
THE AMCAD REAL-TIME MULTIPROCESSOR OPERATING SYSTEM

Michael S. Rottman, lLt, USAF
Daniel B. Thompson

Wright Research and Development Center (WRDC/FIGLB)
Wright-Patterson Air Force Base, OH

Abstract

The Flight control Division of the Air Force
Flight m c s Laboratory has been
the wlication of fault tolerant miltiprocessor
arrhitectures and software to flight control and
vehicle "gem& systes. The pdvanced Multi-
processor control Architecture DevelolJQlent (AMCAD)
in-hmse project has develaped a R e a l - T h
Multiprocessor operating System (FUMX) t;uqeted
for the AMCAD laboratoq testbed. The FUMX is
similar in structure to canmercidl real-time
operating systems, but has been exprded to
support. coarse grained multiprccessing, the
reconfiguration of the workload in case of
processor failure, and - I s goal of hiding
m t e c t u r e specifics from the applications
prograrmner: RLis paper will discuss the structure
and capabilities of the m, as well as the
intertask d c a t i o n s protocols and structures
and the application programmer interface.

1 Introduction

The Flight control Division of the Air Force
Flight Dynamics Laboratory has been researching
fault tolerant multiprocessor arch i tec tw~~ since
the early 1980s. This work kegan with the
Contirumsly Reconfiguring Multi-Micmprocessor
Flight Control System (m) in-house project,
which exarmned ' the potential benefits of pooled
sparing, reconfiguration, and parallel processing
as applied to flight/vehicle control. The
Advanced Multiprocessor Control Architecture
tkve1qxm-k (m) program has continued the
CEWGXS researrh, further maturing and developing
key technologies. Again performed in-house by
Flight Control Division engineers, the AMCAD
program is pruducing a testbed system to
demonstrate the architectural concepts and provide
a basis for further research. A key element of
the AMCAD researrh has been the devel-t of the
W-l'ime Multiprocessor operating System (FUMX) .
The w e t of the IUXX is the AMCAD laboratory
testbed. " h i s paper begins with a brief werview
of the host AMCAD architecure. The structure and
features of the KI~KE as inplemented for the AMCAD
testbed system will be discussed. Finally, the
arrent status and future plans for the HIMos will
be described.

2 AMCAD overview

' Ihis section provides a brief overview of the
It is not meant to be a

Z - T L t i o n of these colloepts,
of whid~ is cutside the scope of this paper. More
detailed descriptions of the overall system are
presented el- [l-51.

lhe primary objective of the AMCAD project is
to prwvick the ccmpltational pxer and reliability
needed for flight control and vehicle mnagement
systems while reducing the amount of required
mintemme . lb achieve these goals, AMCAD seeks
to break away fran amventional quad and triplex
r&"t ar&itedures and use instead a fault
tolerant miltiprocessor configuration featuring
lxlndedicated (software-ma@) redundancy, pooled
sparing, and pardllel p-ing. lhe
architecture was developed to be eqmflable and
adaptable to emerging military processor, bus, and
high order p r " h g language standards.

lhe AMCAD architecture is based upon modules
consisting of miltiple general
micrcprocessom, memory, and a bus interface m t
(X U) . Each processor has its own backplane and
BIU access port., Processors in a module are
omputationally mdependent, but can W " o w n "
(isolate fran the bus) faulty processors within
that module. The modules are conneded by a
linear token passing bus network. This hs
network is nulti-level (hierarchical) for
F i l i t y and fault containment partitioning,
with miltiple busses per level (Figure 1).

Multiple busses per level m-
-J

Figure 1. Multiple levels of bussing wtlh multiple busses per level

levels

1813

U.S. Government work not protected by U.S. copyright.

Now of the processors is physically
dedicated to redundant captation; they serve
instead as a pool of ccprpxltational resources which
m y be used for parallel prccessing, multiple
inclependent ccarpxltations, or redundant amptation
if needed. Likewise, the multiple busses per
level are not physically redundant. thta
camnunications can be distributed acrOSS the
multiple hsses, allowing graceful degradation in
case of a bus failure.

A critical concept in the AMCAD developnent
is that of logical or nonddcatd nxkmhxy.
Rsdundant W-"elsqg of amputation can be
software maFped acIoss the multiple processors to
pmvide reliability in the presence of hardware
faults. Faults are masked by voting the results
of the redundant cmptations, allawing correct
operation despite failures. If a processor
performing part of a redundant canputation fails,
the total workload is redistributed to reestablish
the redumkmt ccarpxtation. A description of
logical redundancy in the AM= architecture is
given in [5].

Tasks cxmnunicate through the Virtual ca"0n
M e m r y (VCM), a concept which originatd in the
CF3MFKS work. An identical copy of *gshared
memory" is placed local to each processor.
Brmdcast buss- is used to transfer data items
to each processing module. This allaws cammni-
cations to be done task-*task through the VCM
rather than prooessor-to-processor. All read
operations are local, providing fast access to
data and eliminating the shared memory bottleneck.
Data in the VCM is protected f m contamination by
a segmentation &erne in which the proper key
value is requird for write-access to a segment.

One goal in the development of the AMCAD
archi- was to make the physical con-
figuration transparent to the applications
p r q " ~ . Each processor has an identical copy
of the operating system and applications software.
All data is locally available to all processors
(thmugh the VCM). Tasks umnnunicate by sending
messages to and reading messages from the VCM. As
a result, applications programs %eelt the
architecture as a set of homcgemous processing
resources such that programs can be run on any
number of processors; even one, if time
constraints can be met. m e pnq"+g model
will be discussed at greater length U section
3 . 3 .

A mjor element in the AMCAD project has been
the develcp-anerrt of the AMCAD Real-Time Multi-
p-r w t i n g S y s F .(-). ?he -
operating systems to provide support for real-time
performance requirements, parallel tasking, task
and data :rdur&mcy, and reconfiguration.

C c w b m aspects of distributed and real-time

Hardware

3 The AMCAD Testbed RTMOS Implementation

?he develapnent of the AMCAD "s has
focused on the application of real-time operating
system techniques to multiprocessor systems.

CPU J CPU I CPU I . . . I CPU

Single processor dti-tasking operating system
have been used extensively for &-time control
and can pmvide efficient and timely scheduling of
tasks. model can be expamkd to multiple
processom by distributing the total workload of
the system a m the processors, giving each
processor its awn set of tasks to exeake [3].
Each processor has an identical multi-tasking
kernel to " a g e the concurrent execution of that
processor's workload, as in the single processor
mcdel. A set of per level system functions
hilt on tcm of the kernel handles the interaction
of the aiiple processors. n e set of
aperat.- -, (kernel and upper
functions) collectively camprise the AMCAD
(Figure 2). 'Ibis Section will consider
aspects of the local operating systems:
single processor kernel model and the upper
miltiprocessor functions.

j p i i i l Application

RTMOS

AMCAD Architecture I I

locdl
level
Fuw6
both
the

level

Figure 2. Hardware/Software Overview

3.1 The Multi-tasking Kernel

Each processor is allccatd a portion of the
total set of application tasks. ?he function of a
processor's kernel is to m g e the c"t
execution of tasks on that processor. ?his
section first defines tasks and how they are
hplemented in AMCAD, follawed by a discussion of
haw these tasks are scheduled to the CEU.
Allocation of tasks to processors will be
discussed in -ion 3.2.1.

3.1.1 Tasks in AMCAD

A task is a sequential unit of software w h i c h
can be executed in parallel with or sequentially
in coordination with other tasks, based upon
precedence constzaints between tasks. "he
application workload is partitioned into tasks in
much the same manner as conventional software is
organized into procectures or subroutines [3] .

~ach task is representd in the operating
system by a data structure called a Task Control
Block (TCB). T h e camplete state of a task is
reflected in its TCB, such as a pointer to the
task, p~ counter, status register, stack
pointer, reg- values, as well as the task
priority, queue pointers, and alarm values. In
addition, the stack area for each task is
mintained in the W.

1814

BLOCKED U
wait/ \ignal

& exit 4-7
READY

sleep activate

I N ACT I V E
activate

ASLEEP

Figure 3 Process States

A task may be in one of five states at any

running - m e task % w n s ~ ~ the cpu and will
run until it blocks, ccwpletes, or is
P-.

reab/ - !the tasks is ready to run and is
waiting for the m.

blocked - lhe task is waiting for a system
susueml+ - Ihe task is waiting until the

inactive - Ihe TcB has been released and the

given time, as shown in Figure 3:

resarrce.

next tlme it is to execute.

prqranl is no longer executing.

To activate a task, a TCB is loaded with the
appropriate initial information about the task,
including its address, priority, execution period,
and a pointer to its global data variable(s) .
Multiple instant iations of a task m y be activated
by creating nailtiple TcBs pointing to the s a n ~
code, each with a pointer to different global data
variables.

3.1.2 Task scheduling

Task scheduling involves determining which
task shad be run at any given time. Tasks must
be swi- in and cut of the processor in such a
way that each task has a complete ccmpt ing
envhnment when it is running, in effect creating
the inpression that each task has its own virtual
processor. m i s environment must be saved while
the task is not running so that execution may
resume at a later time. An excellent survey of
schectuling algorithm can be found in [lo].

scheduling is performed in the AMCAD system
by means of a prioritized ready queue and a timer
qyue. Ihe m d y queue is hplenn?.nted as multiple
frst-ame-fimt-semed queues, one for each
priority level. High priority tasks will always
get the CRT before tasks with lower priority.
Tasks waiting a ready queue are in the -dy
State.

m e majority of tasks in real-time control
applications are periodic in nature. kriodic
tasks are invoked at fixed time intervals and are

the normal ccarp?utation of the controlled system.
A nonperiodic task may be invoked at any time,
typically for abmnnal or critical situations.
The pmblem with using a ready queue with periodic
tasks is that these tasks spend valuable processor
time waiting to start the next conputation. ?ro
minimize this pmblem, a special timer queue is
used. Ihe kernel places periodic tasks in the
timer queue when their carputation is ccwplete,
suspending them for a specified amwnt of time
(the period of the particular control
ccarprutation). Ihe queue is order by release time
rather than by priority. In AMCAD, a local clock
counter is in"ented eveq one millisecond in
reqonse to an interrupt f m a hardware timer.
The interrupt handler updates the clock variable
and up'* all tasks in the timer queue whose
start tlme has been reached.

3.2 Multiple Processor Issues

As stated above, the kernels are responsible
for managing the aperation of the local processors
and the exeahion of the task sets allocated to
those, processom. The upper level y t e m
functions handle the interaction of the multiple
processors. Reconfiguration, task allocation,
intatask ccmrsslications, and clock synch-
ronization will be discussed in the following
sections.

3.2.1 Reconfiguration

In AMCAD, reamfiguration refers to the
redistribution of the application workload to
acaxlnt for changes in the state of the system.
m u s e of the high reliability required for
flight control ard the high threat environment in
which these systens operate, the capability to
redistribute the task load when a processor fails
is essential. m e overall objectives of
reconfiguration are to reestablish full redundancy
levels for fault masking and to provide graceful
degradation of aFplication functions as resources
are lost. advantage in the use of pled
sparing in AMCAD is that all processors initially
participate in the execution of the application
workload, each at less than peak utilization. As
resoums are lost, the workload is redistributed
amxrg the healthy processors without loss of
functionality. when the nunker of resmnes
beCowes insufficient to m g e the entire workload
and still meet timing requirments, the lcwest
priority j& are lost first, pmiding graceful
degradation.

Reconfiguration in AMCAD can be either
periodic or owdemand. In the case of periodic
reconfiguration, each processor examines the
state of the system at fixed internals. The
system state is maintained in the V a , with the
status flag for each processor stored in a
different segment so that no processor can modify
anather's flag. If the new system state differs
f m the previous state, reconfiguration is
trigg-. On-demand reconfiguration occurs when
the system detemnhes a processor is faulty and

1815

triggers reconfiguration on all processors. once
reconfiguration has been trisgered, each processor
reinitializes its ready and timer queues and
places all currently active TcBs back in the free
TCB pool. The remaining healthy processom select
a new task set using the task allocation process.

3.2.2 Allocating Tasks to Processors

The kernel disrussed above dynamically
schedules a processor's task set independent of
the other processors. No mention is made of haw
the total workload is parceled out to the
processors. W s process is called task
allocation or assignment and is performed cturing
reconf iguration .

AMCAD uses a static allocation algorithm.
Several factors affected the decision to use
static rather than dynamic task assignment.
DyMmic algorithm are more flexible and tend to
balance the workload more evenly arross the
processing elements. Hawever, static task
allocation is used because it is faster, more
deterministic, and supports the single processor
d e l .

Allocation of tasks to processors is static
in that the distribution of tasks only d-mqes
when the "&er of healthy processors changes.
When reconfiguration is triggered, each processor
selects its task set based upon the n h of
healthy processors and the processor ident-
ification nunter. Since the nmber of processors
anticipated for each of the multiple levels of the
AMCAD architedure is relatively small, a table
driven algorithm is used. The task sets are
predefined for each possible n h of healthy
processors.

Very few constraints are placed on task
allocation. Since AMCAD uses a shared "xy
model for interprocessor cmmunications, there is
no need to place tasks which interact frequently
on the same processor. constraints added by the
application of logical rd"y techniques are
discxlssed in [5]. Clearly, however, perfonnance
will be affected by how effectively the
pardllelisn of the system is exploited.
Experimentation will be needed to tune the
processor working sets to achieve load balancing.

3.2.3 Intertask Communications and
Synchronization

A primary driver in development of the AMCAD
is to allow the application p r q " e r to

design applications without needing to laww haw
marry processors the system is using or which
processors are executing which tasks. TO meet
this objective, an intertask Camrmnications
protocol is needed which does not rely upon
knming the processor on which tasks are currently
?"g. A pre message passing approach does not
meet this criteria, but an indirect message
passing algorithm using mailboxes [7] maps well to
the AMCAD archi-.

In AMCAD th is involves setting up a series of data
s t r u m in the VCM thmlgh which tasks can pass
data or parameters. Every data item passed
between tasks is assigned one of these data
structures. 'Ihese data %ailboxes1I include two
flags used to synchronize task interaction to
protect data depenaencies: the producer and the
consumer flags. mines are pmvided which
interact with these flags to allow tasks to
w l y or a0quix-e global data. 'Ihese routines
insure that data is not read f m the glabal
variable unless it is current and that data cannot
be overwritten until it has been read. When a
task produces a piece of data, it perform a
p.poll aperation; to consume a piece of data, a
task perfom a c.pol1. 'Ihe algorithm for these
operations are &own belaw. The prcducer and
consumer flags are iqlemented as ccplnter values
which are i"ent& each time a data item is
successfully produced or CO-. ?his allows
p.pol1 and c.pol1 to ensure they are referring to
the same data item.

proctuoer
if var(P) # var(c) then
report error to system

else
var(P) = m (P) + 1

d f
Fut var(data)

consumer
save registers
while (var(p) = var(c)) and

(not timeout) do wait
if var(p) = var(c) then

report error to system
else
var(C) = var (C) + 1

d f
get var(daW
restore registers

'Ibis methcd of intertask Camrmnication is a
variation of a unilateral rendezvous. only
consumer tasks wait on data, with a timeout set so
that wait time is bounded. If a producer task
at- to pipduce new data before previous data
has been axwrmed, the error is reported to the
operating system. The old data will be
overwritten kat the prcducer/consumer flags will
not be upaated. If a consumer task times aut
muse the await& data was never produced, the
consumer will use the old data. This m r is also
reported to the aperating system.

Ideally, sane means of mutual exclusion wculd
be pmvided to protect these data structures f m
access by several tasks at the same time. AMCAD'S
VCM and broadcast Lxlssing approach, h m e r , make
r"l exclusion extremely difficult to inplement.
?his prublem is avoided by limiting the data

to one prcducer task and one collsumer
task each. In this case, the protocol is
sufficient for nutual exclusion.

1816

3.2.4 Clock Synchronization

The efficiency of the dataflaw-like operation
supported by the HlMos depends heavily on the
synchronization of the lccal clocks. Since each
processor maintains its own 1-1 clock variable
m e n t of the other processors, there is
potential for these local clocks to drift over
time with respect to one another. If the lccal
clocks drift far encugh apart, waiting tasks will
be released from the timer queues at the wrong
times. mta will not be pnduced or c o " d when
expect&. As a result, deadlines will be missed
if the clocks are not sy"nized periodiadly.
It is not essential that the local clocks be
identical, d y that they all be within a given
t%irdcnP or rarrge of one another.

handles clock synchronization with tm
periodic system tasks, synch_Reprt and
synch_pdjjust, which are assignd to all
processors. m e synch-&prt task periodically
broadcasts the local clock value. Th@ the
period of the SynA-bpr t task is the same on all
processors, the start times are skewed so that a
diffmt processor broadcasts each interval. For
-le, in a ten processor system, each processor
might broadcast only once per semnd. CEU #1
would broadcast its clock at 100 IILS~C, 1100 met,
2100 nrsec, and so on. CPU #2 would broadcast at
200 rrsec, 1200 nsec, 2200 IEeC.

These broadcast clock values are nxrted to
special interrupt WO& at each processor's VCM.
Aninterrup3t handler stores the received clock
value, along with the current local clcck, in a
table in local memory as his clock/my clock data
pairs. Task synch_Fdjust at each processor
periodically evaluates the local table and
calculates how mch to adjust the local clock
based upon the average difference for the
his-clo&/my-clock pairs. FAprhentation will be
requiredto- * what periods are needed for
synch_Rport and synch_Adjust for the w e t AMCAD
hardware.

3.3 AMCAD Application Interface

Several conoepts have been eqhasized in the
develcpnerrt of the AMCAD FUMX and described in
this paper which affect the devel-t of
applications software for the AMCAD architecture
testbed. To the software engineer, the
architecture appears as a pool of hcanoqaems
ccmpt ing elements. Each processor has an
identical of the operating -,
application software, and data. software lob
can be assigned to any processor. '&e milti-
tasking kernel allows concurrent exeartion of
nultiple tasks on each processor, allowing the
total mrkload to be distriSxlted across any nunker
of processors. All intextask ccmumications takes
place thmugh the VCM so that no task needs to
)axxJ the location of any other.

lhese features form a basic prograrnning model
which dllm the applications p " n y to
develop software for use with the FUBDS without

needing to]aww or worry about any specifics of
the underlying architezture. The prq"er is
freed from details of haw tasks will be allocated
or ammumicat& Rautines are pruvided by FUMX
for irrtertask d c a t i o n and task managrment.
'Ibis ptapplication interfacett allaws for the
effective develapnent of multiprocessor software,
imkprdent of the rnrmber and configuration of
processors. Specifics of the underlying
architecture are transparent to the application,
thus easing software developnent.

4 Status and Conclusions

Develapnent of the AMCAD HlMos has been
carried aut in pardllel with the construction of
the laboratozy testbed hardware. Most of the
functions described W e have been coded in
d l y language and tested on a separate dual-

conmumcations rmtines has begun, but these will
require the testbed hardware for testing. Sane
d e must also be revised to a m t for the
differences betmen the dual-processor board and
the AMCAD configuration. system software to
manage failure detection and self-test must still
be develaped.

The operating
system software will be completed soon and testing
will continue. Research is planned in the area of
nultiprocessor software developnent utilizing the
p w mdel developed as part of the FUBDS.
Pddltional resear& is underway to enhance the
AMCAD &plications Interface to allaw the
transition of the multiprocessor software
develqment methodology to other architectures.
Additional details on the AMCAD amhitechme,
"S, and further research will be documentd in
a later, more caprehensive report.

p-r board. Pro, of the

Much work remains to be done.

Bibliography

[13 S. Larimer et al. , Continuously Recon-
figuring MUlti-Microprccessor Flight Control
system", AFWALAR-81-3070, m F I G I E ,
May 1981.

[2] D. "pson et al., I t A F Multiprocessor Flight
Control ArchitectureDevelcpwnts:

May 1986

for an Unn"d Research Vehiclett, m-
88-3003, AFWAIJFIGIE, Max-& 1988

and Beycnd", N?EUX 1986 proceedings,

[3] D. Th-, "A Wtiprocessor Avionics System

[4] D. Th-, "Linear Token Passing Based Bus
Interface for a Fault Tolerant Multiprocessor
Testbed", * of the ACC 1989, August
1989

[5] D. Th"p0n et al., IlThe U s e of NondedicaM
in a Fault mlerant Multi-

processor", NMDX 1989 FYTEEX~~IKJS, m y 1989

1817

[6] J. Stankovic et al. fllIntroductionll, Hard Real-
Time System !IUtorial, Canputer Society Press
of the IEEE, 1988

[8] M. Maekawa et al., I 1 q m ? t % systyns:
-concepts", ~ l a r m n / C u " n g S
F u b l i s h ~ Canpany, 1987

[9] A. Tanenbaum, Y@rat* Systen-s:

[lo] S. Cheng et al. , l l ~ e d u l i n g A l g o r i m for

Design and
Prentice-Hall , 1987

Hard R8al-Time System - A Brief Survey11,
Hard Real-Time systems Tutorial, ccarpxlter
Press Of the IEEE, 1988

1818

