THE AMCAD REAL-TIME MULTIPROCESSOR OPERATING SYSTEM

Michael S. Rottman,

1Lt, USAF

Daniel B. Thompson

Wright Research and Development Center (WRDC/FIGLB)
Wright-Patterson Air Force Base, OH

Abstract

The Flight Control Division of the Air Force
Flight Dynamics ILaboratory has been researching
the application of fault tolerant multiprocessor
architectures and software to flight control and
vehicle management systems. The Advanced Multi-
processor Control Architecture Development (AMCAD)
in-house project has developed a Real-Time
Multiprocessor Operating System (RIMOS) targeted
for the AMCAD laboratory testbed. The RIMOS is
similar in structure to commercial real-time
operating systems, but has been expanded to
support coarse grained miltiprocessing, the
reconfiguration of the workload in case of
processor failure, and AMCAD’s goal of hiding
architecture specifics from the applications
programmer. This paper will discuss the structure
and capabilities of the RIMOS, as well as the
intertask commmnications protocols and structures
and the application programmer interface.

1 Introduction

The Flight Control Division of the Air Force
Flight Dynamics Laboratory has been researching
fault tolerant multiprocessor architectures since
the early 1980s. This work began with the
Continuously Reconfiguring Multi-Microprocessor
Flight Control System (CRMMFCS) in-house project,
which examined the potential benefits of pooled
sparing, reconfiguration, and parallel processing
as applied to flight/vehicle control. The
Advanced Multiprocessor Control Architecture
Development (AMCAD) program has continued the
CRMMFCS research, further maturing and developing
key technologies. Again performed in-house by
Flight Control Division engineers, the AMCAD
program is producing a testbed system to
demonstrate the architectural concepts ard provide
a basis for further research. A key element of
the AMCAD research has been the development of the
Real-Time Multiprocessor Operating System (RIMOS).
The target of the RIMOS is the AMCAD laboratory
testbed. This paper begins with a brief overview
of the host AMCAD architecure. The structure and
features of the RIMOS as implemented for the AMCAD
testbed system will be discussed. Finally, the
current status and future plans for the RIMOS will
be described.

1813

2 AMCAD Overview

This section provides a brief overview of the
AMCAD concepts. It is not meant to be a
camprehensive examination of these concepts, much
of which is outside the scope of this paper. More
detailed descriptions of the overall system are
presented elsewhere [1-5].

The primary objective of the AMCAD project is
to provide the camputational power and reliability
needed for flight control and vehicle management
systems while reducing the amount of required
maintenance. To achieve these goals, AMCAD seeks
to break away from conventional quad and triplex
redundant architectures and use instead a fault
tolerant multiprocessor configuration featuring
nondedicated (software-mapped) redundancy, pooled
sparing, and parallel processing. The
architecture was developed to be expandable and
adaptable to emerging military processor, bus, and
high order programming language standards.

The AMCAD architecture is based upon modules
consisting of multiple general purpose
microprocessors, memory, and a bus interface unit
(BIU). Each processor has its own backplane and
BIU access port. Processors in a module are
camputationally independent, but can "shutdown"
(isolate from the bus) faulty processors within
that module. The modules are connected by a
linear token passing bus network. This bus
network is mlti-level (hierarchical) for
expandability and fault containment partitioning,
with multiple busses per level (Figure 1).

o
c
w bt

Muitiple busses per level

@ |
<
@ |

<

Multiple levels

J

Figure 1. Multiple levels of bussing with multiple busses per level

U.S. Government work not protected by U.S. copyright.

None of the ©processors 1is physically
dedicated to redundant computation; they serve
instead as a pool of camputational resources which
may be used for parallel processing, multiple
independent computations, or redundant computation
if needed. Likewise, the multiple busses per
level are not physically redundant. Data
communications can be distributed across the
multiple busses, allowing graceful degradation in
case of a bus failure.

A critical concept in the AMCAD development
is that of 1logical or nondedicated redundancy.
Redundant “channels" of computation can be
software mapped across the multiple processors to
provide reliability in the presence of hardware
faults. Faults are masked by voting the results
of the redundant computations, allowing correct
operation despite failures. If a processor
performing part of a redundant computation fails,
the total workload is redistributed to reestablish
the redundant computation. A description of
logical redundancy in the AMCAD architecture is
given in [5].

Tasks cammnicate through the Virtual Common

Memory (VQM), a concept which originated in the
CRIMFCS work. An identical copy of "shared
memory" 1is placed local to each processor.

Broadcast bussing is used to transfer data items
to each processing module. This allows communi-
cations to be done task-to-task through the VM
rather than processor-to-processor. All read
operations are local, providing fast access to
data and eliminating the shared memory bottleneck.
Data in the VCM is protected from contamination by
a segmentation scheme in which the proper key
value is required for write-access to a segment.

One goal in the development of the AMCAD
architecture was to make the physical con-
figuration transparent to the applications
programmer. Each processor has an identical copy
of the operating system and applications software.
All data is locally available to all processors
(through the VaM). Tasks communicate by sending
messages to and reading messages from the VOM. As
a result, applications programs '"see" the
architecture as a set of homogeneous processing
resources such that programs can be run on any
number of processors; even one, if time
constraints can be met. ‘The programming model
will be discussed at greater length in Section
3.3.

A major element in the AMCAD project has been
the development of the AMCAD Real-Time Multi-
processor Operating System (RIMOS). The RIMOS
combines aspects of distributed and real-time
operating systems to provide support for real-time
performance requirements, parallel tasking, task
and data redundancy, and reconfiguration.

3 The AMCAD Testbed RTMOS Implementation
The development of the AMCAD RIMOS has

focused on the application of real-time operating
system techniques to multiprocessor systems.

1814

Single processor milti-tasking operating systems
have been used extensively for real-time control
and can provide efficient and timely scheduling of
tasks. This model can be expanded to multiple
processors by distributing the total workload of
the system across the processors, giving each
processor its own set of tasks to execute [3].
Each processor has an identical multi-tasking
kermel to manage the concurrent execution of that
processor’s workload, as in the single processor
model. A set of upper level system functions
built on top of the kernel harndles the interaction
of the miltiple processors. The set of local
operating systems (kernel and upper level
functions) collectively comprise the AMCAD RIMOS
(Figure 2). This section will consider both
aspects of the local operating systems: the
single processor kernel model and the upper level
multiprocessor functions.

System

Application Tasks

RTMOS

Software | Kernel IKernel IKernel l ‘e IKemel

Hardware

AMCAD Architecture

Figure 2. Hardware/Software Overview

3.1 The Multi-tasking Kernel

Each processor is allocated a portion of the
total set of application tasks. The function of a
processor’s kernel is to manage the concurrent
execution of tasks on that processor. This
section first defines tasks and how they are
implemented in AMCAD, followed by a discussion of
how these tasks are scheduled to the CPU.
Allocation of tasks to processors will be
discussed in section 3.2.1.

3.1.1 Tasks in AMCAD

A task is a sequential unit of software which
can be executed in parallel with or sequentially
in coordination with other tasks, based upon
precedence oonstraints between tasks. The
application workload is partitioned into tasks in
much the same manner as cornventional software is
organized into procedures or subroutines [3].

Each task is represented in the operating
system by a data structure called a Task Control
Block (TCB). The complete state of a task is
reflected in its TCB, such as a pointer to the
task, program counter, status register, stack
pointer, register values, as well as the task
priority, queue pointers, and alarm values. In
addition, the stack area for each task is
maintained in the TCB.

BLOCKED

wait signal

RUNNING [— "] READY

terminate release

sleep activate

ASLEEP INACTIVE

aclivate

Figure 3. Process States

A task may be in one of five states at any
given time, as shown in Figure 3:

running - The task "owns" the CPU and will
run until it blocks, completes, or is
preempted.

ready - The tasks is ready to run and is
waiting for the CPU.

blocked - The task is waiting for a system
resource.

suspended - The task is waiting until the
next time it is to execute.

inactive - The TCB has been released and the
program is no longer executing.

To activate a task, a TCB is loaded with the
appropriate initial information about the task,
including its address, priority, execution period,
and a pointer to its global data variable(s).
Multiple instantiations of a task may be activated
by creating muiltiple TCBs pointing to the same
code, each with a pointer to different glcbal data
variables.

3.1.2 Task 8cheduling

Task scheduling involves determining which
task should be run at any given time. Tasks must
be switching in and out of the processor in such a
way that each task has a complete computing
enviromment when it is running, in effect creating
the impression that each task has its own virtual
processor. This enviromment must be saved while
the task is not running so that execution may
resume at a later time. An excellent survey of
scheduling algorithms can be found in [10].

Scheduling is performed in the AMCAD system
by means of a prioritized ready queue and a timer
queue. The ready queue is implemented as multiple
first-come-first-served queues, one for each
priority level. High priority tasks will always
get the CPU before tasks with lower priority.
Tasks waiting a ready queue are in the ready
state.

The majority of tasks in real-~time control
applications are periodic in nature. Periodic
tasks are invoked at fixed time intervals and are

1815

the normal computation of the controlled system.
A nonperiodic task may be invoked at any time,
typically for abnormal or critical situations.
The problem with using a ready queue with periodic
tasks is that these tasks spend valuable processor
time waiting to start the next computation. To
minimize this problem, a special timer queue is
used. The kernel places periodic tasks in the
timer queue when their computation is complete,
suspending them for a specified amount of time
(the period of the particular control
camputation). The queue is order by release time
rather than by priority. In AMCAD, a local clock
counter is incremented every one millisecond in
response to an interrupt from a hardware timer.
The interrupt handler updates the clock variable
and "wakes up" all tasks in the timer queue whose
start time has been reached.

3.2 Multiple Processor Issues

As stated above, the kernels are responsible
for managing the operation of the local processors
and the execution of the task sets allocated to
those processors. The wupper level system
functions handle the interaction of the multiple
processors. Reconfiguration, task allocation,
intertask commmnications, and clock synch-
ronization will be discussed in the following
sections.

3.2.1 Reconfiguration

In AMCAD, reconfiguration refers to the
redistribution of the application workload to
account for changes in the state of the system.
Because of the high reliability required for
flight control and the high threat enviromment in
which these systems operate, the capability to
redistribute the task load when a processor fails
is essential. The overall objectives of
reconfiguration are to reestablish full redundancy
levels for fault masking and to provide graceful
degradation of application functions as resocurces
are lost. One advantage in the use of pooled
sparing in AMCAD is that all processors initially
participate in the execution of the application
workload, each at less than peak utilization. &as
resources are lost, the workload is redistributed
among the healthy processors without loss of
functionality. When the number of resources
becames insufficient to manage the entire workload
and still meet timing requirements, the lowest
priority jobs are lost first, providing graceful
degradation.

in AMCAD can be either
periodic or on—demand. In the case of periodic
reconfiguration, each processor examines the
state of the system at fixed intervals. The
system state is maintained in the VM, with the
status flag for each processor stored in a
different segment so that no processor can modify
another’s flag. If the new system state differs
from the previous state, reconfiguration is
triggered. On-demand reconfiguration occurs when
the system determines a processor is faulty and

Reconfiguration

triggers reconfiguration on all processors. Once
reconfiguration has been triggered, each processor
reinitializes its ready and timer queues and
places all currently active TCBs back in the free
TCB pool. The remaining healthy processors select
a new task set using the task allocation process.

3.2.2 Allocating Tasks to Processors

The kernel discussed above dynamically
schedules a processor’s task set independent of
the other processors. No mention is made of how
the total workload is parceled out to the
processors. This process 1is called task
allocation or assigmment and is performed during
reconfiguration.

AMCAD uses a static allocation algorithm.
Several factors affected the decision to use
static rather than dynamic task assigmment.
Dynamic algorithms are more flexible and tend to
balance the workload more evenly across the
processing elements. However, static task
allocation is used because it is faster, more
deterministic, and supports the single processor
model .

Allocation of tasks to processors is static
in that the distribution of tasks only changes
when the number of healthy processors changes.
When reconfiguration is triggered, each processor
selects its task set based upon the number of
healthy processors and the processor ident-
ification number. Since the number of processors
anticipated for each of the multiple levels of the
AMCAD architecture is relatively small, a table
driven algorithm is used. The task sets are
predefined for each possible number of healthy
Processors.

Very few constraints are placed on task
allocation. Since AMCAD uses a shared memory
model for interprocessor communications, there is
no need to place tasks which interact frequently
on the same processor. Constraints added by the
application of logical techniques are
discussed in [5]. Clearly, however, performance
will be affected by how effectively the
parallelism of the system is exploited.
Experimentation will be needed to tune the
processor working sets to achieve load balancing.

3.2.3 Intertask Communications and

synchronization

A primary driver in development of the AMCAD
RIMOS is to allow the application programmer to
design applications without needing to know how
many processors the system is using or which
processors are executing which tasks. To meet
this objective, an intertask commnications
protocol is needed which does not rely upon
krmlng the processor on which tasks are currently
running. A pure message passing approach does not
meet this criteria, but an indirect
passing algorithm using mailboxes [7] maps well to
the AMCAD architecture.

1816

In AMCAD this involves setting up a series of data
structures in the VM through which tasks can pass
data or parameters. Every data item passed
between tasks is assigned one of these data
structures. These data "mailboxes" include two
flags used to synchronize task interaction to
protect data dependencies: the producer and the
consumer flags. Routines are provided which
interact with these flags to allow tasks to
supply or acquire global data. These routines
insure that data is not read from the glabal
variable unless it is current and that data cannot
be overwritten until it has been read. When a
task produces a piece of data, it performs a
p.poll operation; to consume a piece of data, a
task performs a c.poll. The algorithms for these
operations are shown below. The producer and
consumer flags are implemented as counter values
which are incremented each time a data item is
successfully produced or consumed. This allows
p.poll arnd c.poll to ensure they are referring to
the same data item.

producer
if var(P) # var(C) then
report error to system

else

var(P) = var(P) + 1
endif
put var(data)
consumer

save registers
while (var(P) = var(C)) and
(not timeout) do wait
if var(P) = var(C) then
report error to system

else

var(C) = var (C) + 1
endif
get var(data)

restore registers

This method of intertask communication is a
variation of a unilateral rendezvous. only
consumer tasks wait on data, with a timeout set so
that wait time is bounded. If a producer task
attempts to produce new data before previous data
has been consumed, the error is reported to the
operating system. The old data will be
overwritten but the producer/consumer flags will
not be updated. If a consumer task times out
because the awaited data was never produced, the
consumer will use the old data. This error is also

reported to the operating system.

Ideally, some means of mutual exclusion would
be provided to protect these data structures from
access by several tasks at the same time. AMCAD’s
VM and broadcast bussing approach, however, make
mutual exclusion extremely difficult to implement.
This problem is avoided by limiting the data
structures to one producer task and one consumer
task each. In this case, the protocol is
sufficient for mitual exclusion.

3.2.4 Clock Synchronization

The efficiency of the dataflow-like operation
supported by the RIMOS depends heavily on the
synchronization of the local clocks. Since each
processor maintains its own local clock variable
independent of the other processors, there is
potential for these local clocks to drift over
time with respect to one another. If the local
clocks drift far enough apart, waiting tasks will
be released from the timer queues at the wrong
times. Data will not be produced or consumed when
expected. As a result, deadlines will be missed
if the clocks are not synchronized periodically.
It is not essential that the 1local clocks be
identical, merely that they all be within a given
"window" or range of one another.

RIMOS handles clock synchronization with two
periodic system tasks, Synch_Report and
Synch Adjust, which are assigned to all
processors. The Synch Report task periodically
broadcasts the local clock value. Though the
period of the Synch Report task is the same on all
processors, the start times are skewed so that a
different processor broadcasts each interval. For
example, in a ten processor system, each processor
might broadcast only once per secord. CPU #1
would broadcast its clock at 100 msec, 1100 msec,
2100 msec, and so on. CPU #2 would broadcast at
200 msec, 1200 msec, 2200 msecC.

These broadcast clock values are routed to
special interrupt words at each processor’s V(M.
An interrupt handler stores the received clock
value, alorng with the current local clock, in a
table in local memory as his clock/my clock data
pairs. Task Synch Adjust at each processor
periodically evaluates the 1local table and
calculates how much to adjust the local clock
based upon the average difference for the
his-clock/my-clock pairs. Experimentation will be
required to determine what periods are needed for
Synch Report and Synch Adjust for the target AMCAD
hardware

3.3 AMCAD Application Interface

Several concepts have been emphasized in the
development of the AMCAD RIMOS and described in
this paper which affect the development of
applications software for the AMCAD architecture
testbed. To the software engineer, the
architecture appears as a pool of hamogenecus
camputing elements. Each processor has an
identical of the operating systenm,
application software, and data. Any software Jjob
can be assigned to any processor. The multi-
tasking kernel allows concurrent execution of
multiple tasks on each processor, allowing the
total workload to be distributed across any number
of processors. All intertask communications takes
place through the VCM so that no task needs to
know the location of any other.

These features form a basic programming model
which allows the applications programmer to
develop software for use with the RIMOS without

1847

needur;tokrmorwonyaboutanyspecﬁl&sof
the underlying architecture. The p is
freed from details of how tasks will be allocated
or cammnicate. Routines are provided by RIMOS
for intertask communication and task management.
This T"application interface" allows for the
effective develcpment of multiprocessor software,
independent of the number and configuration of
processors. Specifics of the underlying
architecture are transparent to the application,
thus easing software development.

4 BStatus and Conclusions

Development of the AMCAD RIMOS has been
carried out in parallel with the construction of
the laboratory testbed hardware. Most of the
functions described above have been coded in
assembly language and tested on a separate dual-
processor board. Programming of the
communications routines has begun, but these will
require the testbed hardware for testing. Some
code must also be revised to account for the
differences between the dual-processor board and
the AMCAD configuration. System software to
manage failure detection and self-test must still
be developed.

Much work remains to be done. The operating
system software will be completed soon and testing
will contimue. Research is planned in the area of
multiprocessor software development utilizing the
programning model developed as part of the RIMOS.
Additional research is underway to enhance the
AMCAD Applications Interface to allow the
transition of the rmultiprocessor software
development methodology to other architectures.
Additional details on the AMCAD architecture,
RIMOS, and further research will be documented in
a later, more camprehensive report.

Bibliography

[1] S. Larimer et al., "A Continuously Recon—
figuring Multi-Microprocessor Flight Control
System", AFWAL~TR-81-3070, AFWAI/FIGLB,

May 1981.

[2] D. Thampson et al., "AF Multiprocessor Flight

Control Architecture Developments: CRMMFCS

and Beyond", NAECON 1986 Proceedings,

May 1986

[3] D. Thampson, "A Multiprocessor Avionics System

for an Umnmanned Research Vehicle", AFWAL-TR-

88-3003, AFWAIL/FIGIB, March 1988

[4] D. Thompson, "Linear Token Passing Based Bus

Interface for a Fault Tolerant Multiprocessor

Testbed", Proceedings of the ACC 1989, August
1989

[5] D. Thompson et al., "The Use of Nondedicated
Redundancy in a Fault Tolerant Multi-
processor”, NAECON 1989 Proceedings, May 1989

(6]

{71

(8]

9]

J. Stankovic et al.,"Introduction", Hard Real-
Time Systems Tutorial, Computer Society Press
of the IEEE, 1988

J. Peterson et al., "Operating Systems
Concepts", Addison-Wesley Publishing Company,
1985

M. Maekawa et al., "Operating Systems:
Advanced Concepts", Benjamin/Cummings
Publishing Company, 1987

A. Tanenbaum, "Operating Systems: Design and
Implementation", Prentice-Hall, 1987

[10] S. Cheng et al., "Scheduling Algorithms for

Hard Real-Time Systems - A Brief Survey",
Hard Real-Time Systems Tutorial, Computer
Press of the IEEE, 1988

1818

