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Abstract 

The Flight control Division of the Air Force 
Flight m c s  Laboratory has been 
the wlication of fault tolerant miltiprocessor 
arrhitectures and software to flight control and 
vehicle "gem& systes. The pdvanced Multi- 
processor control Architecture DevelolJQlent (AMCAD) 
in-hmse project has develaped a R e a l - T h  
Multiprocessor operating System (FUMX) t;uqeted 
for the AMCAD laboratoq testbed. The FUMX is 
similar in structure to canmercidl real-time 
operating systems, but has been exprded to 
support. coarse grained multiprccessing, the 
reconfiguration of the workload in case of 
processor failure, and - I s  goal of hiding 
m t e c t u r e  specifics from the applications 
prograrmner: RLis paper will discuss the structure 
and capabilities of the m, as well as the 
intertask d c a t i o n s  protocols and structures 
and the application programmer interface. 

1 Introduction 

The Flight control Division of the Air Force 
Flight Dynamics Laboratory has been researching 
fault tolerant multiprocessor arch i tec tw~~  since 
the early 1980s. This work kegan with the 
Contirumsly Reconfiguring Multi-Micmprocessor 
Flight Control System (m) in-house project, 
which exarmned ' the potential benefits of pooled 
sparing, reconfiguration, and parallel processing 
as applied to flight/vehicle control. The 
Advanced Multiprocessor Control Architecture 
tkve1qxm-k (m) program has continued the 
CEWGXS researrh, further maturing and developing 
key technologies. Again performed in-house by 
Flight Control Division engineers, the AMCAD 
program is pruducing a testbed system to 
demonstrate the architectural concepts and provide 
a basis for further research. A key element of 
the AMCAD researrh has been the devel-t of the 
W-l'ime Multiprocessor operating System (FUMX) . 
The w e t  of the IUXX is the AMCAD laboratory 
testbed. " h i s  paper begins with a brief werview 
of the host AMCAD architecure. The structure and 
features of the KI~KE as inplemented for the AMCAD 
testbed system will be discussed. Finally, the 
arrent status and future plans for the HIMos will 
be described. 

2 AMCAD overview 

' Ihis section provides a brief overview of the 
It is not meant to be a 

Z - T L t i o n  of these colloepts, 
of whid~ is cutside the scope of this paper. More 
detailed descriptions of the overall system are 
presented el- [l-51. 

lhe primary objective of the AMCAD project is 
to prwvick the ccmpltational pxer and reliability 
needed for flight control and vehicle mnagement 
systems while reducing the amount of required 
mintemme . lb achieve these goals, AMCAD seeks 
to break away fran amventional quad and triplex 
r&"t ar&itedures and use instead a fault 
tolerant miltiprocessor configuration featuring 
lxlndedicated (software-ma@) redundancy, pooled 
sparing, and pardllel p-ing. lhe 
architecture was developed to be eqmflable and 
adaptable to emerging military processor, bus, and 
high order p r " h g  language standards. 

lhe AMCAD architecture is based upon modules 
consisting of miltiple general 
micrcprocessom, memory, and a bus interface m t  
( X U ) .  Each processor has its own backplane and 
BIU access port., Processors in a module are 
omputationally mdependent, but can W " o w n "  
(isolate fran the bus) faulty processors within 
that module. The modules are conneded by a 
linear token passing bus network. This hs 
network is nulti-level (hierarchical) for 
F i l i t y  and fault containment partitioning, 
with miltiple busses per level (Figure 1). 

Multiple busses per level m- 
-J 

Figure 1. Multiple levels of bussing wtlh multiple busses per level 

levels 
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Now of the processors is physically 
dedicated to redundant captation; they serve 
instead as a pool of ccprpxltational resources which 
m y  be used for parallel prccessing, multiple 
inclependent ccarpxltations, or redundant amptation 
if needed. Likewise, the multiple busses per 
level are not physically redundant. thta 
camnunications can be distributed acrOSS the 
multiple hsses, allowing graceful degradation in 
case of a bus failure. 

A critical concept in the AMCAD developnent 
is that of logical or nonddcatd nxkmhxy. 
Rsdundant W-"elsqg of amputation can be 
software maFped acIoss the multiple processors to 
pmvide reliability in the presence of hardware 
faults. Faults are masked by voting the results 
of the redundant cmptations, allawing correct 
operation despite failures. If a processor 
performing part of a redundant canputation fails, 
the total workload is redistributed to reestablish 
the redumkmt ccarpxtation. A description of 
logical redundancy in the AM= architecture is 
given in [5]. 

Tasks cxmnunicate through the Virtual ca"0n 
M e m r y  (VCM), a concept which originatd in the 
CF3MFKS work. An identical copy of *gshared 
memory" is placed local to each processor. 
Brmdcast buss- is used to transfer data items 
to each processing module. This allaws cammni- 
cations to be done task-*task through the VCM 
rather than prooessor-to-processor. All read 
operations are local, providing fast access to 
data and eliminating the shared memory bottleneck. 
Data in the VCM is protected f m  contamination by 
a segmentation &erne in which the proper key 
value is requird for write-access to a segment. 

One goal in the development of the AMCAD 
archi- was to make the physical con- 
figuration transparent to the applications 
p r q " ~ .  Each processor has an identical copy 
of the operating system and applications software. 
All data is locally available to all processors 
(thmugh the VCM). Tasks umnnunicate by sending 
messages to and reading messages from the VCM. As 
a result, applications programs %eelt the 
architecture as a set of homcgemous processing 
resources such that programs can be run on any 
number of processors; even one, if time 
constraints can be met. m e  pnq"+g  model 
will be discussed at greater length U section 
3 . 3 .  

A mjor element in the AMCAD project has been 
the develcp-anerrt of the AMCAD Real-Time Multi- 
p-r w t i n g  S y s F  .(-). ?he - 
operating systems to provide support for real-time 
performance requirements, parallel tasking, task 
and data :rdur&mcy, and reconfiguration. 

C c w b m  aspects of distributed and real-time 

Hardware 

3 The AMCAD Testbed RTMOS Implementation 

?he develapnent of the AMCAD "s has 
focused on the application of real-time operating 
system techniques to multiprocessor systems. 

CPU J CPU I CPU I . . . I CPU 

Single processor dti-tasking operating system 
have been used extensively for &-time control 
and can pmvide efficient and timely scheduling of 
tasks. model can be expamkd to multiple 
processom by distributing the total workload of 
the system a m  the processors, giving each 
processor its awn set of tasks to exeake [3]. 
Each processor has an identical multi-tasking 
kernel to " a g e  the concurrent execution of that 
processor's workload, as in the single processor 
mcdel. A set of  per level system functions 
hilt on tcm of the kernel handles the interaction 
of the aiiple processors. n e  set of 
aperat.- -, (kernel and upper 
functions) collectively camprise the AMCAD 
(Figure 2). 'Ibis Section will consider 
aspects of the local operating systems: 
single processor kernel model and the upper 
miltiprocessor functions. 

j p i i i l  Application 

RTMOS 

AMCAD Architecture I I 

locdl 
level 
Fuw6 
both 
the 

level 

Figure 2. Hardware/Software Overview 

3.1 The Multi-tasking Kernel 

Each processor is allccatd a portion of the 
total set of application tasks. ?he function of a 
processor's kernel is to m g e  the c"t 
execution of tasks on that processor. ?his 
section first defines tasks and how they are 
hplemented in AMCAD, follawed by a discussion of 
haw these tasks are scheduled to the CEU. 
Allocation of tasks to processors will be 
discussed in -ion 3.2.1. 

3.1.1 Tasks in AMCAD 

A task is a sequential unit of software w h i c h  
can be executed in parallel with or sequentially 
in coordination with other tasks, based upon 
precedence constzaints between tasks. "he 
application workload is partitioned into tasks in 
much the same manner as conventional software is 
organized into procectures or subroutines [ 3 ] .  

~ach task is representd in the operating 
system by a data structure called a Task Control 
Block (TCB). T h e  camplete state of a task is 
reflected in its TCB, such as a pointer to the 
task, p~ counter, status register, stack 
pointer, reg- values, as well as the task 
priority, queue pointers, and alarm values. In 
addition, the stack area for each task is 
mintained in the W. 
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BLOCKED U 
wait/ \ignal 

& exit 4-7 
READY 

sleep activate 

I N  ACT I V E  
activate 

ASLEEP 

Figure 3 Process States 

A task may be in one of five states at any 

running - m e  task % w n s ~ ~  the cpu and will 
run until it blocks, ccwpletes, or is 
P-. 

reab/ - !the tasks is ready to run and is 
waiting for the m. 

blocked - lhe task is waiting for a system 
susueml+ - Ihe task is waiting until the 

inactive - Ihe TcB has been released and the 

given time, as shown in Figure 3: 

resarrce. 

next tlme it is to execute. 

prqranl is no longer executing. 

To activate a task, a TCB is loaded with the 
appropriate initial information about the task, 
including its address, priority, execution period, 
and a pointer to its global data variable(s) . 
Multiple instant iations of a task m y  be activated 
by creating nailtiple TcBs pointing to the s a n ~  
code, each with a pointer to different global data 
variables. 

3.1.2 Task scheduling 

Task scheduling involves determining which 
task shad be run at any given time. Tasks must 
be swi- in and cut of the processor in such a 
way that each task has a complete ccmpt ing  
envhnment when it is running, in effect creating 
the inpression that each task has its own virtual 
processor. m i s  environment must be saved while 
the task is not running so that execution may 
resume at a later time. An excellent survey of 
schectuling algorithm can be found in [lo]. 

scheduling is performed in the AMCAD system 
by means of a prioritized ready queue and a timer 
qyue. Ihe m d y  queue is hplenn?.nted as multiple 
frst-ame-fimt-semed queues, one for each 
priority level. High priority tasks will always 
get the CRT before tasks with lower priority. 
Tasks waiting a ready queue are in the -dy 
State. 

m e  majority of tasks in real-time control 
applications are periodic in nature. kriodic 
tasks are invoked at fixed time intervals and are 

the normal ccarp?utation of the controlled system. 
A nonperiodic task may be invoked at any time, 
typically for abmnnal or critical situations. 
The pmblem with using a ready queue with periodic 
tasks is that these tasks spend valuable processor 
time waiting to start the next conputation. ?ro 
minimize this pmblem, a special timer queue is 
used. Ihe kernel places periodic tasks in the 
timer queue when their carputation is ccwplete, 
suspending them for a specified amwnt of time 
(the period of the particular control 
ccarprutation). Ihe queue is order by release time 
rather than by priority. In AMCAD, a local clock 
counter is in"ented eveq one millisecond in 
reqonse to an interrupt f m  a hardware timer. 
The interrupt handler updates the clock variable 
and up'* all tasks in the timer queue whose 
start tlme has been reached. 

3.2 Multiple Processor Issues 

As stated above, the kernels are responsible 
for managing the aperation of the local processors 
and the exeahion of the task sets allocated to 
those, processom. The upper level y t e m  
functions handle the interaction of the multiple 
processors. Reconfiguration, task allocation, 
intatask ccmrsslications, and clock synch- 
ronization will be discussed in the following 
sections. 

3.2.1 Reconfiguration 

In AMCAD, reamfiguration refers to the 
redistribution of the application workload to 
acaxlnt for changes in the state of the system. 
m u s e  of the high reliability required for 
flight control ard the high threat environment in 
which these systens operate, the capability to 
redistribute the task load when a processor fails 
is essential. m e  overall objectives of 
reconfiguration are to reestablish full redundancy 
levels for fault masking and to provide graceful 
degradation of aFplication functions as resources 
are lost. advantage in the use of pled 
sparing in AMCAD is that all processors initially 
participate in the execution of the application 
workload, each at less than peak utilization. As 
resoums are lost, the workload is redistributed 
amxrg the healthy processors without loss of 
functionality. when the nunker of resmnes 
beCowes insufficient to m g e  the entire workload 
and still meet timing requirments, the lcwest 
priority j& are lost first, pmiding graceful 
degradation. 

Reconfiguration in AMCAD can be either 
periodic or owdemand. In the case of periodic 
reconfiguration, each processor examines the 
state of the system at fixed internals. The 
system state is maintained in the V a ,  with the 
status flag for each processor stored in a 
different segment so that no processor can modify 
anather's flag. If the new system state differs 
f m  the previous state, reconfiguration is 
trigg-. On-demand reconfiguration occurs when 
the system detemnhes a processor is faulty and 
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triggers reconfiguration on all processors. once 
reconfiguration has been trisgered, each processor 
reinitializes its ready and timer queues and 
places all currently active TcBs back in the free 
TCB pool. The remaining healthy processom select 
a new task set using the task allocation process. 

3.2.2 Allocating Tasks to Processors 

The kernel disrussed above dynamically 
schedules a processor's task set independent of 
the other processors. No mention is made of haw 
the total workload is parceled out to the 
processors. W s  process is called task 
allocation or assignment and is performed cturing 
reconf iguration . 

AMCAD uses a static allocation algorithm. 
Several factors affected the decision to use 
static rather than dynamic task assignment. 
DyMmic algorithm are more flexible and tend to 
balance the workload more evenly arross the 
processing elements. Hawever, static task 
allocation is used because it is faster, more 
deterministic, and supports the single processor 
d e l .  

Allocation of tasks to processors is static 
in that the distribution of tasks only d-mqes 
when the "&er of healthy processors changes. 
When reconfiguration is triggered, each processor 
selects its task set based upon the n h  of 
healthy processors and the processor ident- 
ification nunter. Since the nmber of processors 
anticipated for each of the multiple levels of the 
AMCAD architedure is relatively small, a table 
driven algorithm is used. The task sets are 
predefined for each possible n h  of healthy 
processors. 

Very few constraints are placed on task 
allocation. Since AMCAD uses a shared "xy 
model for interprocessor cmmunications, there is 
no need to place tasks which interact frequently 
on the same processor. constraints added by the 
application of logical rd"y techniques are 
discxlssed in [5]. Clearly, however, perfonnance 
will be affected by how effectively the 
pardllelisn of the system is exploited. 
Experimentation will be needed to tune the 
processor working sets to achieve load balancing. 

3.2.3 Intertask Communications and 
Synchronization 

A primary driver in development of the AMCAD 
is to allow the application p r q " e r  to 

design applications without needing to laww haw 
marry processors the system is using or which 
processors are executing which tasks. TO meet 
this objective, an intertask Camrmnications 
protocol is needed which does not rely upon 
knming the processor on which tasks are currently 
?"g. A pre message passing approach does not 
meet this criteria, but an indirect message 
passing algorithm using mailboxes [7] maps well to 
the AMCAD archi-. 

In AMCAD th is  involves setting up a series of data 
s t r u m  in the VCM thmlgh which tasks can pass 
data or parameters. Every data item passed 
between tasks is assigned one of these data 
structures. 'Ihese data %ailboxes1I include two 
flags used to synchronize task interaction to 
protect data depenaencies: the producer and the 
consumer flags. mines are pmvided which 
interact with these flags to allow tasks to 
w l y  or a0quix-e global data. 'Ihese routines 
insure that data is not read f m  the glabal 
variable unless it is current and that data cannot 
be overwritten until it has been read. When a 
task produces a piece of data, it perform a 
p.poll aperation; to consume a piece of data, a 
task perfom a c.pol1. 'Ihe algorithm for these 
operations are &own belaw. The prcducer and 
consumer flags are iqlemented as ccplnter values 
which are i"ent& each time a data item is 
successfully produced or CO-. ?his allows 
p.pol1 and c.pol1 to ensure they are referring to 
the same data item. 

proctuoer 
if var(P) # var(c) then 
report error to system 

else 
var(P) = m ( P )  + 1 

d f  
Fut var(data) 

consumer 
save registers 
while (var(p) = var(c)) and 

(not timeout) do wait 
if var(p) = var(c) then 

report error to system 
else 
var(C) = var (C) + 1 

d f  
get var(daW 
restore registers 

'Ibis methcd of intertask Camrmnication is a 
variation of a unilateral rendezvous. only 
consumer tasks wait on data, with a timeout set so 
that wait time is bounded. If a producer task 
at- to pipduce new data before previous data 
has been axwrmed, the error is reported to the 
operating system. The old data will be 
overwritten kat the prcducer/consumer flags will 
not be upaated. If a consumer task times aut 
muse the await& data was never produced, the 
consumer will use the old data. This m r  is also 
reported to the aperating system. 

Ideally, sane means of mutual exclusion wculd 
be pmvided to protect these data structures f m  
access by several tasks at the same time. AMCAD'S 
VCM and broadcast Lxlssing approach, h m e r ,  make 
r"l exclusion extremely difficult to inplement. 
?his prublem is avoided by limiting the data 

to one prcducer task and one collsumer 
task each. In this case, the protocol is 
sufficient for nutual exclusion. 
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3.2.4 Clock Synchronization 

The efficiency of the dataflaw-like operation 
supported by the HlMos depends heavily on the 
synchronization of the lccal clocks. Since each 
processor maintains its own 1-1 clock variable 
m e n t  of the other processors, there is 
potential for these local clocks to drift over 
time with respect to one another. If the lccal 
clocks drift far encugh apart, waiting tasks will 
be released from the timer queues at the wrong 
times. mta will not be pnduced or c o " d  when 
expect&. As a result, deadlines will be missed 
if the clocks are not sy"nized periodiadly. 
It is not essential that the local clocks be 
identical, d y  that they all be within a given 
t%irdcnP or rarrge of one another. 

handles clock synchronization with tm 
periodic system tasks, synch_Reprt and 
synch_pdjjust, which are assignd to all 
processors. m e  synch-&prt task periodically 
broadcasts the local clock value. Th@ the 
period of the SynA-bpr t  task is the same on all 
processors, the start times are skewed so that a 
diffmt processor broadcasts each interval. For 
-le, in a ten processor system, each processor 
might broadcast only once per semnd. CEU #1 
would broadcast its clock at 100 IILS~C, 1100 met, 
2100 nrsec, and so on. CPU #2 would broadcast at 
200 rrsec, 1200 nsec, 2200 IEeC. 

These broadcast clock values are nxrted to 
special interrupt WO& at each processor's VCM. 
Aninterrup3t handler stores the received clock 
value, along with the current local clcck, in a 
table in local memory as his clock/my clock data 
pairs. Task synch_Fdjust at each processor 
periodically evaluates the local table and 
calculates how mch to adjust the local clock 
based upon the average difference for the 
his-clo&/my-clock pairs. FAprhentation will be 
requiredto- * what periods are needed for 
synch_Rport and synch_Adjust for the w e t  AMCAD 
hardware. 

3.3 AMCAD Application Interface 

Several conoepts have been eqhasized in the 
develcpnerrt of the AMCAD FUMX and described in 
this paper which affect the devel-t of 
applications software for the AMCAD architecture 
testbed. To the software engineer, the 
architecture appears as a pool of hcanoqaems 
ccmpt ing elements. Each processor has an 
identical of the operating -, 
application software, and data. software lob 
can be assigned to any processor. '&e milti- 
tasking kernel allows concurrent exeartion of 
nultiple tasks on each processor, allowing the 
total mrkload to be distriSxlted across any nunker 
of processors. All intextask ccmumications takes 
place thmugh the VCM so that no task needs to 
)axxJ the location of any other. 

lhese features form a basic prograrnning model 
which dllm the applications p " n y  to 
develop software for use with the FUBDS without 

needing to ]aww or worry about any specifics of 
the underlying architezture. The prq"er is 
freed from details of haw tasks will be allocated 
or ammumicat& Rautines are pruvided by FUMX 
for irrtertask d c a t i o n  and task managrment. 
'Ibis ptapplication interfacett allaws for the 
effective develapnent of multiprocessor software, 
imkprdent of the rnrmber and configuration of 
processors. Specifics of the underlying 
architecture are transparent to the application, 
thus easing software developnent. 

4 Status and Conclusions 

Develapnent of the AMCAD HlMos has been 
carried aut in pardllel with the construction of 
the laboratozy testbed hardware. Most of the 
functions described W e  have been coded in 
d l y  language and tested on a separate dual- 

conmumcations rmtines has begun, but these will 
require the testbed hardware for testing. Sane 
d e  must also be revised to a m t  for the 
differences betmen the dual-processor board and 
the AMCAD configuration. system software to 
manage failure detection and self-test must still 
be develaped. 

The operating 
system software will be completed soon and testing 
will continue. Research is planned in the area of 
nultiprocessor software developnent utilizing the 
p w  mdel developed as part of the FUBDS. 
Pddltional resear& is underway to enhance the 
AMCAD &plications Interface to allaw the 
transition of the multiprocessor software 
develqment methodology to other architectures. 
Additional details on the AMCAD amhitechme, 
"S, and further research will be documentd in 
a later, more caprehensive report. 

p-r board. Pro, of the 

Much work remains to be done. 
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