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1. Introduction. Since the position field is a fundamental variable of continuum mech-
anics, this science is endowed with all the richness and complexity of three-dimensional
geometry. This geometry leads to some fundamental difficulties both in the foundations of
continuum mechanics and in practical applications of it to concrete problems. Here we
discuss one such difficulty.

To fix ideas, consider a shaft whose lateral surface is stress-free and whose ends have
prescribed configurations. If one end of the shaft is now twisted through an integral multi-
ple of 2n, then the boundary conditions specifying the positions of the material points of the
ends remain unchanged. Thus it is unlikely that equilibrium problems for the shaft under
these mixed boundary conditions have unique solutions. (This example of nonuniqueness
may be added to those of [1, 13, 17].) It is the purpose of this note to investigate this
ambiguity and to show how it can be resolved. (No such ambiguity arises for corresponding
dynamical problems because the states of the ends can be expected to evolve continuously
from their initial states.) Our results have immediate application to the buckling of shafts
under prescribed twists (cf. [2, 9, 11]). The techniques we exploit are related to those used
to study the stability of closed loops of supercoiled DNA molecules (cf. [4, 7]).

Some of the specific difficulties we confront can be discerned by examining the configur-
ations of a strip of rubber whose ends are held in clamps (see Fig. 1). We regard the position
of the left end of the strip as fixed, but for the purpose of effective illustration we allow the
right end to translate. This causes no loss of generality since here we wish merely to study
the kinematic problem of classifying configurations that can be deformed into each other;
we do not examine the existence of equilibrium configurations (although some of the results
we obtain are most useful for such studies).

In Fig. la we show the reference configuration of the strip, which we may assume to be
stress-free. In Fig. lb we show a configuration obtained from that of Fig. la by twisting the
right end of the strip through an angle of — 4tc about the axis joining the left end of the strip
to the right. If we now translate the right end of the strip to the left, the configuration of Fig.
lb becomes unstable and pops into a configuration like that shown in Fig. lc. Obviously
the deformation from the configuration of Fig. lb to that of Fig. lc is achieved without the
strip being cut. The dotted line of Fig. lc indicates a fictitious continuation of the strip to
the right. If part of the strip is made to pass behind and to the right of the right clamp, made
to cut the fictitious continuation as in Fig. Id, and finally brought forward, then the strip
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Fig. 1.

pops into the configuration of Fig. la. Note that the process illustrated in Fig. Id requires
that whatever supports the right clamp must be released for the strip to cut its fictitious
continuation.

This and related simple experiments with rubber bands raise a number of questions:

i) What sort of " boundary conditions" distinguish the state of Fig. lb from that of Fig.
la? Can such conditions be stated in a way that promotes the analysis of boundary-value
problems?

ii) Can such conditions account for the fact that the configuration of Fig. lb can be
deformed into that of Fig. lc without the strip being cut?

iii) Can such conditions account for the fact that any configuration of Fig. 1 can be
deformed into every other configuration without the strip being cut, provided the clamp at
one end can be released from its support?

We resolve these questions in this paper. In Sec. 2 we formulate the kinematical problem
of defining the amount of twist for three-dimensional bodies. We then define the measure of
twist of A.E.H. Love and show that it is both analytically and topologically inadequate for
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resolving the questions just posed. In Sec. 3 we introduce an alternative measure of twist
and associated "boundary conditions" that do not suffer from the defects of Love's twist
and are useful for treating deformations of moderately large size. (The applications of these
measures certainly encompass all the traditional engineering problems for rods.) In Sec. 4
we describe a general strategy for resolving the questions raised above when the defor-
mations are arbitrarily large. This treatment is based on the concept of linking number. We
show that the fairly complicated prescription of boundary conditions for the general case
reduces to the much simpler prescription of Sec. 3 when the deformations are only moder-
ately large. We show finally that these prescriptions are analytically suitable for the treat-
ment of boundary-value problems.

2. The twist of Love. Let the region occupied by a body in its reference configuration be
the closure B of a bounded domain in Euclidean 3-space E3. Suppose B admits a curvilinear
coordinate system (x1, x2, s) with s ranging over [0, 1], say. In particular, the position of
the material point in B with coordinates (x1, x2, s) is denoted P(x\ x2, s). P is assumed to
be twice continuously differentiable and to satisfy

dP dP\ dP
dx1 X dx2) ' ds > ° (11)

on its domain of definition P~ X(S). The surface P( ■ , • , s) is called the section s. We assume
that [0, 1] a sh> P(0, 0, s) = R(s) is a curve in B. We assume that the end sections
P( • , • , 0) and P( • , • , 1) contain open sets of the boundary SB of B and that these open
sets respectively contain P(0, 0, 0) and P(0, 0, 1) in their interiors.

We associate with each section s a pair of material vectors D^s) andD2(s) such thatDi
and D2 are continuously differentiable and such that

[D^s) x D2(s)] • R'(s) > 0. (2.2)

Here and below the prime denotes the s derivative of the function on which it is placed.
D( and D2 may be chosen in any convenient way; e.g., D^s) could be defined to be
dP(0, 0, s)/dx* for a = 1, 2 or could be taken as some average over a section of
dP(x1, x2, s)/0xa.

Let the position in a deformed configuration of the material point (with coordinates)
(x1, x2, s) be p(x\ x2, s) and let r(s) = p(0, 0, s). Letdj(s) andd2(s) be the deformed configur-
ations of D^s) and D2(s). (E.g., if D^s) = dP(0, 0, s)/dx", then da(s) = dp(0, 0, s)/dxa.) The
requirement that the deformation preserve orientation is that the Jacobian be positive:

dp dp \ dp
dx1 dx2) ds
~8P <?P\ 8P
dx1 dx2) ds

> 0. (2.3)

Inequalities (2.1) and (2.3) imply that

dp dp
(0, 0, s) x ^ (0, 0, s) r'(s) >0 for s e [0, 1], (2.4)

We assume that d! and d2 are so chosen that (2.1) and (2.3) imply that

[dj(s) x d2(s)] • r'(s) >0 for s e [0, 1], (2.5)
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We study problems in which the deformed configurations p( • , • , 0) and p( ■ , • , 1) of
the end sections are wholly or partly prescribed while no conditions are imposed on the
restrictions of p to the material points on the lateral surface of B. (The lateral surface
consists of all the material points of the boundary SB not lying in the end sections. In a
well-set problem, the lateral surface should be subjected to traction boundary conditions.
The formulation of these conditions is of no concern to us here because we are treating only
kinematical questions.)

We shall define various measures of twist for B in terms of the functions r, dlf d2. (These
measures will enable us to distinguish between the configurations of Fig. 1.) We thereby
reduce the kinematics of twist of a three-dimensional body to that of a Cosserat rod with
two directors d! and d2 (cf. [6] or [18]).

The notion of the twist of a rod was introduced by St. Venant [14, 15] and improved by
Love [10]. The underlying ideas are related to Cauchy's [5] treatment of average rotation.
Love's definition is restricted to the case that {dj, d2, r'} is orthonormal. Here we give an
obvious generalization, based on the work of Ericksen and Truesdell [6], to the case that
{d1; d2, r'} merely satisfies (2.5). As a measure of strain Love's twist has been justly criti-
cized as inadequate by Ericksen and Truesdell. We now show that the prescription of
Love's twist is also inadequate for removing ambiguities in the specification of position
boundary conditions. We thereafter replace it with other quantities that can accomplish
this goal.

Inequality (2.5) implies that the projection of d, onto the plane perpendicular to r' does
not vanish. Let a,(s) be the unit vector along this projection, let a3 =r'/|r'|, and let
a2 = a3 x at. Then the orthonormality of {a^} ensures that there is a vector w such that
a'j = w x Hj.

Suppose that r is smooth enough to possess a principal tangent, normal, binormal triad
{a3, n, b}. Then we define (/> by

aj(s) = cos 0(s)n(s) + sin 0(s)b(s),

a2(s) = —sin 4>(s)n(s) + cos </>(s)b(s). (2.6)

The local twist of Love of dt relative to r at s is cj)'(s). It is readily shown by the
Serret-Frenet formulas that

0' = w • a3 - t (2.7)

where t is the torsion of r. The total twist of Love of d! relative to r' is
i
(w • a 3 — z)ds. (2.8)

)

This is a functional of r, dl5 d2 when these functions are smooth enough. We may contem-
plate prescribing (2.8) or some alternative functional with the aim of effectively dis-
tinguishing different classes of configurations meeting the same position boundary condi-
tions on the ends. Such functionals, to be called twist functional, should ideally meet the
following roughly stated criteria:

A) The specification of d,(0)/1 dj(0)|, d2(0)/1 d2(0) |, dt(l) x d2(l)/|d,(l) x d2(l)|, and
suitable twist functionals uniquely determines d,(l)/1 d^l) | and d2(l)/| d2(l) |.

B) Each twist functional is a null Lagrangian, i.e., its Euler-Lagrange equation (from the
calculus of variations) is identically satisfied. This condition is satisfied if the functional is
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the integral over [0, 1] of the derivative of a composite function of s. If this condition were
not met, then the principle of virtual work would imply that the constraint embodied in the
prescription of the functional would have to be maintained by constraint forces or couples
distributed along the length of the body, rather than by reactions acting solely on the ends.

C) The collection of all configurations {r, dlf d2} for which a twist functional has a
given value can be readily described.

D) Two configurations giving the twist functionals the same set of values can be de-
formed into each other. (The notion of deformation must be made precise. This requirement
is obviously closely related to criterion C. It also bears a deep relationship to criterion B in
that it says that twist functionals are deformation invariants while criterion B implies that
the first variations (or Gateaux differentials) of the twist functionals vanish identically when
conditions at s = 0, 1 are suitably fixed. This suggests that twist functionals are constants
on arcwise-connected subsets of their domains. This is just another way of saying that the
twist functionals are deformation invariants.)

E) The twist functionals have a mathematical form suitable for available methods of
analysis of boundary-value problems of nonlinear elasticity. In particular, their forms must
be useful for the characterization of configurations as extrema of energy functionals because
such characterizations are important in the study of stability. We interpret this requirement
narrowly by limiting our attention to problems whose configurations are completely deter-
mined by {r, dj, d2}. In this case we specifically require that the domain of each twist
functional be a subset of {r, dl5 d2} that belongs to each Sobolev space Wlp(0, 1) with p > 1
and that the twist functional be weakly continuous with respect to Wlp(0, 1) for each p > 1.
(This condition is very closely related to condition B. See [3].)

To avoid immersing ourselves in technical details not central to our goals, we shall not provide proofs of our
assertions about the weak continuity of twist functionals. These may be constructed from the following facts (cf.
[12], e.g.). The space Wp(0, 1) of vector-valued functions u consists of functions u inLp(0, 1) whose (distributional)
derivatives u' are also in Lp(0, 1). The norm || ■ 11 on W'p(0, 1)is defined by

i
(u u + iT ■ iT)"'2 ds.

I

If u is in W'p{0, 1), then u is continuous on [0, 1]. A sequence {vt} in Wj(0, 1) converges weakly to v if
i
C(vt ~ v) ' x + (vk — v ) • y] ds -> 0 as k —> oo

for all x, y 6 Lp,(0, 1) where p* = p/(p — 1). If vt converges weakly to v in Wp(0, 1), then {vk} is bounded in
W'p(0, 1) and vk converges uniformly to v on [0, 1]. A functional ui—♦ Tfu] is weakly continuous on Wlp(0, 1) if
^[vjJ —> >f[v] for each weakly convergent sequence {vt} in 14^(0, 1). If y has the form

y[»] = J [f(u(s), s) ■ u'(s) + g(u(s), s)]ds (2.9)

where f and g are continuous, then is weakly continuous on Wp(0, l)foreachp> 1.

The identity (2.7) ensures that (2.8) meets criterion B. But (2.8) does not meet criterion A
because the total twist depends upon the principal triad, which is not known a priori. Thus
it does not meet criterion C, either. Since configurations of Fig. 1 b and Fig. lc have different
values of (2.8), criterion D is not satisfied. The functional (2.8) does not satisfy criterion E for
the simple reason that (2.8) is not even defined on an open subset of Wlp(0, 1), because i
depends on the third derivative of r. Thus (2.8) is inadequate for our purposes. Note that
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(2.7) implies that (2.8) equals 0(1) — 0(0) mod In. But 0(1) — 0(0) depends on the values of
the principal triad at the ends and this information is not prescribed in any standard
boundary conditions. Since criterion B holds, the twist of Love is an invariant in the sense
discussed in the parenthetical remarks following the statement of criterion D. But these
remarks show that it is a useless invariant. (It does, however, have some value for ring-like
bodies in which case r is a simple closed curve; cf. [4, 7].) We now construct a more
satisfactory twist functional.

3. A twist functional for moderately large deformations. Suppose that R e C3([0, 1])
and that R'(s) # O for s in [0, 1]. (This is an innocuous assumption because it pertains only
to the reference state.) Let E^s) and E2(s) be a principal normal and binormal to R at R(s)
and let E3 = E, x E2 = R'/|R'|. We assume that Ej and E2 are continuously differ-
entiable. (If R is straight over an open s-interval, then we have considerable freedom in
assigning Ej and E2. Matters could be arranged so that E„ = D., for a = 1, 2.) The unit
vector lying along the projection of dj onto the plane perpendicular to R' is

dj — (di • E3)E3
e, =—, =, (3.1)

\/di ' di ~~ (di ' E3)2

which is well-defined if dj is nowhere parallel to E3. (IfD,, = E,,, this condition is assured
by the requirement that dx nowhere rotate from the plane of Et and E2 by an angle > n/2.
This bound, allowing moderately large rotations, is suitable for all traditional engineering
applications.) Then e! has the form

ej = cos ^jEj + sin ZiE2. (3.2)

The local twist of dt relative to R at s is x'i(s). Since

e'i = Xi(E3 x e,) + cos yAE\ + sin *iE2, (3.3)

the Serret-Frenet formulas yield

Z'i = (E3 x ei) ■ e\ — T (3.4)

where T is the torsion of R. We likewise define the twist y'2 of d2 relative to R by replacing
the subscript 1 whenever it appears in (3.10)—(3.14) by 2.

Now if d^O) is prescribed (equal to D^O)), or more generally, ife^O) is prescribed, then
we know /,(0) mod 2n. Without loss of generality we take^i(O) to lie in [0, 2n). If ex(l) is
also prescribed, then we only know Xx(l) mod 2n. We remove this ambiguity in Xi(l) by
prescribing the total twist of dj relative to R, namely

i
Xi ds =

1
(E3 x ej) • e; ds T ds (3.5)

where e! is given by (3.1).
We note that the total twists of d! and d2 relative to R are functionals satisfying

criterion A. The definition of the (local) twist of da with respect to R as ensures that
criterion B is also met. Criterion C is also satisfied: configurations for which (2.14) is
prescribed (and well-defined) are those for which ej winds about (the known curve) R the
prescribed number of times. Criterion D is satisfied only in the restricted sense that the
deformations of d! from its reference state can only be moderately large when the total twist
of di about R is prescribed. (When Da = Ea, such deformations are defined by the require-
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ment that d] subtend an angle <n/2 with respect to the (E^ E2)-plane.) Then all such
deformations are characterized by the number of times winds about R. Criterion E is
satisfied because (3.5) has the form (2.9).

We note that similar considerations are valid when the configurations of the end sec-
tions are not fully prescribed. E.g., suppose that the ends are hinged alongDx(0) andD^l)
so that d^Oyid^O)! and d1(l)/|d1(l)| are prescribed. Ambiguity in the number of times ej
winds about R is removed by the specification of (3.5).

4. A family of twist functionals based on the linking number. If d^O) and dx(l) are
prescribed with d2(0) and d2(l) left free of kinematic restraint, the body B may be regarded
as hinged at 0 and 1. In this case we remove the ambiguity inherent in the specification of
dt(0) and dj(l) by prescribing a suitable twist functional associated withdt. Ifdx andd2 are
prescribed at both ends, then the body may be regarded as welded to rigid supports at its
ends. To remove the ambiguity in this case, it still suffices to prescribe just a twist functional
for d! in addition to the values of dj and d2 at the ends, for this information clearly yields
the twist functional for d2. Thus we can reduce our analysis to one based on the study of the
two curves r and r + dt with r'(s) x d^s) # O for s e [0, 1] as a consequence of (2.5). We
now drop the subscript 1 from d.

If r and q are simple closed curves in E3 that have no point common, then the number of
times q winds around r is given by the linking number A(r, q), originally defined by Gauss
[8], which is an integer invariant under all deformations of r and q for which the deformed
images of r and q remain simple and never touch. In particular, if r is spanned by an
oriented immersed surface I, then the linking number is, to within a sign, the number of
times q pierces E from one side minus the number of times it pierces £ from the opposite
side (provided due account is taken of places where q touches but does not cross £). Cf.
[16]. Another intuitively simple characterization is given by [4], Thus A would be a suitable
twist functional for toroidal bodies. We wish to adapt it for our purposes. If [0, L] 9 >
st-+r(s), q(s) e E3 are absolutely continuous, closed, nonintersecting curves, then A(r, q) is
also given by an explicit analytic formula:

»>■ Ds i L fL q(s) — r(f)

(The linking number can also be defined as the topological degree ofS1 xS's (s, t)i—>q(s)
— r(f) e E3\{0}, where S1 represents the circle of radius L/2n. Thus X makes sense for

continuous curves r and q.)
We now construct a twist functional useful for very large deformations. Let us first

suppose that r and d are prescribed at s = 0, 1. Let L > 1, e > 0, let p: [1, L]—> E3 be a
fixed, absolutely continuous, simple curve with p(l) = r(l) and p(L) = r(0), and let 5: [1;
L] —> E3 be a fixed, absolutely continuous curve with 5(1) = d(l) and 8(L) = d(0). We set

(r(s), d(s)) s (r(s), d(s)) for s e [0, 1],
(4.2)

= (p(s),8(s)) for s e [1, L],

Let ^i(p, 5) be the set of all (r, d) for which r is a simple, absolutely continuous, closed curve
and d is an absolutely continuous, closed curve, and for which there exists an rj > 0 such
that [0, L] x [0, >?] a (s, x)t->f + xd is one-to-one. If (r, d) e ^x(p, 8), then we can use (4.1)
to define A(r, f + xd) = A(r, d; p, 8). If r(0) or r(l) are not prescribed, then by defining (p, 8)
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as above we obtain a family of such (p, 8) parametrized by the variable values of r(0) and
r(l). More generally, let ^0(P> $) be defined like ^i(p, d) except that r and d need not be
absolutely continuous. If (r, d) e @0, then we can define A(r, d; p, 8) by using the degree-
theoretic definition of linking numbers. Let us call (r, d) a strip. We say that a strip (r0, d0)
can be deformed in a subset $ of strips into a strips, dt) if there is a one-parameter family
of strips {(ra, dj, a e [0, 1]} with [0, 1] 9 ai-»(ra, dj e 'S continuous. (The norm on 3? is
that of uniform convergence, a i—> (ra, dj is a homotopy from(r0, d0) to(i"i, dj.) We say that
(?, d) is unknotted if r can be deformed to a circle in the space of all simple, closed curves. We
also consider more general deformations of such strips in which r is allowed to cut through
p a finite number of times. Such a deformation is said to cut the support. Using the
degree-theoretic definition of linking number and its known properties (cf. [16], e.g.), we
readily obtain the following results.

Theorem 4.3 (i) A( ■ , • ; p, 8) is an integer-valued continuous function on @0(P-> 8). Thus it
is constant on each component (maximal connected subset) of ̂ 0(P> §)■

(ii) If (?, d) and (r*, d*) are unknotted and if A(r, d; p, 8) = A(r*, d*; p, 8), then (r, d) and
(r*, d*) lie in the same component of 3?0(P> 8) and can accordingly be deformed into each
other (in &0(p, 8)).

(iii) Let (r, d) and (r*, d*) e ^0(P> §)■ (r^ d) can be deformed into (r*, d*) by deformations
cutting the support if and only if A(r, d; p, 8) = A(r*, d*; p, 8) mod 2.

Let us observe that (p, 8) corresponds to the fictitious continuation of the strip in Figs,
lc and Id. Statements (i) and (ii) explain the deformation leading from Fig. lb to Fig. lc.
Each configuration has the same value of A. The deformation leading from Fig. Id to Fig.
la is explained by Statement (iii). By using the invariance of the linking number under
deformations and the characterization of the linking number as the algebraic number of
times r + xd pierces a surface spanning r, we can readily see that the specification of the
twist functional of Sec. 3 is equivalent to the specification of A(r, d; p, 8) for a large number
of (p, 8). We finally note that the dependence of A(r, d; p, 8) on (p, 8), which at first sight
seems to be a defect of our formulation, is both unavoidable and geometrically natural: the
pair (p, 8) actually describes the way the body is supported. Each different system of
supports necessarily allows a different class of deformations. The dependence upon the
system of supports can be observed in Figs, lc and Id by replacing the fictitious continu-
ation shown there with others going in different directions.

Theorem 4.3 and the following remarks show that A satisfies Criteria A, C, D. Since A is
a deformation invariant it automatically satisfies Criterion B as well. (See the discussion
following the statement of Criterion D.) To show that A satisfies Criterion E on Wlp(0, 1) n
&o(P- 8) we may apply the methods of analysis described in the paragraph containing (2.9)
to the functional defined by (4.1).

5. Comments. If the directions of dj(l) and d2(l) are fixed, the end s = 1 may be
regarded as being welded to the plane spanned by d! and d2. In this case the end has no
rotational degrees of freedom. If the direction of dt(l) is fixed but that ofd2(l) is free, then
the end s = 1 may be regarded as being hinged about d^l). In this case the end has one
rotational degree of freedom. We have shown how to prescribe twist for these cases in Sec. 3
and 4. If dt(l) is confined to a fixed plane with the direction of d2(l) free, then the end may
be regarded as being supported in a Cardan joint with outer gimbal fixed. (See [2] for a
specific statement of boundary conditions.) In this case the end has two rotational degrees
of freedom. The twist introduced in Sec. 3 is perfectly adapted to describe the twist of the
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fixed plane about D3(l), provided the deformation is only moderately large in the sense that
dj nowhere rotates from the plane of and E2 by an angle >n/2. We have constructed a
twist functional based on the linking number that allows this it/2 to be replaced with n. (The
demonstration that this twist functional has the requisite properties requires the use of
some technical machinery from algebraic topology at a couple of stages.) We cannot expect
such a twist functional to be valid for deformations of arbitrary size because a complete
unwinding of a severely twisted state can be achieved when is allowed to undergo large
rotations in its plane. If the directions of d:(l) and d2(l) are each free, then the end may be
regarded as supported by a ball-and-socket joint (in which case it has three rotational
degrees of freedom) and no kind of twist can be prescribed.

The motivation for Criterion E of Sec. 2 is that the weak continuity of the twist
functional would play a fundamental role in a variational characterization of given problem
of elasticity. Such variational characterizations are important in the analysis of stability. It
is not evident from our development that our twist functionals of Sec. 3 and 4 make sense
when the position field p of Sec. 2 belongs to a Sobolev space W^B) of the sort used in the
study of variational problems of elasticity (cf. [3]). Indeed, there are serious technical
difficulties in the definition of the Jacobian (2.3) when p is in W,J(B) (cf. [3]). We can finesse
this important issue by making the following observations (cf. [1]). The twist functionals
are perfectly well-defined for each rod theory of an infinite hierarchy of increasing com-
plexity. The properties of the twist functionals support a proof of the existence of mini-
mizers for a large class of variational problems of nonlinearly elastic rods with the twist
functional fixed. These minimizers are classical solutions of the equilibrium equations. The
solutions of the rod problems have a subsequence generating approximations to the three-
dimensional theory that converges weakly to the minimizer for the three-dimensional
theory (known to exist by the work of [3]). Thus we can indirectly show that our twist
functionals are genuinely useful for three-dimensional problems.
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