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1 Introduction

The Post-Minkowskian expansion of Einstein gravity is arguably one of the most fertile
areas in which to apply modern methods of amplitude calculations [1–4]. Being based
solely on an expansion in Newton’s constant GN , results are valid at all velocities and
are thus effectively re-summing an infinite number of terms of the perhaps more familiar
Post-Newtonian expansion. Progress has been very rapid and first results for the con-
servative part of the interaction Hamiltonian are now known to both third and fourth
order in the Post-Minkowskian expansion [5–8]. These computations are firmly rooted in
established quantum field theoretic methods, be they phrased in terms of effective field
theory matching [4] or, equivalently, in terms of the standard definition of a two-body in-
teraction potential from the iterated solution of the Lippmann-Schwinger equation, which
quantify exactly what is commonly known as Born subtractions [9]. The conservative
part of the scattering to third Post-Minkowskian has also been confirmed in the frame-
work of the world-line approach [10]. A remarkable relationship between the relativistic
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two-body kinematics and the iterated solution to the Lippmann-Schwinger equation leads
to explicit formulas for the scattering angle in terms of the coefficients of the relativistic
two-body potential [11–13], in a sense thereby solving the problem of kinematics of the
relativistic two-body problem in general relativity by means of quantum field theory and
amplitude techniques.

The puzzling aspect of an ill-defined high-energy limit of the conservative part of the
two-body interaction Hamiltonian at third Post-Minkowskian order [6] has recently led to
surprising new insight into the relationship between the two-to-two gravitational scattering
amplitude and general relativity [14–17]. From the amplitude point of view, refs. [14, 16, 17]
have shown how certain classical terms of the two-loop scattering, that are not captured by
a limitation to the so-called potential region of the loop integrals, restore a well-behaved
high-energy behavior. This picture has been understood directly from general relativity in
terms of gravitational radiation reaction [15]. Indeed, in the low-energy limit the new terms
give rise to half-integer powers in the Post-Newtonian expansion and thus belong to effects
described by radiation. By using the formalism of ref. [18] a direct computation of the
radiated momentum to that order leads to the same result for the scattering angle [19, 20]
(see also [21]).

A natural language for the calculation of the scattering angle of two black holes in
general relativity is the gravitational eikonal. It relies on the exponentiation of appropriate
terms of the S-matrix in the small-angle limit of the involved semi-classical field theory
amplitudes. Exponentiation has been proven to all orders for Einstein gravity at both
leading Post-Minkowskian counting [22] and next-to-leading order for equal masses [23]
(generalized to different masses in ref. [3]). This powerful framework has led to the famous
prediction for high-energy gravitational scattering by Amati, Ciafaloni, and Veneziano [24]
and has recently been explored and extended in numerous directions [14, 16, 17, 25–31]. Al-
though the eikonal formalism is used to derive the classical scattering angle, an interesting
feature is that also an in principle infinite number of super-classical terms (corresponding
to inverse powers of ~) must be computed as well in order to confirm the exponentiation
of the amplitude in impact parameter space, a phenomenon that ultimately must follow
from unitarity alone [31]. Moreover, an intricate interplay between classical and quantum
pieces of the amplitude conspire to provide the correct classical scattering angle at any
given order in the Post-Minkowskian expansion.

Crucial to the argument of refs. [14, 16, 17] is a remarkably simple relation between
the divergent part of the imaginary part of the amplitude and the finite real part of the
radiation-reaction contribution. In maximal supergravity, this relation has recently been
explicitly confirmed from the two-to-two scattering amplitude [32] as well as from the
radiated momentum calculation [20]. Extended to general relativity, the entirely different
approach of ref. [15] should leave little doubt that this relation holds in Einstein gravity as
well. Nevertheless, an explicit confirmation from a full amplitude calculation seems needed
at this stage. The purpose of the present paper is to fill this gap and, hopefully, provide
some further insight into the result. We shall employ the method recently described in
ref. [32]. The idea is to organize the integrand of loop amplitudes in subsets that naturally,
due to the iε-prescription of the Feynman propagator, combine into delta functions over
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momenta in a manner reminiscent of eikonal calculations [22] and which have earlier also
been used to simplify the evaluation of some of the involved loop integrals [6, 21]. Imposing
these delta functions lowers the dimensionality of the integrals in a covariant manner. A
second advantage of the method of ref. [32] is that it significantly reduces the number
of master integrals that need to be known. This was obvious in the case of maximal
supergravity and, as we shall demonstrate in this paper, this holds in Einstein gravity as
well. No new master integrals are needed as compared to the supergravity case [32]. In
the end, we believe that we here for the first time compute all terms of the gravitational
scattering amplitude of massive objects that are needed to obtain the classical scattering
angle to third Post-Minkowskian order. Simultaneously, we hope that this can help paving
the way for more efficient evaluations at even higher orders. We also explicitly confirm the
relation between the divergent imaginary part and the real part of the radiation-reaction
piece that was put forward in refs. [14, 16, 17].

2 Einstein gravity at two-loop order

Our starting point is the Einstein-Hilbert Lagrangian minimally coupled to two massive
scalar fields:

LEH =
∫
d4x
√
−g
[

R

16πGN
+ 1

2g
µν(∂µφ1∂νφ1 + ∂µφ2∂νφ2)− m2

1
2 φ2

1 −
m2

2
2 φ2

2

]
. (2.1)

Here, R defines the Ricci scalar and g is the determinant of the metric: gµν(x) ≡ ηµν +√
32πGNhµν(x) expanded around a Minkowski background, diag ηµν ≡ (1,−1,−1,−1).

p1 p2

p′1 p′2

We consider here the two-to-two amplitude with p1 and p2 denoting incoming momenta
and p′1 and p′2 outgoing momenta such that p2

1 = p′1
2 = m2

1 and p2
2 = p′2

2 = m2
2.

We work in the center of mass frame and our conventions for the kinematical invari-
ants are:

s ≡ (p1 + p2)2 = (p′1 + p′2)2 = m2
1 +m2

2 + 2m1m2σ, σ ≡ p1 · p2
m1m2

, (2.2)

t ≡ (p1 − p′1)2 = (p′2 − p2)2 ≡ q2 = −~q 2 , (2.3)

and
u ≡ (p1 − p′2)2 = (p′1 − p2)2 , (2.4)

so that, as usual, s gives the center of mass energy, E2
CM , and t is the transferred momen-

tum. The classical limit is extracted by sending ~→ 0 and keeping q = q/~ fixed.
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The two-loop amplitude we evaluate below is composed by a piece coming from the
three-particle cut with only gravitons propagating across the cut

M2
3−cut(σ, q2) =

p1 p2

p′1 p′2

tree tree (2.5)

and another piece from the self-energy and vertex correction contributions given in section 4

M2(σ, q2) =M3−cut
2 (σ, q2) +Mself−energy

2 (σ, q2) . (2.6)

The three particle-cut is defined in D = 4− 2ε dimensions as

M3−cut
2 (σ, q2) =

∫
dDl1d

Dl2d
Dl3

(2π)3D (2π)Dδ(D)(l1 + l2 + l3 + q) i3

l21l
2
2l

2
3

× 1
3!

∑
Perm(l1,l2,l3)

λ1=±,λ2=±,λ3=±

M0(p1, p
′
1, l

λ1
1 , lλ2

2 , lλ3
3 )(M0(p2, p

′
2,−l

λ1
1 ,−lλ2

2 ,−lλ3
3 ))∗, (2.7)

which involves the five points tree-level amplitudes given in the appendix A. The sum
is over the helicity configuration λi of the gravitons across the cut. We only keep the
cut-constructible part of the two-loop amplitude.

The three-particle cut gives both the conservative part of the classical potential plus
some of the radiation-reaction pieces. A few self-energy and vertex corrrection diagrams are
needed to get the full radiation-reaction term. Based on the ~ counting in eq. (3.6) of [32]
it is clear the one needs a least two massive propagators to get a classical contribution to
the amplitude. By inspection of the possible topology of the Feynman graphs we conclude
that the three-particle cut contribution, the self-energy and vertex corrrection diagrams
are the only one contributing to this order.

3 Contributions from the three-graviton cut

The important difference with the maximal supergravity computation in [32] is that the
two-loop amplitude involves integrals with non-trivial numerators and with more topolo-
gies. Using a partial fraction decomposition of the tree-level amplitudes with respects to
the linear propagators p1 · li and p2 · li with i = 1, 2, 3, one can reorganise the three-particle
cut into five distinct topologies that will contribute to the classical result

M3−cut
2 (σ, q2) =M��

2 +M/�
2 +M�.

2 +M//
2 +M..

2 +MH
2 +M�◦

2 , (3.1)
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p1 p2

p′1 p′2

p1 p2

p′1 p′2

Figure 1. Double-box and crossed double-box diagrams.

with the result

M3−cut(−1)
2 (σ, q2) = 2(4πe−γE )2επG3

Nm
2
1m

2
2

3ε|q|4ε~

(
3s(2σ2 − 1)3

(σ2 − 1)2

+ im1m2(2σ2 − 1)
πε(σ2 − 1)

3
2

(
1− 49σ2 + 18σ4

5 − 6σ(2σ2 − 1)(6σ2 − 7) arccosh(σ)√
σ2 − 1

)

− 9(2σ2 − 1)(1− 5σ2)s
2(σ2 − 1) + 3

2(m2
1 +m2

2)(−1 + 18σ2)−m1m2σ(103 + 2σ2)

+ 12m1m2(3 + 12σ2 − 4σ4) arccosh(σ)√
σ2 − 1

− 6im1m2(2σ2 − 1)2

πε
√
σ2 − 1

( −1
4(σ2 − 1)

)ε d
dσ

(
(2σ2 − 1) arccosh(σ)√

σ2 − 1

))
. (3.2)

The expressions for the numerator factors of each of these integrals are given in ap-
pendix B. The double-box integrals M��

2 are evaluated in section 3.1, the box-triangles
M/�

2 and M�.
2 are evaluated in section 3.2, the double-triangle integrals M..

2 and M//
2

are evaluated in section 3.3, the H-diagram contributionsMH
2 are evaluated in section 3.4,

and the box-bubble contributionsM�◦
2 are evaluated in section 3.5.

3.1 Double-box contributions

The double-box contributions arise from the sum of Feynman graph topologies given in fig-
ure 1. We provide the numerator factors in appendix B. Performing the tensorial reductions
with LiteRed [33], we find that the double-box contribution has the expansion

M��
2 (σ, q2) = 4096π3G3

Nm
5
1m

5
2(2σ2 − 1)2

(
m1m2(2σ2 − 1)(Js + Ju)− 6σ~2|q|2Ju

+ 8σ~2|q|2JNP��

)
. (3.3)

The sum of the integrals Js + Ju has been evaluated in section 4.3 of [32], and the integral
Ju in section 4.2 of [32].
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Evaluation of the integral JNP
�� . This is a new contribution that did not appear in

the maximal supergravity computation of ref. [32]. It reads (with D = 4− 2ε)

JNP�� =
|q|2D−10

16~3

∫
dDl1d

Dl2
(2π)2D

l2 · l3
l21l

2
2(l1 + l2 + uq)2

×
( 1

(p̄1 · l1 + iε)(p̄1 · l2 − iε)
− 1

(p̄1 · l2 + iε)(p̄1 · l1 − iε)

)
×
( 1

(p̄2 · l1 − iε)(p̄2 · l3 + iε) −
1

(p̄2 · l3 − iε)(p̄2 · l1 + iε)

)
, (3.4)

where we have scaled the loop momenta li → ~liq as in [32], and defined p1 = p̄1 + ~q
2 ,

p2 = p̄2 −
~q
2 and q = |~q|uq with u2

q = −1.
Using the definition of the delta-function as a distribution

lim
ε→0+

( 1
x− iε

− 1
x+ iε

)
= lim

ε→0+

2iε
x2 + ε2 = 2iπδ(x), (3.5)

the above expression can be written in terms of delta functions:

JNP�� = −
|q|2D−10

16~3

∫
dDl1d

Dl2
(2π)2D−2

l2 · l3
l21l

2
2(l1 + l2 + uq)2

(
δ(p̄1 · l1)
p̄1 · l2 + iε

− δ(p̄1 · l2)
p̄1 · l1 + iε

)
×
(
δ(p̄2 · l3)
p̄2 · l1 + iε

− δ(p̄2 · l1)
p̄2 · l3 + iε

)
. (3.6)

We can therefore express the sum of all the double-box terms in Einstein gravity in
terms of integrals with delta-functions exactly as in the corresponding computation for
maximal supergravity [20, 32].

Using LiteRed [33] we expand this expression on the master integrals used in [32] (see
appendix D for a summary of the results)1

JNP�� =
|q|2D−10

96~3ε4m2
1m

2
2(σ2 − 1)

(I4(σ) + 2I9(σ))−
|q|2D−10

96~3ε4m2
1m

2
2(σ2 − 1)

(I4(σ)− I9(σ))

−
|q|2D−10

32~3
4(arccosh(σ)− iπ)
m1m2

√
σ2 − 1

i(4πe−γE )2ε

128m1m2ε2π3
√
σ2 − 1

. (3.7)

Next, using the evaluation of the master integral I4(σ) in section 5.2 and I9(σ) in section 5.7
of ref. [32] we have

JNP�� =
|q|2D−10(4πe−γE )2ε

1024~3ε2π2m2
1m

2
2(σ2 − 1)

(
i

π

(−1
4

)ε ∫ σ

1

dt

(t2 − 1)
1
2 +ε
− i

π
arccosh(σ)

)
. (3.8)

The double-box. Summing everything, the double-box contribution is given by

M��
2 (σ, q2) = 1

|q|4ε
(
M��(−3)

2 (σ, q2) +M��(−2)
2 (σ, q2) +M��(−1)

2 (σ, q2) +O(~)
)
, (3.9)

1The tensorial reduction is done after having localised the integrals with the delta-function insertions.
The tensorial reduction is then performed on the D − 1 dimensional integrals.
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where the superscript indicates the order of ~, with the leading term

M��(−3)
2 = −128π3G3

Nm
4
1m

4
2(2σ2 − 1)3Γ(−ε)3Γ(1 + 2ε)

3~3|q|2(σ2 − 1)(4π)2−2εΓ(−3ε) . (3.10)

The first sub-leading piece is

M��(−2)
2 = 256π3G3

N im
3
1m

3
2(m1 +m2)(2σ2 − 1)3

~2|q|(σ2 − 1)
3
2

Γ(1
2 − ε)

2Γ(1
2 + 2ε)Γ(−ε)Γ(1

2 − 2ε)
(4π)

5
2−2εΓ(1

2 − 3ε)Γ(−2ε)
,

(3.11)
and the classical term, when written at leading orders in ε,2 is

M��(−1)
2 = 4G3

Nm
3
1m

3
2
(
2σ2 − 1

)2
~π

(
4πe−γE

)2ε( π2s
(
2σ2 − 1

)
2εm1m2 (σ2 − 1)2

+
iπ
((

7− 6σ2)σ arccosh (σ)−
(
2σ2 − 1

)√
σ2 − 1

)
ε2 (σ2 − 1)2

− iπ

ε2
√
σ2 − 1

( −1
4 (σ2 − 1)

)ε d
dσ

((
2σ2 − 1

)
arccosh (σ)√

σ2 − 1

))
. (3.12)

The first and the second lines agree with first quantum correction to the one-loop box as
given in ref. [27]. These pieces are needed for the exponentiation of the eikonal phase to
two-loop order. The last line is the radiation-reaction term. We have written it compactly
in terms of a σ-derivative. Notice that in Einstein gravity this term is

(
2σ2 − 1

)2 d

dσ

((
2σ2 − 1

)
arccosh (σ)√

σ2 − 1

)
, (3.13)

whereas it is (
2σ2

)2 d

dσ

(
2σ2 arccosh (σ)√

σ2 − 1

)
, (3.14)

in maximal supergravity. The difference is due to the exchange of the dilaton field in the
latter theory.

3.2 Box-triangle contributions

The box-triangle contributions are given by the sum of Feynman integrals topologies given
in figure 2, together with the mirrored ones with the graviton line attached to the other
scalar line. The numerator factors are again provided in appendix B. Using LiteRed [33]
for performing the tensorial reduction, and after evaluation of the various integrals, this
contribution expands into

M�.
2 = 1

|q|4ε
(
M�.(−2)

2 +M�.(−1)
2 +O(~0)

)
. (3.15)

2For certain terms we keep ε in the exponent for reasons that will become clear below.
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p1 p2

p′1 p′2

p1 p2

p′1 p′2

Figure 2. Box-triangle graphs.

p1
p2

p′1
p′2

p1
p2

p′1
p′2

Figure 3. Double-triangle graphs.

There is no contribution of order 1/~3. The leading order in the ~ expansion is

M�.(−2)
2 = i6π2G3

Nm
4
1m

3
2(2σ2 − 1)(1− 5σ2)(4πe−γE )2ε

ε
√
σ2 − 1~2|q|

+O(ε0), (3.16)

and the classical term is

M�.(−1)
2 = (4πe−γE )2ε 128π3G3

Nm
3
1m

2
2

3~

(
3im2(2σ2−1)(22σ2−1)

64ε2π3
√
σ2−1

− 9(2σ2−1)(1−5σ2)(m1 +m2σ)
128(σ2−1)επ2 − 3(2σ2−1)m1

128επ2 −m2σ(55+2σ2)
128επ2

)
. (3.17)

The symmetric contributionM/�
2 is simply obtained by the exchange of m1 ↔ m2.

3.3 Double-triangle contributions

The double-triangle contributions are given by the sum of Feynman integrals topologies
given in figure 3 together with the mirrored ones with the triangle attached to the other
scalar line. We give the numerator factors in appendix B.

We again use LiteRed [33] for the tensorial reduction. Applying also the identity
in (3.5) we obtain the delta-function representation

M..
2 = −128π3G3

Nm
6
1m

2
2(10σ2 − 1)

~|q|4ε
∫
dD−1l1d

D−1l2
(2π)2D−2

δ(p̄1 · l1)δ(p̄1 · l2)
l21l

2
2(l1 + l2 + uq)2 ,

= 2πG3
Nm

4
1m

2
2(10σ2 − 1)(4πe−γE )2ε

ε|q|4ε~
, (3.18)

– 8 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
2

p1 p2

p′1 p′2

Figure 4. The H diagram.

and the symmetric triangle

M//
2 =

2πG3
N |q|−4εm2

1m
4
2(10σ2 − 1)(4πe−γE )2ε

ε|q|4ε~
. (3.19)

Notice that the double-triangle integrals start contributing from the classical order in the
~→ 0 limit.

3.4 The H-diagram

The H-diagram integral is the t-channel integral similar to the one evaluated in sec-
tion 4.1 of [32] but this time with tensorial numerator factor. Reducing the numerator
using LiteRed [33] we get the expression

MH
2 =−256π3G3

Nm
3
1m

3
2√

σ2−1|q|4ε~

(
4(1+2σ2)

ε4
I2(σ)− 4σ

√
σ2−1
ε3

I4(σ)+ (2σ2−1)2

2ε4 I6(σ)
)

+O(ε0).

(3.20)
Using the evaluation of the master I2(σ) and I4(σ) in section 5.2, and I6(σ) in section 5.6
in [32] we obtain

MH
2 = 8πG3

Nm
3
1m

3
2(4πe−γE )2ε

ε
√
σ2 − 1|q|4ε~

((3+12σ2−4σ4) arccosh(σ)−4σ
√
σ2 − 1)+O(~0). (3.21)

Notice that the H-diagram integral starts contributing from the classical order in the ~→ 0
limit. The full H-diagram has recently been considered in ref. [34].

3.5 Box-bubble contribution

After tensorial reduction we find for the box-bubble numerator,

M�◦
2 = − i2G

3
Nm

3
1m

3
2(2σ2 − 1)(1 + 522σ2)(4πe−γE )2ε

15ε2
√
σ2 − 1|q|4ε~

+O(~0), (3.22)

which also contributes from the classical order in the ~→ 0 limit.

4 Self-energy diagrams and vertex corrections

So far, all parts of the amplitude have followed from the three-graviton cut alone. This
includes pieces that belong to both the conservative part and the radiation-reaction part.
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p1 p2

p′1 p′2

Figure 5. The box-bubble diagram.

JI,sSE =

p1 p2

p′1 p′2

JII,sSE =

p1 p2

p′1 p′2

JIII,sSE =

p1 p2

p′1 p′2

JIV,sSE =

p1 p2

p′1

p′2

Figure 6. Self-energy diagrams s-channel with the graviton line attached the one scalar line.

To get the full set of radiation-reaction contributions, we finally have to compute the
two-loop integrals of self-energy and vertex corrections for the massive lines that have
not been included in the three-graviton cut. These contributions are not present in the
maximal supergravity amplitude because they are subleading in ~q. In that case, the
radiation-reaction contribution is solely given by the contribution in (3.14). They each
have seven massive propagators (diagrams with fever propagators do not contribute to
the radiation-reaction, as they are subleading in ε). There are four independent seven-
propagator diagrams listed in figure 6 in the s-channel with a graviton line attached to the
scalar line with mass m1. There are four equivalent diagrams with the graviton propagator
attached to the other scalar line with mass m2. There are as well eight corresponding
diagrams in what we can call the u-channel (corresponding to the crossed box).

The four associated integrals are

JI,sSE = 4096π3G3
N~7

∫
dDl1d

Dl2
(2π)2D

m8
1m

4
2(2σ2 − 1)2 + 2m6

1m
4
2(2σ2 − 1)2|~q|2

((p1 − l1 − l2)2 −m2
1 + iε)((p1 − l2)2 −m2

1 + iε)

× 1
((p1 − l1 − l2 − q)2 −m2

1 + iε)((p2 − l1)2 −m2
2 + iε)l21(l1 + q)2(l1 + l2)2 , (4.1)
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JII,sSE = 4096π3G3
N~7

∫
dDl1d

Dl2
(2π)2D

m8
1m

4
2(2σ2 − 1)2

((p1 − l1 − l2)2 −m2
1 + iε)((p1 − l2)2 −m2

1 + iε)

× 1
((p1 + l1)2 −m2

1 + iε)((p2 − l1)2 −m2
2 + iε)l21(l1 + q)2(l1 + l2)2 , (4.2)

JIII,sSE = 4096π3G3
N~7

∫
dDl1d

Dl2
(2π)2D

m8
1m

4
2(2σ2 − 1)2

((p1 + l1)2 −m2
1 + iε)((p1 − l2)2 −m2

1 + iε)

× 1
((p1 − l1 − l2 − q)2 −m2

1 + iε)((p2 − l1)2 −m2
2 + iε)l21(l1 + q)2(l1 + l2)2 , (4.3)

JIV,sSE = 4096π3G3
N~7

∫
dDl1d

Dl2
(2π)2D

m8
1m

4
2(2σ2 − 1)2

((p1 + l1)2 −m2
1 + iε)2((p1 − l2)2 −m2

1 + iε)

× 1
((p2 − l1)2 −m2

2 + iε)l21(l1 + q)2(l1 + l2)2 , (4.4)

with the numerators keeping only contributions that have weight m4
2 in p2 because the other

contributions are leading to vanishing contributions having at least two delta-functions
on p1 · l propagators. As well, only the part of the numerator that is independent of
the loop momenta contributes to the classical piece in the ε-expansion. Summing all the
contributions

MSE = −216π3G3
N

IV∑
i=I

(J i,sSE + J i,uSE) + (m1 ↔ m2), (4.5)

the self-energy contribution is proportional the master integrals I5(σ) evaluated in section 5
of [32] (see appendix D for a summary of the results)

MSE = −1408π3G3
Nm

3
1m

3
2(2σ2 − 1)2

3ε3
√
σ2 − 1|q|4ε~

I5(σ) +O(ε−1)

= i
44πG3

Nm
3
1m

3
2(2σ2 − 1)2

3ε2(σ2 − 1)ε+
1
2 |q|4ε~

(−1
4

)ε
(4πe−γE )2ε +O(ε−1). (4.6)

5 The two-loop amplitude and the eikonal phase

Summing up the three-particle cut and the self-energy diagrams and vertex corrections, we
obtain for the total amplitude

M2(σ, |q|) = 1
|q|4ε

(
M(−3)

2 (σ, |q|) +M(−2)
2 (σ, |q|) +M(−1)

2 (σ, |q|) +O(~0)
)
, (5.1)

with the super-classical pieces

M(−3)
2 (σ, |q|) = −8πG3

Nm
4
1m

4
2(2σ2 − 1)3Γ(−ε)3Γ(1 + 2ε)

3~3|q|2(σ2 − 1)(4π)−2εΓ(−3ε) , (5.2)

and

M(−2)
2 (σ, |q|) = 6iπ2G3

N (m1 +m2)m3
1m

3
2(2σ2 − 1)(1− 5σ2)(4πe−γE )2ε

ε
√
σ2 − 1~2|q|

+O(ε0), (5.3)
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together with the classical term to the order 1/ε for the real part and 1/ε2 for the imaginary
terms

M(−1)
2 (σ, |q|) = 2πG3

N (4πe−γE )2εm2
1m

2
2

~ε

(
s(2σ2−1)3

(σ2−1)2

+ im1m2(2σ2−1)
πε (σ2−1)

3
2

(
1−49σ2 +18σ4

15 − 2σ
(
7−20σ2 +12σ4)arccosh (σ)√

σ2−1

)

− 3
(
2σ2−1

) (
1−5σ2)s

2(σ2−1) + 1
2
(
m2

1 +m2
2

)(
18σ2−1

)
− 1

3m1m2σ
(
103+2σ2

)
+ 4m1m2

(
3+12σ2−4σ4)arccosh (σ)√

σ2−1

− 2im1m2
(
2σ2−1

)2
πε
√
σ2−1

( −1
4(σ2−1)

)ε(
−11

3 + d

dσ

(
(2σ2−1)arccosh(σ)√

σ2−1

)))
.

(5.4)

The last line gives the radiation-reaction contributions

M(−1)
2

(
σ, |q|

) ∣∣∣
Rad.

= −4iG3
N (4πe−γE )2ε

m3
1m

3
2

~ε2

(
2σ2 − 1

)2
√
σ2 − 1

( −1
4 (σ2 − 1)

)ε
×
(
−11

3 + d

dσ

(
(2σ2 − 1) arccosh(σ)√

σ2 − 1

))
. (5.5)

The −11/3 comes solely from the self-energy diagrams of section 4 and the derivative term
from the double-box diagrams of section 3.1. The real and imaginary parts of this term
clearly satisfies the relation conjectured in [16, 17]

lim
ε→0

εRe (5.5) = − lim
ε→0

ε2π Im (5.5). (5.6)

5.1 The amplitude in b-space and eikonal exponentiation

The amplitude is b-space is defined by

M̃2(σ, b) = 1
4Ec.m.P

∫
RD−2

dD−2~q

(2π)D−2M2(p1, p2, p
′
1, p
′
2)ei~q·~b , (5.7)

where 4Ec.m.P = 4m1m2
√
σ2 − 1 and Ec.m. =

√
s.

The two-loop amplitude in (5.1) naturally decomposes as follows after Fourier trans-
form to b-space

M̃2(σ, b) = −1
6
(
M̃(−1)

0 (σ, b)
)3

+ iM̃(−1)
0 (σ, b)

(
M̃Cl.

1 (σ, b) + M̃Qt.
1 (σ, b)

)
+ M̃Cl.

2 (σ, b) +O(~0). (5.8)

We note the following identifications, observed already at the level of diagram topologies:

M̃��(−3)
2 (σ, b) = −1

6
(
M̃(−1)

0 (σ, b)
)3
,

– 12 –
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M̃��(−2)
2 (σ, b) = iM̃(−1)

0 (σ, b)M̃�(−1)
1 (σ, b),

M̃/�(−2)
2 (σ, b) + M̃�.(−2)

2 (σ, b) = iM̃(−1)
0 (σ, b)

(
M̃/(−1)

1 (σ, b) + M̃.(−1)
1 (σ, b)

)
,

M̃��(−1)
2 (σ, b) = iM̃(−1)

0 (σ, b)M̃�(0)
1 (σ, b) + M̃�� Cl.

2 (σ, b),

M̃/�(−1)
2 (σ, b) + M̃�.(−1)

2 (σ, b) = iM̃(−1)
0 (σ, b)

(
M̃/(0)

1 (σ, b) + M̃.(0)
1 (σ, b)

)
+ M̃/� Cl.

2 (σ, b) + M̃�. Cl.
2 (σ, b),

M̃�◦(−1)
2 (σ, b) = iM̃(−1)

0 (σ, b)M̃◦(0)
1 (σ, b) + M̃�◦ Cl.

2 (σ, b), (5.9)

where

M̃0
(−1)(σ, b) = GNm1m2(2σ2 − 1)Γ(−ε)√

σ2 − 1~
(πb2)ε, (5.10)

is the first Post-Minkowskian contribution.
The various pieces from the one-loop amplitude M1 are detailed in appendix C. In

the above expressions, M̃�(0)
1 (σ, b) is the Fourier transform of first quantum contribution

from the one-loop boxes in (C.8), M̃.(−1)
1 (σ, b) is the Fourier transform of the classical

piece from the one-loop triangle in (C.14) and M̃.(0)
1 (σ, b) is the Fourier transform of the

first quantum correction from the one-loop triangle in (C.15) (likewise for M̃/(−1)
1 (σ, b) and

M̃/(0)
1 (σ, b)), and finally M̃◦(0)

1 (σ, b) is the Fourier transform of (C.19).
It is striking how the above factorizations arise within graph topologies. This will be

explained in section 5.2 below.
Collecting the classical and the leading quantum pieces of the one-loop amplitude as

in (C.20), we obtain after Fourier transform to b-space the classical piece

M̃Cl.
1 (σ, b) = 3πG2

N (m1 +m2)m1m2(5σ2 − 1)
4b
√
σ2 − 1~

(πb2eγE )2ε +O(ε), (5.11)

and the leading quantum correction

M̃Qt.
1 (σ, b) = G2

N (πb2eγE )2ε

b2

(
iεs(2σ2 − 1)2

(σ2 − 1)2 (5.12)

− m1m2

π (σ2 − 1)
3
2

(
1− 49σ2 + 18σ4

15 − 2σ(2σ2 − 1)(6σ2 − 7) arccosh(σ)√
σ2 − 1

))
.

The first and the last term in this expression matches the one derived in [27], the second
term arises from the contributions of the triangle and bubble in the Einstein gravity one-
loop amplitude as detailed in appendix C.3

3We note that the static limit of the second line matches the quantum correction to the one-loop
amplitude evaluated in [35, 36]

lim
σ→1

1
2(σ2 − 1)

(1− 49σ2 + 18σ4

15 − 2σ(2σ2 − 1)(6σ2 − 7) arccosh(σ)√
σ2 − 1

)
= −41

10 .
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Finally, we have defined the classical third Post-Minkowskian contribution4

M̃Cl.
2 (σ, b) ≡ M̃�� Cl.

2 (σ, b) + M̃/� Cl.
2 (σ, b) + M̃�. Cl.

2 (σ, b)

+ M̃// Cl.
2 + M̃.. Cl.

2 + M̃H Cl.
2 + M̃SE Cl.

2 + M̃�◦ Cl.
2 (σ, b) (5.13)

= G3
Nm1m2(πb2eγE )3ε

~b2
√
σ2 − 1

(
3(2σ2 − 1)(5σ2 − 1)s

2(σ2 − 1) + s− 2m1m2σ

2 (18σ2 − 1)

− 1
3m1m2σ(103 + 2σ2) + 4m1m2(3 + 12σ2 − 4σ4) arccosh(σ)√

σ2 − 1

− 2im1m2(2σ2 − 1)2

πε
√
σ2 − 1

( −1
4(σ2 − 1)

)ε (
− 11

3 + d

dσ

((2σ2 − 1) arccosh(σ)√
σ2 − 1

)))
,

the last line of this expression is the radiation-reaction part which matches the result of [17].

5.2 Relation to the world-line formalism: velocity cuts

As we have remarked earlier, the two-loop amplitude can be organized with integrals involv-
ing delta functions as in our earlier case of maximal supergravity [32]. There is a simple
correspondence between the order in the ~ expansion and the number of delta-function
insertions. Namely, symbolically we have the following pattern of delta-function insertions

M(−3)
2 ∼ 1

~3q2

∫
δ(p1 · l1)δ(p1 · l2)δ(p2 · l1)δ(p2 · l2), (5.14)

M(−2)
2 ∼ 1

~2q

∫
(δ(p1 · l1)δ(p1 · l2)δ(p2 · l1) + δ(p1 · l1)δ(p2 · l1)δ(p2 · l2)) ,

M(−1)
2 ∼ 1

~

∫
(δ(p1 · l1)δ(p2 · l1) + δ(p1 · l1)δ(p1 · l2))

+ 1
~

∫
(δ(p1 · l1)δ(p2 · l2) + δ(p2 · l1)δ(p2 · l2)) . (5.15)

We remark that only the inverse powers of ~ can be localised using delta-functions. The
quantum contributions, starting from the order ~0, are not reducible to D − 1 dimen-
sional integrals.

Because the delta functions project loop momenta onto external momenta, and hence
external four-velocities, we shall call the action of such delta functions velocity cuts. They
are not true D-dimensional cuts but they share many features with genuine cuts, especially
after Fourier transformation into b-space. Indeed, these velocity cuts do not decouple the
integrals in momentum space but certain parts of them lead to factorized forms in b-space.
This amplitude factorization is important for the exponentiation of the eikonal phase. As
will be explained next, we can readily follow the diagrammatics of this factorization in
b-space by tracing out how the cuts are distributed. We indicate a velocity cut by a red
dashed bar across a massive line.

4The classical part M̃�◦ Cl.
2 (σ, b) vanishes and does contribute to this result. The amplitude

M̃�◦(−1)
2 (σ, b) is only needed for the eikonalisation of the two-loop amplitude as shown in eq. (5.16).
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For instance, two velocity cuts (i.e., two delta-function insertions) in the following
diagram

−→




×




will in b-space lead to the product of the tree-level amplitude and a one-loop bubble integral,
so that the integral becomes

M̃�◦(−1)
2 = i

(
− GNm1m2(2σ2 − 1)(πb2)ε

~
√
σ2 − 1

)
×
(
G2
Nm1m2(1 + 522σ2)(πb2)2ε

15πb2
√
σ2 − 1

)
= iM̃(−1)

0 (σ, b)× M̃◦(0)
1 (σ, b), (5.16)

since M̃�◦ Cl.
2 (σ, b) vanishes because the two velocity-cuts are taken regarding the same

internal momenta.
Two velocity cuts of the box-triangle integral in figure 7 lead, after a Fourier transform

to b-space, to a product of the tree-level amplitude and a triangle integral in exactly the
same way,5 plus an extra term contributing to the eikonal phase. As one final example,
let us consider two velocity cuts in the double-box integral in figure 8. After a Fourier
transformation to b-space, this leads to the product of a tree-level amplitude times a one-
loop box, in addition to the extra pieces shown.

This graphical interpretation of the action of the delta functions also has another ad-
vantage that we wish to explain. In ref. [3] we showed how to relate the second quantized
field theory analysis to that of the world-line formalism. In the conservative sector and
when integrals are evaluated in the potential region only, this connection arises from ex-
tracting the residues of the time-components of the loop momenta. The velocity cuts that
we have illustrated in this two-loop calculation can be viewed as a covariant generalization
of that reduction in dimensionality of the loop integrals. For an n-loop amplitude the most
important set of graph topologies in this respect is that of just n massive propagators.
When we apply velocity cuts on such graphs all massive propagators will have been acted
upon and what is left can be reinterpreted as external sources after a Fourier transform. In
figure 9 we draw those two-loop topologies which correspond to just two massive propaga-
tors. As each velocity cut removes one loop integration and effectively reduces the matter
line to two external sources we denote them by blobs in the same figure. The remaining
three-dimensional integrals are what appear as a spatial Fourier transform in the world-line
formalism. One of these integrations can be taken to represent the parametrized world line
and the remaining two integrations are analogous to the transformation into b-space.

5In particular we see the correspondence between the first line of (3.17) and the quantum correction
from the one-loop triangle in (C.15).
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−→ + +

−→




×





+ +

Figure 7. Velocity cuts of the box-triangle diagrams.

Recently, Kälin, Liu, and Porto [10] (see also refs. [37–39]) have shown how to derive the
conservative part of the Post-Minkowskian scattering angle to the third Post-Minkowskian
order considered here. The diagrams needed are precisely those listed in figure 9. There
are obviously many other diagrams contributing to the (conservative) classical part of
the full amplitude but those that factorize do not contribute to physical observables and
are eliminated by either the Born subtractions, or the effective field theory matching,
or the eikonal exponentiation, depending on which framework one prefers. Indeed, the
world-line formalism works at the level of the effective action and hence lives already in
the exponent, without any need of subtractions. This still leaves certain terms left over
after the factorization and those diagrams (which still have un-cut massive propagators
because they stem from topologies with, for n-loop graphs, with more than n massive
propagators) do not appear to have a simple diagrammatic interpretation in world-line
language, although they are of course there. Graph topologies corresponding to radiation-
reaction contributions also have more than n massive propagators and will therefore also
not immediately be amenable to this kind of world-line interpretation. It is interesting
to note that the recent calculation of the conservative part at fourth Post-Minkowskian
order [8] is organized along similar lines of the exponentiated action and it should therefore
match quite directly to the world-line formalism at that order.

– 16 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
2

−→ +

+ +

−→ 2




×





+ +

Figure 8. Velocity cuts of the double-box diagram.

The correspondence between our present computation and the calculation at the same
order in the world-line formalism appears to run deeper than this. Indeed, the basis of
integrals used in ref. [10] coincides with ours, through the following translation table: the set

{I11111, I11211, I01101, I11011, I00211, I00112, I00111},

of eq. (16) in ref. [10] corresponds to

{I0,0,1,1,1,1,1, I0,0,1,1,1,1,2, I0,0,0,1,0,1,1, I0,0,1,1,1,1,0, I0,0,0,0,1,1,2, I0,0,0,0,1,2,1, I0,0,0,0,1,1,1},

in our notation of equation (5.10) in [32]. This basis of master integrals suffices for the part
of the conservative sector that is immediately translatable into those velocity cut diagrams
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−→ −→

−→ −→

−→

Figure 9. Correspondence with world-line diagrams.

that have matches to standard world-line diagrams. We note that I0,0,0,1,0,1,1 = 0 is set
to zero in the analysis of [10, 21], and indeed it only contributes to the radiation-reaction
terms. In ref. [10] two more basis integrals were needed. They were denoted by

{M (1,2)
11,11100,M

(1,1)
11,11100},

in eq. (18) of ref. [10] and they correspond to our remaining two

{I1,1,0,0,1,1,1, I1,1,0,0,1,1,1(σ = 1)},

from ref. [32]. This demonstrates explicitly the one-to-one match of the two bases. It is
as expected for the diagrams for the conservative sector since we have seen the translation
table between graph topologies. But as we have shown here, just the same basis of integrals
also encapsulates all radiation-reaction parts. Since the basis of master integrals contains
also the crucial terms from what is known as the soft region of the integrals, it does suggest
that radiation reaction also has a natural interpretation in world-line language. At higher
orders in the Post-Minkowskian expansion we expect the corresponding choice of a minimal
basis of master integrals to be quite crucial in order to simplify calculations.

5.3 The scattering angle

We can now evaluate the eikonal phase at third Post-Minkowskian order. The classical limit
of the two-loop two-body scattering in (5.8) takes the form needed for the exponentation

– 18 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
2

of the classical third Post-Minkowskian eikonal in (5.13)

1 + i
∑
L≥0
M̃L(σ, b) = (1 + 2i∆(σ, b)) exp

2i
~
∑
L≥0

δL(σ, b)

 . (5.17)

Thanks to the factorized form of the two-loop classical contribution in (5.8) we have the
first Post-Minkowskian eikonal phase

δ0(σ, b) = ~
2 (5.10) = −GNm1m2(2σ2 − 1)

2ε
√
σ2 − 1

(πb2eγE )ε +O(ε), (5.18)

the second Post-Minkowskian eikonal phase

δ1(σ, b) = ~
2 (5.11) = 3πG2

N (m1 +m2)m1m2(5σ2 − 1)
8b
√
σ2 − 1

(πb2eγE )2ε, (5.19)

and the third Post-Minkowskian eikonal phase from the real part of the third Post-
Minkowskian amplitude

δ2(σ, b) = ~
2 Re (5.13) = G3

Nm1m2(πb2eγE )3ε

2b2
√
σ2 − 1

(
2s(12σ4 − 10σ2 + 1)

σ2 − 1 (5.20)

− 4m1m2σ

3 (25 + 14σ2) + 4m1m2(3 + 12σ2 − 4σ4) arccosh(σ)√
σ2 − 1

+ 2m1m2(2σ2 − 1)2
√
σ2 − 1

1
(4(σ2 − 1))ε

(
− 11

3 + d

dσ

((2σ2 − 1) arccosh(σ)√
σ2 − 1

)))
.

And the leading quantum corrections at one-loop

2∆1 = M̃Qt.
1 (σ, b). (5.21)

The third Post-Minkowskian order scattering angle is then obtained as

sin
(
χ

2

) ∣∣∣
3PM

= −
√
s

m1m2
√
σ2 − 1

∂δ2(σ, b)
∂b

, (5.22)

giving

sin
(
χ

2

)∣∣∣
3PM

= G3
N

√
s

b3(σ2−1)

(
3(2σ2−1)(5σ2−1)s

2(σ2−1) (5.23)

+m2
1+m2

2
2 (18σ2−1)−m1m2

3 σ(103+2σ2)+ 4m1m2(3+12σ2−4σ4)arccosh(σ)√
σ2−1

+ 2m1m2(2σ2−1)2

π
√
σ2−1

1
(4(σ2−1))ε

(
− 11

3 + d

dσ

( (2σ2−1)arccosh(σ)√
σ2−1

)))
+O(ε).

Using the definition of the angular momentum

J = m1m2
√
σ2 − 1√
s

b cos
(
χ

2

)
, (5.24)

– 19 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
2

we obtain for the scattering angle at the first and second Post-Minkowskian order

χ1PM = 2GNm1m2(2σ2 − 1)
J
√
σ2 − 1

,

χ2PM = 3πG2
Nm

2
1m

2
2(m1 +m2)(5σ2 − 1)

4J2√s
, (5.25)

and at the third Post-Minkowksian order we obtain

χ3PM = χ̂3PM + χRad.
3PM , (5.26)

with

χ̂3PM = 2G3
Nm

3
1m

3
2
(
64σ6 − 120σ4 + 60σ2 − 5

)
3J3 (σ2 − 1)

3
2

+ 8G3
Nm

4
1m

4
2
√
σ2 − 1

3J3s

(
σ(−25− 14σ2) + 3(3 + 12σ2 − 4σ4) arccosh(σ)√

σ2 − 1

)
, (5.27)

from the first and the second line of (5.20), matching the expressions in [2, 5, 40]. And the
radiation-reaction part from the third line of (5.20)

χRad.
3PM = 4G3

Nm
4
1m

4
2
(
2σ2 − 1

)2
J3s

1
(4 (σ2 − 1))ε

(
−11

3 + d

dσ

((
2σ2 − 1

)
arccosh (σ)√

σ2 − 1

))
.

(5.28)
This expression matches the results of [15, 16, 20].

6 Conclusion

Using the integration method proposed in ref. [32], we have evaluated the two-to-two
massive scattering amplitude of two scalars in Einstein gravity, keeping all terms that
are needed to compute the classical scattering angle at third Post-Minkowskian order.
The expansion is ordered as a Laurent expansion in ~, but can also be broken into pieces
corresponding to the conservative sector and additional pieces that have recently been
identified as radiation-reaction contributions. Our results have confirmed all aspects of the
recent work in refs. [14–17].

An important simplification of our calculation stems from the fact that the same small
basis of master integrals that recently was used to solve the corresponding problem in
maximal supergravity [32] can be used in Einstein gravity as well. Similarly, the reduction
of dimensionality in the integrals due to a specific grouping of integrands works in Einstein
gravity just as it does in maximal supergravity. This gives us the link to the world-
line formalism through what we have dubbed velocity cuts. We anticipate that these
simplifications apply to higher orders in the Post-Minkowskian expansion as well.
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A The five-point tree amplitude and the three-graviton cut

To compute the cut integral, we need the five points amplitude where a massive scalar
emits three gravitons. The result for these contributions is obtained by computing the tree
amplitudes using Feynman diagrams, and was confirmed using the double copy relations
(see [41] for a review) from the QCD amplitude of the emission of three gluons from
a massive scalar [42]. This amplitude can be put in a simple form using the helicity
formalism (see [43] for a review), and subsequently considering the two independent helicity
configurations [44].

The singlet amplitude.

iM0(p1, p
′
1, l

+
1 , l

+
2 , l

+
3 ) = − (8πGN )

3
2m4

1
〈l1 l2〉2 〈l1 l3〉2 〈l2 l3〉2

∑
1≤i 6=j 6=k≤3

(li · lj)(lj · lk)tr+[lk, p1, p
′
1, li]

(p1 · lk)(p′1 · li)
,

(A.1)
with iM0(p1, p

′
1, l
−
1 , l
−
2 , l
−
3 ) obtained by complex conjugation. The singlet amplitude is the

one given in [45]. This amplitude vanishes when m1 = 0.
We have defined

tr±(abcd) ≡ 2(a · bc · d− a · cb · d+ a · db · c)± 2iεµνρσaµbνcρdσ. (A.2)

The non-singlet amplitude.

iM0(p1, p
′
1, l
−
1 , l

+
2 , l

+
3 ) = (2πGN )

3
2

2

( ∑
2≤j 6=k≤3

〈l1|p1|lj ] 〈l1|p′1|lj ]
2 〈l1|p1|lk]3

〈l1 lj〉 〈l1 lk〉 (l1 · lj)(l1 · lk)(p1 · l1)(p′1 · lj)

− 〈l1|p1|l2]3 〈l1|p′1|l3]3

〈l1 l2〉 〈l1 l3〉 (l1 · l2)(l1 · l3)(p1 · l2)(p′1 · l3)

− 2 [l2 l3] 〈l1|p1|l2] 〈l1|p1|l3] 〈l1|p1|p′1|l1〉2

〈l1 l2〉 〈l1 l3〉 〈l2 l3〉 (l1 · l2)(l1 · l3)(p1 · l1)

+ 2 [l2 l3]3 〈l1|p1|p′1|l1〉2

〈l2 l3〉 (l1 · l2)(l1 · l3)t

)
+ (p1 ↔ −p′1), (A.3)

with iM0(p1, p
′
1, l

+
1 , l
−
2 , l
−
3 ) obtained by complex conjugation. The advantage of these ex-

pressions is that they keep track of the symmetry regarding p1 and −p′1 exchange, and
regarding the internal momenta l1, l2 and l3 satisfying l1 + l2 + l3 + q = 0.

The three-particle cut. The three-particle cut in (2.7) is obtained by summing the
singlet and the non-singlet contributions

M3−cut
2 (σ, q2) =M3−cut

2 (σ, q2)
∣∣∣
singlet

+M3−cut
2 (σ, q2)

∣∣∣
non−singlet

, (A.4)
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where

M3−cut
2 (σ, q2)

∣∣∣
singlet

=
∫
dDl1d

Dl2
(2π)2D δ(l1 + l2 + l3 + q) i3

l21l
2
2l

2
3

(A.5)

× 1
3!

( ∑
Perm(l1,l2,l3)

M0(p1, p
′
1, l

+
1 , l

+
1 , l

+
3 )M0(p2, p

′
2, l
−
1 , l
−
1 , l
−
3 )

+ 1
3!

∑
Perm(l1,l2,l3)

M0(p1, p
′
1, l
−
1 , l
−
1 , l
−
3 )M0(p2, p

′
2, l

+
1 , l

+
1 , l

+
3 )
)
,

and the non-singlet cut

M3−cut
2 (σ, q2)

∣∣∣
non−singlet

=
∫
dDl1d

Dl2
(2π)2D δ(l1 + l2 + l3 + q) i3

l21l
2
2l

2
3

(A.6)

×
(

1
3!

∑
Perm(l1,l2,l3)

M0(p1, p
′
1, l
−
1 , l

+
1 , l

+
3 )M0(p2, p

′
2, l

+
1 , l
−
1 , l
−
3 )

+ 1
3!

∑
Perm(l1,l2,l3)

M0(p1, p
′
1, l

+
1 , l
−
1 , l
−
3 )M0(p2, p

′
2, l
−
1 , l

+
1 , l

+
3 )
)
.

B Numerator factors

In this appendix we list the numerator factors entering the expression of the three-particle
cut of section 3. With the individual integral defined by the graphs we obtain the following
numerators from the tensorial reduction of the three-particle cut:

The double-box numerators have to be expanded up to order (~~q)2.
The numerator factor for the double-box integral in the left of figure 1 in the s-channel

N (s)
�� = 512π3G3

N (m4
1 +m4

2 − 2(m2
1 +m2

2)s+ s2)3 = 212π3G3
Nm

6
1m

6
2(2σ2 − 1)3, (B.1)

the numerator factor for the crossed double-box integral in the right of figure 1 in the
s-channel

N (cross,s)
�� = 213π3G3

N

(
96m6

1m
6
2(2σ2 − 1)3 + 8m5

1m
5
2σ(2σ2 − 1)2(~~q)2(l2 · l3) +O((~~q)4)

)
.

(B.2)
The numerator for the double-box integral in the u-channel is given by

N (u)
�� = 512π3G3

N (m4
1 +m4

2 − 2(m2
1 +m2

2)u+ u2)3 (B.3)

= 212π3G3
N

(
96m6

1m
6
2(2σ2 − 1)3 − 6m5

1m
5
2σ(2σ2 − 1)2(~~q)2 +O((~~q)4)

)
,

and for the cross double-box integral in the u-channel

N (cross,u)
�� = 213π3G3

N

(
m6

1m
6
2

(
2σ2−1

)3
−8m5

1m
5
2σ
(
2σ2−1

)2(
~~q
)2(

l2 ·l3+ 3
4

)
+O((~~q)4)

)
.

(B.4)
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The box-triangle numerators have to be expanded to the order |~~q|.
The numerator factor for the non-planar box-triangle integral in the right of figure 2

in the s-channel is N (NP )
�. = N (NP,I)

�. +N (NP,II)
�. with

N (NP,I)
�. = 1024π3G3

N

(
m6

1m
2
2(2σ2−1)((p2 ·l1−p2 ·l2)2+4m2

2(1−4σ2)(l1 ·l2))
l1 ·l2

−
2m5

1m2σ(~~q)(p2 ·l1−p2 ·l2)(2m2
2(1−2σ2)−(p2 ·l1−p2 ·l2)2+8m2

2(3σ2−1)(l1 ·l2))
l1 ·l2

+O((~~q)2)
)
, (B.5)

and

N (NP,II)
�. = 1024π3G3

N

(
m6

1m
2
2(2σ2−1)((p4 ·l1−p4 ·l2)2+4m2

2(1−4σ2)(l1 ·l2))
l1 ·l2

−
2m5

1m2σ(~~q)(p2 ·l1−p2 ·l2)(2m2
2(1−2σ2)−(p2 ·l1−p2 ·l2)2+8m2

2(3σ2−1)(l1 ·l2))
l1 ·l2

+O((~~q)2)
)
. (B.6)

The numerator factor for the planar box-triangle integral in the left of figure 2 in the
s-channel is N (s)

�. = N (s,I)
�. +N (s,II)

�. with

N (s,I)
�. = 1024π3G3

N

(
24m6

1m
2
2(2σ2 − 1)((p2 · l1 − p2 · l3)2 + 4m2

2(1− 4σ2)(l1 · l3))
l1 · l3

− 16m5
1m

3
2σ(~~q)(p2 · l1 − p2 · l3)(2σ2 − 1) +O((~~q)2)

)
, (B.7)

and

N (s,II)
�. = 1024π3G3

N

(
m6

1m
2
2(2σ2 − 1)((p4 · l1 − p4 · l3)2 + 4m2

2(1− 4σ2)(l1 · l3))
l1 · l3

+ 16m5
1m

3
2σ(~~q)(p2 · l1 − p2 · l3)(2σ2 − 1) +O((~~q)2)

)
. (B.8)

The numerator factor for the planar box-triangle integral in the left of figure 2 in the
u-channel is N (u)

�. = N (u,I)
�. +N (U,II)

�. with

N (u,I)
�. = 1024π3G3

N

(
m6

1m
2
2(2σ2 − 1)((p4 · l1 − p4 · l3)2 + 4m2

2(1− 4σ2)(l1 · l3))
l1 · l3

− 16m5
1m

3
2σ(~~q)(p2 · l1 − p2 · l3)(2σ2 − 1) +O((~~q)2)

)
, (B.9)
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and

N (u,II)
�. = 1024π3G3

N

(
m6

1m
2
2(2σ2 − 1)((p2 · l1 − p2 · l3)2 + 4m2

2(1− 4σ2)(l1 · l3))
l1 · l3

+ 16m5
1m

3
2σ(~~q)(p2 · l1 − p2 · l3)(2σ2 − 1) +O((~~q)2)

)
, (B.10)

with similar expression for the numerators of the amplitudeM/�
2 (σ, b).

The double-triangle numerator. The numerator factor for the double-triangle dia-
gram in figure 3 is given by

N. = −1024π3G3
N

(
m6

1m
2
2(2σ2 − 1)(uq · l2 − uq · l3)2

l2 · l3
+ m6

1m
2
2(2σ2 − 1)(uq · l1 − uq · l3)2

l1 · l3

+ m6
1m

2
2(2σ2 − 1)(uq · l1 − uq · l2)2

(l1 · l2) −m6
1m

2
2(−5 + 34σ2) +O((~~q))

)
. (B.11)

The H diagram numerator. The numerator factor for the H diagram in figure 4 is
given by

NH = 128π3G3
N

3
(
−48(−4m2

1m
4
2((l2+l3)2−(l1+l3)2+4σ2)(p̄1 ·l2)2 (B.12)

−8m4
2(p̄1 ·l2)4+16m3

1m
3
2σ(p̄1 ·l2)(p̄2 ·l1)

+m4
1

(
m4

2(−1−2(l2+l3)2(1+(l2+l3)2)−2(l1+l3)2(1+(l1+l3)2)

+4σ2+4((l2+l3)2+(l2+l3)4+(l1+l3)2−2(l2+l3)2(l1+l3)2+(l1+l3)4
)
σ2

−4σ4)+4m2
2((l2+l3)2−(l1+l3)2−4σ2)(p̄2 ·l1)2−8(p̄2 ·l1)4))(~~q)4+O((~~q)5)

)
.

The box-bubble diagram numerator. The numerator factor for the box diagram in
figure 5 is given by

N� = 2048π3G3
Nm

4
1m

4
2(2σ2 − 1)(1 + 522σ2)

15 . (B.13)

C The one-loop two-body amplitude

The one-loop two-body scattering is done using the two-particle cuts following the compu-
tation in [36]

M2
2−cut(σ, q2) =

p1 p2

p′1 p′2

tree tree . (C.1)
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We reduce the tensorial integrals using LiteRed [33], we find that the amplitude decom-
poses as

M1(σ, q2) =M�
1 +M.

1 +M/
1 +M◦1. (C.2)

The box contribution is given by

M�
1 (σ, q2) = 256π2m4

1m
4
2G

2
N (2σ2− 1)2(Is + Iu)− 1024π2m3

1m
3
2G

2
N (2σ2− 1)|~q|2Iu, (C.3)

with the scalar one-loop box and cross-box integrals

Is =

p1 p2

p′1 p′2

, Iu =

p1 p2

p′1 p′2

. (C.4)

This box part has the following Laurent expansion in ~ up to the first quantum correction

M�
1 (σ, q2) = 1

|q|2ε
(
M�(−2)

1 +M�(−1)
1 +M�(0)

1 +O(~)
)
, (C.5)

with

M�(−2)
1 = −8πm3

1m
3
2G

2
N (2σ2 − 1)2(4π)εΓ(1 + ε)Γ(−ε)2

|~q|2Γ(−2ε)
√
σ2 − 1

, (C.6)

M�(−1)
1 = 8π2m2

1m
2
2G

2
N (2σ2 − 1)2 i(4π)ε(m1 +m2)

|~q|(σ2 − 1)
Γ(1

2 − ε)
2Γ(1

2 + ε)
π

3
2 Γ(−2ε)

, (C.7)

M�(0)
1 = 4m2

1m
2
2G

2
N (2σ2 − 1)2 (4π)εΓ(1 + ε)Γ(−ε)2

(σ2 − 1)
3
2 Γ(−2ε)

×
(

εsπ

2m1m2
+ i(1 + 2ε)(σ arccosh(σ)−

√
σ2 − 1)

)
− 32m2

1m
2
2G

2
N (2σ2 − 1) i(4π)ε arccosh(σ)√

σ2 − 1
Γ(−ε)2Γ(1 + ε)

Γ(−2ε) |~q|2 . (C.8)

At the leading order in ε the first quantum correction from the box integral reads

M�(0)
1 = −8G2

Nm
2
1m

2
2(2σ2 − 1)(4πe−γE )ε

ε|~q|2ε(σ2 − 1)
3
2

×
(

(2σ2 − 1)εsπ
2m1m2

+ i((7− 6σ2) arccosh(σ)− (2σ2 − 1)
√
σ2 − 1)

)
. (C.9)
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The triangle contribution. The right-triangle graph

M.
1(σ, q2) =

p1
p2

p′1
p′2

(C.10)

has the following numerator factor

N. = 64π2m4
1G

2
N

(
4m2

2(4σ2 − 1) + 8(p2 · l1)2

|~q|2

)
−256π2m3

1G
2(m1 +8m2σ)p2 · l1 +O(|~q|2),

(C.11)
which after tensorial reduction leads to

M.
1(σ, q2) = 24iπ2G2

Nm
4
1m

2
2(5σ2 − 1)

∫
dDl1

(2π)D−1
δ(p1 · l1)
l21(l1 + q)2

− 64π2G2
Nm

2
1m

2
2(22σ2 − 1)

∫
dDl1

(2π)D
1

l21(l1 + q)2 . (C.12)

The Laurent expansion in ~ up to the first quantum correction reads

M.
1(σ, q2) = 1

|q|2ε
(
M.(−1)

1 +M.(0)
1 +O(~)

)
, (C.13)

with the classical and first quantum contributions

M.(−1)
1 = 3iπ2G2

Nm
3
1m

2
2(5σ2 − 1)(4πe−γE )ε

|~q|
, (C.14)

M.(0)
1 = −4iG2

Nm
2
1m

2
2(22σ2 − 1)i(4πe−γE )ε

ε
, (C.15)

with an equivalent expression for the left-triangle graph M/
1(σ, q2) with exchanging m1

and m2.

The bubble contribution.

M◦1(σ, q2) =
p1 p2

p′1 p′2

(C.16)

has the numerator factor

N◦ = 64π2G2
N

(
− 4m2

1m
2
2 + 40m2

1m
2
2σ

2 + 24m2
2(p1 · l1)2

− 64m1m2σp1 · l1p2 · l1 + 24m2
1(p2 · l1)2 + 16(p1 · l1)2(p2 · l1)2

)
+O(|~q|), (C.17)
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which after tensorial reduction leads to

M◦1(σ, q2) = 64π2G2
Nm

2
1m

2
2(1 + 522σ2)

15

∫
dDl1

(2π)D
1

l21(l1 + q)2 . (C.18)

This starts contributing from the first quantum correction

M◦(0)
1 (σ, q2) = 4i(4πe−γE )εG2

Nm
2
1m

2
2(1 + 522σ2)

15ε|q|2ε . (C.19)

The one-loop amplitude in (C.2), and reads including the first quantum correction

M1(σ, q2) = 1
|q|2ε

(
M(−2)

1 +M(−1)
1 +M(0)

1 +O(~)
)
, (C.20)

with

M(−2)
1 =M�(−2)

1 ,

M(−1)
1 =M�(−1)

1 +M.(−1)
1 +M/(−1)

1 ,

M(0)
1 =M�(0)

1 +M.(0)
1 +M/(0)

1 +M◦(0)
1 . (C.21)

D Master integrals

In this appendix we recall the expressions for the master integrals computed in [32].
With the following definition for the master integral

In1,n2,n3,n4,n5,n6,n7 ≡
∫
dD−1l1d

D−1l2
(2π)2D−2

1
(k · l1)n1(k · l2)n2(l21)n3((uq+ l2)2)n4((l1−uq)2)n5

× 1
(l22)n6((l1 + l2)2−2(σ−1)k · l1k · l2)n7

, (D.1)

where we have defined k2 ≡ u2
q ≡ −1 and k · uq ≡ 0, we collect the results obtained

in section 5 of [32].

I1(σ) ≡ 2ε4I0,0,1,1,1,1,0 = ε4
Γ(1

2 + ε)2Γ(1
2 − ε)

4

2(4π)3−2εΓ(1− 2ε)2 , (D.2)

and

I2(σ) ≡ 2ε4
√
σ2 − 1I0,0,0,0,1,1,1

=
(
−

2εΓ(1
2 − ε)

3Γ(2ε)
(4π)D−1Γ(3

2 − 3ε)
(σ2 − 1)3ε

∫ σ

1

dt

(t2 − 1)
1
2 +3ε

+ 2b5(σ2 − 1)3ε
∫ σ

1

dt2

(t22 − 1)
1
2 +3ε

∫ t2

1

dt1

(t21 − 1)
1
2 +ε

)
ε3 +O(ε4), (D.3)

– 27 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
2

and

I3(σ) = 2ε3
√
σ2 − 1I0,0,0,0,1,1,2

= −b5ε

(σ2 − 1)ε −
(
−4 b5

(σ2 − 1)ε
∫ σ

1

dt2

(t22 − 1)
1
2−ε

∫ t2

1

dt1

(t21 − 1)
1
2 +ε

+
4εΓ(1

2 − ε)
3Γ(2ε)

(4π)D−1Γ(3
2 − 3ε)

1
(σ2 − 1)ε

∫ σ

1

dt

(t2 − 1)
1
2−ε

)
ε3 +O(ε4), (D.4)

and

I4(σ) ≡ 4ε2(σ2 − 1)I−1,−1,0,0,1,1,3 + ε2(1 + 2ε)σI0,0,0,0,1,1,2

=
(
−

2εΓ(1
2 − ε)

3Γ(2ε)
(4π)D−1Γ(3

2 − 3ε)
+ 2b5

∫ σ

1

dt

(t2 − 1)
1
2 +ε

)
ε2 +O(ε4), (D.5)

and

I5(σ) ≡ 2ε2(4ε− 1)(2ε− 1)√
σ2 − 1

I0,0,0,1,0,1,1

= − iε(4π)2ε

32π2(σ2 − 1)ε
(−1)εΓ(1− 2ε)2Γ(1 + 2ε)2Γ(1− ε)

Γ(1− 4ε)Γ(1 + ε) , (D.6)

with (−1)ε = eiπε = 1 + iπε+O(ε2), and

I6(σ)≡ 2ε4
√
σ2−1I0,0,1,1,1,1,1 (D.7)

= (4πe−γE )2εε3

8π3 arcsinh
(√

σ−1
2

)(
π+2i

( −1
4(σ2−1)

)ε
arcsinh

(√
σ−1

2

))
+O(ε4),

and

I7(σ) ≡ 8ε4(σ2 − 1)I−1,−1,1,1,1,1,1 + 4ε4σI0,0,1,1,1,1,0,

= 0 +O(ε3), (D.8)

and

I8(σ) ≡ −ε3I0,1,0,0,1,1,2 = ±
i
√
πε3Γ(−ε)Γ(−1

2 − 2ε)Γ(3
2 + 2ε)Γ(1

2 − ε)Γ(−1
2 − ε)

(4π)3−2εΓ(−2ε)Γ(−1
2 − 3ε)

, (D.9)

with the + sign for the +iε prescription and − for the +iε of the linear denominator. We
refer to section 5.5.4 of [32] for details. And, finally,

I9(σ) ≡ ε4I1,1,0,0,1,1,1, (D.10)

= b9ε
2 − b5ε

2

(σ2 − 1)ε

(
arccosh(σ)− ε

(
arccosh(σ)2

+ Li2
(
2− 2σ(σ +

√
σ2 − 1)

) )
+O(ε)

)
,

– 28 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
2

with

b5 = − i(4π)2ε

32π2
(−1)εΓ(1− 2ε)2Γ(1 + 2ε)2Γ(1− ε)

Γ(1− 4ε)Γ(1 + ε) , (D.11)

and b9 depends on the iε prescription of the linear denominators, with the result (we refer
to section 5.5.5 of [32] for details)

b++
9 = b−−9 = −2b+−

9 , (D.12)

with

b+−
9 = b−+

9 = −ε
2

6
Γ(−ε)3Γ(1 + 2ε)
(4π)2−2εΓ(−3ε) = −(4πe−γE )2ε

32π2 +O(ε2). (D.13)

Open Access. This article is distributed under the terms of the Creative Commons
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