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Abstract
Heat pumps can be used for different purposes in building

services. They obtain heat from the environment of lower tem-
perature (e.g. air, water, earth) and transfer it into the building
at a higher temperature. The heat of the ground can be the pri-
mary energy source of the heat pumps. We extract this heat with
the help of ground heat exchangers. These exchangers are the
U-tubes, which are either single or double. In our paper we deal
with the problem of the extractable heat from the ground with
these heat exchangers. We show a simple calculation method
for the temperature change in the heat carrier fluid and for the
overall thermal resistance of the U-tube.
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1 Introduction
In recent years, a large number of residential and commercial

buildings have been installed with ground coupled heat pump
systems for space cooling, heating and even hot water supply.
Most of the ground coupled heat pumps use vertical ground heat
exchangers which usually offer higher energy performance than
the horizontal ground heat exchangers due to the less tempera-
ture fluctuation in the ground.

In the Carpathian basin, but mainly on the territory of Hun-
gary the crust of the earth is thinner than the Earth average;
therefore its geothermal features are very good. Under the
ground surface in the earth core levels from the decomposition
of radioactive isotopes heat is produced. Its flow directed to-
wards the surface is geothermal energy. The global average of
the geothermal gradient is 33 m/˚C, while in Hungary it is only
18-22 m/˚C. The average value of the heat flow from the inner
core of the ground is 80-100 mW/m2 according to the heat flow
map of Hungary, which is almost the double of the average value
measured on the mainland [1].

In our paper we deal with heat extraction of vertically in-
stalled single U-tubes.

2 Review of heat transfer modelling in the case of U-
tubes
In a descending and ascending branch of the U-tubes, the fluid

gets warm and forwards the heat to the heat pump through a
heat exchanger. The modelling of this heat transfer is a com-
plex problem. The process of heat transfer is affected by many
variables, such as ground temperature, ground humidity, the
structure of the ground and the thermal features, furthermore
the location of underwater. There are many authors, who deal
with these problems, such as Zeng [2], Kalman [4], Kavanaugh
[5], Yavusturk and Splitter [6]. During the modelling the heat
transfer can be regarded as a steady or unsteady state. The-
oretically steady state never occurs during the heat extraction
process. Several months after steady operation, the heat trans-
fer process is steady with good approximation. Among others,
Zeng [2] describes short term unsteady processes.

If we assume the processes of heat transfer and the working
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of U-tubes as steady, then for the description of heat transfer
between the U-tube and the ground we can use the following
very simple formula,

T f (t) − Tb (t) = qb (t) Rr , (1)

where Rb is overall thermal resistance, which includes the resis-
tance of heat transfer in the ground and grout (backfill) further-
more the resistance of the heat transfer between U-tube and the
fluid [3].

The process of warming of fluid can be described with the
following formula

qb (t) H
ṁ · cp

= [T f i (t) − T f o (t)]. (2)

The main problem in the modelling is determining Rr the overall
heat transfer thermal resistance.

The borehole thermal resistance is determined by a number
of parameters, including the composition and flow rate of the
circulating fluid, borehole diameter, grout (backfill) and U-tube
material as well as arrangement of flow channels. Models for
practical engineering designs are often oversimplified in dealing
with the complicated geometry inside the boreholes [2].

A one-dimensional model [13] has been recommended, con-
ceiving the legs of the U-tubes as a single equivalent pipe inside
the borehole, which leads to a simple expression

Rr =
1

2 · π · kr
· ln

(
rpipe

√
N · rpipe

)
+ Rpipe. (3)

Another effort to describe the borehole resistance has used the
concept of the shape factor of conduction and resulted in an ex-
pression [2]

Rr =

[
kr · β0 ·

(
rborehole

rpipe

)β1
]−1

, (4)

where parameters ß0 and ß1were obtained by means of curve
fitting of effective borehole resistance determined in laboratory
measurements [13]. In this approach only a limited number of
influencing factors were considered, and all the pipes were as-
sumed to be of identical temperature as a precondition.

By a different approach Hellstrom [14] has derived two-
dimensional analytical solution of the borehole thermal resis-
tances in the cross-section perpendicular to the borehole with
arbitrary numbers of pipes, which are superior to empirical ex-
pression. Also on assumptions of identical temperatures and
heat fluxes of all the pipes in it the borehole resistance has been
worked out of symmetrically disposed double U-tubes as [2]

Rr =
1

2 · π · kr

[
ln
(

rborehole

rpipe

)
−

3
4

+

(
D

rborehole

)2

− −
1
4

ln

(
1 −

D8

r8
borehole

)
−

1
2

ln

( √
2D

rpipe

)
−

1
4

(
2D

rpipe

)]

+
Rpipe

4
. (5)

Recently, Yavuzturk et al. [6] employed the two-dimensional
finite element method to analyze the heat conduction in the plane
perpendicular to the borehole for short time step responses.

Requiring numerical solutions, these models are of limited
practical value for use by designers of ground coupled heat
pump systems although they result in more exact solutions for
research and parametric analysis of ground heat exchangers.

In our paper, we give a simple calculation method for overall
thermal resistance. We take into account thermal resistance of
the U-tube (Rpipe), thermal resistance of the backfill (Rgrout )

and the thermal resistance of the ground (Rground ).

3 Simple calculating method for the heat transfer in
single U-tubes
The operation of geothermal heat pump systems is affected by

ground temperature and heat transfer processes in the ground,
because the ground temperature determines the maximum ex-
tractable heat capacity. It basically determines the coefficient of
performance (COP). Therefore we lay a big emphasis on mod-
elling this process, i.e. on obtaining exact numerical values of
the temperature change in the ascending branch of the U-tube.
By knowing the rate of this warming, we can make an exact cal-
culation for the borehole depth in function of required capacity
of the unit.

In our paper we use a simple calculating model to determine
the temperature change and the extractable maximum heat ca-
pacity. In our calculations we use steady and unsteady mod-
els. The heat flux through the top and the end of the borehole
is neglected because the size of the borehole diameter is much
smaller than its depth.

3.1 Bases of the calculation model
The temperature change of the fluid is described by the fol-

lowing differential equations:
For the descending branch of the U-tube

ṁ · cv ·
dT1(H)

d H
= s ±

(
Tground − T1(H)

)
R1

± q ′, (6)

for the ascending branch of the U-tube

ṁ · cv ·
dT2(H)

d H
= s ±

(
Tground − T2(H)

)
R2

± q ′, (7)

where H is the borehole depth, s is the dissipation heat, which
can be calclulated with the following formula s = V̇ · 1p = π ·

r2
·w ·

(
ρ
2 w2

·
1
d · λ

)
, T1 and T2 describes the temperature of the

fluid in the function of depth (H). q ′ in Eqs. (6), (7) shows the
mutual influence of the U-tube (Fig. 1). R1 and R2 are overall
thermal resistances around the U-tube. The mutual influence can
be calculated by the following equation [8]:

q ′

λ · (T1 − T2)
=

2π

cosh−1
[

4l2−D2−d2

2·D·d

] . (8)

where q ′is the 1 m heat transport between the pipes.
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Fig. 1. Mutual influence of U-tube in endless space

In Eq. (8) T1 and T2 describe the fluid temperature in each
part of the U-tube, D and d represent the diameter of the U-tube
(in our case D=d), l the distance between the parts of the U-tube
and λ represents the heat conductivity of the grout. We study
the descending and ascending temperature change in a separate
coordinate system (Fig. 2).

The previously shown equations add up to a system of linked
differential equations. The linked differential equations contain
two unknown functions T1(H) and T2(H). These equations are
solved by applying the method of serial approach as follows.
In the 0th approach we neglect the mutual interaction of the
branches of the U-tube and we solve the equations (3) and (4)
separately. The solutions are as follows:

T1(H) = s · R1 − E ·m ·cv · R1 + F + E · H +e−
H

R1·m·cv ·C (9)

T2(H) = s ·R2−E1 ·m ·cv ·R2+F1+E1 ·H+e−
H

R2·m·cv ·C1 (10)

These two solutions are shown in coordinate systems (Fig. 2).
In the following phase we correct the obtained functions for

T1(H) and T2(H) so that we take into account the interactions of
the U-tube parts according to the (8) equation. In the equation
we substitute the functions T1(H) and T2(H) with the obtained
results in the 0th approach and we solve again the equations (6)
and (7). We proceed numerically, by 1H steps from 10 m to 100
m and vice versa from 100 m to 10 m. We continue this method
and the function correction recursively.

In the previously shown calculation method the appropriate
solution calculated for values R1 and R2 is problematic. In the
following chapter we give an exact method to obtain solution for
these thermal resistances.

4 Determining R1 and R2 thermal resistances consid-
ering the unsteady operation of the U-tubes
We determine the thermal resistance with Eq. (11) for steady

states, where we calculate the sum of thermal resistance of par-
ticular system elements. For unsteady state the method is the
same, because the process is very slow, and we can model it by
the method of serial approach.

Therefore the value of R1and R2 can be obtained by the fol-
lowing simple formula for steady and unsteady process (Fig. 3):

Rr = R1 = R2 = Rground + Rgrout + Rpipe (11)

We apply the method of Carslaw-Jaeger to determine the ther-
mal resistance Rground which is represented in Fig. 4. Carslaw-
Jaeger [9] introduced in the scientific literature how the distri-
bution of temperature and density of heat flux is changing on
the surface of cylinder in the function of time around a circular
cylinder in the infinite space.

E = 0.06 E1 = −0.067
F = 10 F1 = 16

Fig. 2. Coordinate systems for solution

 
Fig. 3. Parts of the overall thermal resistance

With the help of Carslaw-Jaeger method we present the so-
lution of the problem. Carslaw-Jaeger defined the problem as
follows: The region bounded internally by the circular cylinder.

 
Fig. 4. Distribution of temperature around a circular cylinder in infinite

space
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d22̄

dr2 +
1
r

·
d2̄

dr
− q22̄ = 0, r > r0 (12)

where q2
=

s
κ

.

If r → ∞and2̄ = T0
/

s, r = r0, the solution is:

2̄ =
T0 K0(qr)

sK0(qr0)
. (13)

By using the inversion thesis according to Carslaw and
Jaeger [9]:

ϑ =
T0

2π i

γ+i∞∫
γ−i∞

eλ·τ K0(µr)dλ

K0(µr0)λ
, (14)

where µ =

√
λ
/
κ , and K0 is a modified Bessel function of the

second kind, zero order.
If λ = κu2eiπ , then:

2

∞∫
0

e−κu2τ K0(rue
1
2 π ·i )

K0(r0ue
1
2 π ·i )

du
u

=

2

∞∫
0

e−κu2τ J0(ur) − iY0(ur)

J0(ur0) − iY0(ur0)

du
u

, (15)

since

K0(ze
1
2 π ·i ) = −

1
2
π · i · H2

0 (z) = −
1
2
π · i [J0(z) − iY0(z)] .

Combining these correlations:

ϑ = T0 +
2T0

π

∞∫
0

e−κu2τ J0(ur)Y0(ur0) − Y0(ur)J0(ur0)

J 2
0 (r0u) + Y 2

0 (r0u)

du
u

.

(16)
The asymptotic analysis of the Bessel functions (3) is used for
small time units in the Laplace transformed form of the solution:

2̄ =
T0

s

(r0

r

) 1
2 e−q(r−r0){

1 +
(r − r0)

8r0rq
+

(9r2
0 − 2r0r − 7r2)

128 · r2
0r2q2

...

}
.

The re-transformed form of which is:

ϑ =
T0r

1
2

0

r
1
2

er f c
r − r0

2
√

(κ · τ)

+
T0 (r − r0) (κ · τ)

1
2

4r
1
2

0 r
1
2

ier f c
r − r0

2
√

(κ · τ)
+

T0(9r2
0 − 2r0r − 7r2)κ · τ

32r
3
2

0 r
5
2

i2er f c
r − r0

2
√

(κ · τ)
+ . . . , (17)

Since the U-tubes extract heat from the ground while working,
the temperature of the ground around the U-tube declines si-
multaneously and the quantity of extractable heat gradually de-
clines, too. This phenomenon can be modelled with the method
shown by Carslaw-Jaeger [9].

According to the outer radius of the U-tube the heat flux in
the function of time is:

q̇ = −λground

[
∂ϑ

∂r

]
r=r0

=

4T0λground

r0π2

∞∫
0

e−κu2τ du

u[J 2
0 (r0u) + Y 2

0 (r0u)]
. (18)

Integral (18) for lower values of the Fourier number approxi-
mately is:

q̇ =
λground T0

r0

{
(π · Fo)−

1
2 +

1
2

−
1
4

(
Fo
π

) 1
2

+
1
8

Fo...

}
,

(19)
for larger values of Fo numbers is:

q̇ =
2T0λground

r0

{
1

ln(4Fo) − 2γ
−

γ

[ln(4Fo) − 2γ ]2 − ...

}
,

(20)
(γ = 0.57, Euler number)

As T0 is a beyond temperature (the difference between the
temperatures of the borehole’s wall and the distant ground) the
unsteady heat transfer thermal resistance can be defined by the
following:

Rground =
T0

q̇
=

r0

2 · λground ·

{
1

ln(4Fo)−2γ −
γ

[ln(4Fo)−2γ ]2 − ....
} .

(21)
It is demonstrable that for the larger values of Fo the value of

Rground changes very slowly, with a good approximation it can
be considered as constant in a fixed period of time.

With the above stated equations we can calculate the value of
the thermal resistance between the ground and all of the U-tube
in different depths and the amount of the heat flux reaching the
walls of the U-tube in the function of time. It is demonstrable
that the process of ground temperature decreasing is very slow.
After one year of operation the heat transfer can be defined as a
steady state. The change of the Fo number as a function of time
is shown in Table 1.

Tab. 1. Fo number change in the function of time

10 s 1 hour 1 day

τ [s]: 10 3600 86400

Fo 0.040192 14.46907 347.2577

1 month 1 year 10 year

τ [s]: 2592000 311004000 311040000

Fo 10417.73 125012.8 1250127.551

Table 2 shows the values of unsteady thermal resistance
Rground , which are calculated by Eq. (21) and with the average
value of heat conduction λground = 2.42 W/mK.

The inner space between the U-tube and the borehole is filled
up with bentonite, in order to stop porosity and inner air. With
the grout we increase the heat flux between the heat carrier fluid
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Tab. 2. Unsteady thermal resistance Rground change in the function of time

10 s 1 hour 1 day

Rg [mK/W] 0.008 0.012 0.022

1 month 1 year 10 year

Rg [mK/W] 0.033 0.042 0.049

and the ground. Thermal resistance of the grout can be calcu-
lated by the following Eq. (8):

q ′

λgrout · (T1 − Tw)
=

2 · π

cosh−1
[ (

D2
borehole+D2−4·l2

)
2·Dborehole·D

] , (22)

where D and d are outer diameters of U-tube, Dborehole is a di-
ameter of the borehole, l is a distance between U-tube and mid-
point of the borehole. λgrout = 2,09 W/mK is thermal conduc-
tivity of the bentonite (Fig. 5).

 
Fig. 5. Section of the borehole with single U-tube

Solving equation (18) we obtain solution for the thermal re-
sistance of the grout, which is the following:

Rgrout =
T1 − Tw

q ′
=

cosh−1
[ (

D2
borehole+D2

−4·l2)
2·Dborehole·D

]
2 · π · λgrout

(23)

In our situation D=d.
With the help of the above described formula for calculating

the thermal resistance of the grout is Rgrout = 0,089 mK/W. It is
taken into account that the U-tube is located eccentrically in the
borehole.

The overall unsteady thermal resistance can be obtained if to
the results shown in Table 2 are added to the thermal resistance
of the plastic U-tube pipe, which value is 0,085 mK/W and to
the value of the grout’s thermal resistance. The values of the
overall unsteady thermal resistances are shown is Table 3.

5 Monthly calculated results for an operating single U-
tube
Hereby I propose a computation sample. This calculation is

made for the following months: February, May, August and

Tab. 3. Overall thermal resistance Rr change in the function of time

10 s 1 hour 1 day

Rr [mK/W] 0.165 0.185 0.195

1 month 1 year 10 year

Rr [mK/W] 0.207 0.215 0.222

November. For each month the method is the same, the only
changes are in the ground temperature, because in the first 10 m
its value is affected by the ambient temperature.

Basic data are as follows:

• The outer diameter of U-tube pipes is 32 mm;

• The absolute roughness of inner walls of U-tube is 0.00015
m;

• The outer diameter of boreholes is 140 mm;

• After placing the U-tube in the borehole, the inner space is
filled by bentonite to stop the porosity;

• The fluid flow in the U-tube is turbulent;

• The distance between the descending and ascending branches
of the U-tube is 3.3 cm;

• Entering water temperature is 3 ˚C in each month.

In the examples (6), (7) and (8) we calculated the outgoing
temperature change from the U-tube and the extracted heat from
the ground with the help of equations and following the method
of serial approach for the periods τ = 1 day, 1 year and 10 year.
Values of overall thermal resistances R1 and R2 are taken from
Table 3. The calculations were done step by step from the 0th

approach to the 2nd approach.

6 Conclusions
The results are presented in Figs. 6 – 9. From the calculated

results the following conclusion can be made. The out-going
temperature of the fluid T2 (H = 0 m) at every period of time in
the function of mass flow has a maximum (Fig. 6), which can
be found in the interval 0.4 – 0.5 kg/s. However, the extractable
heat does not have a maximum (Fig. 5).

In the case of each mass flow value, the warming of the tem-
perature stops at around 50 m depth in the ascending branch
of the U-tube, after which the temperature of the fluid is de-
creasing while moving toward the surface. From the calculation
we can see that with the increase in mass flow the quantity of
extractable heat is increasing as well. We managed to obtain
equation of the time dependent transient thermal resistance of
the heat conduction of the bore. We suggest using thermal re-
sistance calculation with equation in practice (21) following by
Carslaw-Jaeger’s [9] model. The accuracy of calculation is how-
ever affected by how precise information we have of the heat
conductivity of the ground in the surroundings of the U-tube.
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Fig. 6. Change of the extractable heat in the function of mass flow after 10 year
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Fig. 7. Change of the out-going temperature in the function of mass flow after 10 year

Our results presented hereby correspond by size with the results
calculated by GLD 3.0 [10] software Rr = 0.124 mK/W and
with the results calculated by researchers Zeng, Diao and Fang
[2].

Symbols
T1 – Descending fluid’s temperature;
T2 – Ascending fluid’s temperature;
ϑ, T0 – Beyond temperature;
κ – Heat diffusivity;
m – Mass flow;
V – Volume flow;
p – Pressure;
ρ – Density;
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m = 0.95 kg/s
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Fig. 8. Change of the extractable for each month in the function of time for mass flow ṁ = 0.95 kg/s
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Fig. 9. Change of the outgoing temperature for each month in the function of time for mass flow ṁ = 0.95 kg/s

w – Speed;
H – Depth;
cv – Specific heat,
A – Surface;
λ – Coefficient of Heat Conductivity;
s – dissipation heat;
q – Heat flow;
Q – Heat Capacity;
Fo – Fourier number;
τ – Time;
r – Radius;
D, d, Dborhole – diameter;

R1 – Overall thermal resistance of the descending
pipe;

R2 – Overall thermal resistance of the ascending
pipe;

Rr – Overall unsteady Thermal Resistance;
R – Thermal Resistance;
γ – Euler’s number;
E, F, E1, F1 – Integral constants;
K0,J0, Y0 – Bessel functions;
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