

The AMPERE Project: A Model-driven development
framework for highly Parallel and EneRgy-Efficient
computation supporting multi-criteria optimization

Eduardo Quiñones

Sara Royuela

Claudio Scordino

Paolo Gai

Luís Miguel Pinho*

Luís Nogueira*

Jan Rollo

Tommaso Cucinotta

Alessandro Biondi

Arne Hamann

Dirk Ziegenbein

Hadi Saoud

Romain Soulat

Björn Forsberg

Luca Benini

Gianluca Mandò

Luigi Rucher

CISTER-TR-200712

Conference Paper

Conference Paper CISTER-TR-200712 The AMPERE Project: A Model-driven development framework ...

© 2020 CISTER Research Center
www.cister-labs.pt

1

The AMPERE Project: A Model-driven development framework for highly Parallel
and EneRgy-Efficient computation supporting multi-criteria optimization

Eduardo Quiñones, Sara Royuela, Claudio Scordino, Paolo Gai, Luís Miguel Pinho*, Luís Nogueira*, Jan
Rollo, Tommaso Cucinotta, Alessandro Biondi, Arne Hamann, Dirk Ziegenbein, Hadi Saoud, Romain
Soulat, Björn Forsberg, Luca Benini, Gianluca Mandò, Luigi Rucher

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

The high-performance requirements needed to implement the most advanced functionalities of current and
futureCyber-Physical Systems (CPSs) are challenging the developmentprocesses of CPSs. On one side, CPSs rely
on model-drivenengineering (MDE) to satisfy the non-functional constraints andto ensure a smooth and safe
integration of new features. On theother side, the use of complex parallel and heterogeneous embedded
processor architectures becomes mandatory to cope with theperformance requirements. In this regard, parallel
programmingmodels, such as OpenMP or CUDA, are a fundamental brick tofully exploit the performance
capabilities of these architectures.However, parallel programming models are not compatible withcurrent MDE
approaches, creating a gap between the MDE usedto develop CPSs and the parallel programming models
supportedby novel and future embedded platforms.The AMPERE project will bridge this gap by implementinga
novel software architecture for the development of advancedCPSs. To do so, the proposed software architecture
will becapable of capturing the definition of the components andcommunications described in the MDE
framework, together withthe non-functional properties, and transform it into key parallelconstructs present in
current parallel models, which may requireextensions. These features will allow for making an efficient useof
underlying parallel and heterogeneous architectures, whileensuring compliance with non-functional requirements,
includingthose on real-time performance of the system.

The AMPERE Project∗:
A Model-driven development framework for highly Parallel and EneRgy-Efficient

computation supporting multi-criteria optimization

Eduardo Quiñones, Sara Royuela

Barcelona Supercomputing Center

Barcelona, Spain

eduardo.quinones@bsc.es

Claudio Scordino, Paolo Gai

Evidence S.r.l.

Pisa, Italy

claudio@evidence.eu.com

Luis Miguel Pinho, Luis Nogueira

Instituto Superior de Engenharia do Porto

Porto, Portugal

lmp@isep.ipp.pt

Jan Rollo

Sysgo

Prague, Czech Republic

jro@sysgo.com

Tommaso Cucinotta, Alessandro Biondi

Scuola Superiore Sant’Anna

Pisa, Italy

t.cucinotta@santannapisa.it

Arne Hamann, Dirk Ziegenbein

Bosch

Stuttgart, Germany

arne.hamann@de.bosch.com

Hadi Saoud, Romain Soulat

Thales Research & Technology

Palaiseau, France

hadi.saoud@thalesgroup.com

Björn Forsberg, Luca Benini

Eidgenössische Technische Hochschule Zürich

Zurich, Switzerland

bjoernf@iis.ee.ethz.ch

Gianluca Mando, Luigi Rucher

Thales Italy

Florence, Italy

gianluca.mando@thalesgroup.com

Abstract—The high-performance requirements needed to im-
plement the most advanced functionalities of current and future
Cyber-Physical Systems (CPSs) are challenging the development
processes of CPSs. On one side, CPSs rely on model-driven
engineering (MDE) to satisfy the non-functional constraints and
to ensure a smooth and safe integration of new features. On the
other side, the use of complex parallel and heterogeneous embed-
ded processor architectures becomes mandatory to cope with the
performance requirements. In this regard, parallel programming
models, such as OpenMP or CUDA, are a fundamental brick to
fully exploit the performance capabilities of these architectures.
However, parallel programming models are not compatible with
current MDE approaches, creating a gap between the MDE used
to develop CPSs and the parallel programming models supported
by novel and future embedded platforms.

The AMPERE project will bridge this gap by implementing
a novel software architecture for the development of advanced
CPSs. To do so, the proposed software architecture will be
capable of capturing the definition of the components and
communications described in the MDE framework, together with
the non-functional properties, and transform it into key parallel
constructs present in current parallel models, which may require
extensions. These features will allow for making an efficient use
of underlying parallel and heterogeneous architectures, while
ensuring compliance with non-functional requirements, including
those on real-time performance of the system.

Index Terms—parallel programming models, parallel and
heterogeneous embedded processor architectures, model-driven
approaches, safety-critical embedded systems

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are increasingly required to

exhibit a high degree of autonomy and intelligence. This need

is motivated by the societal and industrial demands appearing

∗ This work has been supported by the EU H2020 project AMPERE under
the grant agreement no. 871669.

across multiple application domains for autonomous and safe

mobility, wellbeing and health, sustainable production and

smart manufacturing, etc. This trend is however challenging

the development of novel CPSs, which increasingly require

high-performance capabilities to coordinate a considerable

number of distributed and networked computational and phys-

ical processes, while operating at small power envelopes.

These new CPSs bring an increasing need for hosting more

features, which are often very complex [1], over heteroge-

neous computing platforms. Such features include support for

different levels of criticality, complex and tightly-interacting

distributed software components, and relevant energy con-

sumption constraints. As a consequence, there is a visible trend

in industry towards adopting low-power hardware architectures

characterized by lower clock rates and increasingly parallel

execution capabilities. These architectures are supported by a

variety of technologies featuring parallel homogeneous plat-

forms, and heterogeneous and hardware-accelerated architec-

tures (e.g., multi-core, many-core and DSP fabrics, GPUs,

and on-chip FPGAs). Examples of such platforms include the

Xilinx UltraScale+ [2] and Versal [3], the MPPA Coolidge [4],

and the NVIDIA Jetson AGX [5]. The introduction of parallel

execution introduces two important technical challenges con-

cerning the software architecture of CPSs:

1) The use of model-driven engineering (MDE) is very

common in software design as it (i) allows the descrip-

tion of the interactions between the cyber and physical

components in the system, (ii) abstracts the complexity

of the software and hardware architecture, and (iii)

allows for early verification and validation performed

on the models. The introduction of parallel execution

201

2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC)

2375-5261/20/$31.00 ©2020 IEEE
DOI 10.1109/ISORC49007.2020.00042

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on July 28,2020 at 10:34:56 UTC from IEEE Xplore. Restrictions apply.

cannot prevent the use of MDE and should retain the

benefits of simulation and verification techniques.

2) The use of parallel execution, the current dominant

technique in the HPC domain to increase performance,

cannot preclude the fulfilment of non-functional con-

straints such as energy efficiency, safety and security,

resiliency and fault-tolerance, and trust and testability,

which are imposed due to interactions between the cyber

and physical worlds.

This paper provides a high-level overview of how these

challenges are planned to be tackled in the AMPERE EU

H2020 research project1, coordinated by Barcelona Super-

computing Center and participated by Instituto Superior de

Engenharia do Porto, Eidgenössische Technische Hochschule

Zürich, Scuola Superiore Sant’Anna, Bosch, Evidence, Thales

and Sysgo. AMPERE will address these challenges by deliver-

ing a novel software architecture for the development of CPSs

to help system developers leverage low-energy, highly-parallel,

and heterogeneous computations in their development process,

while fulfilling the non-functional constraints inherited from

the cyber-physical interaction. The novel software architecture

targets safety-critical automotive and railway systems, and will

be demonstrated during the project in use-cases from both

domains, provided by Bosch and Thales.

The remainder of the paper is structured as follows: Sec-

tion II introduces the main challenges that will be faced in

the project; Section III describes the envisoned components

of the projects and their expected interactions; and Section IV

describes the uses-cases that will be used to test the capabilities

of the project’s contributed software stack.

II. CHALLENGES OF PARALLEL EXECUTION FOR CPSS

To successfully combine parallel execution and Model

Driven Engineering, two aspects are required; extended devel-

opment and synthesis support, as well as runtime support to

uphold the non-functional requirements at deployment. These

issues are described in the following section.

A. CPSs Development: Model Driven Engineering (MDE)

The development of CPSs poses two important challenges

[6]: (1) to satisfy the non-functional constraints imposed due

to the interaction between the cyber and physical worlds; and

(2) to ensure a smooth and safe integration of new features

into existing systems. In order to address these challenges,

current industrial development practices are based on MDE

[7], [8]. This approach presents three main advantages, which

are described next.

First, MDE allows the construction of complex software

architectures, defining components with clear interfaces, thus

facilitating the integration of new features through composabil-

ity [9]. This design principle aims at ensuring that the non-

functional requirements fulfilled when developing components

in isolation are maintained at system integration, avoiding

unpredictable and hidden behaviors. Consequently, it reduces

1www.ampere-euproject.eu

the complexity of the development and integration phases,

which is crucial in safety-critical automotive and railway

systems, as the ones considered in AMPERE. This is possible

because composability allows the integration of safety-critical

functions and components with different levels of criticality

into the same computing platform with limited certification

and testability efforts. To that end, composability (also com-

monly referred to as freedom-from-interference) is regulated by

the major functional safety standards. To name a relevant ex-

ample, the ISO26262 [10] standard for the automotive domain

mandates strong temporal and spatial isolation capabilities.

Second, MDE enables the use of code synthesis methods

and tools [7], [8] in the form of automated transformation

engines and code generators. These tools transform the system

model description into source code, to be later compiled and

executed on the computing platform [11], [12]. The benefits

of synthesis2 methods are twofold: (1) they ensure consistency

between the transformed source code and the system models

that have been analyzed and guaranteed as correct with respect

to functional and non-functional constraints; and (2) they

facilitate formal verification of the system with respect to

functional and non-functional properties and constraints. This

is of paramount importance for safety-critical systems such as

the ones implemented in the automotive and railway domains,

for which (strong) evidence about system correctness must

be provided and traditional approaches based on exhaustive

testing may be computationally infeasible.

Third, MDE enables the development of domain specific

model-driven languages (DSML) to further facilitate the de-

scription of the cyber/physical interaction characteristics of

each domain.

Overall, the use of MDE and code synthesis methods

enhances the system design by (1) generating evidence of

functional and non-functional correctness, and (2) facilitating

the development and integration of new advanced features with

reasonable effort, at least as long as composability is ensured.

Unfortunately, current MDE synthesis methods mostly

transform DSML into simple and long sequences of sequential

source code that is only suitable for single-core execution. This

is the case of model-based solutions using commercial tools

such as SCADE [11] or the AUTOSAR methodology [13].

Other tools, such as Simulink Coder [14], provide limited

support for parallelism, allowing for multi-core execution

of models, but without exploiting the possible parallelism

inside the model subsystems. Clearly, single-core execution

cannot provide the computing power required to deal with the

complex functionality of future CPSs.

There is therefore a urgent necessity to create novel de-

velopment environments incorporating: (1) synthesis methods

capable of generating efficient source code transformations

targeting parallel heterogeneous platforms, and (2) the corre-

sponding run-time parallel frameworks, which must be capable

of preserving non-functional and composability guarantees.

2Synthesis is often referred to as a correct-by-construction paradigm [8], as
opposed to the conventional construct-by-correction paradigm [8], that may
be tedious and error prone.

202

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on July 28,2020 at 10:34:56 UTC from IEEE Xplore. Restrictions apply.

B. Run-time parallel frameworks

The principle behind current advanced parallel program-

ming models (e.g., OpenMP, OpenACC and OpenCL) is that

parallel computation is not fully controlled by the programmer,

but by the run-time instead. The programmer is only in charge

of specifying the parallel nature of the algorithm because

parallel programming models provide APIs that abstract the

parallel execution by defining independent execution units

and fine-grained synchronization mechanisms among data

elements to guarantee the correct control-flow and data-flow

execution. Then, the run-time framework has the freedom to

orchestrate the parallel execution among the different com-

puting resources within the same platform [15], [16] in the

most convenient way, with the objective of maximizing perfor-

mance while fulfilling non-functional requirements. Moreover,

in recent years, parallel programming models also support

heterogeneous computing [15]–[18] by incorporating acceler-

ation models that enable the programmer to efficiently manage

the execution between the host and multiple acceleration

devices, and defining synchronization methods and transfer

mechanisms to offload computation and data.

Recently, these models also incorporated support for FPGA

accelerators, which enable implementing hardware (HW) sys-

tem components previously implemented in software, with

tremendous benefits on performance speed-up and energy

efficiency. Some FPGA fabrics can be dynamic and partially

reconfigured to implement new HW functionalities, while

other parts of the FPGA continue their operation simultane-

ously. Moreover, parallel programming enables instructing the

run-time to decide whether a function is executed in SW within

the host or in HW within the FPGA.

The run-time parallel framework is therefore a fundamental

software component with three main functionalities:

1) Distributing the parallel computation among the avail-

able computing resources (from the same or different

processor architecture), while respecting the defined

order by means of synchronization techniques.

2) Offloading (parallel) computation and its corresponding

data-set to hardware acceleration devices (e.g., GPUs,

many-core fabrics, and FPGA technology) for an en-

hanced and energy-efficient parallel execution.

3) Dynamically reconfiguring a portion of the FPGA to use

a dedicated hardware accelerator for offloading parts of

the computations [19], while other portions of the FPGA

are simultaneously being used by other applications or

even parallel entities from the same application.

The compute resource allocation and offloading operations

are mainly based on run-time information with the objective of

improving the performance of parallel computation. Clearly,

these run-time decisions can defeat the evidence provided

at analysis-time that guarantees the fulfillment of functional

and non-functional constraints. For example, (i) the run-time

resource allocation, either static or dynamic, should preserve

the timing constraints imposed by response-time analysis; (ii)

the guaranteed energy budget should never be exceeded, hence

the runtime could chose at some point to offload computation

to a device based on the energy consumed by the system up to

that point; or (iii) the impact of fault-tolerance and resiliency

techniques devised to ensure robustness should not affect

other non-functional constraints3. Moreover, current dynamic

partial reconfiguration (DPR) FPGA controllers target general-

purpose architectures, in which non-functional requirements

such as time-criticality are not taken into account. This results

in unpredictable timing reconfiguration, which is not suitable

for CPSs [20].

Finally, parallel programming is yet a tedious and error-

prone process due to the unpredictable nature of the parallel

execution. There are two main sources of errors when dealing

with parallel code: a) the concurrent access to shared resources

in a situation of race condition, and b) an error in the synchro-

nization between parallel operations leading to a deadlock.

Identifying these two error conditions is very hard, as they

may be hidden in the code for a long time and only occur

under certain execution conditions. As a result, the use of

parallel programming models that guarantee that no data race

conditions nor deadlock conditions can happen is of paramount

importance [21]–[23].

There is therefore a urgent necessity to develop run-time

parallel frameworks capable of guaranteeing that decisions

made at run-time maintain the guarantees about system cor-

rectness achieved at analysis time. These new run-time ca-

pabilities however, cannot preclude the ability of the CPSs to

dynamically adapt the execution to new working conditions or

changing modes of operation to maximize the utilization and

performance capabilities of parallel heterogeneous platforms.

III. THE AMPERE PROJECT

The AMPERE H2020 EU project addresses the challenges

presented in Section II by developing a novel software archi-

tecture for an efficient development and execution of CPSs

targeting the most advanced low-energy and highly-parallel

heterogeneous embedded processor architectures. This aims

at fully exploiting the benefits of performance-demanding

emerging technologies, such as artificial intelligence or big

data analytics.

A. Bridging the gap between MDE and Parallel Programming

Models

From a system model perspective, MDE is a very convenient

representation for parallel abstraction, as it naturally identifies

the computation and communication elements, as well as the

precedence constraints existing among the reactions or compu-

tations of components. Furthermore, MDE facilitates the ver-

ification of the system by incorporating non-functional prop-

erties and constraints such as energy (e.g., operational ranges,

temperature), timing (e.g., deadline, periods), safety and secu-

rity (e.g., isolation properties, assurance level), fault-tolerance

(e.g., components supporting redundancy), etc. Furthermore,

MDE leverages multi-criteria design space exploration tech-

niques, for a (potentially-optimal) mapping of components

3The AMPERE project will not consider fail-operational requirements.

203

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on July 28,2020 at 10:34:56 UTC from IEEE Xplore. Restrictions apply.

to targeted processors while fulfilling the given constraints.

Despite such advantages, model-driven languages and code

synthesis methods used in current system developments are

still not ready to support parallel source code transformations.

From the parallel programming perspective, parallel pro-

gramming models are a vital element incorporated in the

SDKs of current parallel heterogeneous architectures. They

provide an abstraction level to program parallel applications

while hiding the platform complexities. The most advanced

parallel programming models (e.g., OpenMP [15], OpenCL

[17], CUDA [16], and OpenACC [18]) define an interface that

abstracts the parallel execution by: (1) defining independent

execution units and fine-grained synchronization mechanisms

among data elements to guarantee the correct control-flow

and data-flow execution; (2) defining transfer mechanisms to

offload computation and data to accelerator devices, and syn-

chronization methods among them; (3) supporting DPR SoC-

FPGAs; and (4) distribute the computation among the parallel

processor architectures that form the computing platforms. The

run-time parallel framework is then in charge of orchestrating

and distributing the parallel heterogeneous execution. Despite

the efforts of simplifying the programmability of parallel

computation, the programmer is still responsible of determin-

ing the most appropriate parallel units, the synchronization

mechanism and the sharing attributes of the data used by

the parallel units: (1) among the computing processors that

form the platform, (2) within the host and (3) among the

host and the accelerator devices. In general, the process of

manually analysis the data-flow of a program can be very

difficult due to the uncertainty about the exact moment parallel

parts execute, as the run-time and not the programmer is

the one in charge of managing the parallel computation with

the objective of maximizing performance. Overall, current

parallel programming models (and their associated run-time

frameworks) are not prepared to satisfy and optimize the non-

functional constraints that are critical for CPSs.

There exists therefore a gap between the DSMLs used

to develop CPSs and the parallel programming models and

run-time frameworks supported by current energy-efficient

parallel heterogeneous platforms, as it is shown in Figure 1.

AMPERE will bridge this gap by developing a novel Software

Architecture with the following main capabilities: (1) synthesis

tools capable of generating parallel source code optimized

for low-energy parallel heterogeneous platforms, as well as

fulfilling the functional and non-functional constraints of the

system, and (2) run-time frameworks capable of respecting the

guarantees devised at analysis time, while dynamically opti-

mizing the parallel execution to changing execution conditions.

B. The AMPERE Software Architecture

The AMPERE software architecture will incorporate ad-

vanced techniques capable of capturing the component def-

inition and communication described in the system model,

together with the non-functional properties, to key parallel

constructs (e.g., allocation of data and scheduling of data

movements, data sharing attributes, tasking, synchronization

Figure 1. Execution gap existing between the MDE and the parallel program-
ming model.

or accelerator kernels) present in current parallel programming

models. This code transformation will perform a multi-criteria

optimization addressing not only performance, but also energy

efficiency, safety, cyber-security, real-time response, resiliency,

fault-tolerance and testability non-functional requirements.

Moreover, the AMPERE’s run-time mechanisms will be aware

of such optimization, ensuring that guarantees on functional

and non-functional correctness devised at system design time

will be maintained at deployment time, while fully exploiting

the performance capabilities of the underlying parallel hetero-

geneous platforms.

AMPERE’s vision is that state-of-the-art parallel program-

ming execution models are mature enough (or can be ef-

ficiently extended) to support the fulfillment of functional

and non-functional constraints captured by the DSML used

to develop CPSs. Interestingly, despite current parallel pro-

gramming models are agnostic of non-functional constraints,

recent studies demonstrated that OpenMP allows providing

trustworthy timing guarantees [24]–[28], and so fitting the

timing requirements of critical systems. Moreover, it has been

demonstrated that OpenMP is not a threat regarding functional

safety [29], and that both compilers and runtimes can be used

to check correctness and recover from failures [21]. Finally,

recent releases of OpenMP and OpenCL introduce the concept

of prioritization in parallel execution units, clearly opening the

door to support multiple criticality levels as already supported

in most of DSML, such as AUTOSAR.

Figure 2 shows the layers of the AMPERE software archi-

tecture and their relationships. Both are described next:

• DSMLs. It will include enhanced model-driven languages

capable of better expressing and verifying non-functional

constraints such as performance, energy, safety and secu-

rity, time predictability, and fault- tolerance in the context

of the parallel heterogeneous computing.

• Parallel programming models. It will prioritize well-

known programming models capable of distributing the

computation across different platforms and expressing

structured and unstructured parallelism with fine-grain

204

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on July 28,2020 at 10:34:56 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Software components that will form the AMPERE software
architecture.

support for synchronization, while featuring acceleration

devices including many-cores, GPUs, or FPGAs.

• Code synthesis tools. It will include novel code synthesis

tools capable of transforming the DSML into an opti-

mized parallel source code supported by the underlying

parallel heterogeneous platform.

• Analysis and testing tools. It will include a set of pow-

erful analysis tools, capable of guaranteeing efficient

multi-criteria optimizations at development and execution

phases, guiding the model-driven to programming model

transformation and ensuring that functional and non-

functional constraints are fulfilled.

• Compilers. It will include compilers capable of extracting

the control-flow and data-flow information needed by the

analysis tools to maximize multi-criteria optimization and

correctness.

• Run-time libraries. It will include three different libraries

in charge of: (1) orchestrating the parallel execution as

defined by the parallel programming model; (2) man-

aging heterogeneous computing, including an efficient

offloading of code and data to accelerator devices; and

(3) supporting an efficient computation on accelerators,

including DPR SoC-FPGAs, while preserving the non-

functional requirements devised at design time.

• Operating systems and hypervisors. It will incorporate

multiple operating systems supporting a variety of ar-

chitectures and accelerators, as well as a safe and se-

cure real-time hypervisor capable of running on the

target architectures and managing accesses to hardware

resources. Part of the project will focus on the support

for parallel real-time applications running on the Linux

operating system, exploiting advanced scheduling capa-

bilities like SCHED DEADLINE [30] or its variants [31]

in combination with on-the-fly reprogramming of FPGA

slots that will be made accessible in time-shared manner

synchronously with the scheduling decisions.

In order to minimize the impact on current design and

development frameworks, the project will not only prioritize

well-known parallel programming models, but also extend

existing tools rather than developing new ones.

IV. THE AMPERE USE-CASES

The AMPERE Software Architecture will be applied in

relevant application environments by developing and executing

two real-world use cases that are very close to production.

A. Automotive use-case: Intelligent Predictive Cruise Control

The AMPERE partner Bosch will provide an intelligent

Predictive Cruise Control (PCC) use case, as an example

for the increasingly autonomous decision-making capabilities

of advanced automotive systems. This use case will consist

of four components: Adaptive Cruise Control (ACC), the

powertrain control subsystem, the advanced PCC, and Traffic

Sign Recognition (TSR) subsystems. The first and the second

components already exist, while the third and the fourth

components are new.

The PCC extends the scope of the ACC functionality by

calculating the vehicle’s future velocity curve using the data

from the electronic horizon (topographical data like curvature,

inclines, or speed limits), which provides information on

the route ahead, extending well beyond the next bend. In

combination with the PCC, the ACC functionality now not

only automatically reduces the vehicle’s speed when it detects

obstacles or slow-moving vehicles ahead, but also when ap-

proaching bends and reduced-speed zones. The deep learning

TSR functionality (based on deep neural networks) detects

road signs and provides speed limits to PCC which reflect the

current state of the road (e.g. considering variable-speed zones

or construction sites) that are not featured in the electronic

horizon. Moreover, in cooperation with the powertrain control,

the PCC improves fuel efficiency by configuring the driving

strategy based on predictive data analytics and AI methods.

The computational power and communication bandwidth

required for complex systems-of-systems such as the PCC

exceeds the capabilities of current compute nodes (mainly

micro-controller SoCs) and is leading to the paradigm of so-

called centralized E/E architectures that are based on a new

class of computing nodes featuring powerful micro-processors

and accelerators such as FPGAs and GPUs.

B. Railway use case: Obstacle Detection and Avoidance Sys-

tem (ODAS)

Tramway systems are facing the challenge of autonomous

urban transportation systems in a similar way as automotive

industry is facing the autonomous car challenge. Interestingly,

these two challenges converge in cities, as most of the time

tram vehicles operate in a mixed traffic environment with cars.

Autonomy applied to urban transport imposes severe real-

time, reliability, and cyber-security requirements to guarantee

a safety operation of the system. Moreover, it requires to

make the trams smarter through digitalization, sensors data-

fusion and artificial intelligence algorithms. As a result, the

205

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on July 28,2020 at 10:34:56 UTC from IEEE Xplore. Restrictions apply.

use of new complex and high-demanding parallel computing

platforms are requested to be installed in tram vehicles.

The AMPERE partner Thales Italy will provide a use case

applied to a real demonstrator on the Florence Tramway

Network. Specifically, the use case will implement an Ob-

stacle Detection and Avoidance System (ODAS) supporting

the tram driver, improving the level of safety of the Florence

LRT transportation system. The use-case incorporates two

main subsystems: the Sensor Data Fusion (SDF) and the

AI Analytics (AI) components. The SDF component will be

in charge of collecting a large mass of raw data from the

multiple advanced sensors installed in tram vehicle, i.e., optical

and thermal cameras, radars and LiDARs (light detection

and ranging). Cameras are a very good tool for classifying

objects (rails, signs vehicle, people, etc.) through deep learning

technologies; LiDAR and radar are good at estimating the

position of objects around the vehicle. The AI component will

incorporate machine learning (e.g., SVM) and deep learning

(e.g., CNN, RNN) algorithms to identify and track objects

along the tramway infrastructure and extract knowledge that

will be displayed to the tram driver.

The two components will be distributed and executed in

a COTS parallel and heterogeneous platform installed on-

board tram vehicles, featuring multi-core SoC with FPGAs,

GPUs and dedicated AI accelerators such as TPUs, capable

of accelerating large matrix operations and perform mixed-

precision matrix multiply and accumulate calculations in a

single operation.

V. CONCLUSIONS

The AMPERE H2020 project, started in January 2020,

and with a duration of 36 months, is developing a new

generation of software development environments for low-

energy and highly parallel and heterogeneous computing ar-

chitectures, capable of implementing correct-by-construction

advanced CPSs. The key innovation of the AMPERE software

architecture will be its capability of transforming the system

model description of the CPSs based on specific model-driven

languages to the parallel programming models supported by

the underlying parallel architecture, and so providing the level

of performance required to implement the most advanced

functionalities. Moreover, the AMPERE software architecture

will fulfill the non-functional requirements (i.e., real-time,

safety, energy-efficiency, security, reliability) imposed due

to the cyber-physical interactions and captured in the CPSs

system description. The project proposals will be demonstrated

through the development and execution of two real-world use

cases, an intelligent Predictive Cruise Control application for

advanced automotive systems and an Obstacle Detection and

Avoidance System for tramway systems.

REFERENCES

[1] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf, “Future
automotive systems design: Research challenges and opportunities:
Special session,” in CODES. IEEE Press, 2018.

[2] Xillinx, “UltraScale+,” 2020. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-
mpsoc.html

[3] ——, “Versal,” 2020. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/acap/versal-prime.html

[4] Kalray, “MPPA,” 2020. [Online]. Available:
https://www.kalrayinc.com/portfolio/processors

[5] NVIDIA, “Jetson AGX Xavier,” 2020. [Online]. Available:
https://developer.nvidia.com/embedded-computing

[6] ECSEL, “Multi Annual Strategic Research and Innovation Agenda
(MASRIA), 2015.”

[7] e. Khaitan, “Design Techniques and Applications of Cyber-physical
Systems: A Survey,” in IEEE Systems Journal, 2015.

[8] D. C. Schmidt, “Model-Driven Engineering,” in IEEE Computer, 39(2),
Feb 2006.

[9] G. Fernandez, J. Abella, E. Quiñones, L. Fossati, M. Zulianello, T. Var-
danega, and F. J. Cazorla, “Seeking time-composable partitions of tasks
for cots multicore processors,” in 18th IEEE ISORC, 2016.

[10] I. 26262, “1:2011, Road vehicles – Functional safety,” 2011.
[11] E. Technologies, “SCADE suite.” [Online]. Available:

http://www.esterel-technologies.com/products/scade-suite/
[12] Bosch, “AMALTHEA - Model based open source development

environment for automotive multi-core systems.” [Online]. Available:
http://amalthea-project.org

[13] A. Consortium, “AUTomotive Open System ARchitecture.” [Online].
Available: http://www.autosar.org

[14] M. Works. [Online]. Available: http://www.mathworks.com/
[15] OpenMP ARB, “OpenMP Application Program Interface, version

5.0,” 2018. [Online]. Available: https://www.openmp.org/wp-
content/uploads/OpenMP-API-Specification-5.0.pdf

[16] NVIDIA, “Programming Guide :: CUDA Toolkit Documentation,” 2019.
[Online]. Available: https://docs.nvidia.com/cuda/cuda-c-programming-
guide/

[17] Khronos, “OpenCL Open Computing Language): A Parallel
Programming Standard for Heterogeneous Computing Systems,”
2020. [Online]. Available: http://www.khronos.org/opencl

[18] OpenACC, “Application Programming Interface Version 3.0,” 2020.
[Online]. Available: https://www.openacc.org/specification

[19] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo, “A Framework for Supporting Real-Time Applications on Dy-
namic Reconfigurable FPGAs,” in IEEE RTSS, 2016.

[20] M. S. L. Pezzarossa and J. Sparso, “Reconfiguration in FPGA- based
multi-core platforms for hard real-time applications,” in ReCoSoC, 2016.

[21] Royuela, Sara and Martorell, Xavier and Quiñones, Eduardo and Pinho,
Luis Miguel, “OpenMP tasking model for Ada: safety and correctness,”
in Ada-Europe, 2017.

[22] S. Royuela, L. M. Pinho, and E. Quiñones, “Converging Safety and
High-performance Domains: Integrating OpenMP into Ada,” in DATE,
2018.

[23] D. Casini, A. Biondi, and G. Buttazzo, “Analyzing Parallel Real-Time
Tasks Implemented with Thread Pools,” in DAC, 2019.

[24] Vargas, Roberto E and Royuela, Sara and Serrano, Maria A and
Martorell, Xavi and Quiñones, Eduardo, “A lightweight OpenMP4 Run-
time for Embedded Systems,” in ASP-DAC, 2016.

[25] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quiñones, “Timing Characterization of OpenMP4 Tasking Model,”
in CASES, 2015, pp. 157–166.

[26] Maria A. Serrano, Alessandra Melani, Sebastian Kehr, Marko Bertogna,
Eduardo Quiñones, “An Analysis of Lazy and Eager Limited Preemption
Approaches under DAG-based Global Fixed Priority Scheduling,” in
ISORC, 2017.

[27] M. A. Serrano, S. Royuela, and E. Quiñones, “Towards an OpenMP
Specification for Critical Real-time Systems,” in IWOMP, 2018, pp. 143–
159.

[28] Maria A. Serrano, Eduardo Quiñones, “Response-time analysis of DAG
tasks supporting heterogeneous computing,” in DAC, 2018.

[29] S. Royuela, A. Duran, M. A. Serrano, E. Quiñones, and X. Martorell, “A
Functional Safety OpenMP* for Critical Real-Time Embedded Systems,”
in IWOMP. Springer, 2017, pp. 231–245.

[30] J. Lelli, G. Lipari, D. Faggioli, and T. Cucinotta, “An efficient and
scalable implementation of global EDF in Linux,” in OSPERT, Porto,
Portugal, 2011.

[31] D. Casini, L. Abeni, A. Biondi, T. Cucinotta, and G. Buttazzo, “Constant
Bandwidth Servers with Constrained Deadlines,” in RTNS. New York,
USA: Association for Computing Machinery, 2017, p. 68–77.

206

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on July 28,2020 at 10:34:56 UTC from IEEE Xplore. Restrictions apply.

