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Surgical removal of the primary tumor in solid cancer is an essential component of the 
treatment. However, the perioperative period can paradoxically lead to an increased 
risk of cancer recurrence. A bimodal dynamics for early-stage breast cancer recurrence 
suggests a tumor dormancy-based model with a mastectomy-driven acceleration of 
the metastatic process and a crucial role of the immunosuppressive state during the 
perioperative period. Recent evidence suggests that anesthesia could also influence the 
progress of the disease. Local anesthetics (LAs) have long been used for their properties 
to block nociceptive input. They also exert anti-inflammatory capacities by modulating 
the liberation or signal propagation of inflammatory mediators. Interestingly, LAs can 
reduce viability and proliferation of many cancer cells in vitro as well. Additionally, retro-
spective clinical trials have suggested that regional anesthesia for cancer surgery (either 
with or without general anesthesia) might reduce the risk of recurrence. Lidocaine, a LA, 
which can be administered intravenously, is widely used in clinical practice for multimodal 
analgesia. It is associated with a morphine-sparing effect, reduced pain scores, and in 
major surgery probably also with a reduced incidence of postoperative ileus and length 
of hospital stay. Systemic delivery might therefore be efficient to target residual disease or 
reach cells able to form micrometastasis. Moreover, an in vitro study has shown that lido-
caine could enhance the activity of natural killer (NK) cells. Due to their ability to recognize 
and kill tumor cells without the requirement of prior antigen exposure, NKs are the main 
actor of the innate immune system. However, several perioperative factors can reduce 
NK activity, such as stress, pain, opioids, or general anesthetics. Intravenous lidocaine as 
part of the perioperative anesthesia regimen would be of major interest for clinicians, as 
it might bear the potential to reduce the risk of cancer recurrence or progression patients 
undergoing cancer surgery. As a well-known pharmaceutical agent, lidocaine might 
therefore be a promising candidate for oncological drug repurposing. We urgently need 
clinical randomized trials assessing the protective effect of lidocaine on NKs function and 
against recurrence after cancer surgery to achieve a “proof of concept.”
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inTRODUCTiOn

Surgery is a main part of the treatment of most cancers. In 2015, 
80% of the 15.2 million new diagnosis cases of cancer needed 
surgery (1). However, the perioperative period might be criti-
cal: the long-term follow-up of a cohort of 1,173 patients who 
underwent mastectomy for breast cancer suggested a bimodal 
recurrence pattern with an early broad peak at about 18 months 
after surgery and a second one at about 60 months. If the second 
peak might be the natural outcome of the breast cancer disease, 
the first one might result from an early escape of cancer cells 
from dormancy as well as for recurrence driven by surgery (2). 
Several competing hypotheses have been proposed to explain 
this phenomenon (3): surgery might lead to pro-tumorigenic 
inflammatory changes during the perioperative period, such as 
increased levels of pro-inflammatory cytokines, prostaglandins, 
or catecholamines, which might also affect the competence of 
parts of the innate immune system, such as natural killer (NK) 
cells, which are crucial for the detection disintegration of circu-
lating tumor cells (CTCs) (4). The surgical stimulus might also 
increase levels of growth factors like vascular endothelial growth 
factor (VEGF), basic fibroblast growth factor, transforming 
growth factor beta (TGF-β), heparin-binding epidermal growth 
factor-like growth factor, or platelet-derived growth factor, which 
have all been linked to tumor growth and metastasis (5–7). By 
inducing this pro-inflammatory environment in combination 
with its effects on immune surveillance, surgery itself might 
therefore enhance cancer cell dissemination and escape from 
immune surveillance and other hallmarks of cancer such as 
entrapment, invasion, migration, adhesion, or increasing of 
NETs (3). Added to the fact that primary tumor removal may 
promote tumor cell dissemination (8, 9), those effects could 
enhance establishment of new metastatic foci or accelerate 
growth of micrometastases (5).

As anesthesia is a key element of the perioperative period, it has 
been hypothesized that it could possibly also have an influence on 
cancer recurrence after surgery. On the one hand, some anesthetic 
and analgesic drug receptors are overexpressed in tumor tissues 
and are associated with metastasis (10). On the other hand, sev-
eral retrospective studies have suggested an impact of anesthesia 
on cancer survival (11); notably, regional anesthesia might be 
associated with a reduced risk of cancer relapse or recurrence in 
some studies, although there are also studies reporting no effect 
(12–14). One of the proposed hypotheses to explain these obser-
vations may be related to the anti-inflammatory effects of local 
anesthetics (LAs) affecting proliferation, migration, or invasion 
of cancer cells as well (15–17). This review aims at summarizing 
different properties of amide-linked LAs bearing the potential to 
exert antitumor or antimetastatic effects. Lidocaine might be of 
particular interest, as this LA can be used intravenously for mul-
timodal analgesia (18). Perioperative intravenous (IV) lidocaine 
has already been shown to reduce postoperative pain and opioid 
requirements (19), appears to be safe, and might not only reduce 
inflammatory markers but also the length of hospitalization, e.g., 
after colorectal surgery (20). The drug might therefore be an ideal 
candidate for a clinical trial evaluating the effects of amide-linked 
LAs on recurrence after cancer surgery.

AnTi-inFLAMMATORY eFFeCTS OF LAs 
IN VITRO AnD IN VIVO

Anti-inflammatory effects of LAs are well-known and have been 
studied extensively (21). However, the influence of LAs on the 
integrity of the endothelial barrier might be crucial for a possible 
inhibitory effect on the generation of metastasis during the perio-
perative period (14). CTCs—released into the circulation from 
the primary tumor during surgical removal of the latter—are able 
to form new (microscopic) metastatic lesions (22, 23), which will 
finally determine the patient’s fate, even after a complete surgical 
removal of the primary tumor (24, 25). Endothelial barrier func-
tion is mostly regulated by Src protein tyrosine kinase (Src) and the 
activation of the enzyme will lead to a loss in endothelial barrier 
integrity via phosphorylation of its main substrate caveolin-1 at 
tyrosine 14 and several subsequent signal transduction pathways 
finally leading to the disruption of tight junctions and an increase 
in neutrophil adhesion and transmigration (26, 27), which might 
also be able to ease the extravasation of CTCs from the circulation 
(28). Intercellular adhesion molecule-1 (ICAM-1) is crucial for the 
adhesion and transmigration of neutrophils to the endothelium, 
thus aggravating the inflammatory response (29, 30). Additionally, 
phosphorylation of ICAM-1 is not only Src-dependent but also 
leads to an increase in neutrophil binding and transmigration 
(31). Src is activated by certain inflammatory cytokines, such as 
tumor necrosis factor alpha (TNFα), which is released at increas-
ing concentrations—possibly due to surgical stress—during the 
perioperative period (32, 33). Therefore, the endothelial barrier 
might be impaired and the formation of new metastatic sites might 
be favored (14, 34). However, there is evidence that the amide LAs, 
such as lidocaine and ropivacaine, might be able to attenuate the 
inflammatory response in the endothelium, which might then lead 
to a preservation of endothelial barrier integrity (35, 36). In a model 
of experimental acute lung injury triggered by tracheal instillation 
of bacterial lipopolysaccharide, ropivacaine was able to attenuate 
the formation of pulmonary edema and neutrophil transmigration, 
most certainly by decreasing Src and ICAM-1 expression in rats 
and mice (37, 38). Data from in vitro experiments using human 
lung microvascular endothelial cells incubated with TNFα and 
ropivacaine or lidocaine suggested that the drugs might be able to 
preserve endothelial barrier function by inhibiting signal transduc-
tion by the cytokine receptor TNFR1, which subsequently also lead 
to less Src and ICAM-1 activation and/or phosphorylation (39).

Neutrophil transmigration has also been demonstrated to be a 
factor influencing CTC extravasation and metastasis, as the CTCs 
might use the activated leukocytes as some sort of “facilitator” for 
their own transmigration by binding of cancer cell ICAM-1 to 
neutrophilic CD11b (integrin αM) (40, 41). Therefore—at least in 
terms of CTC extravasation—it might be beneficial that LAs seem 
to impair neutrophil activation and priming (42–44).

AnTi-inFLAMMATORY =  
AnTiMeTASTATiC?

There is a large overlap between inflammatory signaling pathways 
found to be crucial in inflammation as well as in cancer (17, 45, 46).  

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


3

Chamaraux-Tran and Piegeler Impact of Lidocaine on Breast Cancer

Frontiers in Medicine | www.frontiersin.org December 2017 | Volume 4 | Article 235

For instance, Src kinase is also involved in signal transduction 
leading to cancer cell migration, cytoskeleton changes, invasion, 
proliferation, and the extravasation of CTCs (45, 47–49). Src 
activation and ICAM-1 phosphorylation in cancer cells can not 
only be induced by incubation with TNFα but also be blocked 
by clinically relevant concentrations of lidocaine and ropivacaine 
(16). Furthermore, the inhibition of Src activation by amide LAs 
also has an impact on the activation of Akt and focal adhesion 
kinase (15), a pathway which might also have a crucial role in 
triple negative breast cancer and is currently investigated for 
the development of new targeted therapies (48). A decrease in 
TNFα-induced secretion of cancer cell matrix metalloproteinase 
9—an enzyme necessary for the degeneration of the extracellular 
matrix by malignant cells (50)—in combination with a subse-
quent decrease in invasiveness in vitro has also been linked to the 
inhibition of Src activation by the LAs (15). Interestingly though, 
depending on the cell type used, the observed effects on cancer 
cell invasiveness have both been shown to be either independent 
(Src-dependent mechanism in non-small-cell lung cancer cells) or 
dependent (sodium channel variant Nav1.5 in colon cancer cells) 
on the blockade of the voltage-gated sodium channel (VGSC)  
(16, 51). Cancer growth might also be affected by LAs, as lido-
caine has been shown to induce apoptosis and suppress tumor 
growth in human breast tumor cells (52) as well as in other tumor 
cells in vitro (15, 16, 53–57). Interestingly, it might also be able to 
sensitize breast cancer cells against chemotherapeutic drugs (58).

Besides these already well-established in vitro effects, a very 
recent study showed encouraging results regarding a possible 
inhibition of tumor growth by lidocaine in a xenograft model 
in  vivo (54): cells originating from a human hepatocellular 
carcinoma cell line have been injected subcutaneously into 
immunocompromised mice, which then have been subject to 
treatment with lidocaine (30 mg/kg) twice a week injected into 
the peritoneal cavity. Compared to control, lidocaine treatment 
was able to reduce the growth of the tumor. Furthermore, it was 
also found to be as effective as treatment with cisplatin (3 mg/kg, 
once per week) and was even able to increase the sensitivity of the 
tumor against cisplatin, which the authors related to an increased 
induction of apoptosis by the LA (54). In another study, the phe-
nomenon of enhancing the effectiveness of a chemotherapeutic 
agent has been linked to the fact that lidocaine was demonstrated 
to induce demethylation of deoxyribonucleic acid in breast 
cancer cells, thus interfering with the cells’ epigenetics, i.e., their 
regulation of gene expression (59).

In humans, many studies retrospectively analyzed the effects 
of the use of regional anesthesia and LAs in patients undergoing 
cancer surgery. Several studies showed a potential beneficial effect 
(12, 60–62), while others did not (63–66). So far, no data from 
adequately powered randomized controlled trials (RCTs) are 
available and therefore the authors of a recent Cochrane review 
concluded that there is currently only “inadequate” evidence for 
a potential beneficial effect of the perioperative use of regional 
anesthesia in cancer patients (67). However, these inconclusive 
findings might, at least in part, be explainable by the large het-
erogeneity of studies, tumors, and patients alike (14). Moreover, 
the intermediate outcomes of RCT so far have been encouraging: 
in a pilot study utilizing blood samples from patients undergoing 

breast cancer surgery (NCT 00418457), the serum of women 
anesthetized with propofol and paravertebral block induced more 
apoptosis in a triple-negative breast cancer cell line compared 
to serum derived from women exposed to sevoflurane and an 
opioid-based regimen (68). In addition, these two different anes-
thetic techniques might also have an impact on serum concentra-
tions of factors contributing to tumor progression after surgery: 
propofol plus paravertebral block increased the level of TGF-β, 
whereas sevoflurane together with opioids increased the level of 
VEGF-C 24 h after surgery (69). But as both TGF-β and VEGF-C 
are involved in the regulation of tumorigenesis (70, 71), these 
findings are insufficient to favor any of those two techniques.

eFFeCTS On THe iMMUne SYSTeM: 
iMPLiCATiOn FOR MALiGnAnT 
DiSeASeS

The Central Role of the immune System  
in Cancer
Immunosurveillance by the innate immune system plays a crucial 
role in the early stages of carcinogenesis and is a promising target 
to treat breast cancer (72, 73). NK  cells drive this process and 
play a key role in detecting abnormal growth and subsequent 
activation and recruitment of other immune cells to eliminate 
cancer cells (74). Moreover, NK dysfunction can lead to breast 
cancer progression (75), and restoring NK activity is currently 
under investigation as part of the treatment regimen for breast 
cancer (76). A derangement of immune processes is a common 
event during the perioperative period and might lead to severe 
disturbances, e.g., of NK cell function with subsequent enhanced 
dissemination of CTCs (77), as NK cell activity can be impaired 
for up to 7 days after breast cancer surgery (78). Furthermore, 
surgery shifts the balance of T-helper (Th)1/Th2 toward the Th2 
humoral response, a phenomenon which also exerts pro-tumor 
actions (79, 80).

impact of LAs on Cell-Mediated immunity
The impact of LAs on antitumor immunity and NK  cell func-
tion is still contradictory. Thus, a meta-analysis comparing the 
effect of spinal or epidural anesthesia with general anesthesia 
failed to demonstrate any enhancement of NK cell function after 
neuraxial anesthesia, due to a significant degree of heterogeneity 
of the five eligible studies (81). However, the choice of the anes-
thetic technique might still have an impact on NK cell function: 
according to a pilot study from the already mentioned RCT 
evaluating patients undergoing breast cancer surgery with two 
different anesthetic regimens (propofol + paravertebral block vs. 
sevoflurane  +  opioids only, NCT 00418457), serum of women 
anesthetized with propofol plus paravertebral block for breast 
cancer surgery impaired the antitumor activity of NK cells much 
less than that of women exposed to sevoflurane and opioids (68). 
Turning more specifically to lidocaine, this LA might also affect 
NK cell activity differently, depending on the concentration used: 
from the early 1980s until the 2000s, in vitro studies have shown 
that lidocaine might compromise NK cell activity, but the experi-
mental concentrations tested were high (from 0.2 to 5  mg/ml 
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whereas a level of 5 µg/ml is toxic) and were not compatible with 
concentrations found after a systemic use of the drug (82–84). 
However, more recently Ramirez et al. have shown that lidocaine 
at lower and clinically relevant concentrations (10−8 to 10−6 M) 
may instead preserve cytotoxicity of isolated human NK  cells 
(85). Whether LAs might also affect other immune cells, e.g., 
lymphocytes, remains controversial: proliferation of Jurkat cells, 
an immortalized human T lymphocyte cell line commonly used 
to study T cell signaling or the expression of various chemokines, 
was decreased by lidocaine via the induction of apoptosis (86, 
87) or via a dose-dependent inhibition of the cytokines IL-2 and 
TNF-α (88). It is difficult to translate those in vitro results to a 
clinical immunosuppressive effect of lidocaine because Jurkat 
cells are derived from the peripheral blood of a patient with T cell 
leukemia and express the uncontrolled characteristics of cancer 
cells (89). More physiologically, lidocaine also had an immuno-
suppressive effect on isolated mouse T cells derived from Peyer’s 
patches (90) and reduced the secretion of pro-inflammatory 
cytokines in freshly isolated peripheral blood T cells (88). In addi-
tion, lidocaine inhibited the differentiation of Th1 cell responses 
of mice dendritic cells (91). However, all these experiments 
again used excessive lidocaine concentrations and therefore a 
translation into daily clinical use might be rather difficult. On 
the contrary, under clinical conditions, Yardeni et al. have shown 
that intraoperative IV lidocaine in combination with patient-
controlled epidural analgesia was able to preserve lymphocyte 
response to phytohemagglutinin-M compared with a control 
group receiving only normal saline. This suggests that lidocaine 
might be able to reduce immune dysfunction as induced by the 
surgical stimulus (92). These results were later confirmed by Wang 
et al. who have shown that IV lidocaine might also preserve the 
balance of Th1/Th2 after radical hysterectomy for cervical cancer, 
whereas Th1/Th2 imbalance might favor tumor cells to escape 
immune surveillance and clearance (93). All those clinical data 
suggested an enhanced effect of lidocaine on immunity and might 
support its clinical use during the perioperative period. While 
intraoperative IV lidocaine failed to confirm an opioid sparing 
effect after breast cancer surgery in two studies (94, 95), those 
same trials have shown a decrease of the incidence and severity of 
persistent postsurgical pain at the same time (95, 96). One of the 
hypotheses argued by the authors to explain those results is the 
impact of the anti-inflammatory properties of lidocaine.

Because the in  vitro results remain unclear and the clinical 
mechanisms of action of lidocaine on immune functions are 
unsettled, it seems urgent to design a clinical trial to study the 
impact of IV lidocaine on immune function and cancer surveil-
lance and follow the patient to see if an immune modulation dur-
ing surgery may have an impact on outcome after breast cancer 
surgery.

“FROM BenCH-TO-BeDSiDe” 
APPLiCATiOn FOR iv LiDOCAine in 
OnCOLOGY?

We have summarized above a lot of promising data—in particular 
detailed evidence of plausible direct and putative mechanisms of 

action—to support a new use of lidocaine in oncologic patients 
as it bears the potential to serve as a “repurposing candidate” 
drug (97).

First of all it is a well-known drug, commonly used in 
multimodal analgesia (98) with a well-established an evalu-
ated toxicologic and pharmacokinetic profile for this purpose 
(99–101).

However, a number of steps have to be undertaken before 
repurposing IV lidocaine for oncologic diseases. Unfortunately, 
there is no reliable clinical evidence of its oncological effects 
available right now. Therefore, we urgently need randomized 
controlled clinical trials to test the hypothesis of lidocaine’s anti-
tumor effects at clinically relevant doses as suggested by the large 
amount of in vitro and in vivo evidence.

So far, the oncological properties of lidocaine were mainly 
assessed by retrospective studies or secondary analyses of patients 
enrolled in published clinical trials which were not powered and 
designed to study other effects or outcome parameters (14). In 
order to test the hypothesis that lidocaine might have an antitumor 
or antimetastatic effect, patients would have to be randomized to 
receive IV lidocaine at relevant doses for perioperative analgesia 
or placebo. Possible outcome measures could, for instance, be the 
disease-free survival after a long-term follow-up or the impact 
of lidocaine on inflammatory or NK cytotoxic functions after 
surgery. Identifying subgroups of procedures and surgeries where 
patients are responsive to lidocaine would be useful to demon-
strate a protective effect of this LA against recurrence and metas-
tasis. This strategy might help to avoid the inconsistent results 
of studies on protective effect of regional anesthesia (14). Thus, 
patients undergoing colorectal or breast cancer surgery could be 
of interest as those surgeries imply a high risk of local or distant 
relapse, even after achieving a complete surgical resection (102). 
Additionally, some phenotypes of those cancers overexpress one 
of the main targets of lidocaine: the VGSC which might also be 
involved in the process of metastasis (103).

COnCLUSiOn

Due to its large therapeutic margin, strong anti-inflammatory 
properties and potential beneficial impact on the innate immune 
surveillance system, lidocaine might be an ideal candidate 
for drug repurposing in cancer, which might potentially affect 
the patients’ outcome dramatically. Besides the already proven 
favorable effects of perioperative IV lidocaine application on, 
e.g., post-operative pain and inflammation, patients with (breast) 
cancer might also benefit from an antimetastatic effect, ideally 
associated with a subsequent increase in recurrence-free and 
overall survival. However, due to the fact that there is currently not 
enough clinical evidence to support this hypothesis, we urgently 
call for clinical trials evaluating the effects of perioperative lido-
caine during cancer surgical period to answer the question once 
and for all: is there a beneficial effect or not?
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