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Marine-derived actinomycete bacteria are emerging as a valuable resource for bioactive natural
products encompassing a variety of unique structural classes.[1] In our hands, early detection
of cell growth inhibitors using in vitro cytotoxicity assays against the colon carcinoma cancer
cell line HCT-116, followed by extensive mechanism of action studies, has proven to be an
effective approach. As such, the HCT-116 assay has been instrumental in the identification of
potentially important anticancer agents.[2]

In the course of our continued studies, Streptomyces strain CNR-698[3] was isolated from
bottom sediments collected at a depth of 1618 meters in the Bahamas Islands in 2003.
Cytotoxicity-guided (HCT-116) fractionation by C18 flash chromatography and RP-HPLC of
crude extract led to the isolation of ammosamides A (1) and B (2) as blue and red solids,
respectively (3 and 4 mg L−1). Structure assignments for 1 and 2 proved to be particularly
difficult due to their inherent insolubility (soluble only in dimethyl sulfoxide (DMSO)) and a
lack of descriptive NMR signals, ultimately requiring the integration of NMR spectral analysis,
mass spectrometry data, and single crystal X-ray diffraction studies.

High-resolution (ESI) mass spectrometric analysis of ammosamide A (1) indicated a molecular
formula C12H10

35ClN5OS (m/z [M+H]+: 308.0303]. The molecular weight of ammosamide B
(2) was found to be 16 amu lower (m/z [M+H]+: 292.0604) consistent with the molecular
formula C12H10

35ClN5O2. The UV/Vis spectrum of 1 was indicative of an unusually highly
conjugated structure with absorptions at λmax=580, 430, 350, and 290 nm.

Inspection of the 1H NMR spectrum of 1 in [D6]DMSO revealed six singlets between δ=6.0
and 9.0 ppm and one methyl singlet at δ=4.03 ppm, while the 13C NMR spectra revealed the
presence of eleven sp2 hybridized carbon atoms and a single sp3 hybridized carbon atom at
δc=33.3 ppm (Table 1). The addition of D2O (20 μL) to the sample in [D6]DMSO resulted in
the immediate disappearance of 1H NMR signals at δ=7.16 (1H), 6.63 (1H), 6.89 ppm (2H)
and the slower disappearance of singlets at δ=8.92 (1H), and 7.68 ppm (1H) (less than 10 min).
The exchangeable protons at δ=7.16, 6.63 and 6.89 ppm were assigned as aromatic amines at
C-6 and C-8 (based on HMBC correlations), while the slowly exchanging protons at δ=8.92
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and 7.68 ppm were assigned to a primary amide on the basis of COSY and HMBC correlations.
The only non-exchangeable hydrogen atoms were the methyl singlet resonance at δ=4.03 ppm
and a one-proton singlet at δ=8.47 ppm. The 13C NMR spectrum of 1 indicated the presence
of two carbonyl groups (δc=177.2 and 166.0 ppm), as well as two upfield sp2 carbon atoms
(δc=103.1 and 110.5 ppm). HMBC correlations between the downfield carbonyl (δc=177.2
ppm) and the proton methyl singlet at δ=4.03 ppm, we thought, defined an N-methyl amide,
although a carbon chemical shift so far downfield would not be expected. In addition to
correlations from the aromatic δ=8.47 ppm singlet, the only other HMBC correlations were
from the exchangeable protons at δ=7.16/6.63 ppm to C-7 (δc=103.1 ppm) and from δ=6.89
ppm to C-7 and C-8a (δc=110.5 ppm).

The spectral data for 1 suggested a highly unsaturated azaaromatic metabolite possessing three
rings. However, the lack of definitive NMR assignments that could be used to link these features
forced us to concentrate efforts toward obtaining an X-ray crystal structure. We were fortunate
to obtain small crystals of 1 by the slow diffusion of H2O into a saturated solution in DMSO.
[4] The X-ray assignment of ammosamide A (1) is shown in Figure 1. Once X-ray data became
clear, the spectral data for 1 could be assigned.

The structure assignment of ammosamide B (2) followed from analysis of spectral data and
chemical interconversion. Comparison of the C-2 carbonyl chemical shifts in 1 (δC=177.2 ppm)
and 2 (δC=164.0 ppm) revealed a difference of 13 ppm, consistent with the typical 13C chemical
shift difference between a carbonyl and a thiocarbonyl (ca. 20 ppm).[5] In order to chemically
confirm the presence of the thiolactam functionality, we used Lawesson's reagent [2,4-bis(p-
methoxyphenyl)-1,3-dithiadiphosphetane-2,4-disulfide] to convert lactam 2 into thiolactam
1.[6] The low yield of this reaction is likely attributable the nucleophilic amines in 2.[7]
Exposed to air during storage, 1 was gradually converted to ammosamide B (2). Notably, the
transformation could also be accomplished in 10 min, upon treatment of 1 with hydrogen
peroxide in aqueous methanol.[8] This reactivity has been previously observed in other
thioamide-containing compounds.[9]

The structural similarities between the ammosamides and the microbial product lymphostin
(3) are clear,[10] as is the relationship of the ammosamides to several sponge-derived
pyrroloiminoquinone natural products, including batzelline A (4),[11a] isobatzelline D (5),
[11b] and makaluvamine A (6)[11c] (Scheme 1). The sponge metabolites 4–6 possess different
patterns of Cl and NH2 substitution and assume p-iminoquinone and o-quinone structures. The
presence of an amino group at C-8 in the ammosamides results in a fundamentally different
structure type in which the quinoline tautomer predominates. The pyrrole moiety in 3–6 is
uniquely oxidized to the pyrrolidinone in ammosamide B (2). Finally, though methyl sulfides
are present in 4 and 5, ammosamide A (1) is the first natural product to contain a thio-γ-lactam
functionality.[12]

The fact that the ammosamides are highly colored (1: λmax=580 nm; 2: λmax=530 nm), yet lack
quinone or iminoquinone functionalities, leads to speculation about the electronic character
and reactivity of these metabolites. The intense colors of these compounds could reflect a strong
charge separation between the two six-membered aromatic rings due to the effects of electron-
donating groups on the chlorine-containing ring and electron-withdrawing substituents on the
pyridine ring. It is, conceptually, also explained by the potential for ammosamide A to exist in
an equilibrium with its bis-iminoquinone tautomer (Scheme 2). Furthermore, in 1 and 2 the
chlorine atom at C-7 is poised to engage in nucleophilic aromatic substitution with a suitable
nucleophile, particularly when the molecule exists as its bis-iminoquinone tautomer.[13] This
reactivity may be relevant to the molecule's interaction with its protein target.[14]
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Ammosamides A (1) and B (2) exhibited significant in vitro cytotoxicity against HCT-116
colon carcinoma, each with IC50=320 nM. These compounds also demonstrated pronounced
selectivity in a diversity of cancer cell lines with values ranging from 20 nM to 1 μM, indicating
a specific target mechanism of action. To explore the intracellular target of the ammosamides,
ammosamide B (2) was converted to a highly fluorescent molecule by conjugation.[14]
Treatment of HCT-116 colon carcinoma or HeLa cells with this fluorescent molecule produced
immediate and irreversible labeling of a specific protein in the cellular cytosol. Using a cell
and molecular biology approach, the target of the ammosamides was identified as a member
of the myosin family, important cellular proteins that are involved in numerous cell processes,
including cell cycle regulation, cytokinesis, and cell migration.
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Figure 1.
X-ray crystal structure of ammosamide A (1). Red O, blue N, yellow Cl, black C, white H.
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Scheme 1.
Related metabolites from bacteria and sponges.
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Scheme 2.
Possible tautomeric form of ammosamide A (1).
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