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The Amborella Genome and the 
Evolution of Flowering Plants
Amborella Genome Project*†

Introduction: Darwin famously characterized the rapid rise and early diversifi cation of fl owering 
plants (angiosperms) in the fossil record as an “abominable mystery.” Identifying genomic changes 
that accompanied the origin of angiosperms is key to unraveling the molecular basis of biological 
innovations that contributed to their geologically near-instantaneous rise to ecological dominance.

Methods: We provide a draft genome for Amborella trichopoda, the single living representative of 
the sister lineage to all other extant fl owering plants and use phylogenomic and comparative genomic 
analyses to elucidate ancestral gene content and genome structure in the most recent common ances-
tor of all living angiosperms.

Results: We reveal that an ancient genome duplication predated angiosperm diversifi cation. How-
ever, unlike all other sequenced angiosperm genomes, the Amborella genome shows no evidence 
of more recent, lineage-specifi c genome duplications, making Amborella particularly well suited to 
help interpret genomic changes after polyploidy in other angiosperms. The remarkable conserva-
tion of gene order (synteny) among the genomes of Amborella and other angiosperms has enabled 
reconstruction of the ancestral gene arrangement in eudicots (~75% of all angiosperms). An ances-
tral angiosperm gene set was inferred to contain at least 14,000 protein-coding genes; subsequent 
changes in gene content and genome structure across disparate fl owering plant lineages are associ-
ated with the evolution of important crops and model species. Relative to nonangiosperm seed plants, 
1179 gene lineages fi rst appeared in association with the origin of the angiosperms. These include 
genes important in fl owering, wood formation, and responses to environmental stress. Unlike other 
angiosperms, the Amborella genome lacks evidence for recent transposon insertions while retaining 
ancient and divergent transposons. The genome harbors an abundance of atypical lineage-specifi c 
24-nucleotide microRNAs, with at least 27 regulatory microRNA families inferred to have been pres-
ent in the ancestral angiosperm. Population genomic analysis of 12 individuals from across the small 
native range of Amborella in New Caledonia reveals geographic structure with conservation implica-
tions, as well as both a recent genetic bottleneck and high levels of genome diversity.

Discussion: The Amborella genome is a pivotal reference for understanding genome and gene 
family evolution throughout angiosperm history. Genome structure and phylogenomic analyses 
indicate that the ancestral angiosperm was a polyploid with a large constellation of both novel and 
ancient genes that survived to play key roles in angiosperm biology.
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The Amborella Genome and the
Evolution of Flowering Plants
Amborella Genome Project*†

Amborella trichopoda is strongly supported as the single living species of the sister lineage to
all other extant flowering plants, providing a unique reference for inferring the genome content
and structure of the most recent common ancestor (MRCA) of living angiosperms. Sequencing
the Amborella genome, we identified an ancient genome duplication predating angiosperm
diversification, without evidence of subsequent, lineage-specific genome duplications. Comparisons
between Amborella and other angiosperms facilitated reconstruction of the ancestral angiosperm
gene content and gene order in the MRCA of core eudicots. We identify new gene families,
gene duplications, and floral protein-protein interactions that first appeared in the ancestral
angiosperm. Transposable elements in Amborella are ancient and highly divergent, with no
recent transposon radiations. Population genomic analysis across Amborella’s native range in
New Caledonia reveals a recent genetic bottleneck and geographic structure with conservation
implications.

T
he origin of angiosperms (flowering plants)

prompted one of Earth’s greatest terres-

trial radiations, famously characterized by

Charles Darwin as “an abominable mystery” (1).

The oldest angiosperm fossils date from 130 to

136 million years ago (Ma), but the crown age

for the angiosperms has been estimated to be

at least 160 Ma (2–7). The origin of the flower-

ing plants was followed by a rapid rise to ecolog-

ical dominance before the end of the Cretaceous.

Angiosperms have since diversified to at least

350,000 species, occupying nearly all terrestrial and

many aquatic environments. Angiosperms provide

the vast majority of human food and contribute

massively to global photosynthesis and carbon

sequestration. Understanding angiosperm evolu-

tion and diversification is therefore essential to

elucidating key processes that underlie the assem-

bly of biotic associations and entire ecosystems.

Paleobotany, phylogenetics, and developmen-

tal biology have dramatically reshaped views

of the origin and early diversification of angio-

sperms (8). Most phylogenetic analyses exam-

ining chloroplast (9–12), large multigene nuclear

(6, 13, 14), and chloroplast, mitochondrial, and

nuclear genes combined (15) strongly support

Amborella trichopoda, an understory shrub en-

demic to New Caledonia, as the single sister

species to all other extant angiosperms (Fig. 1)

(16). Sister lineages such as Amborella, when

compared with other key lineages, can provide

unique insights into ancestral characteristics, in-

cluding genome structure and gene content. Spe-

cifically, comparisons of the Amborella genome

reported here to other sequenced angiosperm ge-

nomes distinguish the genomic features of themost

recent common ancestor (MRCA) of all extant

flowering plants from those acquired later within

individual angiosperm lineages.

Genome Assembly and Annotation

The genome of Amborella was sequenced and

assembled using a whole-genome shotgun ap-

proach that combined more than 23 Gb of single-

and paired-end sequence data (~30×) obtained from

multiple sequencing platforms (table S1) (17, 18).

Our assembly comprises 5745 scaffolds totaling

706 Mb, 81% of an earlier genome size estimate

of 870 Mb (19) and 94% of our sequence-based

estimate of 748 Mb (17, 18), with a mean scaf-

fold length of 123 kb, an N50 length of 4.9 Mb,

and a maximum scaffold length of 16 Mb (table

S2). Ninety percent of the assembled genome is

contained in 155 scaffolds larger than 1.1 Mb.

We evaluated the quality of the assembly using

an integrated strategy of comparison with avail-

able finished bacterial artificial chromosome (BAC)

contig sequences (20), a BAC-based physical map

(20), fluorescence in situ hybridization (FISH),

and whole-genome (optical) mapping (18). Accu-

rate and nearly complete coverage of the regions

previously characterized through BAC sequencing

(20) and congruence (99%) with the available

physicalmap verify that the local contig assemblies

are of high quality. FISH-based mapping of scaf-

fold ends to chromosomes has thus far confirmed

306 Mb (44%) of the genome assembly (18).

Annotation of protein-coding genes and repet-

itive elements was performed with DAWGPAWS

(17, 21). Despite the different histories of ancient

whole-genomeduplication (WGD;paleopolyploidy),

the number of predicted protein-coding genes in

the Amborella genome is similar to the number

given in the most recent Arabidopsis thaliana ref-

erence genome annotation (TAIR10, http://www.

arabidopsis.org). EvidenceModeler (22) was used

to integrate gene annotations, producing 26,846

automated high-confidence gene predictions,

20,301 (76%) of which are supported by tran-

script evidence. Additionally, 17,089 gene models

contain one or more introns, with 86.9% of the

splice sites supported by transcript evidence. Re-

fined gene models were further curated through

manual comparisons with Amborella comple-

mentary DNA transcript assemblies, gene family

analyses, and homologous full-length genes from

other species (17). Many of the resulting gene

models included very long introns relative to other

annotated genomes [for example, mean intron

length is 1528 bp in Amborella, compared to 165,

966, and 1017 bp in Arabidopsis thaliana, grape

(Vitis vinifera), and Norway spruce (Picea abies),

respectively] (17). Annotated high-confidence

protein-coding gene models occupied 152 Mb

(~21.5% of the genome assembly), including

25.4 Mb of exon sequence. A conservative esti-

mate of 17,095 alternatively spliced protein iso-

forms was predicted for 6407 intron-containing

genes, and multiple splice site variants were in-

ferred for 37.5% of the genes with two or more

exons (17).

Gene body methylation is generally conserved

in monocots and eudicots (23) and has been hy-

pothesized to play an important regulatory role in

eukaryotic genomes, distinct from the silencing

of transposons (24). Whereas gene body methyl-

ation is not seen in mosses or lycophytes (25),

bisulfite sequence mapping indicates that gene

body methylation is prevalent in Amborella (fig.

S5), suggesting that it is an ancestral feature found

in the the MRCA of flowering plants.

Angiosperm-Wide Genome Duplication

Intragenomic syntenic analysis ofAmborella pro-

vides clear structural evidence of an ancient WGD

event. An Amborella versus Amborella structural

comparison shows numerous, duplicate colinear

genes (syntenic homeologs) (Fig. 2A and fig. S9).

Forty-seven intra-Amborella syntenic blocks were

identified containing 466 Amborella gene pairs

inferred to be descendants of thisWGD event (Fig.

2A and table S10). Syntenic blocks contain an av-

erage of 10 homeologous gene pairs, and the lon-

gest block contains 23 gene pairs. Collectively,

these 47 blocks include 6565 gene models (out of

26,846), indicating that about one-quarter of the

annotatedAmborella gene space maps to assembly

scaffolds exhibiting synteny-based signal for an

ancient WGD event.

Previous examinations of plant genomes have

shown that polyploidy has been a prominent fea-

ture in the evolutionary history of angiosperms

and that WGD events have had major impacts on

genome structure and gene family evolution

(7, 26–30). Althoughmost paleopolyploid events

detected to date are associated with specific an-

giosperm families or smaller clades, an older

paleohexaploidization (genome triplication),

referred to as gamma, has been confirmed in the

common ancestor of most eudicots (26–28, 30).

If the AmborellaWGD revealed in this study was

an internal, lineage-specific event, a 2:3 syntenic

depth ratio would be expected between Amborella

and Vitis. Instead, structural analysis shows a clear
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1:3 relationship of Amborella and Vitis syntenic

blocks that map to the gamma paleopolyploidy

(Fig. 2B and figs. S6 to S8), indicating that the

WGD detected in Amborella is not lineage-

specific and likely occurred in an ancient common

ancestor of the two species, thereby confirming

that the divergence of Amborella predates gamma

(20, 26, 27).

Phylogenomic analyses of 11,519 gene fam-

ilies confirm that dispersed, duplicated genes spe-

cific to Amborella are uncommon (282 nontandem

gene pairs), especially when compared to older

gene family expansions shared across angiosperm

or seed plant lineages (473 orthogroups with at

least 50% bootstrap support) (17). The age distri-

bution of the pre-angiosperm gene duplications is

bimodal (fig. S17), with the two peaks correspond-

ing to the same ancestral angiosperm (epsilon) and

ancestral seed plant (zeta) genome duplications

inferred in previous analyses based on transcriptome

data (7). Zeta has escaped syntenic detection in

this and other studies of angiosperm synteny, pre-

sumably because of extreme gene loss and re-

arrangements that have accumulated since this

hypothesized ancient event more than 300 Ma.

To confirm further that the syntenic, duplicated

blocks correspond to the same angiosperm-wide

duplications discovered through phylogenomics,

we manually curated six large duplicated blocks

(Fig. 2B and fig. S10). Phylogenetic analysis of

155 syntenic gene pairs from these large blocks

supports the placement of the epsilon genome

duplication on the branch leading to the MRCA

of extant angiosperms (77 of 155 gene trees re-

solved epsilon with bootstrap values of 80% or

greater; see table S11).

In summary, Amborella genome structure

demonstrates no evidence of WGD since this

lineage diverged from the rest of the angiosperms

at least 160 Ma. However, analyses indicate that

paralagous gene copies associated with the epsilon

WGD resulted from duplication shortly before

the diversification of all living angiosperms (7).

This event represents the most ancient WGD

known in plants for which structural evidence per-

sists. The Amborella genome therefore provides

a unique evolutionary reference for elucidating

genome content and structure in the MRCA of

extant angiosperms and for resolving the timing

of WGDs and single-gene losses and gains that

have contributed to the diversification of the

angiosperms (8).

Ancestral Gene Order in Core Eudicots

We combined scaffold-level information from

Amborella with chromosome-level data from the

eudicot rosid lineages of grape (V. vinifera), peach

(Prunus persica), and cacao (Theobroma cacao)

to reconstruct the hypothetical structure of seven

inferred pre-hexaploidization chromosomes in the

ancestor of the core eudicots. These three species

were chosen because they have retained struc-

turally similar genomes and clear patterns of

paralogy among syntenic gene copies (fig. S11),

enabling us to assign most genes to one of seven

groups of three homeologous chromosomes or

segments (26, 27, 30, 31). A comprehensive analy-

sis of Amborella and the three subgenomes from

the representative rosids (combining a number of

computational techniques) (29, 31, 32) enabled a

completely automated reconstruction of ancestral

gene order beyond the level of “contiguous an-

cestral regions” [compare (33)]. Figure 2C shows

the orthologous gene alignments between one of

the ancestral chromosomes, anAmborella genome

Fig. 1. Amborella is sister to all other
extant angiosperms. An overview of land
plant phylogeny is shown, including the rela-
tionships amongmajor lineages of angiosperms.
Representatives with sequenced genomes are
shown for most lineages (scientific names in
parentheses); however, basal angiosperms (all
of which lack genome sequences except for
Amborella) and nonflowering plant lineages
are indicated by their larger group names. Hy-
pothesized polyploidy events in land plant
evolution are overlaid on the phylogeny with
symbols. The red star indicates the common
ancestor of angiosperms and the evolutionary
timing of the epsilonWGD (7). The evolution-
ary timing of zeta (7) and gamma (26, 27, 82)
polyploidy events are shown with empty and
purple stars, respectively. The peach, cacao,
and grape genomes (purple text) were used
with the Amborella genome to reconstruct the
gene order in the pre-gamma core eudicot
(Fig. 2C). Additional polyploidy events are indi-
catedwith ellipses. Events supported by genome-
scale synteny analyses are filled, whereas those
supported only with frequency distributions of
paralogous gene pairs (Ks) or phylogenomic
analyses are empty (34–37, 83, 84).
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scaffold, and triplicated blocks of genes in the

rosid genomes. This analysis, which usesAmborella

as an outgroup to the three eudicot genomes,

would not have been possible without Amborella

or another (as yet undiscovered) non-eudicot ge-

nome that retains a large amount of syntenic signal.

The prevalence of WGDs in monocots and other

basal angiosperms (34–37) limits the possibility of

identifying such genomes. Similar patterns for all

seven ancestral core eudicot chromosomes (17)

illustrate the utility of the Amborella genome for

reconstructing ancestral genomes within the

angiosperms, thus clarifying the divergence of

subgenomes afterWGD events. In the case of the

reconstructed core eudicot ancestor, tracking the

syntenically retained descendant blocks in the three

rosids reveals a consistent pattern of subgenome

dominance (fig. S15). This pattern, which governs

the fractionation likelihood of gene triplets gen-

erated by the gamma event, is not evident from the

direct comparison of the extant genomes alone

and highlights the value of ancestral genome re-

constructions enabled by Amborella.

Ancestral Angiosperm Gene Content

Toassess the origin andhistory of angiospermgenes

using Amborella genes as an anchor, we clustered

protein-coding genes from22 sequenced land plant

genomes selected for their phylogenetic representa-

tion into 53,136 orthogroup clusters (narrowly de-

fined gene lineages; table S12), with annotations

provided by the associated pfam domain and full

Gene Ontology (GO) terms for genes contained in

these clusters (table S16). We further merged the

orthogroups into 6054 super-orthogroup clusters

representing more inclusively circumscribed gene

families (17). The broader circumscription of super-

orthogroups allows for the clustering of more diver-

gent homologs, thus increasing the likelihood that

they represent truly distinct gene families. Phylo-

genetic analyses of super-orthogroups can help

to root orthogroup phylogenies and resolve the

relationships among related orthogroups.

We estimated the ancestral gene content at key

nodes in land plant phylogeny and modeled the

changes of orthogroups occurring along each branch

(Fig. 3 and tables S13 to S15). The largest changes

in gene family content appear to have occurred

evolutionarily recently along terminal branches, or

are shared among closely related taxa, such as with-

in the tomato (Solanaceae) or crucifer (Brassicaceae)

families. Large numbers of orthogroup gainswere

also inferred along the deeper branches leading to

all angiosperms (3285 new orthogroups using par-

simony reconstruction) and to grasses (4281 new

orthogroups) (Fig. 3 and tables S13 to S15). How-

ever, because this analysis does not include ge-

nome sequences from ferns and gymnosperms, it

cannot distinguish between orthogroups originat-

ing with euphyllophytes (ferns plus seed plants),

seed plants, or angiosperms; consequently, all of

these orthogroups are reconstructed along the stem

branch leading to angiosperms. We sorted the in-

ferred gene set of the recently published Norway

spruce genome (38), plus gymnosperm and basal

Grape

Amborella

Amborella scf9
6.6-7.5 Mb

Amborella scf29
3.1-3.9 Mb

Grape chr15

19.6-20.0 M
b

Grape chr2
3.0-3.5 Mb Grape chr16

17.2-16.8 Mb

Grape chr8
15.6-15.8 Mb

Grape chr6
6.6-6.7 Mb

Grape chr13

4.2-4.3 M
b

A 

B 

C 

Fig. 2. Synteny analysis of Amborella. (A) High-resolution analysis of Amborella-Amborella intra-
genomic syntenic regions putatively derived from the ancestral angiosperm (epsilon) WGD. Note the
series of colinear genes between the two regions. Intragenomic syntenic regions from Amborella are
shown when scaffolds are compared and appear as a series of colinear genes between the two regions. (B)
Macrosynteny and microsynteny between genomic regions in Amborella and grape. Top: Macrosynteny
patterns between grape and Amborella and within Amborella scaffolds (only scaffolds 1 to 100 are
shown). Each Amborella region aligns with up to three regions in grape that resulted from the gamma
hexaploidization event in early core eudicots (27). Syntenic regions within the Amborella genome were
derived from the epsilonWGD before the origin of all extant angiosperms (7). An exemplar set of blocks,
showing two homeologous Amborella regions derived from this early WGD, aligns to three distinct grape
regions (derived from gamma), with eight parallel regions in total. Bottom: Microsynteny is shown among
the eight regions (noted above). Blocks represent genes with orientation on the same strand (blue) or
reverse strand (green); shades represent matching gene pairs. (C) Gene order alignments between one of
the seven hypothesized ancestral core eudicot chromosomes (blue bar), the three post-hexaploidization
copies of this chromosome for peach, cacao, and grape chromosomes descending from it (top of figure),
and a subset of the Amborella scaffolds (green, bottom of figure). Similar configurations were obtained for
the other six ancestral chromosomes.
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angiosperm transcript assemblies, into this gene

classification, andmanually reevaluated the origin

of orthogroups around the MRCAs of seed plants

and angiosperms, thereby resolving or refining the

origin of 5210 orthogroups, 1179 (23%) of which

are specific to angiosperms or have diverged suffi-

ciently such that none of the gymnosperm homo-

logs were detected, with 4031 (77%) present in

the MRCA of seed plants (table S13).

The large number of orthogroups first appear-

ing in angiosperms suggests that a diverse collec-

tion of novel gene functions was likely associated

with the origin of flowering plants. Analyses of

GO annotations for genes in angiosperm-derived

orthogroups revealed the origin of orthogroups

with functions associated with key innovations

defining the flowering plant clade (table S16) (17).

GO annotations related to reproduction (flower

development, reproductive developmental process,

pollination, and similar terms), including MADS-

box gene lineages (see below), were overrepre-

sented in this set of orthogroups. Genes with roles

in Arabidopsis floral development (table S17) are

included in 201 orthogroups, 18 of which were

evolutionarilyderived in theMRCAofangiosperms.

Significant enrichments were also observed for

several classes of regulatory genes (transcription,

regulation of gene expression and of cellular, bio-

chemical, andmetabolic processes) aswell as genes

involved in various developmental processes.

These include genes involved in carpel develop-

ment (CRABS CLAW), endosperm development

(AGL62), stem cell maintenance in meristems

(WUSCHEL), and flowering time (FRIGIDA),

suggesting that they might be key components

underlying the origin of the flower.

Once a functional flower evolved, genetic in-

novations related to reproductive biology con-

tinued. Indeed, many gene lineages with genes

inferred to have specific stamen (39), carpel (39),

and ovule (40) functions apparently arose after

the origin of angiosperms, within evolutionarily

derived angiosperm lineages (table S18).

Whereas the origin of the flower may be partly

explained by novel gene lineages that first appeared

with the origin of the angiosperms, other floral genes,

including putative B-class (that is, petal- and stamen-

specific) gene targets (41), predate the origin of an-

giosperms. More than 70% of the gene lineages

with known roles in flowering, including genes in-

volved in floral timing and initiation (CO, SOC1,

VIN3,VEL1), meristem identity (ULT1, TFL2), and

floral structure (AFO, AP2, ETT, HUA2, HEN4,

KAN, RPL, JAG), were present in the MRCA of

all extant seed plants (table S16) (17). Orthogroups

for other major components of the floral regulatory

pathway are older still, with core components of the

pathway present in the ancestral vascular plant

(for example,LFY, phytochromes,CLV,SKP1,GA1,

SEU, HEN1, and FVE).

Together, these observations suggest that

orthologs of most floral genes existed long before

their specific roles were established in flowering,

and that theywere later co-opted to serve floral func-

tions. After the origin of angiosperms, new genes

originated or were recruited to refine or more nar-

rowly parse functions associated with flower devel-

opment. This pattern is consistentwith theobservation

that the floral organ transcriptional program is cana-

lized (entrained) in eudicots relative to the less organ-

constrained transcriptomes of earlier-diverging, less

species-diverse angiosperm lineages (42).

Many of the novel gene lineages that first

arose in angiosperms play no specific role in

reproductive processes. Orthogroups containing

genes with specific functions in vessel formation

(VND7 and NAC083) also first appeared at this

time, even though Amborella does not produce

vessels, but only tracheids (see below). Perhaps

surprisingly, the most highly enriched GO terms in

orthogroups derived in angiosperms were asso-

ciated with homeostatic processes (GO:0042592;

18.9-fold enrichment). Relevant to the impor-

tance of plant-herbivore coevolution in the diver-

sification of angiosperms and insects (43, 44), the

next most highly enriched GO classification was

for genes involved in response to external stimuli

(GO:0009605; 10.9-fold enrichment), including

those with expression elicited by herbivory.

Enrichment patterns for functional categories

were similar in the ancestral seed plant and an-

cestral angiosperm (table S16), including novel

lineages of genes involved in reproductive, regu-

latory, and developmental processes. GO classi-

fications associated with pollen-pistil interaction

and epigenetic modification were enriched in or-

thogroups arising on the branch leading to seed

plants, but not in the lineage leading to the an-

cestral angiosperm (table S16), the former per-

haps indicating that some angiosperm-specific

reproductive features predated angiospermous (en-

closed ovule) reproduction.

Gene Family Expansions in Angiosperms

Expansions of many gene families are evident in

Amborella, and phylogenetic analyses indicate that

such expansions occurred in the ancestral angio-

sperm, accompanying innovations associated with

angiosperm origin. UsingAmborella as a reference,

we examined patterns of gene family diversification

in angiosperm evolution, often in association with

phenotypic divergence among angiosperm lineages.

MADS-Box Genes

MADS-box transcription factors are among the

most important regulators of flower development.

The Amborella genome encodes 36 MADS-box

genes (table S19) (17), fewer than in other angio-

sperms (for example, Arabidopsis and rice), but

consistent with the lack of a lineage-specificWGD.

These genes belong to 21 clades, each of which

includes genes from at least one othermajor lineage

of angiosperms, implying that a minimum set of 21

MADS-box genes existed in the MRCA of extant

angiosperms (figs. S19 and S20). The Amborella

genome reveals that floral organ identity genes from

eightmajor lineages (that is,AP1/SQUA,AP3/DEF,

PI/GLO, AG, STK, AGL2/SEP1,AGL9/SEP3, and

AGL6; Fig. 4A) existed in the MRCA of extant an-

giosperms and were likely derived from three an-

cestral lineages in the MRCA of extant seed plants.

These data support the hypothesis that duplication

and diversification of floral MADS-box genes like-

ly occurred before the origin of extant angiosperms,

despite being tightly associated with the origin of

the flower. Furthermore, the previously presumed

monocot-specific OsMADS32 and eudicot-specific

TM8 gene lineages (fig. S20) (45–47) have orthologs

inAmborella, suggesting that theywere likely present

in the earliest angiosperms and were subsequently

lost in eudicots or monocots, respectively.

Fig. 3. Ancestral recon-
structionof gene family
content in land plants.
Orthogroup gains and
losses are inferred from
theglobalgene family clas-
sification of proteins from
sequenced plant genomes
using aWagner parsimony
framework (17). Triangles
are proportional to the
numberoforthogroupgains
(green) and losses (orange).
Actual values for the gains
and losses in this analysis
are provided in table S14;
an analogous likelihood-
based analysis is provided
in table S15.
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MADS-box transcription factors in floral de-

velopment form dimers or higher-level complexes

that bind to their targets withmore complex patterns

than those in gymnosperms (48). We conducted a

comprehensive series of yeast two-hybrid assays

among the Amborella floral MADS-box transcrip-

tion factors. The protein-protein interaction (PPI)

patterns in Amborella (fig. S21) are generally con-

sistent with those in other angiosperms, and show

clear differences from those in gymnosperms. For

example, theB-functionAP3/DEFandPI/GLOgenes

represent duplicate lineages in early angiosperms,

arising after the divergence from the gymnosperms.

TheAmborellaAP3and PI homologs form hetero-

dimers, as in other angiosperms, whereas the single

AP3/PI homologs in gymnosperms formonly homo-

dimers, with heterodimers only occurring between

recent duplicates of the AP3/PI homologs (Fig.

4B). B function is essential for the development

of petals and other petal-like organs, which rep-

resent one of the most prominent novel floral fea-

tures and exhibit extraordinary diversity in form;

therefore, evolutionary shifts in PPI patterns after

gene duplications, along with changes in gene se-

quence and expression patterns, likely have been

crucial for functional innovations in the regulatory

network for reproductive organ development and

the origin of the flower (49), aswell as for functional

diversification of the many floral forms among

lineages of angiosperms (50).

Glycogen Synthase Kinase 3 (GSK3) genes

GSK3 genes encode signal transduction proteins

with roles in a variety of biological processes in

eukaryotes. In contrast to their low copy numbers

in animals, GSK3 genes are numerous in land

plants and have diverse functions, including flo-

ral development in angiosperms (51). FiveGSK3

loci that were present in the ancestral angiosperm

have subsequently diversified among major angio-

sperm lineages, but a sixth ancestral locus has been

detected only inAmborella (fig. S22). Thus, among

flowering plants, Amborella alone may contain all

theGSK3 gene lineages that arose before the origin

of extant angiosperms, underscoring the impor-

tance ofAmborella for reconstructing the ancestral

angiosperm genome (52).

Seed Storage Globulins

Seed storage proteins, including globulins, are crit-

ical for embryo and early seedling development in

seed plants. These proteins are embedded in the

very diverse cupin superfamily, which is distributed

across the tree of life (53). The 11S legumin-type

globulins are widespread across the seed plant phy-

logeny [for example, (54–56)]. Three distinct 11S

legumin-type globulins have been identified in

proteomic analyses of the globulin fraction in

Amborella seeds (table S21) (17). Comparisons of

the Amborella globulin-coding gene sequences to

other seed plants revealed that key cysteine residues

contributing to disulfide bonding between subunits

and the absenceof Intron IV, found in gymnosperms,

are conserved characteristics of angiosperm legu-

mins (fig. S25). In contrast, a conserved 52-residue

region present in soybean, and thought to be impor-

tant for mature hexamer formation (57), was ap-

parently derived after the divergence of Amborella

from other angiosperms (fig. S26). Globally, both

structural (fig. S26) and phylogenetic (fig. S27 and

table S22) analyses support the view thatAmborella

11S globulins can both be reminiscent of those in

monocots and eudicots and exhibit specific fea-

tures of corresponding seed storage proteins in

basal angiosperms and gymnosperms.

Terpene Synthase Genes

Terpenoids constitute the largest class of plant sec-

ondary metabolites and play important roles in plant

ecological interactions (58). Biosynthesis of plant

terpenoids is driven by terpene synthases (TPS). The

Amborella TPS family contains more than 30mem-

bers, comparable in size to thoseofother angiosperms.

However, the sesquiterpene synthase subfamily a

(TPS-a), which is present in dicots, monocots, and

Magnoliaceae but absent in gymnosperms and non-

seed plants (59), is also absent in Amborella (fig.

S28) (17). This indicates that the occurrence and

diversification of this subfamily likely happened

after the divergence ofAmborella fromother angio-

sperms, although its presence or absence in other

basal angiosperms still needs to be established.

Sesquiterpene synthases are involved in the pro-

duction of C15 terpenoids, which are involved in

diverse biological processes including the pro-

duction of floral scents used to attract pollinators.

Amborella lacks any detectable floral volatiles

(60), and the expansion of the TPS-a subfamily

may therefore have played an important role in

the subsequent radiation of flowering plants.

Cell Wall and Lignin Genes

Secondary cell walls ofwoody plants contain lignin

(61), facilitating water transport and mechanical

support in xylem (62).Most gymnosperms (cycads,

A B

Fig. 4. Amborella as the reference for understanding the molecular
developmental genetics of flower evolution. (A) A schematic diagram show-
ing the evolutionary history of floral MADS-box genes. Note that all of the eight
major gene lineages existed in the MRCA of extant angiosperms. (B) Evolutionary
changes in the ability of B-class MADS-box proteins to form homodimers and

heterodimers. In gymnosperms, the proteins of B-class genes can only form
homodimers or semi-homodimers (that is, heterodimers formed by products of
recently duplicated genes), whereas in the MRCA of extant angiosperms, they
gained the ability to form heterodimers between members of different lineages.
The interrupted lines represent previously described gene loss events (85, 86).
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Ginkgo, and conifers) have a predominant guaiacyl

(G) subunit type of lignin, whereas the gnetophytes

(<100 species) and the woody angiosperms have a

lignin characterized by a copolymer of syringyl

S and G subunits (S/G lignin). S/G lignin has also

been found in the lycophyte Selaginella moel-

lendorf f ii, suggesting that S/G lignin may have

evolved more than once in plant evolution (63). S/G

lignin is associatedwith cells involved inmechanical

support, whereasG-type lignin has been associated

with water transport (64). Amborella produces an

S/G type of lignin, but the relative proportion of S

subunits ismuch lower (13%) than values typical of

woody angiosperms (50 to 70%) (tables S24 to S26).

The low S/G ratio of Amborellamight represent an

ancestral condition that was transitional between

gymnosperms and other angiosperms. However,

the underlying genes of lignin precursor biosyn-

thesis in Amborella are typical of woody angio-

sperms (table S27 and fig. S29, A toH). Although

Amborella lacks vessels, in contrast to nearly all

other angiosperms (65), the wood cell walls of

Amborella are xylan-rich (table S24), typical of

angiosperms (66). Amborella contains all of the

carbohydrate-active enzyme families found in an-

giosperms (table S28) (67), but lacks many of the

more derived clades of genes seen in other angio-

sperms. Indeed, much of the diversity of cell wall

genes in angiosperms (for example, glycosyl-

transferase family 37; fig. S25) appears to re-

sult from gene duplication after the divergence

of Amborella from other angiosperms.

Transposable Element Content in Amborella

As in the Norway spruce genome (38), the av-

erage age of identifiable transposable elements

(TEs) in Amborella is considerably older than

that of other angiosperm genomes [for example,

(68–70)]. Likewise, ancient, full-length long ter-

minal repeat (LTR) retrotransposons were iden-

tifiable in Amborella more than an estimated

40 million years after insertion (17). Wicker et al.

(71) established the convention of separating

LTR retrotransposons exhibiting more than 80%

divergence in their terminal repeats into distinct

families, but nearly 10% of individual Amborella

LTR elements show a greater degree of diver-

gence between their terminal repeats. Therefore,

we used a clustering approach to circumscribe

TE families. Median estimated insertion times for

LTR subfamilies with two or more detectable

TEs ranged from 4.0 to 17.6 Ma. A large class of

Gypsy LTR retrotransposons with 502 annotated

TEs experienced the most recent burst of activity

0.5 Ma (Fig. 5) (17). Endogenous pararetrovi-

ruses (EPRVs) were a relatively large component

of the repeat landscape, comprising 2.4% of the

assembledAmborella genome. Similar to Sorghum

bicolor, which has a comparable genome size, TEs

and EPRVs account for 57.2% of the nonam-

biguous nucleotides in the Amborella genome

(668 Mb, table S30), but TE insertion times es-

timated for the Amborella genome are much older

than inferred for Sorghum (64). Only four of the

common superclasses of DNA TEs were ob-

served (table S30); CACTA and TC1/Mariner-

type elements were not detected. Most DNATEs

were highly degraded, with highly divergent se-

quences and missing terminal inverted repeats,

again suggesting the persistence of identifiable

elements over millions of years. The lack of re-

cent transposon activity in theAmborella genome

may be due to very effective silencing or the loss

of active transposases.

Evolution of Small RNAs

More than 56,000 discrete loci generating apparent

regulatory small RNAs 20 to 24 nucleotides (nt) in

size were identified by analysis of small RNA-seq

data (17). Most small RNA loci had features con-

sistent with those of heterochromatic small in-

terfering RNAs (siRNAs) (24), indicating that

heterochromatic siRNAs were present in the

MRCA of all angiosperms. We also identified

124 MIRNA loci corresponding to 90 distinct

families; 27 of thesemicroRNA (miRNA) families,

including 5 newly discovered ones, were likely

present in the ancestral angiosperm.Most of these

families (19 of them) are broadly conserved in other

angiosperms, whereas 8 have evidence suggestive

of later losses during angiosperm diversification.

Inferred targets of the ancestral miRNA families

were generally homologous to known miRNA-

target relationships in other angiosperms, dem-

onstrating that these relationships have been

conserved since the earliest angiosperms despite

the one-to-several rounds of polyploidy that

separate Amborella from most other flowering

plants. The other 63 miRNA families appear to

be lineage-specific, and we could verify targets

for just 14 of them. Surprisingly, most (78%) of

Fig. 5. Classification and in-
sertion dates of LTR trans-
posons in the Amborella

genome. Gypsy (A) and Copia
(B) LTR transposons are clus-
tered into putative families, and
individual elements are colored
by their estimated insertiondates.
Cool colors (for example, blue)
representolder insertions,whereas
warm colors (for example, red)
representmore recent insertion
dates. (C) Although some LTR
transposon families have been
active over the last 5 million
years (for example, the large
Gypsy cluster), the estimated in-
sertion dates for the majority of
elements are more than 10 Ma.
See (17) formedian insertiondates
for each cluster (table S29s).

A

B

C 2
5
0

2
0
0

1
5
0

F
re

q
u
e
n
c
y

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F
n
(x

)

1
0
0

5
0

0

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

20 DECEMBER 2013 VOL 342 SCIENCE www.sciencemag.org1241089-6

RESEARCH ARTICLE



these lineage-specific miRNAs were 23 to 24 nt

in size, rather than the 20- to 22-nt size typical of

plant miRNAs. In contrast, none of the conserved

miRNAs were 23 to 24 nt in size. The frequency

of 23- to 24-nt miRNAs in Amborella is higher

(>2×) than for any other land plant reported. Similar

to the results forMedicago (72) and members of

Solanaceae (73, 74), several phased siRNA loci

were nucleotide binding site–leucine-rich repeat

(NB-LRR) disease resistance genes targeted by

miRNAs in the miR482/2118 superfamily. There-

fore, phased siRNAproduction fromNB-LRRgenes

was likely present in the MRCA of angiosperms.

Population Genomics and

Conservation Implications

Amborella is restricted to wet tropical forests on

isolated slopes of New Caledonia. The genomes

of 12 individuals of Amborella, sampled from

nearly all known populations, were resequenced

to assess the levels and patterns of genetic var-

iation within this endemic species. These 12 indi-

viduals harbor levels of genetic diversity (qw =

0.0017, p = 0.0021) similar to those reported for

species of Populus, which are also outcrossing pe-

rennials (table S45). The averageTajima’sD across

the genome (75) is positive (D = 0.8137), perhaps

indicating balancing selection, although demo-

graphic processes such as population subdivision,

a recent bottleneck, ormigration can also produce a

positive value. However, the genome exhibits sig-

nificant among-locus and among-scaffold variance

in allelic variation (fig. S40). Some regions, such

as scaffold 1, are highly polymorphic and heteroge-

neous across their length, whereas other regions are

nearly invariant with negative Tajima’s D (for ex-

ample, scaffold 31; fig. S40), consistent with multi-

ple alternative explanations, such as recent selective

sweeps and/or a mixed mating system.

The overall positive value of Tajima’sD is con-

sistent with a decrease in population size through

time, as also demonstrated by an analysis of pop-

ulation genomic history using the pairwise sequen-

tially Markovian coalescent (PSMC) (76) model,

which has recently been applied to plant genomes

(77). PSMC analysis of all 14Amborella individuals,

including the reference genome, the cultivated Bonn

specimen, and the 12 locality-specific exemplars

(Fig. 6A), reveals that the variation present in these

modern genomes coalesces between 0.9 and 2 Ma.

Confidence intervals for PSMC analyses of each

individual are consistent with the hypothesis that at

least two distinct Amborella sublineages with differ-

ent levels of genetic diversity converged by 800,000

years ago, followed by admixture and a subsequent

bottleneck event between 300,000 and 400,000 years

ago, and by some recovery of genetic diversity there-

after. Amborellamay therefore have undergone a

series of population bottlenecks over thepast 900,000

years, including one as recent as 100,000 years ago,

represented by individual NCNAA (Fig. 6A). At

the time of putative sublineage admixture (vertical

line), effective population size (Ne), as averaged

among all sequenced accessions, approximated

37,500 individuals, whereas in the recent event in

NCNAA’s past (where the PSMC plot reaches the

ordinate axis), Ne may have been much lower at

5000 individuals or less (Fig. 6A). The reduction in

Ne associated with any of these bottlenecks could

have contributed to increased genetic structure

among populations and linkage disequilibrium

(LD). Increased LD may contribute to the size

and persistence of genomic regions affected by

selective sweeps, if they have occurred. Further

analyses, with greater population sampling, are

needed to distinguish the relative roles of selec-

tion, inbreeding, and other processes in shaping

genome variability in Amborella.

Genetic variation among Amborella popula-

tions is significantly structured into four geograph-

ic clusters of populations on New Caledonia (Fig.

6B), corresponding roughly to populations in (i)

the northern part of the range (blue cluster), (ii)

the central part of the range (red cluster), (iii) a

small region west of cluster 2, and (iv) a single

disjunct location at the southern end of the dis-

tribution. These results are consistent with an in-

dependent analysis and extensive sampling of the

12 populations using microsatellite loci (78).

Population genomic analyses tell a tale of dy-

namic genome evolution in this narrowly distrib-

uted plant species, the sole extant member of a

lineage that shared a common ancestor with all

other extant angiosperms about 160 Ma. Despite

its restricted distribution,Amborellamaintains sub-

stantial genetic diversity, with substructure among

four population clusters. As ongoing effects of an

expanding human population (for example, min-

ing operations, fires, urbanization, and invasive

species introduction) threaten the unique flora of

this biodiversity hotspot, conservation efforts in

New Caledonia should focus on preserving and

managing the genetic diversity ofNewCaledonia’s

endemic species, including A. trichopoda.

Conclusions

The phylogenetic position, conservation of ge-

nome structure, and absence of a lineage-specific

polyploidy event havemade theAmborella genome

a unique and valuable reference that facilitates in-

terpretation of major genomic events in flowering

plant evolution, including the polyploid origin of

angiosperms and a genomic hexaploidization event

in eudicots. Amborella has enabled the identifi-

cation of an ancestral gene set for angiosperms of

at least 10,088 genes, includingmany that resulted

from the ancestral angiosperm genome duplica-

tion, thereby helping to elucidate the origin of

genes critical in flowering and other processes.

The ancestral angiosperm-wide genome duplica-

tion apparent in the Amborella genome not only

serves as a genetic marker for the origin of extant

angiosperms, but it may also have set in motion a

Fig.6.Populationgenomic
diversity in Amborella.
(A) Plots of PSMC results
for 14 individuals: 12 from
separate populations on
Grande-Terre, NewCaledonia,
the reference genome (Santa
Cruz), and an additional cul-
tivated individual (Bonn),
indicated in the color panel
(right) and with bootstrap
clouds (for eachgenomeana-
lyzed) co-plotted in green.
Times more recent than
105 years, where PSMC can
be less reliable, are ex-
cluded. A vertical bar is
drawn over the plot at about
325,000 years before present
to indicate the timing of
species-wide decline of
effective population size,
interpreted as a genetic
bottleneck. (B) Results of
STRUCTUREanalysis, show-
ing four significant genetic
clusters of 12 individuals
from natural populations.
Additionally, the cultivated
individual from the Bonn
BotanicalGardenand the ref-
erence genome (Santa Cruz)
are clustered with individuals
from Mé Foméchawa and
Mé Ori [see (17)].
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series of events as numerous genes evolved novel

functions, eventually leading to modern flowering

plants. As the only extant member of an ancient

lineage, Amborella provides a unique window into

the earliest events in angiosperm evolution.

Materials and Methods

Sequencing and Assembly

Plant material for the reference genome sequence

was obtained from a plant in cultivation since

1975 at the University of California at Santa Cruz

Botanical Garden and additional clones located at

the Atlanta Botanic Garden and the University of

Florida. Single end genomic 454-FLX and SE

454-FLX+, DNA sequences, 11-kb paired-end

454-FLX reads, 3-kb PE Illumina HiSeq reads,

and Sanger sequenced BAC end sequence reads

were filtered to remove organellar contaminants,

reads of short length or poor quality, artificial dupli-

cates, and chimeras. After filtering, the read collec-

tion was pooled and assembled with the Roche

Newbler assembler V2.6 [see (18) for details].

Genome Annotation and
Database Development

Protein-coding genes, transposons, and endoge-

nous viral sequences within the assembled ge-

nome were annotated iteratively using a variety

of homology-based and de novo prediction al-

gorithms integrated within the DAWGPAWS

package (21). Initial gene model and transposon

annotations were curated, and refined models

were used to train ab initio prediction programs.

The PASA annotation pipeline (79) was used to

identify and classify alternative splicing events

by aligning Newbler assembled 454 and Sanger

expressed sequence tags (ESTs) and Trinity RNA-

Seq assemblies. Three small RNA libraries and

two degradome libraries were sequenced and used

for annotation of small RNA–producing loci (in-

cluding miRNAs, phased siRNAs, and hetero-

chromatic siRNAs) and their targets. All resulting

gene and transposon predictions, as well as alter-

native splicing annotations, have been placed in

appropriate databases accessible through the

AmborellaGenomeDatabase (http://www.amborella.

org/) and National Center for Biotechnology In-

formation (NCBI) (BioProject PRJNA212863).

Cytogenetics

Fluorescently labeled BACs were applied to mi-

totic chromosome spreads from root tips following

Kato et al. (80). A Zeiss Axio Imager.M2 fluores-

cence microscope with an X-Cite Series 120 Q

Lamp (EXFOLife Sciences) was used for visual-

ization, and images were captured with a 100× ob-

jec7tive lens and a microscope-mounted

AxioCam MRm digital camera (Zeiss) in con-

junction with Axiovision version 4.8 software

(Zeiss).

Synteny Analyses

For uncovering within-genome WGDs, we used

the SynMap tool in the online CoGe portal (http://

genomevolution.org/CoGe/), specifying aminimum

number of colinear genes per window size to de-

fine putative syntenic regions. These regions were

subsequently compared and confirmed using the

microsynteny tool GEvo, also in CoGe. Blocks

determined to represent the pan-angiosperm du-

plication event were further studied using phylo-

genomicmethods to ascertainwhether duplication

patterns on trees concurred with a region-wide du-

plication model.

Scaffolds containing up to 10 orthologous

and paralogous genes in common syntenic con-

text fromAmborella and three gamma subgenomes

of three rosids were ordered using maximum

weight matching to produce a hypothetical an-

cestral core eudicot genome with seven chromo-

somes. Each of the subgenomes mapped to

virtually the whole length of the appropriate

reconstructed chromosome. The reconstructed

genes show a much clearer pattern of pan-rosid

fractionation bias in extant genomes than is ap-

parentwithout evidence derived from theAmborella

genome scaffolds.

Global Gene Family Circumscription
and Analysis

A global plant gene family classification was

created using OrthoMCL (81) for the annotated

protein set of Amborella and 21 other land plant

genomes. The gene families (orthogroups) were

populatedwith the genemodels from theNorway

spruce genome and a large collection of EST as-

semblies from basal angiosperms and other gym-

nosperms. We analyzed the evolutionary history

of gain and loss of orthogroups and estimated the

gene families present in theMRCA of living angio-

sperms using both parsimony and likelihood meth-

ods. Genome-wide analyses were performed, as

well as more focused studies of genes with roles in

flower development.

To study the history of ancient gene duplica-

tions in angiosperms and seed plants, we per-

formedmaximum likelihood phylogenetic analysis

of 11,519 orthogroups that contained Amborella

genes. Gene duplications were scored on the

basis of taxa present in the daughter lineages to

identify angiosperm-wide, seed plant–wide, and

Amborella-specific gene duplications (7). Pos-

sible genome duplications were identified from

statistically significant peaks in the distributions

of synonymous divergences and estimated ages of

gene duplication events. Six of the largest syn-

tenic blocks in the Amborella genome were also

used for manual curation of syntenic duplicates

and phylogenetic analysis of gene families con-

taining duplicated genes present on paralogous

genomic blocks.

Targeted Gene Family Analyses

To illustrate the value of the Amborella genome

as a reference for understanding the evolutionary

history of gene families associated with angio-

sperm innovations or divergence among angio-

sperm lineages, we examined the phylogenetic

history of MADS-box, GSK3, TPS, and cell wall

and lignin genes. Yeast two-hybrid analysis of

MADS-box proteins in Amborella was used to

identify heterodimeric PPIs found only in angio-

sperms. Proteomic and phylogenetic analysis of

seed storage globulin proteins validated protein-

coding gene models as well as examined protein

features that separate angiosperms from earlier

land plant lineages.

Population Genomics

To assess the levels and patterns of genetic var-

iation within A. trichopoda, we sequenced the

genomes of 12 individuals representing nearly all

of the known natural populations of the species,

the reference plant, and an additional accession

from theBonnBotanical Garden. Sequenceswere

mapped to the reference genome using BWA.We

used basic population genetic measures to infer

levels of diversity and applied the PSMC model,

originally applied to human and othermammalian

genomes, to study the effective population size (Ne)

of Amborella over time. Genetic divergence among

populations was assessed using STRUCTURE.
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