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ABSTRACT

We extend the concept of the ambiguity function (AF) to
linear signal spaces. We discuss some properties of the AF
of a linear signal space, its relations with other space rep-
resentations, and the results obtained for some specific sig-
nal spaces. We then show that the AF of a signal space
describes the performance of the ML range/Doppler esti-
mator for a slowly fluctuating point target when a series of
orthogonal signal pulses are transmitted. This “multipulse
estimator” is more accurate than a conventional single-pulse
estimator since the AF of a linear signal space may have ar-
bitrarily good “thumbtack” shape.

1 INTRODUCTION
The ambiguity function (AF) of two signals z(t), y(t),

Ax_y(r, y) = /I(i + I) y'(t _ Z) e-ﬂvruz d, (1)
¢ 2 2

is a joint time-frequency correlation function with ap-
lications in radar, sonar, communications, optics, etc.
1,2,3,4]. (In (1), 7 and v are the time and frequency lags,
respectively, and the integration is from —oo to co0.) The
auto-AF of a signal, z(t), is defined as Az(7,v) = Az 2(7,v).
The squared magnitude of the AF is known as the ambigu-
ity surface (AS). The maximum magnitude of the auto-AF
is found at the origin, where it equals the signal energy.

We consider the basic radar/sonar problem of estimating
the range and radial velocity of a slowly fluctuating point
target. If the active radar/sonar system transmits a signal
VE s(t) (E denotes the signal energy and s(t) is normal-
ized), the received baseband signal (reflected by the target)
can be modeled as [2]

(1) = b VE s(t — 1) ™ 4 w(t) .

b is a zero-mean, complex, Gaussian random variable with
variance E{|b|*} = 20, w(t) is complex, white Gaussian
noise (independent of b) with power spectral density No, T
is a time lag (proportional to the target’s range), and v is a
Doppler frequency shift (related to the target’s relative ra-
dial velocity). It can be shown that the maximum-likelihood
(ML) estimator of the parameter pair (r,v) is

(?v ﬂ)ML = arg max IA"J(T’ ")'2 ’ (2)
TV
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i.e., the point in the (r,v)-plane where the cross-AS of the
received signal, r(t), and the transmitted signal, s(t), is
maximized [2]. The performance of the ML estimator de-
pends on two features briefly reviewed in the following.

1.1 Cramér-Rao Lower Bound

For high SNR, the accuracy of the ML estimator can
be characterized by the Cramér-Rao lower bound (CRLB)
which bounds the variance of any unbiased estimator. If s(¢)
is real-valued and centered at t = 0 (i.e., fttsz(t) dt = 0,
which will be true for any even or odd signal), then the
CRLBs are [2]

1 1

var{#} > TFE var{p} > T (3)
where
T? = Jesma o I, 1S df
s fts2(t) dt ' s = - f] |Stf)I? df

are the mean-square duration and mean-square bandwidth,
respectively, of the transmitted pulse s(t), and

2 Er 1

No 1+ No/E,
The CRLBs depend on the SNR through C and on the
transmitted signal s(t) through 72 and F2. For a real-

valued, centered s(t), the CRLBs are related to the curva-
tures (2nd derivatives) of the auto-AS at the origin as

C =2(2r) with E, 2202 F.

2 1 1 & 2
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which shows that the CRLBs are low (corresponding to ac-
curate estimates) if the auto-AS peak at the origin of the
(r,v)-plane is very sharp.

1.2 Outliers

For low SNR, and with clutter/ reverberation, the maxi-
mum of |4, (7, v)|* (i.e., the ML estimate) may appear at
a totally wrong position (“outlier”). A simple measure of
the estimator’s “outlier immunity” 1s the normalized expec-

tation of [Ar (7, »)|?,

>

E{'Ar,a(ry V)lz}
E{] Ar.s(70, 0)|? } o noise

IAS(T—TO,V—V0)|2+N0/Er . (5)

p(r,v)
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For good outlier immunity, p(7,») must be small away from
the true parameter pair (7, %0). Due to (5), this requires
(i) that the auto-AS of s(2) be small away from the origin
of the (7, v)-plane and (ii) high SNR.

According to both the CRLBs and the outlier analysis,
the AS of the transmitted pulse, |A.(r,»)]?, should have
a “thumbtack” shape, i.e., a sharp peak at the origin of
the (7, v)-plane and very small values away from the ori-
gin. Therefore, we would like to minimize the AS volume
fr fv |As(r, ¥)|? dr dv for fixed peak height |A,(0,0)]?>. Un-
fortunately, the peak height dictates the volume since

|A,(0,0)|’=//|A,(r,u)|’drdu:133=1. (6)

Thus, if we narrow the AS peak in order to increase the
estimator’s accuracy, the removed volume reappears some-
where away from the AS peak and thus reduces the estima-
tor’s outlier immunity. This “radar uncertainty principle”
limits the performance of any transmitted signal [2].

2 THE AF OF A LINEAR SIGNAL SPACE

We now introduce the AF of a linear signal space. The
application of the AF of a signal space to the problem of
range/Doppler estimation will be discussed in Section 3.
Let X be an N y-dimensional subspace of the “total space”
Ly(R) of finite-energy signals [5]. The signal space X is
characterized by an orthogonal projection operator X with

kernel X (t,t') or by an orthonormal basis {zk(t)}kN;"l. The
projection operator’s kernel can be written in terms of any
orthonormal basis {zx(t)}% spanning X as
Nx
X(tt) =3 z(t) zi(t) . (7
k=1
We shall also use the “bifrequency function” X(f, ) =
FeeeyFo—_p X(t,1') of the projection operator’s kernel.
According to [6, 7], any quadratic signal representation
(QSR) Q.(©) (where O is a vector of parameters like 7 and

v in the case of the AF) can be extended to a linear signal
space X by adding the QSR outcomes of all basis signals,

Ny
a
Q@2 Q..(9). ()
k=1
Due to (7), Qx(©) is independent of the specific basis
{:zk(t)}f:"=“'1 spanning X, so that Qx(©) characterizes the

space X' and not a basis of X'. Applying (8) to some spe-
cific QSRs yields the following space representations:

- Energy: E; = L lz(t)]? dt =

E,y:/X(t,t) dt= Ny 9)
¢
- Temporal correlation: r;(7) = j; z(t+r)z*(t)dt =
rx(r) =/X(t+r,t) dt (10)
¢

- Spectral correlation: R, (v) = f! X(F+v)X*(f)df =
Rx(v) =/f<(f+v,f) df (11)
f
- Temporal nth-order moment: m%” = Lt =) dt =

mp) = /t"X(t,t) dt (12)
t

- Spectral nth-order moment: M{™ = fl HIX(HPdf =
MY = / XU, f) df (13)

H
- Wigner distribution: W.(t,f) = f‘r z(t+ %) z* (t - %)
e dr o

Wx(t, f) :/X(t+ -;—,t— %) e dr . (14)

In particular, applying (8) to the AF yields the AF of a

linear signal space
Nx
> Az (ryv)
k=1

X(t :,t _ :) —j27vt
[ + 3 7)€ dt

/ff((f+ 2= %) &2 gf |

The squared magnitude of the AF of a space will again be
called the ambiguity surface (AS) of the space.

The AF of a space satisfies A% (—r,-v) = Ax(r,v) and
|Ax(r,v)] < Ax(0,0) as does the auto-AF of a signal. We
now discuss some further properties of the AF of a linear
signal space.

Ax(r,v) =

I

2.1 Linear Relations

All linear relations connecting the AF of a signal with
other QSRs can immediately be reformulated for the AF of
a space. For example,

Ax(0,0)=Ey =Nx,
Ax(r,0) =rx(r), Ax(0,v)= Rx(v),

1\" o"
(‘Eﬁ) g Ax(mY)
1\" o m
(2—3) gt =X
//AX(T,V) eJ?r(tu—fr) dell:Wx(t,f),

T v

where Ex, rx(7), Rx(v), m(;), ME\I'), and Wx(t, f) have
been defined in (9)-(14).

=m(
0

r=p=

2.2 Linear Space Transforms

Let H be a linear signal transform, and define the trans-
formed linear signal space HX as the linear space of all
transformed signals (Hz)(t) with z(t) € X. The following
“invariance” properties for important specific transforms H
are well-known from the AF of a signal:

- Time-frequency shift: (Hz)(t) = £(t — to) '™t =
Ag(r,v) = Ax(r,v) 2 oT—toV)
- Time-frequency scaling: (Hz)(t) = \/Hz(at) =
Al o(T,v) = Ax(ar,v/a)

- Chirp multiplication: (Hz)(t) = z(t) /™" =
A x(r,v) = Ax(r,v —cr)

- Chirp convolution: (Hz)(t) = z(t) * \/He’"": =
AH (T, v) = Ax(T —v/c,v)

- Fourier transform: (Hz)(t) = \/|—c—|X(ct) =
AH (T v) = Ax(—v/c,e7) .
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2.3 Finite-Support Properties

If all z(t)€X are time-limited in [t1,t2] (ie., ¥ CT[t1,t2)
where T[t1, t2] is the linear space of all signals time-limited
in [t1,22]), then

Ax(r,v)=0 for jr|>t2—1t .

Similarly, if all z(¢)€X are band-limited in a frequency band
[f1, f2] (ie., X C F[f1, f2] where F[f1, f2] is the linear space
of all signals band-limited in [f1, f2]), then

Ax(r,v)=0 for |v|> fo—fi.

2.4 Some Specific Spaces

It is instructive to consider the AF of a few simple specific
spaces. The AF of the “total space” L;(R) of all finite-
energy signals is an ideal Dirac impulse at the origin of the

(7,v)-plane,
Ay ry(m,v) =8(r) 8(v) . (15)

For the space T[t1,t2] of all signals time-limited in [t1, t2],
we obtain

Aty eq)(Tv) = 8(7) eI 1 sine(rov)

where tg = (t; + t2)/2, 7o = 12 — t;, and sinc(a)
sin(ra)/(xa). Similarly, the AF of the space F[f1, f2] of

all signals band-limited in the frequency band [fi, f2] is
Arigy pa(7,v) = 6(v) €777 1y sinc(vo7)

where fo = (fi + f2)/2 and vo = f> — fi. Finally, the
AF of a one-dimensional space & spanned by the single
(normalized) basis signal z(t) is simply the AF of the basis
signal, Ay, (7,v) = Az, (7,v).

3 APPLICATION TO RANGE/DOPPLER
ESTIMATION

The role of the AF of a signal in the problem of
range/Doppler estimation for the case of a single transmit-
ted pulse has been reviewed in Section 1. We now show
that the AF of a signal is replaced by the AF of a linear
signal space if, instead of a single pulse VE s(t), a series
of N orthogonal pulses VE si(t), k = 1,..., N, are trans-
mitted. The corresponding received signals are modeled as

(@) =bVE si(t — 1) e*™ fwp(t), k=1,..,N
where the Gaussian random variable b is the same for all &
and the Gaussian white noise processes wi(t) are indepen-
dent of each other and of b. It can be shown that the ML
estimator of range and Doppler shift is

N 2

D Ans(rr)

k=1

(7, )M = argmax
v

When compared to the single-pulse estimator (2), we see
that the cross-AF of r(t) and s(t) is simply replaced by the
sum of cross-AFs of rx(t) and sx(¢).

3.1 Cramér-Rao Lower Bound
For real-valued and centered si(t), the CRLBs can be
shown to be (cf. (3))

(16)

where
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2 N 2
T2 = m(s) — Zk:lTek

2 N
2 F§*= Mg) = Zk:l sz
Es N ’

Es N

‘Scf. (9), (12), (13)) can be interpreted as the mean-square
uration and mean-square bandwidth, respectively, of the

N-dimensional linear signal space § span{sx(t)}i,
which is spanned by the N transmitted signals sx(¢), and

2 E, 1
NO 1+N0/Er

Again, the CRLBs depend on the SNR through € and on
the transmitted pulses sx() through T2 and FZ. Note that

C a NC for high SNR. This reflects the SNR improvement
due to transmitting N signals instead of one signal. It can
be shown that the CRLBs are related to the sharpness of
the peak of the auto-AS of the signal space S as (cf. (4))

¢ = 2(2r) with £, 2 NE, .

2 _ 1 1 8% |1 2
= e (WA
2 (an
FZ = 11 9 lA (r 1/)2
S T T2z INTST revo

where As(r,v) denotes the AF of the transmitted signal
space S as defined in Section 2.

The “uncertainty relation for signal spaces” TsFs > :—"N

{6] shows that the overall estimator accuracy increases with
growing dimension N of the transmitted signal space S.

3.2 Outliers

Analogous to the single-pulse case discussed in Section 1,
a simple measure of the estimator’s outlier immunity is (cf.

(5))

B{|TL, At}
B[S Ao}

>

p(r,v)

no noise

’ + No/E,. (18)

As(T — 70,v — 10)

|l
N
Note that the second (SNR) term is reduced by a factor N
as compared to the single-pulse case.

3.3 Comparison to the Single-Pulse Estimator

Comparing the CRLBs in (16), (17) and the outlier quan-
tity p(7,v) (see (18)) obtained for the multipulse case with
the corresponding quantities (3), (4) and (5) obtained in
Section 1 for the single-pulse case, we note that the results
are strictly analogous except for two differences:

g:) The received energy E, is replaced by E, = NE,,
which means an SNR improvement by a factor N.

(ii) The auto-AF A,Sr,v) of the transmitted pulse s(¢) is
replaced by the normalized auto-AF

1

71_5(1',1/) 2 i

N
1
As(r,v) = v Z Ag, (1,v)
k=1

of the transmitted signal space S. Thus, the (normalized)
AF of the space spanned by the transmitted signals char-
acterizes the performance of the multipulse estimator in
exactly the same way as the AF of the transmitted pulse
characterizes the performance of the single-pulse estimator.



Note that for N = 1 the multipulse results reduce to the
single-pulse results of Section 1.

Apart from the obvious SNR improvement, the advan-
tage of the multipulse estimator corresponds to the fact
that the thumbtack shape of the normalized AF of a space
is constrained only by the space’s dimension N, i.e., by
the number of orthogonal pulses used. Indeed, (15) shows
that the AF of the (infinite-dimensional) space £2(R) is the
ideal two-dimensional Dirac impulse which leads to perfect
accuracy and outlier immunity. While it is impossible to
transmit an infinite number of pulses, the ideal thumbtack
shape can be approached arbitrarily closely if the space’s di-
mension is sufficiently large. In particular, the normalized
auto-AS of a signal space S of dimension N satisfies

|Zs(o,0)|’ =1 and [£|Zs(r,u)lz drdy = -1}\’_

When compared to (6), we see that the radar uncertainty
principle is relaxed since the volume of the normalized AS
is N times smaller than the peak height. For N — oo, an
ideal thumbtack shape is obtained.

Fig. 1illustrates the improved thumbtack shape of the AS
of a signal space by comparing the AS of the Nth Hermitian
pulse iS] with the (normalized) AS of the N-dimensional
“Hermitian space” [6, 7] spanned by the first N Hermitian
pulses. (Since the AS of a Hermitian pulse or space is rota-
tionally invariant, the AS shape is completely characterized
by a cross section through the origin of the (r,v)-plane.)
Note the substantial sidelobe reduction in the space’s AS,
which is achieved at the cost of a slight broadening of the
AS mainlobe. In Fig. 2, the reduction of sidelobe height is
shown quantitatively for various values of N.

4 CONCLUSION

We have defined the ambiguity function (AF) of a linear
signal space and shown that it satisfies many mathemati-
cal properties known from the AF of a signal. Just as the
auto-AF of a signal characterizes the performance of the
single-pulse range/Doppler shift ML estimator for a slowly
fluctuating point target, the auto-AF of a space character-
izes the performance of the multipulse ML estimator when
a series of orthogonal pulses are transmitted.

In either case, good estimator performance requires the
respective AF to have a “thumbtack” shape. However, in
contrast to the AF of a signal whose approximation of the
thumbtack shape is limited by the radar uncertainty prin-
ciple, the AF of a space will approach the ideal thumbtack
shape if the space’s dimension 1s sufficiently large.
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Fig.1: Cross sections of the AS of the Nth Hermitian pulse (bro-
ken line) and the normalized AS of the N-dimensional Hermitian
space spanned by the first N Hermitian pulses (solid line) for (a)
N =10 and (b) N = 30.
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Fig.2: Ratio of maximum sidelobe height to mainlobe (peak)
height of the AS of the Nth Hermitian pulse (broken line) and
the normalized AS of the N-dimensional Hermitian space (solid
line) for various dimensions N.
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