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A B S T R A C T  

We extend the concept of the ambiguity function (AF) to 
linear signal spaces. We discuss some properties of the A F  
of a linear signal space, its relations with other space rep- 
resentations, and the results obtained for some specific sig- 
nal spaces. We then show that the AF of a signal space 
describes the performance of the ML range/Doppler esti- 
mator for a slowly fluctuating point target when a series of 
orthogonal signal pulses are transmitted. This “multipulse 
estimator” is more accurate than a conventional single-pulse 
estimator since the AF of a linear signal space may have ar- 
bitrarily good “thumbtack” shape. 

1 I N T R O D U C T I O N  
The ambiguity function (AF) of two signals z ( t ) ,  y(t), 

is a joint time-frequency correlation function with ap- 
lications in radar, sonar, communications, optics, etc. f 1, 2, 3,4].  (In ( I ) ,  T and U are the time and frequency lags, 

respectively, and the integration is from --CO to CO.) The 
auto-AFof asignal, z ( t ) ,  is defined as A,(r,u) = Ar ,z (~ , ,u ) .  
The squared magnitude of the AF is known as the ambzgu- 
ity surface (AS). The maximum magnitude of the auto-AF 
is found a t  the origin, where it equals the signal energy. 

We consider the basic radar/sonar problem of estimating 
the range and radial velocity of a slowly fluctuating point 
target. If the active radar/sonar system transmits a signal 
G s ( t )  ( E  denotes the signal energy and s ( t )  is normal- 
ized), the received baseband signal (reflected by the target) 
can be modeled as [a] 

~ ( t )  = b f i  s ( t  - T O )  eJ21rvot + w(t)  . 
b is a zero-mean, complex, Gaussian random variable with 
variance E{lblz} = 2 0 : ,  w(t)  is complex, white Gaussian 
noise (independent of b )  with power spectral density N O ,  TO 

is a time lag (proportional to the target’s range), and uo is a 
Doppler frequency shift (related to the target’s relative ra- 
dial velocity). It can be shown that the maximum-likelihood 
(ML) estimator of the parameter pair (T ,  u) is 

( f ,  ~ ) M L  = argmaxIAr,s(r ,v)lZ , (3) 
?,U 
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i.e., the point in the ( T ,  u)-plane where the cross-AS of the 
received signal, ~ ( t ) ,  and the transmitted signal, s ( t ) ,  is 
maximized [2]. The performance of the ML estimator de- 
pends on two features briefly reviewed in the following. 

1.1 C r a m & - R a o  Lower Bound 
For high SNR, the accuracy of the ML estimator can 

be characterized by the Cramkr-Rao lower bound (CRLB) 
which bounds the variance of any unbiased estimator. If s ( t )  
is real-valued and centered at  t = 0 (i.e., s, t s 2 ( t )  dt = 0, 
which will be true for any even or odd signal), then the 
CRLBs are [2] 

(3) 
1 1 

var{i} 2 - C*j ? var{fi} 1 - 
CT: ’ 

where 

are the mean-square duration and mean-square bandwidth, 
respectively, of the transmitted pulse s ( t ) ,  and 

with Er 2az E .  Er 1 
NO 1 + No/Er 

c = 2 (27r)Z - 
The CRLBs depend on the SNR through C and on the 
transmitted signal s(t)  through TL? and F:. For a real- 
valued, centered s ( t ) ,  the CRLBs are related to the curva- 
tures (2nd derivatives) of the auto-AS at  the origin as 

which shows that the CRLBs are low (corresponding to ac- 
curate estimates) if the auto-AS peak at  the origin of the 
( T ,  u)-plane is very sharp. 

1.2 Out l ie rs  
For low SNR, and with clutter/ reverberation, the maxi- 

mum of lAr,s(r,u)lz (i.e., the ML estimate) may appear at 
a totally wrong position (“outlier”). A simple measure of 
the estimator’s “outlier immunity” is the normalized expec- 
tation of IAr,s(~,u)12,  

= IA,(r - ro ,u  - VO)~’ + No/& . (5) 
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For good outlier immunity, p ( r ,  v) must be small away from 
the true parameter pair ( m , v ~ ) .  Due to (5), this requires 
(i) that the auto-AS of s ( t )  be small away from the origin 
of the (r, v)-plane and (ii) high SNR. 

According to both the CRLBs and the outlier analysis, 
the AS of the transmitted pulse, lAs(r ,v)12,  should have 
a “thumbtack” shape, i.e., a sharp peak at  the origin of 
the (r, v)-plane and very small values away from the ori- 
gin. Therefore, we would like to minimize the AS volume s, s, ( A S ( r ,  . ) I 2  d r  d v  for fixed peak height IA,(O, O)12. Un- 
fortunately, the peak height dictates the volume since 

IA,(O, 0)l2 = lAs ( r ,  u)12 d r  d v  = E: = 1 . (6) 

Thus, if we narrow the AS peak in order to increase the 
estimator’s accuracy, the removed volume reappears some- 
where away from the AS peak and thus reduces the estima- 
tor’s outlier immunity. This ”radar uncertainty rinciple” 
limits the performance of any transmitted signal 721. 

2 THE AF OF A LINEAR SIGNAL SPACE 
We now introduce the AF of a linear signal space. The 
application of the AF of a signal space to the problem of 
range/Doppler estimation will be discussed in Section 3. 

Let X be an Nx-dimensional subspace of the “total space” 
&(R) of finite-energy signals [5]. The signal space X is 
characterized by an orthogonal projection operator X with 
kernel X ( t , t ’ )  or by an orthonormal basis {zk(t)}kN,”1. The 
projection operator’s kernel can be written in terms of any 
orthonormal basis {~k(t)}f:~ spanning X as 

N x  

x(t,t’) = zk(t)  zl(t’) . (7) 
k =  1 

We shall also use the “bifrequency function” -%(f,f’) = 
F’t-jFt,--f ,X(t ,  1’) of the projection operator’s kernel. 

According to [6, 71, any quadratic signal representation 
(QSR) Q,(o) (where e is a vector of parameters like r and 
v in the case of the AF) can be extended to a linear signal 
space X by adding the QSR outcomes of all basis signals, 

N X  

Q x ( 9  2 Q Z k ( 9 )  . (8) 
k= 1 

Due to (7) ,  Q x ( S )  is independent of the specific basis 
{Zk(t)}:zi spanning X ,  so that Q x ( 9 )  characterizes the 
space X and not a basis of X. Applying (8) to some spe- 
cific QSRs yields the following space representations: 
- Energy: E, = 1 Iz(t)i2 d t  * 

Ex = 1 X ( t , t )  d t  = N x  

r,y(r) = Jx( t  + r , t )  at 

= J, %f + U, f) df 

(9) 

- Temporal correlation: r Z ( r )  = Jt z(t  + r )  z ’ ( t )  dt j 

(10) 
t 

- Spectral correlation: R,(v)  = X ( f  + U) X * ( f )  df =+ I 

(11) 

- Temporal nth-order moment: mp) = st t” 1z(t)I2 dt j 

- Spectral nth-order moment: M!“) = SI f” IX(f)12 df * 
= f”m, f) df (13) 

- Wigner distribution: W , ( t , f )  = sT z ( t  + 5) z* (t - $) 
e-J2rfTdr j 

W x ( t ,  f) = X ( t  + i, t - L )  2 e - J 2 ” f r  d r  . (14) 

In particular, applying (8) to the AF yields the A F  of a 
linear signal space 

Nx 

A x ( r , v )  2 A Z k ( r , v )  
k= 1 

The squared magnitude of the AF of a space will again be 
called the ambiguity surface (AS) of the space. 

The AF of a space satisfies A > ( - r ,  -U) = A x ( r ,  v )  and 
IAx(r?v)I 5 Ax(0,O) as does the auto-AF of a signal. We 
now discuss some further properties of the AF of a linear 
signal space. 

2.1 Linear Relations 
All linear relations connecting the AF of a signal with 

other QSRs can immediately be reformulated for the AF of 
a space. For example, 

Ax(0 ,O)  = Ex = Nx , 
Ax(r ,O)  = rx(r)  , A x ( 0 ,  v )  = R x ( v )  , 

A x ( r ,  v) e’2a(tu--fT)  d r  d v  = W x ( t ,  f) , 

where Ex, rx(r), R x ( v ) ,  m$), Mg), and W x ( t , f )  have 
been defined in (9)-(14). 

2.2 Linear Space Transforms 
Let H be a linear signal transform, and define the trans- 

formed linear signal space HX as the linear space of all 
transformed signals (Hz)(t) with z ( t )  E X. The following 
“invariance” properties for important specific transforms H 
are well-known from the AF of a signal: 
- Time-frequency shift: (Hz)(t) = z ( t  - t o )  e J Z n f o t  + 

- Time-frequency scaling: (Hz)(t) = mz(at) * 

- Chirp multiplication: (Hz)(t) = z ( t )  e f rc ta  + 

- Chirp convolution: (Hz)(t) = z ( t )  * &eJrct’ j 

- Fourier transform: (Hz)(t) = f i X ( c t )  

A H x ( r , V )  = A x ( r , v )  eJ2n(’or-tau) 

A ~ x ( r ,  v) = &(UT, ./a) 

A H x ( r ,  U) = A x ( r ,  v - c r )  

AHx(r ,  v )  = A x ( r  - v / c ,  v )  

A H x ( r , v )  = A x ( - v / c , c r )  . 
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2.3 Finite-Support Properties 
N 

M r )  x k = l  F?k 

If all z ( t ) ~ X  are time-limited in [ t l ,  t 2 3  (i.e., X 7 [ t l ,  t z ]  
where 7 [ t l ,  t z ]  is the linear space of all signals time-limited , F i -  - 
in [tl , t z ] ) ,  then N E s  N 

cf. ( 9 ) ,  ( 1 2 ) ,  (13) )  can be interpreted as the mean-square 6 uration and mean-square bandwidth, respectively, of the 
N-dimensional linear signal space S = span{sk(t)}f=l 
which is spanned by the N transmitted signals sk(t), and 

A , ~ ( T , u )  = 0 for I T [  > t z  - t l  . 
Similarly, if all z ( t ) E X  are band-limited in a frequency band 
[fi, fz] (i.e., X f z l  is the linear space 
of all signals band-limited in [fl, fi]), then 

F[fi, fzl where 

Er with E, N E , . .  e = 2 ( 2 4 2  - 
NO 1 + N o / E ,  A ~ ( T , u )  = 0 for I u I  > fz - fi  . 

2.4 Some Specific Spaces 
It is instructive to consider the AF of a few simple specific 

spaces. The AF of the “total space” &(R) of all finite- 
energy signals is an ideal Dirac impulse at  the origin of the 
(T,  u)-plane, 

A&(R)(T,u)  = b ( T )  b ( v )  . (15) 

For the space 7 [ t l ,  t z ]  of all signals time-limited in [ t l ,  221, 
we obtain 

A ~ [ ~ ~ , ~ ~ ~ ( T ,  U )  = b ( r )  e-J2irto” TO sinc(rou) 

where to  = ( t l  + t2)/2, ro = t z  - t l ,  and sinc(cr) = 
sin(*a)/(xcu). Similarly, the AF of the space F[f1,  f23 of 
all signals band-limited in the frequency band [fl ,  fz]  is 

A ~ [ , ~ , ~ ~ ~ ( T ,  U) = b ( u )  Pfor vo sinc(vor) 

where fo  = (fl + f2)/2 and uo = fz - f l .  Finally, the 
AF of a one-dimensional space X I  spanned by the single 
(normalized) basis signal z l ( t )  is simply the AF of the basis 
signal, A x l ( r , u )  = A Z 1 ( r , u ) .  

3 APPLICATION TO RANGE/DOPPLER 

The role of the AF of a signal in the problem of 
range/Doppler estimation for the case of a single transmit- 
ted pulse has been reviewed in Section 1. We now show 
that the AF of a signal is replaced by the AF of a linear 
signal space if, instead of a single pulse D s ( t ) ,  a series 
of N orthogonal pulses f i s k ( t ) ,  k = 1, ..., N ,  are trans- 
mitted. The  corresponding received signals are modeled as 

ESTIMATION 

7k(t) = b f i S k ( t  - T o )  f232ruot + wk(i?) , k = 1 ,  ..., N 

where the Gaussian random variable b is the same for all k 
and the Gaussian white noise processes Wk(t) are indepen- 
dent of each other and of b.  It can be shown that the ML 
estimator of range and Doppler shift is 

N 

(F, C ) M L  = argmax A,, , , ,  T ,  U )  . 
r , Y  Iz ( /j 

When compared t o  the single-pulse estimator (a ) ,  we see 
that the cross-AF of ~ ( 2 )  and s ( t )  is simply replaced by the 
sum of cross-AFs of 7k(t) and s k ( t ) .  

3.1 Cram&-Rao Lower Bound 

shown to  be (cf. (3)) 
For real-valued and centered sk(t), the CRLBs can be 

Again, the CRLBs depend on the SNR through and on 
the transmitted pulses Sk(t) through TZ and FZ. Note that 
6 M N C  for high SNR. This reflects the SNR improvement 
due to transmitting N signals instead of one signal. It can 
be shown that the CRLBs are related to the sharpness of 
the peak of the auto-AS of the signal space S as (cf. (4)) 

where A s ( r , u  denotes the AF of the transmitted signal 
space S as de A ned in Section 2. 

The “uncertainty relation for signal spaces” Ts Fs  2 & N 
[SI shows that the overall estimator accuracy increases with 
growing dimension N of the transmitted signal space S. 

3.2 Outliers 
Analogous to the single-pulse case discussed in Section 1, 

a simple measure of the estimator’s outlier immunity is (cf. 
( 5 ) )  

I Z  1 
= l ~ A s ( r  - T O ,  U - UO) +  NO/^?,. . (18) 

Note that the second (SNR) term is reduced by a factor N 
as compared to the single-pulse case. 

3.3 Comparison to the Single-Pulse Estimator 
Comparing the CRLBs in (16), (17)  and the outlier quan- 

tity ~ ( T , Y )  (see ( 1 8 ) )  obtained for the multipulse case with 
the corresponding quantities (3), (4) and (5) obtained in 
Section 1 for the single-pulse case, we note that the results 
are strictly analogous except for two differences: t) The received energy E,. is replaced by k,. = N E , ,  
w ich means an SNR improvement by a factor N .  

(ii) The auto-AF A ,  r,u) of the transmitted pulse s ( t )  is 
replaced by the norma \ ized auto-AF 

N - A 1  1 
A s ( r , v )  = - -As(r ,u)  = -E A S k ( r , u )  N N 

k= 1 

of the transmitted signal space S .  Thus, the (normalized) 
AF of the space spanned by the transmitted signals char- 
acterizes the performance of the multipulse estimator in 
exactly the same way as the AF of the transmitted pulse 
characterizes the performance of the single-pulse estimator. 
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Note that for N = 1 the multipulse results reduce to the 
single-pulse results of Section 1. 

Apart from the obvious SNR improvement, the advan- 
tage of the multipulse estimator corresponds to the fact 
that the thumbtack shape of the normalized AF of a space 
is constrained only by the space’s dimension N ,  i.e., by 
the number of orthogonal pulses used. Indeed, (15) shows 
that the AF of the (infinite-dimensional) space &(R) is the 
ideal two-dimensional Dirac impulse which leads to perfect 
accuracy and outlier immunity. While i t  is impossible to 
transmit an infinite number of pulses, the ideal thumbtack 
shape can be approached arbitrarily closely if the space’s di- 
mension is sufficiently large. In particular, the normalized 
auto-AS of a signal space S of dimension N satisfies 

2 -  

4 -  

6 -  

When compared to (6), we see that the radar uncertainty 
principle is relaxed since the volume of the normalized AS 
is N times smaller than the peak height. For N + 00, an 
ideal thumbtack shape is obtained. 

Fig. 1 illustrates the improved thumbtack shape of the AS 
of a si nal space by comparing the AS of the Nth  Hermitian 
pulse 781 with the (normalized) AS of the N-dimensional 
“Hermitian space” [6, 71 spanned by the first N Hermitian 
pulses. (Since the AS of a Hermitian pulse or space is rota- 
tionally invariant, the AS shape is completely characterized 
by a cross section through the origin of the (‘,U)-plane.) 
Note the substantial sidelobe reduction in the space’s AS, 
which is achieved at the cost of a slight broadening of the 
AS mainlobe. In Fig. 2, the reduction of sidelobe height is 
shown quantitatively for various values of N .  

4 CONCLUSION 
We have defined the ambiguity junction (AF) of a linear 
signal space and shown that i t  satisfies many mathemati- 
cal properties known from the AF of a signal. Just as the 
auto-AF of a signal characterizes the performance of the 
single-pulse range/Doppler shift ML estimator for a slowly 
fluctuating point target, the auto-AF of a space character- 
izes the performance of the multipulse ML estimator when 
a series of orthogonal pulses are transmitted. 

In either case, good estimator performance requires the 
respective AF to have a “thumbtack” shape. However, in 
contrast to the AF of a signal whose approximation of the 
thumbtack shape is limited by the radar uncertainty prin- 
ciple, the AF of a space will approach the ideal thumbtack 
shape if the space’s dimension is sufficiently large. 
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