τ
) ∞∫
−∞

e
j a2b

(
t2+ 2a2τ−u/b

a/2b

)
dt

=
√

1
j2πb

ej
(

d
2b u

2+w0τ
)
e−j a

2b
(m0τ−u/b)2

a2/b2

×
∞∫

−∞
e
j a2b

(
t+ m0τ−u/b

a/b

)2
dt

=
√
1
a
ej

(
d
2b u+a1τ

)
e−j a

2b
(2a2τ−u/b)2

a2/b2

We can see from Equation (21) that the AFL of f (t) will pro-
duces one impulse in (τ ,u) plane when the parameters meet
the special condition. There will be also one crest because
of energy accumulation when the signal is finite. The AFL
of the LFM signal will pass through the origin of ambiguity
plane (τ ,u), and the slope of projection line is b times of the
frequency rate.

The relationship between the AFL and STFT
Suppose the STFT of signal f (t) is defined as

STFTw(t,u) =
∞∫

−∞
f (p)w∗(p − t)e−jupdp.

Then the following Lemma 1 reflects the relationship between
the AFL and the STFT of a signal f (t).

Lemma 1. The AFL of a signal f (t) with parameter (a, b, c, d)

can be seen as the STFT of signal f (t) with w(t) = f (t)e
j a2b t

2
.

AF(a,b,c,d)(τ ,u) =
√

1
j2πb

ej[
d
2b u

2− a
2b

3τ2
4 + uτ

2b ]STFTw

×
(

τ ,
2u − aτ

2b

) (22)

Proof.

AF(a,b,c,d)(τ ,u) =
√

1
j2πb

ej
d
2b u

2
∞∫

−∞
f
(
t + τ

2

)
f ∗

×
(
t − τ

2

)
e
j a2b t

2−j utb dt

=
√

1
j2πb

ej
d
2b u

2
∞∫

−∞
f (p)f ∗

× (p − τ)e
j a2b (p−τ+τ/2)2−j u(p−τ/2)

b dp

=
√

1
j2πb

ej[
d
2b u

2− a
2b

3τ2
4 + uτ

2b ]
∞∫

−∞
f (p)f ∗

× (p − τ)e
j a2b (p−τ)2

ej
( a
2b pτ− up

b
)
dp
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=
√

1
j2πb

ej[
d
2b u

2− a
2b

3τ2
4 + uτ

2b ]
∞∫

−∞
f (p)f ∗

× (p − τ)e
j a2b (p−τ)2

e−j
( u
b − aτ

2b
)
pdp

=
√

1
j2πb

ej[
d
2b u

2− a
2b

3τ2
4 + uτ

2b ]STFTw

×
(

τ ,
2u − aτ

2b

)

The applications of the AFL
In order to show the effective of the newly defined AFL in
the LFM signal detection, we will apply the AFL to the LFM
signal analysis and parameter detection in this section. Follow-
ing with the classical LFM signal detection methods [26-28],
the detector proposed in this article is obtained by combining
the newly defined AFL with Radon transform (RT), in order
to make this method different from the traditional methods, it
is denoted as “the AFL combined with RT”, and simplified as
RAFL.

The detector
The RT, which is commonly used for the reconstruction of
images in computer tomography, is defined as

Rs,ϕ(f (x, y)) =
∞∫

−∞

∞∫
−∞

f (x, y)δ(x sinϕ + y cosϕ − s)dxdy

for −∞ < s < ∞, −π/2 < ϕ < π/2, where the delta function
specifies the direction of integration, s is the distance between
the origin and a line in the x-y plane, ϕ is the angle between the
line and the x axis.
From the analysis of the AFL of a LFM signal, we know that

the direction of interest passes through the origin of the ambi-
guity plane, if we set the parameter of the RT with s = 0 to the
phase-free AFL of Equation (20), then the detection of signal
can be reduced from the 2-D search problem to a 1-D search
problem. As is known from Equation (21), the slope value of
AFL is b times of chirp rate of LFM signal, it is therefore essen-
tially to compute the line integral along a straight line with
its direction specified by the delta function δ(u − bmτ) in the
ambiguity plane in order to realize energy accumulation.
In [27], the author uses the squared-modulus of the AF as the

function to which applies the RT to be the detector. Along with
this idea, we use the squared-modulus of the AFL as the func-
tion to which applies the RT to be the detector in our article.
Following the discussion above, the detector associated with
the newly defined AFL is defined in the following form:

η(m) =
∞∫

−∞

∞∫
−∞

|AF(a,b,c,d)(τ ,u)|2δ(u − bmτ)dτdu

=
∞∫

−∞
|AF(a,b,c,d)(τ , bmτ)|2dτ

(23)

The detector η(m) can be used to realize the energy accumula-
tion, from Equation (21)

a
2b

= 0, η(m) =
∞∫

−∞

∞∫
−∞

∣∣∣∣∣
√
2πb
j

ej(
d
2b u

2+w0τ)δ(u − m0τ)

∣∣∣∣∣
2

δ

× (u − bmτ)dτdu

= |2πb|
∞∫

−∞

∣∣∣ej( bd2 m2τ 2+w0τ)δ(bmτ − bm0τ)

∣∣∣2dτ

(24)

a
2b

�= 0, η(m) =
∞∫

−∞

∞∫
−∞

∣∣∣∣∣
√
1
a
ej(

d
2b u

2+w0τ)e−j a
2b

(m0τ−u/b)2

a2/b2

∣∣∣∣∣
2

δ

× (u − bmτ)dτdu

=
∣∣∣∣1a

∣∣∣∣
∞∫

−∞

∣∣∣∣ej( bcm+m0
2a bmej

b
2a (m−m0)m0+w0τ

∣∣∣∣
2
dτ

(25)

FromEquations (24) and (25), we can see that η(m) → ∞when
m → m0. Therefore, the signal can be detected by calculating
η(m) and comparing it with the threshold.

Detection of LFM signal
One component LFM
Suppose the signal f(t) is modeled as following and has unit
energy with time duration T :

f (t) = 1√
T
ej

(
w0t+m0

2 t2
) (

|t| <
T
2

)

We can obtain the modulus of AFL of f (t) by the definition of
AFL

|AF(a,b,c,d)(τ ,u)|=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin[(u/b−m0τ)T/2]
(u/b−m0τ)T/2

√
1

2πb (a = 0)

∣∣∣∣∣
√

1
2πb

T/2∫
−T/2

ej
a
2b t

2+j(m0τ−u/b)tdt

∣∣∣∣∣ (a �= 0)
(26)

When a = 0, we can obtain the analytic solution of detector
η(m),

η(m) = 1
T

∞∫
−∞

∞∫
−∞

|AF(a,b,c,d)(τ ,u)|2δ(u − bmτ)dτdu

= 2
T3

∫ ∣∣∣∣∣ sin[ (m − m0)τT/2]
(m − m0)τ/2

√
j

2πb

∣∣∣∣∣
2

dτ (27)

The coefficient in front of the integral in Equation (27) is
added for normalization purposes. When m = m0, Equation
(27) yields

η(m0) = 2
T

T∫
0

1
2πb

dτ = 1
πb

(28)



Che et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:138 Page 6 of 14
http://asp.eurasipjournals.com/content/2012/1/138

For m > m0, let (m − m0)/2 = p, so that Equation (27) is
expressed as

η(2p + m0) = 1
2πb

2
T3

T∫
0

sin2[ pτT]
(pτ)2

dτ

= 1
2πb

⎧⎪⎪⎨
⎪⎪⎩

2
pT2

pT2
2∫

0

sin2(x)
x2

dx

+ 2
T3

T∫
T/2

sin2(pτT)

(pτ)2
dτ

⎫⎪⎪⎬
⎪⎪⎭

(29)

It shown in [38] that the following identities hold,∫ sin2(x)
x2

dx = si(2x) − sin2(x)
x

(30)

where

si(x) =
x∫

0

sin(t)
t

dt.

Substitute Equation (30) into Equation (29) and use the follow-
ing inequality

T∫
T/2

sin2(pτT)

(pτ)2
dτ <

1
p2

T∫
T/2

1
τ 2

dτ = 1
p2T

the Equation (29) can be rewritten

η(2p+m0)<
1

2πb

{
2

pT2

[
si(pT2)− 2

pT2 sin2
(
pT2

2

)
+ 1
pT2

]}
.

By letting 2p + m0 = m, we obtain

η(m) <
2

πb(m − m0)T2

[
si

(
(m − m0)T2

2

)
+ 2

(m − m0)T2 cos

×
(

(m − m0)T2

2

)]
(31)

Thus, the detector η(m) of one component signal has been
derived, and Equation (31) gives the upper bound of the detec-
tor for m ≥ m0, and the η(m + m0) can be estimated by
η(m) = η(2m0−m) form < m0. However, when a �= 0, we can
no longer expect an analytic solution to η(m), the numerical
method has to be used.
Based on these results, we can detect the LFM signal by

calculating the detector η(m). The proposed detector yields
maxima over chirp rates of the LFM signal. When T is finite,
η(m) has one crest, otherwise η(m) becomes delta function as
discussed before.

Multicomponent LFM
The bicomponent signal is modeled as

f (t) =
{ 1√

T
ej(w0t+m0

2 t2) + 1√
T
ej(w1t+m1

2 t2) (|t| < T
2 )

0 (|t| > T
2 )

with the assumption that w0 = w1 andm0 > m1 for simplicity
purpose. The AFL of f (t) can be derived as

AF(a,b,c,d)(τ ,u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin[(m0τ−u/b)T/2]
(m0τ−u/b)T/2

√
j

2πb + sin[(m1τ−u/b)T/2]
(m1τ−u/b)T/2

×
√

j
2πb + 2

T

√
j

2πb

√
π

m0−m1
(|τ | ≤ T)

{[C(X0)+ C(X1)] cos(amτ 2)

+[ S(X0) + S(X1)] sin(amτ 2)} (a = 0)

0 (|τ | > T)

(32)

where C(x) =
x∫
0
cos( π t2

2 )dt and S(x) =
x∫
0
sin( π t2

2 )dt are Fres-

nel integrals, and other parameters, such as X0, X1 are the same
as in [28].
The first two terms in Equation (32) represent the auto terms

of the signal, whereas the rest is the cross term. When a �= 0,
we can not get the analytic solution to AFL. Similar with the
situation in [28], we can no longer expect an analytic solution
of η(m) because the equation of AFL is rather complex, for
example, including the C(X0), C(X1), S(X0), S(X1). In the sim-
ulation section, we will give the performance of detector by the
numerical method to verify the detection of LFM signal.

Detection of quadratic FM (QFM) signal
Non-linear FM signal is applied widely in nature and human
applications. For example, cubic and quadratic FM signal are
applied to locate echoes in the bat’s sonar system. Since non-
linear FM signals are used in various subjects, it is essential to
investigate them by the newly defined AFL.
The QFM signal is defined as f (t) = Aej(a1t+a1t2+a3t3), and

the AFL of f (t) is obtained as

AF(a,b,c,d)(τ ,u)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2π |b|

j A2ej(
d
2b u

2+a1τ+ a3
4 τ 3)δ(u − 2a2τb)

×(3a3τ + a
2b = 0)

√
1

6a3bτ+aA
2ej(

d
2b u

2+a1τ+ a3
4 τ 3)−j (2a2τ−u/b)2

2(6a3τ+a/b)

×(3a3τ + a
2b �= 0)

(33)

Proof.

AF(a,b,c,d)(τ ,u) =
√

1
j2πb

A2ej
d
2b u

2
∞∫

−∞
ej[a1τ+ a3τ3

4 +2a2τ t+3a3τ t2]

× ej
a
2b t

2−j utb dt =
√

1
j2πb

A2ej
d
2b u

2

×
∞∫

−∞
ej

(
3a3τ+ a

2b
)
t2+j

(
2a2τ− u

b
)
t+j

(
a1τ+a3 τ3

4

)
dt



Che et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:138 Page 7 of 14
http://asp.eurasipjournals.com/content/2012/1/138

3a3τ + a
2b

= 0,AF(a,b,c,d)(τ ,u) =
√

1
j2πb

A2ej
d
2b u

2

×
∞∫

−∞
ej

[(
2a2τ− u

b
)
τ+

(
a1τ+a3 τ3

4

)]
dt

=
√

1
j2πb

A2ej
d
2b u

2+j
(
a1τ+a3 τ3

4

) ∞∫
−∞

ej
[(
2a2τ− u

b
)
τdt

=
√
2πb
j

A2ej(
d
2b u

2+a1τ+a3 τ3
4 )δ(u − 2a2bτ)

3a3τ + a
2b

�=0,AF(a,b,c,d)(τ ,u)=
√

1
j2πb

A2ej
(
d
2b u

2+a1τ+a3 τ3
4

)

×
∞∫

−∞
e
j
(
3a3τ+ a

2b
)(

t2+ (2a2τ−u/b)
3a3τ+ a

2b

)
dt

=
√

1
j2πb

A2e
j
(

d
2b u

2+a1τ+a3 τ3
4

)
−j (2a2τ−u/b)2

2(6a3τ+ a
b )

×
∞∫

−∞
e
j
(
3a3τ+ a

2b
)(

t+ (2a2τ−u/b)
3a3τ+ a

2b

)2

dt

=
√

1
a + 6a3τb

A2e
j
(

d
2b u

2+a1τ+a3 τ3
4

)
−j (2a2τ−u/b)2

2(6a3τ+ a
b )

From Equation (33), when we choose the special parameters
satisfying 3a3τ + a

2b = 0, the AFL of QFM signal can generate
one impulse in (τ ,u) plane. Similar with the discussion of the
η(m) for multicomponent LFM signal, we can not obtain the
analytic solution for this situation.
In fact, the cubic phase parameter can be seen as the infor-

mation that we want to obtain, and the other phase parameter
can been as the noise in detection of signal. It is concluded from
the Equation (33) that the AFL has the time-frequency focus,
therefore the cubic phase information of the QFM signal can
be detected by this way. We will apply the numerical methods
in the simulation sections about the detector of this kind of
signal.

Discussions
It is shown in previous section that the AFL can be used to the
detection of the LFM signals, and the AFL combined with RT
(RAFL) is shown to be effective in LFM signal detection in pre-
vious sections. In this section, we will compare the RAFL with
other common time-frequency methods, including the RAT,
the Radon-WVD transform (RWT), the WVD-Hough trans-
form (WHT). Firstly, we show that the RAT and RWT can
be seen as equivalent, then we compare the RAFL with RAT,
WHT, FRFT in the following part.

The RAT and Radon-WVD transform (RWT)
The WVD of a LFM signal f (t) = ej(w0t+mt2/2) is given by

WVD(t,w) = δ(w − w0 − mt) (34)

It can be seen from Equation (34) that the WVD of one
component LFM signal is an impulse spectrum along straight
line w = w0 − mt. In other words, WVD has the satisfying
time-frequency focus. However, the WVD of multicompo-
nent LFM signal will produces cross terms, which will blurs
time-frequency plane, especially in low SNR environment. The
Radon-WVD (RWT) is the integration of the WVD over all
possible lines in the time-frequency plane, which can trans-
form the signal detection problem to the 2-D search problem.
The AF of f (t) in the classical FT sense is given by

AF(τ ,u) = ejw0τ δ(u − mτ) (35)

The AF also passes through the origin of the ambiguity plane
and satisfies the time-frequency focus property. The line inte-
gral of the RT is performed over all lines passing through
the origin of the ambiguity plane to yield the RAT. The RAT
reduces from the 2-D search problem to the 1-D search prob-
lem [28]. It is obviously that the AF and WVD of a signal is the
2-D FT pair, and AF can be obtained by applying 2-D FT to
WVD.
Based on discussions above, the RWT and RAT are equiva-

lent in the LFM signal detection.

The RAFL and RAT
The AF and AFL of a signal f (t) are

AF(τ ,u) =
∞∫

−∞
f
(
t + τ

2

)
f ∗ (

t − τ

2

)
e−jutdt (36)

AF(a,b,c,d)(τ ,u) =
∞∫

−∞
f
(
t + τ

2

)
f ∗ (

t − τ

2

)
KA(t,u)dt

(37)

From Equations (36) and (37), the classical AF can be consid-
ered as the special case of AFL. The AFL has three additional
freedoms, i.e., the parameters characterizing the LCT, which
makes AFL more attractive for signal processing. In the AFL
plane, we can separate the signal terms from cross term by
adapting the parameters, the cross term suppression can also
be achieved effectively with the AFL, which can be seen from
the simulations.
In this sense, the RAFL can be looked as one generalization

of the RAT, and we have more freedom by using the RAFL than
the RAT in the non stationary signal detection and parameter
estimation.

The RAFL and theWVD-Hough transform (WHT)
The Hough transform was proposed to fetch straight line at
first, but was generalized to any graph later. The WVD com-
bined with HT has been applied to the detection and parameter
estimation of chirp signal, including multicomponent signals,
in spite of the cross term produced by the WVD. The WHT
can be interpreted as a line integral of the WVD in [17]:
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WHT(f , g) =
∞∫

−∞

−∞∫
−∞

WVD(t, v)δ(v − f − gt)dtdv

=
∞∫

−∞
WVD(t, f + gt)dt (38)

or equivalently, the WHT of a signal can be seen as the FT of
its AF.

WHT(f , g) =
∞∫

−∞
AF(τ , gτ)e−j2π f τdτ (39)

In fact, it is easy to find that the WHT is equivalent to the
RWT and RAT, so the RAFL can be seen as one generalization
of the WHT. The WHT of a signal will generates peaks in the
final domain, whose coordinates are the phase parameters f0
and g0. In the plane (f , g), if one peak exceeds the threshold, the
presence of a chirp is decided. The WHT is a good tool for the
signal detection, even in the environment embedded in noise.
TheWVD combined with HT provides a bridge between the

signal and image processing. However, compared with AFL, the
WHT requires a large computation.

The FRFT
The FRFT is actually a unified time-frequency transform.With
the order from 0 increasing to 1, the FRFT can reveal the
characteristic of the signal gradually changing from the time
domain to the frequency domain. Unlike usual quadratic time-
frequency distributions, it reveals the time-frequency char-
acteristics with a single variable, and does not suffer from
cross-terms. Compared with the traditional FT, the FRFT does
better in non-stationary signals processing especially in the
chirp-like signals processing. Moreover, one extra degree of
freedom (the order) may sometimes help to obtain better per-
formance than the usual time-frequency distributions or the
FT. And its developed fast algorithms lead to little computation
load for good performance.
The FRFT of signal f(t) is:

Fα[ f (t)]= Ff (α,u) =
∞∫

−∞
Kα(t,u)f (t)dt (40)

with

Kα(t,u) =
√
1 − cotα

2π
ej(u

2/2 cotα−ut cscα+t2/2 cotα) (α �= 0)

As is known to us, there will be the maxima in the 2-D Ff (α,u),
whose coordinate (α,u) corresponds to the initial frequency
and chirp rate. {

m = − cotα
w0 = u/ sinα

(41)

The RWT can be computed by dechirping:

RWT(u,α) =
∣∣∣∣∣∣

1
|sinα|

∞∫
−∞

f (t)e−j(w0t+mt2/2)dt

∣∣∣∣∣∣
2

m=− cotα
w0=u/ sinα

(42)

And the square of FRFT:

|Fx(α,u)|2 =
∣∣∣∣ 1
2π sinα

∣∣∣∣
∣∣∣∣∣∣

∞∫
−∞

ej(−ut cscα+t2/2 cotα)dt

∣∣∣∣∣∣
2

(43)

From Equation (42) and Equation (43), we obtain

RWT(u,α) = aπ |Fx(α,u)|2 (44)

That is to say, the FRFT is equivalent to RWT.

Simulations
In order to verify the derived results in this article and show the
advantages of the AFL in the LFM signal detection, the simula-
tions are performed in this section. From these simulations, it is
easy to see that the AFL has a better performance in detection
of the LFM signal than the traditional ones.

Detection of LFM signal
Detection of one component LFM signal
An one component LFM signa is defined as

f (t) = 1√
T
ej

(
w0t+m0

2 t2
) (

|t| <
T
2

)
.

The parameters are chosen to be T = 40s,w0 = 0.1rad/s,
m0 = 0.4rad/s2. The |AFL| of f(t) can be calculated as

|AF(a,b,c,d)(τ ,u)| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin[(u/b−m0τ)T/2]
(u/b−m0τ)T/2

√
1

2πb (a = 0)∣∣∣∣∣
√

1
2πb

T/2∫
−T/2

ej
a
2b t

2+j(m0τ−u/b)tdt

∣∣∣∣∣ (a �= 0)

The detection of the single component LFM signal with
(a, b, c, d) = (0, 2,−1/2, 1) is performed. The contour part of
AF(a,b,c,d)(τ ,u) and the detector η(m) are plotted in Figure 1a,b,
respectively.
It is clear from Figure 1a that the AFL passes through the

origin of the AFL plane, and the slop of the projection line is
b ∗ m0, which is the same as discussed before. Figure 1b shows
the value and upper bound of detector η(m). There is one peak
around the chirp rate m0, as discussed in preceding sections.
Therefore, we can detect the LFM signal based on RAFL.

Detection ofmulticomponent LFM signal
Suppose the p-component signal defined as following

f (t) =

⎧⎪⎨
⎪⎩

p∑
i=0

1√
T
ej

(
wit+mi

2 t2
)

(|t| < T
2 )

0 (|t| > T
2 )

(45)

Figure 2 plots the detector η(m) of multicomponent LFM
signal with T = 40s and different parameters. It can be con-
cluded from Figure 2 that the detector can be used for detec-
tion of LFM signal with unequal amplitude.
Detection of multicomponent LFM signal The time-

frequency analysis for multicomponent LFM signal will pro-
duce the cross term. Cross term suppression is an important
problem in signal processing. Two ways have been proposed
to solve the problem: kernel function filter and filter in the AF
domain. The former is to design a kernel function according to
some constraints derived by the goal, the later is to make use of
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Figure 1 Detections of the single component LFM signal with (a, b, c,d) = (0, 2,−1/2, 1).

the unique property of the AF. The AFL proposed in this article
has three additional freedoms, i.e., the parameters characteriz-
ing the LCT, which will make the AFL more attractive for the
analysis of signal and cross term suppression.
Figure 3 plots the detections results of the LFM signal with

very close chirp rate with T= 40s. Resolution, which is a com-
mon parameter for measuring the ability to separate two chirp
signals. In this simulation, the resolution is defined as the min-
imum chirp rate separation to resolve two equally strong LFM
signals in noise-free environment. Through computer simula-
tions for trial signal with signal length T ranging from 10 to
60s, we obtain the resolution to be about b/T2.

The Figure 3 shows the critically resolved cases of η(m) for
T= 40s. It reveals that the resolution is proportional to the
square of the signal length T. As discussed before, RAFL is one
generalization of RAT, and the chirp rate resolution is consis-
tent with RAT in [28], i.e., 1/T2 level. The signal length must
be greater than

√
b/
 to achieve chirp rate resolution 
.

Detection of LFM signal with noise
The one component LFM signal with noise is defined as

f (t) = 1√
T
ej(w0t+m0

2 t2) + n(t)
(

|t| <
T
2

)
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Figure 2 The detector η(m) of multicomponent LFM signal with T = 40s and different parameters. (a) The η(m) of the bicomponent LFM
signal with amplitude of one component being one tenth of other. (a, b, c, d)=(1/32, 16,−1/32, 16), w0=w1=0.1 rad/s, m0 = 0.4 rad/s2, m1 =
0.2 rad/s2. (b) The η(m) of three-component signal with different amplitude. (a, b, c, d) = (1/32, 32,−1/64, 16), w0 = w1 = w2 = 0.1 rad/s, m0 =
0.2 rad/s2,m1 = 0.4 rad/s2,m2 = 0.6 rad/s2.
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Figure 3 The detection results of the LFM signal with very close chirp rate. (a) w0 = w1 = 0.1 rad/s,m0 = 0.4 rad/s2,m1 = 0.39 rad/s2. (b)
w0 = w1 = w2 = 0.1 rad/s,m0 = 0.41 rad/s2,m1 = 0.4 rad/s2,m2 = 0.39 rad/s2.

where the noise n(t) is assumed to be the white Gaussian noise
with zero-mean, and variance σ 2.
Of course, the p-component LFM signal embedded in noise

is defined as

f (t) =
p∑

i=0

1√
T
ej(wit+mi

2 t2) + n(t)
(

|t| <
T
2

)

The outputs of the detector are shown in Figure 4, with SNR’s
equal to ∞, −10, and −20 dB, respectively. It can be seen from
Figure 4 that the detector shows the presence of the three com-
ponent LFM signal under the strong noise background, with
m1 and m2 being very close. These simulations have verified
the effectiveness of the proposed detector.

Comparison the detectors of different time-frequency tools
In this section, we will take finite-length LFM signal for
instance to make the comparison of the detectors of different
time-frequency tools. Figure 5 plots the comparison results
among the common detectors for LFM signal in Equation (42)
with T = 40s,w0 = w1 = 0.1 rad/s,m0 = 0.2 rad/s2,m1 =
0.4 rad/s2.
It can be seen from Figure 5a that the RWT can detect the

LFM signal for two peaks around the chirp rate. The RWT
result is obtained by applying the RWT to the LFM signal and
then compute the line integral along the straight line with its
direction specified by the delta function δ(u − bmτ − w0).
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Figure 4 The detections of LFM signal embedded in Gaussian noise. (a) An one component LFM signal, with w0 = 0.1 rad/s,m0 = 0.4 rad/s2.
(b) The three-component LFM signal, with w0 = 0.1 rad/s,m0 = 0.3 rad/s2,w1 = 0.2 rad/s,m1 = 0.4 rad/s2,w2 = 0.3 rad/s2,m2 = 0.41 rad/s2,
T = 40s.
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Figure 5 The comparison among the common detectors for LFMf signals. (a) RWT. (b) RAT. (c) RAFL. (d)WHT. (e) FRTT.



Che et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:138 Page 12 of 14
http://asp.eurasipjournals.com/content/2012/1/138

However, when w0 �= w1, the problem will be a 2-D search
problem.
We can see from Figure 5b that the RAT is one of good

time-frequency tools, however, the cross term is still seri-
ous, furthermore cross terms will interfere the auto terms. In
Figure 5d, the WHT of the LFM signal can form peaks in the
plane, and coordinates of the peak correspond to the parame-
ters w and m. But the computation is very large, and it is not
so obvious to find the sharp peaks, which are the defects of
WHT. The FRFT of the LFM signal displays the time-frequency
focus at the special order. The detection and parameter esti-
mation of LFM signal can be gained by 2-D searching in FRFT
domain. However, there are some problems to solve, such as
computation, etc. And the FRFT of multicomponent LFM sig-
nal with finite time may be not satisfactory, which can be seen
from Figure 5e. Finally, it is easy to find from Figure 5c that the
RAFL proposed in the manuscript can detect the multicompo-
nent LFM signal, moreover the performance is 1-D search and
effect is better.
The comparisons and descriptions above are only seen from

the simulations. Now we can define a quantitative index to
investigate the effectiveness of the detectors. As is known
to us, the cross term suppression is an important problem
for multicomponent LFM signal processing, so we define the
quantitative index as

r = |cro|2∣∣tf ∣∣2 (46)

where cro and tf are the cross term value and time-frequency
value, respectively. It represents the ratio of cross term relative
to the overall value, which can be seen as the effectiveness of
cross term suppression. The index of RWT, RAT and RAFL is
3.31, 14.28, 0.31%, respectively. From the quantitative index, we
can find that the RAFL proposed in this article can suppress
the cross term effectively.

Detection of QFM signal
The QFM signal is defined as f (t) = 1√

T
Aej(a1t+a2t2+a3t3)

(|t| < T
2 ), where T = 10, a1 = 0.1, a2 = 1, a3 = 0.01, the AFL

of f (t) is

AF(a,b,c,d)(τ ,u)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2π |b|

j A2ej
(

d
2b u

2+a1τ+ a3
4 τ 3

)
δ(u − 2a2τb)

×(3a3τ + a
2b = 0)

√
1

6a3bτ+aA
2ej

(
d
2b u

2+a1τ+ a3
4 τ 3

)
−j (2a2τ−u/b)2

2(6a3τ+a/b)

×(3a3τ + a
2b �= 0)

(47)

Figure 6 plots the AF and the AFL of this quadratic FM signal
with T = 10s, a1 = 0.1 rad/s, a2 = 1 rad/s2, a3 = 0.01 rad/s3.
We know from the Figure 6a that the classical AF hardly detect
the cubic phase. However, in Figure 6b the performance of a3
is more prominent.
In fact, the main information of the QFM signal is displayed

by its cubic phase. That is to say, the cubic phase parame-
ter can be seen as the information that we want to obtain.
As the coefficient of the second phase is about 100 times of
the cubic phase, it is can be considered that the SNR of a3
is −40 dB if the second phase is seen as noise relative to the
cubic.
The AFL of QFM signal also pass through the origin of

AFL plane. Therefore we use the same method to detect the
QFM signal. Known from Equation (33), for power signal, if we
choose the special parameter, AFL can generate one impulse,
and for the energy signal with finite time, there will be the crest
for energy accumulation.

Time delay(s)

F
re

qu
en

cy
 s

hi
ft(

ra
d/

s)

AF of Quadratic FM signal

−5 0 5
0

5

10

15

20

25

30

35

40

Time delay(s)

F
re

qu
en

cy
 s

hi
ft(

ra
d/

s)

AFL of Quadratic FM signal

−5 0 5
0

5

10

15

20

25

30

35

40

a b
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Conclusion
On the basis of the classical AF and local transform theory,
this article proposes a new kind of definition of AF associ-
ated with the LCT (we name it as AFL), which can be seen
as one of the generalizations of the classical AF. The main
properties of AFL are investigated in detail. The AFL has
three additional freedoms, i.e., the parameters characterizing
the LCT, which makes the AFL more attractive for the anal-
ysis of LFM signal. The RAFL obtained by combining AFL
with RT is applied to detect the LFM signal. It can gen-
erate the sharp peak around the chirp rate in RAFL plane,
and the cross-term can be suppressed effectively, which can
be verified from the simulation and comparison results. The
future works along this direction is to explore the applica-
tions of the AFL in the non-stationary signal processing, and
the comparison of the AFL with the other kind of AF pro-
posed in [29,30] in the LFM signal detection and the parameter
estimation.

Methods
All of the signals used in the manuscript are produced by Mat-
lab software, and the algorithm in the simulation section are
proposed based on the main results proposed in Section ”The
applications of the AFL”.
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