
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 6, JUNE 1997 347

The Amulet Environment: New Models for
Effective User Interface Software Development

Brad A. Myers, Member, IEEE, Richard G. McDaniel, Robert C. Miller,

Alan S. Ferrency, Member, IEEE Computer Society, Andrew Faulring,

Bruce D. Kyle, Member, IEEE Computer Society, Andrew Mickish,

Alex Klimovitski, and Patrick Doane

Abstract—The Amulet user interface development environment makes it easier for programmers to create highly-interactive,

graphical user interface software for Unix, Windows and the Macintosh. Amulet uses new models for objects, constraints, animation,

input, output, commands, and undo. The object system is a prototype-instance model in which there is no distinction between

classes and instances or between methods and data. The constraint system allows any value of any object to be computed by

arbitrary code and supports multiple constraint solvers. Animations can be attached to existing objects with a single line of code.

Input from the user is handled by “interactor” objects which support reuse of behavior objects. The output model provides a

declarative definition of the graphics and supports automatic refresh. Command objects encapsulate all of the information needed

about operations, including support for various ways to undo them. A key feature of the Amulet design is that all graphical objects

and behaviors of those objects are explicitly represented at run-time, so the system can provide a number of high-level built-in

functions, including automatic display and editing of objects, and external analysis and control of interfaces. Amulet integrates these

capabilities in a flexible and effective manner.

Index Terms—Toolkits, user interface tools, user interface development environments, user interface management systems (UIMSs).

—————————— ✦ ——————————

1 INTRODUCTION

REATING user interface software has proven to be very
difficult and expensive because it is often large, com-

plex, and challenging to implement, debug, and modify.
One study found that an average of 48 percent of the appli-
cations’ code is devoted to the user interface, and that about
50 percent of the implementation time is devoted to the
user interface portion [24]. Most of today’s toolkits and in-
teractive tools are still quite hard to use and lack flexibility.
For example, to create new kinds of “widgets” (sometimes
called “controls”) such as a scroll-bar with two handles, or
to add support for gesture recognition, is quite difficult
with today’s tools.

Amulet, a new user interface development environment
for C++ that runs on X/11, Windows 95, Windows NT, and
the Macintosh, facilitates user interface research and devel-
opment. Amulet aims to make the design, prototyping, im-
plementation and evaluation of user interfaces significantly

easier, while supporting flexible experimentation with new
styles. Amulet includes many design and implementation
innovations including new models for objects, constraints,
animation, input, output, commands, and undo.

In addition to incorporating innovations into its own de-
sign, Amulet has an open architecture to enable user interface
researchers and developers to easily investigate their own
innovations. For example, Amulet is the first system that
supports multiple constraint solvers operating at the same
time so that researchers might be able to easily investigate
new kinds of constraint solvers. The undo model also sup-
ports new designs. The widgets are implemented in an open
fashion using the Amulet intrinsics so that researchers can
replace or modify the widgets. The goal is that researchers
will only have to implement the parts that they are interested
in, relying on the Amulet library for everything else. In addi-
tion, we aim for Amulet to be useful for students and general
developers. Therefore, we have tried to make Amulet easy to
learn and to have sufficient robustness, performance and
documentation to attract a wide audience.

Amulet, which stands for Automatic Manufacture of Us-
able and Learnable Editors and Toolkits, is implemented in
C++. Amulet is based on our group’s substantial experience
from creating the Garnet user interface development envi-
ronment [21], which was implemented in Common Lisp.
Amulet brings to C++ the dynamic and rapid user interface
design and implementation capabilities that Garnet pro-
vided in Lisp, while adding many new capabilities.

Since Amulet provides a structure for implementing the
application-specific parts of a user interface, it can properly
be called an application framework [18]. It is clearly much more

0098-5589/97/$10.00 © 1997 IEEE

————————————————

• B.A. Myers is with the Human Computer Interaction Institute, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.

 E-mail: bam@cs.cmu.edu.
• R.G. McDaniel, R.C. Miller, A. Faulring, B.D. Kyle, and P. Doane are

with the Computer Science Department, Carnegie Mellon University, 5000
Forbes Ave., Pittsburgh, PA 15213.

• A.S. Ferrency is with Luce McQuillin Corp., 5001 Baum Blvd., Pitts-
burgh, PA 95217.

• A. Mickish is with Vanderbilt University, Eskind Biomedical Library,
Nashville, TN 37232.

• A. Klimovitski is at Dornacher Strasse 1, D-85622 Feldkirchen-Munich,
Germany.

Manuscript received Nov. 12, 1996; revised May 14, 1997.
Recommended for acceptance by J.D. Dannon.
For information on obtaining reprints of this article, please send e-mail to:
transse@computer.org, and reference IEEECS Log Number 101264.0.

C

348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 6, JUNE 1997

than a “toolkit,” which generally refers to a collection of wid-
gets such as scroll-bars and buttons. A key reason that Amu-
let provides a higher level of support than other systems is
that all of the user interface objects are available at run-time
for inspection and manipulation through a standard proto-
col. This allows high-level, built-in utilities to be provided
which, in other toolkits, must be reimplemented for each ap-
plication. For example, the graphical selection-handles widget
can get the list of graphical object, and move and resize the
selected object, using a standard protocol, even if the objects
are custom-created and application-specific. Other facilities
provided by Amulet include undo and operations like cut,
copy, paste, save and load. This paper provides an overview
of all the parts of the Amulet system.

2 GOALS

An important research objective of the Amulet project is to
provide high-level support for the insides of application
programs. Conventional toolkits like the Macintosh Tool-
box and Motif provide a collection of widgets like menus,
scroll-bars, buttons and text input fields. However, for
graphical applications like drawing editors, CAD pro-
grams, visual language editors, visualizations, and charting
programs, most of the programming for the user interface
deals with the contents of the graphic windows, which do
not contain any widgets. Consider the user interface shown
in Fig. 1. Other toolkits will provide the menu-bar at the
top, and possibly the palette on the left, but they provide no
help with the main area where the circuits are drawn. In-
stead, programmers must code directly at the window
manager level without much support. In contrast, Amulet
provides high-level support for these kinds of graphical
applications, including:

• Automatically redrawing the graphics,
• Constraints that automatically keep the wires at-

tached to the circuit elements,
• Widgets such as selection handles which make inter-

active behaviors easy to implement, and,
• Built-in editing commands, such as cut, copy, paste, to-

top, to-bottom, save, load and undo, that can often be
used directly from the library without modification.

These facilities are made possible because Amulet’s novel
models make the components and structure of the user in-
terface and application visible and manipulatable by stan-
dard utilities.

We distribute Amulet for use by others because we feel
this will help to demonstrate that the innovations in Amulet
are sound and effective, and will hopefully facilitate tech-
nology transfer. Amulet is in the public domain and can be
used for free. Version 1 of Amulet was released in July 1995,
Version 2 was released in May 1996, and Version 3 was re-
leased in March, 1997. To get Amulet, including the complete
source code, visit http://www.cs.cmu.edu/~amulet or
send mail to amulet@cs.cmu.edu.

We want to make Amulet useful for:

• Researchers. Over 30 research projects all over the
world are already using Amulet, including a number
of thesis projects at all levels.

• Students. By aiming for Amulet to be useful to stu-
dents, we are continually striving to make Amulet
easier to learn. The success of SUIT [26] and Micro-
soft’s Visual Basic show that it is possible to provide
useful functionality in a way that is easy to learn, but
unlike those other systems, Amulet provides a natural
growth path to the complete fully-functional system.
Amulet has been used in at least ten courses at seven
universities, which have provided feedback used in
refining the interface.

• General Developers. We also want Amulet to be use-
ful for general user interface software construction.
For this reason, Amulet runs on X/11, Windows 95,
Windows NT, and the Macintosh. We also provide a
high level of robustness, documentation and per-
formance. A complete reference manual including a
tutorial is available [19]. A few commercial products
are even being built with Amulet.

Fig. 1. A simple circuit design program created with Amulet.

3 EXAMPLE: A CIRCUIT DESIGNER

Suppose you wanted to build an application like the circuit
design program of Fig. 1. This program should work in the
standard way:

• Clicking on the palette on a circuit element and then
in the work window should create an object of that
type. Gridding should be used to help lay out the ob-
jects neatly.

• The wires should be dragged from the source gate to
the destination gate with the usual “rubber band”
feedback.

• Selection handles should appear on objects when they
are selected, and objects can be dragged (moved) in the
standard way. Multiple objects should be selected in
the standard way, either by holding down the SHIFT

MYERS ET AL.: THE AMULET ENVIRONMENT: NEW MODELS FOR EFFECTIVE USER INTERFACE SOFTWARE DEVELOPMENT 349

key while clicking on objects or dragging out a region.
The wires must stay attached when elements are
dragged. Resizing the gates should not be allowed.

• All the standard editing operations should be sup-
ported, such as cut, copy, paste, clear, clear-all, select-
all, to-top, and to-bottom. When a gate is deleted, any
attached wires must be removed.

• All operations must be undoable.
• Circuit diagrams can be saved to a file and loaded

back in.

In addition, this program should provide some advanced
features:

• The program should simulate the operation of the cir-
cuit by showing the values calculated by the gates.
The input nodes can be toggled and the outputs
should display the correct values. Animations should
be used to make the execution more understandable.

• Instead of repeatedly going back to the palette, the
user should instead be able to use gestures to create all
the kinds of objects using the right mouse button (on
the Macintosh, using the Option keyboard key while
pressing on the one mouse button). For a gesture, the
path of the mouse is important, not just its start and
end position. For example, the user can draw an “o”
to make an OR gate, an “A” to make an AND gate, a
“>“ to make a NOT gate, a line to make wires, etc.
The dot gesture should perform undo, to make it easy
to correct errors.

• The application should run on Unix, Windows NT,
Windows 95, and the Macintosh and use widgets
with an appropriate look-and-feel on each platform.

With most toolkits, such as Motif, Microsoft Foundation
Classes, MetroWerks PowerPlant, Visual Basic, Borland’s
Delphi, Java AWT, etc., the code for this application would
be tens of thousands of lines of code. However, using
Amulet, this entire application requires about 850 lines of
C++ code, due to Amulet’s high-level features such as:

• Graphical objects with automatic refresh.
• Interactors that handle standard behaviors.
• Command Objects that handle editing operations.
• Constraints that maintain relationships among objects.
• Gesture Recognition as a built-in kind of interactor.
• Animations, as a special form of constraint.

The rest of this paper will describe these and other fea-
tures of Amulet that make creating interactive applications
easier.

3.1 Graphical Objects

An important goal is to make Amulet easy to learn and use
for developers, even though it has a large number of features.
Therefore, we have concentrated on giving Amulet a uniform
structure based on a few simple concepts. The main concept
is that everything in Amulet is represented as an object which
has a set of slots. The objects use a prototype-instance object
system implemented on top of C++. In a prototype-instance
object system, there is no distinction between classes and
instances: any object can be used as a prototype for other
objects. A slot has a name and can hold a value of any type,

for example the slot named Am_LEFT1 might hold the value
10. Slots are similar to member variables or instance variables
in other object systems but with some important differences:
they can be dynamically created at run time, they are dy-
namically typed (so the same slot can hold an integer at one
time and a string later), they can hold methods or data, and
inheritance is dynamically determined by whether an in-
stance has a local value for the slot.

A new object is created by making an instance of another
object, which is called the prototype. An instance starts off
inheriting all of its slot values from the prototype, and the
slots can then be set with new values. Alternatively, an object
can be copied, in which case it immediately gets a copy of all
values in the original. For example, the following creates an
And_Gate as an instance of the built-in Am_Bitmap object,
and then sets the Am_IMAGE slot to the appropriate picture.

Am_Object And_Gate = Am_Bitmap.Create()

 .Set(Am_IMAGE, and_bitmap_image);

Any object can serve as a prototype to create other objects.
There is nothing special about the objects in the Amulet li-
brary. For example, the following creates an instance of the
And_Gate and then puts it in a particular place:

Am_Object new_gate = And_Gate.Create()

 .Set(Am_LEFT, 10)

 .Set(Am_TOP, 43);

We allow the Set operations to be chained together, but
the previous code could instead be written:

Am_Object new_gate = And_Gate.Create();

new_gate.Set(Am_LEFT, 10);

new_gate.Set(Am_TOP, 43);

To make objects appear on the screen, they are simply
added as a part to a window which is added to the screen.
Because all the graphics on the screen are represented by
objects in memory, changes to the screen are accomplished
simply by setting the slots of objects with new values. For
example, the new_gate could be made red by executing the
statement:

new_gate.Set(Am_LINE_STYLE, Am_RED);

When slots are set, Amulet automatically redraws the
object, as well as any other objects that overlap it, so the
screen is appropriately updated.

The following is the complete “hello world” program in
Amulet that displays a string, and redraws the string if the
window becomes covered and then uncovered. This pro-
gram would be about two pages long in Motif.

#include <amulet.h>

void main (void) {

 Am_Initialize (); //initialize Amulet

 Am_Screen

 //add a window to the screen using all of the default values

 .Add_Part (Am_Window.Create ()

 .Add_Part (Am_Text.Create () //create a text object and

 add it to the window

 .Set (Am_TEXT, “Hello World!”))); //set the string

 Am_Main_Event_Loop (); //display the window and then handle

 all input events

 Am_Cleanup (); //clean up Amulet

}

1. All exported names in Amulet start with “Am_”.

350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 6, JUNE 1997

3.2 Interactors

To make objects respond to input, an instance of an interac-
tor object is attached to the graphics. Different types of in-
teractors handle different types of behaviors. For example,
to make the new_gate object be movable, a move-grow
interactor can be attached to it:

new_gate.Add_Part(Am_Move_Grow_Interactor.Create());

By default, the interactor starts when the left mouse button
is hit over the object, but this is easily changed by setting a
slot of the interactor. The following will allow newgate to
be selected with the right mouse button:

new_gate.Add_Part(Am_Choice_Interactor.Create()

 .Set(Am_START_WHEN, “right_down”));

When an instance is made of an object that has parts,
then Amulet makes instances of all the parts as well. Wid-
gets, like buttons and scroll-bars, contain graphical and
interactor objects as parts, but the designer can make an
instance of the widget in the same way as instances of
primitive objects are created:
Am_Object my_button = Am_Button.Create ()

 .Add_Part(Am_COMMAND, Am_Quit_Command.Create()

 .Set (Am_LABEL, “Goodbye, world!”))));

All of the widgets in the Amulet library are defined with
multiple look and feels, so a program can be written using
Amulet, and it can then be compiled on Unix, Microsoft
Windows or the Macintosh without editing the source code,
and it will have the correct look and feel for the target plat-
form.

3.3 Command Objects

When interactors or widgets are operated by the user, in-
stead of calling “call-back procedures” as in other toolkits,
they allocate an instance of a Command object, and execute
the method in its Am_DO_METHOD slot. The method can be
any C++ code, which so far is pretty much like using a call-
back. However, command objects also have slots to support
Undoing, Redoing and Repeating, as well as enabling and
disabling (greying out), and providing help. Many com-
mand objects are available in the Amulet library and can
often be used without change. The Goodbye-World code
above uses the built-in Quit command, so my_button can
be added to a window to form the complete “goodbye
world” program, which exits when the button is pressed.

3.4 Constraints

Another important feature of Amulet is the support for con-
straints, which are relationships that are declared once and
then maintained by the system. Amulet supports multiple
kinds of constraints, but the main kind is formula constraints,
which act like spreadsheet formulas. When put into a slot of
an object, formulas compute the value of the slot based on
slots of the same object or other objects. Formula constraints
can contain arbitrary C++ code. This works because the

standard Get method that accesses values of slots can tell
whether it is being invoked from inside of a formula, and if
so, in addition to returning the value, it also sets up a de-
pendency. Then, whenever a slot’s value changes, Amulet
knows which constraints depend on that value, and can
cause the constraints to recalculate. For example, the left of
the scrolling region in Fig. 1 stays to the right of the tool
palette, even if the size of the tool palette changes, by using
the following formula in its Am_LEFT slot.

// define a formula called right_of_tool_panel_formula which returns an int

Am_Define_Formula(int, right_of_tool_panel_formula) {
 // 5 pixels away from the right of the tool_panel

 return (int)tool_panel.Get(Am_LEFT) +

 (int)tool_panel.Get(Am_WIDTH) + 5;

}

...

scrolling_window.Set(Am_LEFT, right_of_tool_panel_formula);

Am_Define_Formula is a macro which defines a for-
mula object which returns the type of its first argument
(here int) where the object is named with the second ar-
gument (here right_of_tool_panel_formula). The
macro then defines a procedure to be executed by the for-
mula, and the code following the macro is used as the pro-
cedure’s body.

3.5 Gesture Recognition

One of the built-in types of interactor objects supports ges-
ture recognition. Using an interactive tool called Agate, the
designer gives about 10 examples of each gesture desired in
the interface and associates a string name with each ges-
ture. Then, in the program, the designer can associate each
name with an operation. Built-in commands provide a
standard interface between the “normal” direct manipula-
tion commands, for example to create and delete objects,
and the gestures. For example, part of the code to handle
gestures in the circuit program is:

Am_Object gesture_reader =

 Am_Gesture_Interactor.Create(“gesture_reader”)

 //gestures work when you hold down the right mouse button

 .Set (Am_START_WHEN, “any_right_down”)

 //an object to show the gesture while in progress (interim feedback)

 .Set (Am_FEEDBACK_OBJECT, gesture_feedback)

 //the gesture classifier read from a file that was created using the Agate tool

 .Set (Am_CLASSIFIER, gc)

 //first, a command to handle gestures that are not recognized

 .Add_Part(Am_COMMAND,

 Am_Gesture_Unrecognized_Command.Create())

 //now, a list of commands, one for each of the gestures defined

 by example

 .Set (Am_ITEMS, Am_Value_List ()

 //first, the gesture for the “And” gate

 .Add (Am_Gesture_Create_Command.Create()

 .Set (Am_LABEL, “and”)

 //string defined in Agate for this gesture

 .Set (NEW_OBJECT_PROTO, and_proto)

 //object to create

 .Set (Am_CREATE_NEW_OBJECT_METHOD,

 gesture_creator))

 //next, the gesture for the “OR” gate

 .Add (Am_Gesture_Create_Command.Create()

 .Set (Am_LABEL, “or”)

 .Set (NEW_OBJECT_PROTO, or_proto)

 .Set (Am_CREATE_NEW_OBJECT_METHOD,

 gesture_creator));

MYERS ET AL.: THE AMULET ENVIRONMENT: NEW MODELS FOR EFFECTIVE USER INTERFACE SOFTWARE DEVELOPMENT 351

3.6 Animations

Amulet has a flexible constraint system, which allows new
kinds of constraint solvers to be created. We used this facility
to create an animation constraint solver. When an animation
constraint is attached to a slot and the slot changes value, the
animation constraint removes the new value, resets the slot
with the old value, and smoothly sets the slot with values
interpolated from the old value to the new value. For exam-
ple, to move the little red numbers along with wires in the
circuit program, the following code is used:

//first create the animator object

Am_Object number_animator = Am_Interpolator.Create ();

//now create the prototype number to be moved

Am_Object animation_proto =
 Am_Text.Create(“animation_proto”)

 .Set(Am_TEXT, “0”)

 .Set(Am_FONT, small_font)

 .Set(Am_LINE_STYLE, Am_Red)

 .Set(Am_LEFT, Am_Animate_With (number_animator))

 .Set(Am_TOP, Am_Animate_With (number_animator));

//when ready to start an animation, first create an instance of animation_proto,

//and set the position to one end of the wire with no animations

 Am_Object anim = animation_proto.Create();

 anim.Set(Am_LEFT, (int)line.Get(Am_X1),
 Am_NO_ANIMATION);

 anim.Set(Am_TOP, (int)line.Get(Am_Y1)-10,
 Am_NO_ANIMATION);

//then set the left and top again, to the other end of the wire, but this time letting

//the animations make the object move smoothly

 anim.Set(Am_LEFT, (int)line.Get(Am_X2));

 anim.Set(Am_TOP, (int)line.Get(Am_Y2)-10);

4 DETAILS OF THE DESIGN

The Amulet toolkit is divided into a number of layers (see
Fig. 2). These layers include an abstract interface to the
window managers, novel models for objects, constraints,
input, output, and commands, a set of widgets, and an in-
teractive layout tool. The following sections describe the
overall design of each of these.

4.1 Gem: Abstract Interface to the Window Managers

Amulet provides a portable interface to various window
managers called Gem, which stands for the Graphics and
Events Manager. Gem uses ordinary C++ objects and
mechanisms to provide a simple graphics and input inter-
face used by the rest of Amulet. Any code written using
Gem will port to different windowing systems (Windows
95 or NT, Macintosh, or X/11) without change. Most other
toolkits and frameworks only provide an interface at the
Gem level, or require that all graphics use the underlying
low-level window manager drawing interface. However,
typical Amulet users never see the Gem interface, since the
higher-level parts of the Amulet framework provide access
to the same capabilities in an easier to use way. The circuit
program of Fig. 1 did not require any programming at the
Gem layer. We export the Gem interface for advanced
Amulet users. If the programmer wants to make something
very efficient, calling Gem directly may be appropriate. For
example, although widgets such as buttons and scroll-bars
can be implemented using the high-level Opal output

model, as was done in Garnet [21], Amulet’s widgets are
implemented more efficiently using Gem-level drawing
routines.

4.2 Object System

The Ore (Object Registering and Encoding) layer of Amulet
implements a prototype-instance object system on top of
C++. In a prototype-instance object system, there is no dis-
tinction between classes and instances: every object can be
used as a prototype for other objects. Slots of the prototype
can be inherited by instances, so that changes to the proto-
type’s slot will be seen by any instances which do not over-
ride it. We felt that we needed to create a new object system
due to a number of deficiencies we found with C++:

• Primarily, we needed a system that was more dy-
namic. For the rapid prototyping required for user in-
terface work, being able to dynamically change the
slots of objects, and the types of the contents of the
slots is important.

• We needed to be able to determine the complete in-
formation about an object at run time. This has par-
tially been addressed by the new Run-Time-Type-
Information (RTTI) interface for C++, but this was not
available when we started, and still is not universally
supported.

• The ability to override a method in an instance, in-
stead of requiring a new sub-class as in C++, makes
the interface to Amulet more uniform.

All of these features are elaborated in the following
sections.

4.2.1 Slots

Programming with a prototype-instance object system is a
quite different style than conventional object-oriented lan-
guages. Much of the code is devoted to defining the slots and
default values for prototype objects, and then creating in-
stances, possibly overriding some slots. For example, to cre-
ate an instance of the zero_one_proto object, which is the
prototype for the zero-one buttons, the program just does:
 Am_Object new_obj = zero_one_proto.Create ()

 .Set (Am_LEFT, new_obj_left)

 .Set (Am_TOP, new_obj_top);

Slots can be set with any type of value:

 “Gilt” Interface Builder

Widgets

Command Objects

“Interactors”
Input Handling

“Opal”
Output Handling

Constraint System

“ORE”
Object System

“Gem”
Graphics & Input Layer

Windows NT, Windows 95, X/11, or Macintosh

Fig. 2. The overall structure of the Amulet system.

352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 6, JUNE 1997

obj.Set(Am_LEFT, 40);

obj.Set(Am_TEXT, “Hello”);

obj.Set(OTHER_OBJ, and_gate1);

The object system is dynamic in that slots in objects can be
added and removed from objects at run time, and the types
in slots can also change. Amulet performs run-time type
checking if a type is declared for the slot.

To allow the same Set and Get to work for all types in
C++, we provide accessor and setting methods for the stan-
dard built-in types, void (untyped) pointers, Amulet ob-
jects, and a special class called a “Wrapper.” Any new C++
type that the programmer wants to store into objects and
have type-checked can use Wrappers. Amulet can also
handle memory management for Wrappers using reference
counting.

C++’s overloading and type-conversion capabilities
make the interface very convenient. For example, the
Am_Object class defines a number of Set routines:

Am_Object Set (Am_Slot_Key key, Am_Wrapper* value);

Am_Object Set (Am_Slot_Key key, void* value);

Am_Object Set (Am_Slot_Key key, int value);

Am_Object Set (Am_Slot_Key key, float value);

Am_Object Set (Am_Slot_Key key, char value);

Am_Object Set (Am_Slot_Key key, const char* value);

The compiler will choose the correct one based on which
type is actually used. Note that Set returns the original
object, allowing Sets to be cascaded, so the code above that
sets the slots of obj could instead be:

obj.Set(Am_LEFT, 40).Set(Am_TEXT, “Hello”)

 .Set(OTHER_OBJ, and_gate1);

C++ does not allow overloaded functions to be chosen
based on the return type, but we were able to get around
this by returning a special Am_Value type, which then has
type-conversion routines into the various primitive types.
This allows code like:

int i = circuit_object_proto.Get(Am_VALUE);

bool b = this_command.Get(Am_GROW_INACTIVE);

//the next statement will work no matter what type is in the slot

Am_Value v = tool_panel.Get(Am_IMPLEMENTATION_PARENT);

if (v.type == Am_BOOL) ...

In the last lines we use the special Am_Value type which
permits programmers to dynamically access and set the
type and value.

4.2.2 Slot Inheritance

When an instance of an object is created, the slots that are
not specified inherit their values from the prototype ob-
ject’s. If a slot of the prototype is changed, then the value
also changes in all of the instances that do not override that
property. For example, changing the Am_WIDGET_LOOK slot
in the zero_one_proto will change the look in all in-
stances, so it is easy to see what the circuit program will
look like when running on a Macintosh or Windows. How-
ever, changing the Am_LEFT slot of the zero_one_proto
will not affect new_obj since it has a local value for Am-
LEFT. If the programmer does not want this behavior, then
Amulet allows the inheritance of each slot to be specified as
copy or local. When an instance is made for a slot with copy
inheritance, the value is copied into a new slot created in

the instance, so later changes to the prototype do not affect
the instance. A slot can be declared local, so the slot does
not appear in the instance at all. This is useful for slots that
hold information that is particular to the object. In the defi-
nition of the circuit_object_proto, the slots that will
hold the connected input and output wires are declared to
be local so that when copies or instances are made of an
object, every instance of a circuit element will have unique
wires. Therefore, if the user duplicates a circuit element,
Amulet ensures that the copy will start off with its input
and output slots empty.

The inheritance mechanism is an important distinction
from other prototype-instance object systems, such as SELF
[4], in which all the slots are always copied into instances so
changes to prototypes never affect instances. Although
Amulet’s model requires slightly more overhead, we think it
is useful for prototyping to be able to change properties of
prototypes and see the effect on all instances immediately.

4.2.3 Methods

An important feature of Amulet’s object system is that there
is no distinction between methods and data: any instance can
override an inherited method as easily as inherited data. In
a conventional class-instance model such as SmallTalk or
C++, instances can have different data, but only subclasses
can have different methods. Thus, in cases where each in-
stance needs a unique method, conventional systems must
use a mechanism other than the regular method invocation,
or create a new subclass and a single instance of that sub-
class each time. For example, a button widget might use a
regular C++ method for drawing but would have to use a
different mechanism for the call-back procedure used when
the user clicks on the button, since each instance of the
button needs a different call-back. In Amulet, the draw
method and the callback use the same mechanism. In the
circuit code, we set a method into the tool panel so that
whenever the user changes modes, the selection will be
cleared. This method is coded as follows:

Am_Define_Method(Am_Object_Method, void,

 clear_selection,

 (Am_Object /*cmd*/)){

 my_selection.Set(Am_VALUE, NULL);

}

The method value can be put into a slot the same way as
data is set into slots:

tool_panel.Get_Part(Am_COMMAND)

 .Set(Am_DO_METHOD, clear_selection);

The Am_Define_Method macro works similarly to the
Am_Define_Formula macro. It creates a new method ob-
ject of the type of the first argument (here
Am_Object_Method). This method object invokes a func-
tion which returns the type of the second argument (here
void), which has the name of the third argument (here
clear_selection) and which takes as parameters the list
in the fourth argument (which must be specified in an extra
set of parentheses). The Am_Define_Method macro then
defines a function for the method to invoke, and the body
of the function follows the macro.

MYERS ET AL.: THE AMULET ENVIRONMENT: NEW MODELS FOR EFFECTIVE USER INTERFACE SOFTWARE DEVELOPMENT 353

4.2.4 Part-Owner Hierarchy

The object system also implements a part-owner hierarchy.
The owner is usually a “group” (aggregate) object or a
window, and the parts are either other groups or primitives
like rectangles, lines and text. However, we have found
many other uses for the part-owner hierarchy that are in-
dependent of graphical relationships. Supporting the part-
owner hierarchy in the object system allows Amulet to pro-
vide “structural inheritance,” which means that when an
instance is made of a group which contains parts, the new
instance will have instances of all the prototype’s parts, as
shown in Fig. 3. This can be distinguished from “normal”
slots, where just the value of the slot is copied, so if a nor-
mal slot contains a reference to an object obj1 which is not
a part, then the instance will contain another pointer to the
same obj1 object, rather than having a new object created as
an instance of obj1.

The result is that programmers can create instances of
any type of object without knowing whether it is a primi-
tive or a group, and the system will make sure that the in-
stance has the same structure as the prototype. Changing
the xor_gate from a simple bitmap to a group containing a
bitmap and three lines as input and output ports only re-
quired changing the prototype—none of the uses of the
prototype needed to change.

Some systems, such as FormsVBT [2] have hard-wired
some slots to inherit values from their prototypes and oth-
ers to inherit from their owners. Because the constraint
mechanism is so easy to use and flexible in Amulet, it is
sufficient to use constraints whenever slots should get their
values from their owners rather than from their prototypes.

Amulet also provides a special form of group called an
Am_Map that computes its parts dynamically. The Am_Map
object uses a constraint to build a list of parts, usually based
on a single prototype object, called the “item prototype.”
Typically, a list of strings, objects, commands, or something
else is provided, and the Am_Map creates an instance of the
item prototype for each value in the list, setting a particular
slot of the instance with the corresponding value from the
list. The programmer will define a constraint somewhere in
the item prototype that depends on the particular value
copied from the list. Note that due to the flexibility of

Amulet’s constraint system (discussed below), any slot of
the item can depend on the list of values supplied. For ex-
ample, a list of strings might be supplied for a menu, a list
of objects for a palette, or a list of locations for a scatter plot.

4.2.5 Other Features

Amulet’s object system also contains many other features
that may be useful for programmers. Automatic memory
management using a reference counting scheme is used for
objects and “wrappers” (used to “wrap” C++ types so they
can be put into Amulet objects with full type-checking). A
flexible “demon” mechanism allows procedures to be at-
tached to objects or slots for invocation when the slots
change. This mechanism enables Amulet to redraw objects
when their graphical properties change. Programmers can
also create their own demons. Type checking of slots is
supported by Amulet, so that programmers can declare that
a slot can only hold a specific kind of value. A complete set
of querying functions allows objects’ properties to be ex-
amined at run-time. These are used by the debugging fa-
cilities described below, and they can also be useful for ap-
plication programs.

4.2.6 Performance

The main disadvantage of the prototype-instance model
over the conventional class-instance model has been per-
formance. When slots are accessed, the system must per-
form a search through the object to see if the slot is there,
and if not, it must search the prototypes up to the root. The
same search is needed for both method and data slots. Dy-
namic type checking also adds some overhead. The forward
and backward pointers and space for the types add space
overhead. The SELF prototype-instance system [4] uses
extensive compiler techniques to try to remove some of this
search, but we have not found this necessary, and the per-
formance of the Amulet system is quite good. There are no
noticeable delays for normal size programs on a variety of
modern hardware platforms. For example, the circuit pro-
gram performs well on Unix, Macintosh and PC platforms.

We optimized our previous Garnet prototype-instance
object system for speed by copying all values to all in-
stances, even if they were the same as the prototype’s.
However, this had a significant space penalty, so in Amulet

Prototype:

xor_proto

PICTURE

circuit_object_proto

Am_Graphical_Object

Is Instance Of

Key:

Is Part Of

Scrolling_Group_72

Window_74

Am_Screen

Am_Group

OUTPUT_1_PORT

INPUT_1_PORT

xor_58

PICTURE_59

OUTPUT_1_PORT_60

INPUT_1_PORT_61

INPUT_2_PORT INPUT_2_PORT_62

Fig. 3. The xor_proto object contains four parts: a bitmap called PICTURE, and output and input ports which are instances of lines. The xor-
proto object is an instance of the circuit_object_proto object, which in turn is an instance of an Am_Group, which is an
Am_Graphical_Object. When an instance is made of the xor_proto, Amulet automatically creates instances of each of the parts. If instances
are not named, then Amulet makes up a name by appending a number. The instance, called xor_58, has been made a part of a scrolling group,
which is part of a window, which is part of the screen, so it will be visible.

354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 6, JUNE 1997

we only store the local slots, which in practice is only about
half of the slots.

4.2.7 Discussion

There are many advantages of the prototype-instance model.
Having no distinction between classes and instances, or be-
tween methods and data, means that there are fewer con-
cepts for the programmer to learn and a consistent mecha-
nism can be used everywhere. Another advantage of the
prototype-instance object system is that it is very dynamic
and flexible. All of the properties of objects can be set and
queried at run time, and interactive tools can easily read and
set these properties. In fact, most of today’s toolkits imple-
ment some form of “attribute-value pairs” to hold the prop-
erties of the widgets, but Amulet’s object system provides
significantly more flexibility and capabilities.

Amulet’s predecessor, Garnet, also used a prototype-
instance object system [20], as have a few other systems
such as SELF [4], Apple’s NewtonScript and General
Magic’s MagicCap. Amulet’s design is more complete and
flexible, and we fixed a number of problems we experi-
enced with Garnet, including adding control over the in-
heritance of slots, automatic management of a part-owner
hierarchy along with the prototype instance hierarchy,
support for multiple constraint solvers, and a flexible de-
mon mechanism. Finally, it is worth pointing out that we
are able to provide dynamic slot typing, a dynamic proto-
type-instance system, and constraints in C++ without using
a preprocessor or a scripting language.

Garnet supported multiple inheritance, but we found it was
not useful or necessary. In Amulet, we instead use the con-
straint mechanism to copy values among objects, which pro-
vides complete flexibility and control. Omitting multiple-
inheritance has simplified much of Amulet’s implementation
leading to an easier to understand object creation procedure
and better efficiency when searching for slots. It also elimi-
nates the ambiguity and complexity for the programmer of
resolving collisions of slot names from multiple prototypes.

Although designed to support the creation of graphical
objects, many Amulet users have discovered that the proto-
type-instance object system is useful for representing their
internal application data. The flexibility and dynamic nature
of the objects make them ideal when varied and changing
data types are necessary. Amulet objects are somewhat like
“frames” used by artificial intelligence systems so AI appli-
cations may find the model useful. The constraint system is
also useful for maintaining data dependencies and consis-
tency in application-specific data structures.

4.3 Constraints

Amulet integrates constraint solving with the object system.
This means that instead of containing a constant value like a
number or a string, any slot of any object can contain an ex-
pression which computes the value. If the expression refer-
ences slots of other objects, then when those objects are
changed, the expression is automatically re-evaluated. Thus,
the constraints are primarily “one-way,” like those of Artkit
[9] and Rendezvous [7]. This kind of constraint resembles a
spreadsheet formula, so it is called a “formula constraint” in

Amulet. Constraint expressions can contain arbitrary C++
code, and the Get call checks to see whether it is inside a
formula invocation or not. If so, in addition to returning the
value of the slot, it also sets up a dependency link so that the
constraint will be re-evaluated when the other slot’s value
changes.

Currently, Amulet does not use a preprocessor, so the
syntax for specifying constraints is a little verbose. The macro
Am_Define_Formula creates a constraint object of the speci-
fied name using the code that follows. The constraint object
stores a pointer to the procedure to execute, the name of the
constraint for debugging and tracing, and the list of slots
used by and using this constraint. As an example, the fol-
lowing constraint from the circuit program determines the
picture used for the zero-one buttons based on the value.
Note that constraints can return any type. Here, the con-
straint is returning an image, which is Amulet’s machine-
independent representation for a bitmap.

Am_Define_Image_Formula(zero_one_formula) {

 int value = self.Get(Am_VALUE);

 if (value ==1) return one_image;

 else if (value == 0) return zero_image;

 else return question_image;

}

...

 obj.Set(Am_IMAGE, zero_one_formula);

The circuit program uses 24 custom constraints not
counting all the constraints that are built into the objects
themselves (for example, the built-in Am_Text object has
constraints in its width and height slots that compute its
dimensions based on the current string and font). Formulas
are set into slots using the standard Set. In the future we
hope to add a preprocessor to support a conventional “dot”
notation for slot access (obj.slot) and to allow constraint
expressions to appear inside the Set instead of only as a
top-level procedure.

Slots are accessed the same way whether they contain
constraints or constant values, and the code containing the
Get normally does not know how the value was calculated.
For example, the button widget does not care that the im-
age was computed with a constraint. The object system is
tied into the graphics system using demons so that when-
ever the value of a slot changes, either because the pro-
grammer set it or due to constraints, the object will be re-
drawn automatically.

The Amulet constraint solver handles cycles in the con-
straints, so that a slot of object A can depend on a slot of
object B and vice versa. This is used in the circuit program
so that the zero-one buttons get their values from the input
wires if present, and if not present then the value comes
from the toggle button. This is implemented, as shown in
Fig. 4, by having a constraint from the zero_one_proto to
the button, and another constraint from the button to the
zero_one’s value. In evaluating circular constraints,
Amulet simply goes around the cycle once and uses the old
value of any constraint that is already being evaluated. If
the programmer uses constraints that are consistent, the
values will be correct and this can be an effective way to set
up mutual dependencies.

MYERS ET AL.: THE AMULET ENVIRONMENT: NEW MODELS FOR EFFECTIVE USER INTERFACE SOFTWARE DEVELOPMENT 355

4.3.1 Indirect Constraints

The Amulet constraint system supports dynamic computa-
tion of the objects to which a constraint refers, so a constraint
can not only compute the value to return, but also which ob-
jects and slots to reference. This allows such constraints as
“the width is the maximum of all the components” which
will be updated whenever components are added or re-
moved as well as when one of the components’ position
changes. An example from the circuit program is that the
value of a gate is computed by first accessing the input wire
objects from the INPUT slots of the gate, and then indirectly
accessing the value of the line objects. For example, the value
of the OR gate is calculated using the formula:

Am_Define_Formula(int, OR_value) {

 Am_Object in_line_1 = self.Get(INPUT_1);

 Am_Object in_line_2 = self.Get(INPUT_2);

 if (in_line_1.Valid()&& in_line_2.Valid()) {

 int v1 = in_line_1.Get(Am_VALUE);

 int v2 = in_line_2.Get(Am_VALUE);

 return v1 | v2;

 }

 else return -1; //return for when have an illegal value

}

Most other constraint systems cannot handle these kinds
of constraints. These “indirect constraints” [30] are also im-
portant for supporting object inheritance. When an instance
is created of an object, Amulet also creates instances of any
constraints in that object. These constraints refer to other
objects indirectly using the structure of the groups. For ex-
ample, in Fig. 3, the constraint for the top of the IN-
PUT_1_PORT is computed based on the center of the pic-
ture, which is its sibling in the part-owner hierarchy:

Am_Define_Formula(int, picture_center_y) {

 Am_Object picture = self.Get_Sibling(PICTURE);

 return (int)picture.Get(Am_TOP)
 +(int)picture.Get(Am_HEIGHT)/2;

}

Note that even though many input and output port objects
share this same constraint, they will each calculate different
values because the pictures will be at different places.

The indirect contraints are a form of “procedural ab-
straction” since the constraints can be thought of as rela-
tionships that can be reused in multiple places, with differ-
ent values for their parameters. In fact, there is a library of

predefined constraints, which can be used for many of the
basic relationships frequently found in user interfaces. It is
worth reiterating that unlike other systems such as
SubArctic [9] that only supply these predefined constraints,
Amulet allows any code in constraints.

4.3.2 Multiple Constraints

Amulet also allows slots to contain multiple constraints at
the same time. We find this very useful for situations where
an inherited formula is necessary for the correct operation
of an object, but the programmer wants an additional for-
mula so values can flow in multiple directions. For exam-
ple, we set a constraint into the Am_VALUE slot of the button
widgets used in the zero-one objects to display the value of
the input port, if any. Internally, however, the button wid-
get uses a constraint in the Am_VALUE slot to make the slot
change values when the user clicks on the widget. Both of
these constraints can coexist in the Amulet constraint sys-
tem. When there are multiple constraints in a slot, normally
only one will become invalid at a time, and so that one will
be the one that is requested to recalculate the slot’s value.
When multiple constraints become invalid at the same time,
Amulet evaluates the constraint that first becomes invalid.

4.3.3 Side Effects

Our experience with Garnet suggested that people wanted
to put side effects into constraint expressions and use them
like “demon procedures” or “active values.” Therefore,
Amulet’s constraints are eagerly evaluated and can contain
arbitrary side effects, even creating and destroying objects.
For example, a constraint is used in the Am_Map object to
create the instances of the item prototype based on the list
in the Am_ITEMS slot. This constraint creates objects which
themselves will contain constraints which need to be evalu-
ated. Another use is that even though formula constraints
must be put into a single slot, they can have the effect of
multiple outputs by simply setting the other slots as side
effects. For example, for efficiency, the constraint on the
first end point of the wires is put into the Am_X1 slot but
also sets the Am_Y1 slot:

Am_Define_Formula(int, line_x1y1) {

 Am_Object source_obj = self.Get(INPUT_1);

 int x1 = (int)source_obj.Get(Am_WIDTH)

 + (int)source_obj.Get(Am_LEFT);

 int y1 = (int)source_obj.Get(Am_HEIGHT)/2

Fig. 4. The VALUE slot of the zero_one objects have a constraint that depends on either the value of the input wire, if it exists, or else the value
of the button if there is no wire (if the INPUT1 slot is NULL). The button in the PICTURE slot has a constraint that depends on the value for the
zero_one object so it will have the right value when there is a wire. This creates a cycle of constraints.

356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 6, JUNE 1997

 + (int)source_obj.Get(Am_TOP);

 self.Set(Am_Y1, y1); //set Y1 by side effect for efficiency

 return x1;

}

Unlike previous systems such as Rendezvous [7], Amu-
let does not require the programmer to use a special
mechanism for side effects: the regular Set and Create
calls are used. This works because we store any new con-
straints that need to be evaluated in a queue. When a con-
straint evaluation creates new constraints that need to be
evaluated, they are simply added to the end of the queue.
Amulet continues to evaluate constraints on the queue until
the queue is empty, at which point Amulet redraws the
objects that have changed.

When using side effects in constraints, programmers
must be careful to avoid situations that will create an infi-
nite loop. Constraints without side effects will always be
evaluated exactly once each time the values change, since
Amulet orders the constraint evaluation and checks for cy-
cles of constraints, as discussed above. However, a pro-
grammer could set up a set of constraints that invalidated
each other through side effects. If the constraints are con-
sistent, so that slots are set to the same values no matter
which constraints are used, then the evaluation will termi-
nate even if the constraints contain cycles of dependencies
and side effects. However, if the constraints calculate and
set different values, an infinite loop can result.

4.3.4 Multiple Solvers

An important research area in user interface software is
creating new kinds of constraint solvers (e.g., [6], [9], [29]).
Therefore, Amulet contains an architecture that allows
multiple solvers to coexist. Currently, in addition to the one-
way solver described above, Amulet supports a multi-
output, multiway solver called a “web” and an animation
constraint solver.

The web constraint can have an arbitrary number of in-
put and output slots, and it can dynamically compute the
dependencies like formula constraints. Webs also keep
track of the order that dependencies change. We use this
solver to keep the various slots of lines and polygons con-
sistent. The line object has two sets of input slots. One set is
point based and has slots called X1, Y1, X2, and Y2. The
other set is rectangle-based and has slots called LEFT, TOP,
WIDTH, and HEIGHT which are set when the line is moved
without changing its orientation. However, if the slots X1,
TOP, and WIDTH were set, the normal one-way formula
mechanism would not necessarily evaluate the constraints
in the correct order, but the web maintains the original or-
der of slot changes, so the final result will be correct.

Animations. We have also created a novel animation con-
straint solver for animating objects [23]. Adding animation
to interfaces is a very difficult task with today’s toolkits,
even though there are many situations in which it would be
useful and effective. An animation constraint detects
changes to the value of the slot, immediately restores the
original value, and causes the slot to take on a series of val-
ues interpolated between the original and new values.

The advantage over previous approaches is that anima-
tion constraints provide significantly better modularity and

reuse. The programmer has independent control over the
graphics to be animated, the start and end values of the
animation, the path through value space, and the timing of
the animation. Animations can be attached to any object,
even existing widgets from the toolkit, and any type of
value can be animated: scalars, coordinates, fonts, colors,
line-widths, vertex lists (for polygons), Booleans (for visi-
bility), etc.

A number of built-in animation constraints are used for
special effects. For example, Fig. 5 shows the effects of differ-
ent constraints added to the Am_VISIBLE slot of a pop-up
menu. A library of useful animation constraints is provided
in the toolkit, including support for exaggerated, cartoon-
style effects such as slow-in-and-slow-out, anticipation, and
followthrough [5]. The programmer can also create custom
animation types, if the built-in ones are not sufficient.

(a)

(b)

Fig. 5. Animation constraints can be added to the Am_VISIBLE slot of
a pop-up menu to make it (a) fade in using halftoning; or (b) grow from
the top.

Often, animation constraints can be added to an existing
application with only a single extra line of code, which
makes it easy to explore many new uses for animations. For
example, undoing operations can animate the objects back
to their original appearance, which might make it easier for
users to see what has happened. The code to support the
animation of the small numbers travelling along the wires
in the circuit program is only about 30 lines. Of course,
animations can also be used to construct games (see Fig. 6)
and dynamic visualizations.

MYERS ET AL.: THE AMULET ENVIRONMENT: NEW MODELS FOR EFFECTIVE USER INTERFACE SOFTWARE DEVELOPMENT 357

Fig. 6. The ships, bullets, and bombs are controlled by simple anima-
tors. For example, the bullets can be sent to the top of the screen by
simply attaching an animation constraint to their AM_TOP slot and then
setting that slot to –10.

Design. We were able to add animation and web con-
straints to Amulet without modifying the object system
because there is a standard protocol that allows new solvers
to be added. Every slot can contain two lists of constraints:
the set of constraints that depend on the value of the slot,
and the set of constraints on which the slot depends. Vari-
ous messages to the slots themselves are available to the
constraints, including:

• Set (to change the value of the slot),
• Invalidate (to notify the slot that its current value is

not valid), and
• Get (to access the current value).

The messages that slots can send to constraints include:

• Change (for when the slot’s value changes),
• Invalidated, which notifies all the constraints on a

slot that some other constraint has caused this slot to
be invalid (this causes the invalidation to be propa-
gated), and

• Get, which requests the constraint to calculate a new
value for the slot.

The slot sends the Get message whenever the value of the
slot is requested, and the constraint is expected to generate
a response. A constraint always has the option of not re-
turning a value, in which case the slot sends the Get mes-
sage to a different constraint. If no constraints return a
value, then the slot will keep its original value and consider
itself valid. The main research questions in this scheme are:
in what order will constraints be sent the Get message, and
how can multiple solvers coordinate setting the same slot?
The policy implemented for Amulet is straightforward, and
just queries the constraints in the order they become inva-
lid. Since practical constraints used for graphics do not

usually compete, this policy has proven adequate. As we
develop more constraint solvers, we will continue to inves-
tigate this issue.

4.3.5 Performance

For formula constraints which are valid (which already
have the correct value), getting the value takes the same
time as a regular Get. When the formula is invalid, the pro-
cedure for the formula must be called and executed, and
the dependencies of the formula might need to be updated.
With typical formulas, we have found we can re-evaluate
about 50,000 constraints per second.

4.4 Opal Output Model

The graphical object layer of Amulet is called Opal, the Ob-
ject Programming Aggregate Layer. Opal hides the graph-
ics part of Gem and provides a convenient interface to the
programmer by using a retained object model, also called a
structured graphics model or a display list. The program-
mer creates instances of the built-in graphical object proto-
types, like rectangles, lines, text, circles, and polygons and
adds them to a group or window. Amulet then automati-
cally redraws the appropriate parts of the window if it be-
comes uncovered or if any properties of the objects change.
This frees the programmer from having to deal with re-
fresh. Objects can simply be created and deleted and their
properties can be set. Furthermore, Opal automatically
handles object creation and layout when the data can be
displayed as lists or tables.

Opal makes heavy use of the object and constraint mod-
els of Amulet. Of course, all graphical objects are Amulet
objects. The properties of objects that programmers do not
care about can simply be ignored because they will inherit
appropriate default values from prototypes. Adding parts
to graphical groups simply uses the Ore-level Add_Part
method. Due to structural inheritance, the programmer can
simply create instances or copies of groups in the same way
as primitive objects, and the object system will automati-
cally make instances or copies of the parts. Because of this
integration, simple programs are quite short.

The retained object model allows Amulet to provide many
facilities that must be programmed by each application in
other toolkits, including automatic refresh, as shown in Fig.
7. Amulet uses a relatively efficient algorithm that calculates
which objects will be affected when the object is erased and
redraws only the affected objects from back to front. Double
buffering is provided by Amulet to eliminate flicker.

4.5 Interactors

Programming interactive behaviors has always been the
hardest part of creating user interface software, especially
since most toolkits and window managers only provide a
stream of raw input events for each window which the
programmer must interpret and manage. Garnet intro-
duced the “interactor” model for handling input [17] which
we refined in Amulet. Each interactor object type imple-
ments a particular kind of interactive behavior, such as
moving an object with the mouse or selecting one of a set of
objects. To make a graphical object respond to input, the
programmer simply attaches an instance of the appropriate
type of interactor to the graphics. The graphical object itself
does not handle input events.

358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 6, JUNE 1997

Fig. 7. A collection of Opal objects. The color of the star can be
changed by simply setting its Am_FILL_STYLE slot, and Amulet will
redraw the star and the other objects that overlap it. The Amulet toolkit
includes selection handles shown around the rectangle which support
selecting, moving and growing one or more objects.

Internally, each interactor operates similarly. It waits for
a particular starting event over a particular object or over
any of a set of objects. For example, an interactor to move
the circuit elements of Fig. 1 would wait for a left mouse
button down over any of the circuit elements. When that
event is seen, the interactor starts running on the particular
object clicked on, processing certain events. The moving
interactor processes mouse move events, while looking for
a left button up event, or an abort event (usually Control-G,
Command-dot, or ESC). While the interactor is running, the
user is supplied feedback, either as a separate object (such
as a dotted rectangle following the mouse) or by having the
original object itself move. If the interactor is aborted be-
cause the user hits an appropriate key or because a pro-
gram calls the abort method, the original object is restored
to its original state, the feedback object is hidden, and the
interactor goes back to waiting for a start event. If the inter-
actor completes normally (because the mouse button was
released), then the feedback is hidden, the graphical object
is updated appropriately, and a “command object” is allo-
cated (see Section 4.7). Interactors are highly parameterized
so that the programmer can specify the start, end, and abort
events, the objects the interactor operates over and uses for
feedback, along with other aspects such as gridding and
how many objects can be selected.

The six types of interactors currently in Amulet are:

• Choice Interactor, which is used to choose one or more
objects from a set. The user can move the mouse among
the objects (getting interim feedback) until the correct
item is found, and then there will often be final feed-
back to show the final selection. The Choice interactor
can be used for selecting among a set of buttons or
menu items, and for choosing among the objects that
have been dynamically created in a graphics editor. Pa-
rameters to the Choice interactor include whether sin-
gle or multiple items can be selected.

• One Shot Interactor, which is used to cause some-
thing to happen immediately when an event occurs,
for example when a mouse button is pressed over an
object or when a particular keyboard key is hit.

• Move-Grow Interactor, which is used to have a
graphical object move or change size with the mouse.
It can be used for dragging the indicator of a scroll-

bar widget or for moving and growing objects in a
graphics editor. Parameters support gridding and
minimum sizes.

• New Points Interactor, which is used to enter new
points, such as when creating new objects. For exam-
ple, you might use this to allow the user to drag out a
rubber-band rectangle for defining where a new object
should go. Parameters include how many points are
needed for the object, gridding, and minimum sizes.

• Text Edit Interactor, which supports editing the text
string of a text object. Parameters include a flexible
key translation table so that the programmer can eas-
ily modify and add editing functions. The built-in
functions support the standard text editing behaviors.

• Gesture Interactor, which supports free-hand gestures,
such as drawing an “X” over an object to delete it or
encircling the set of objects to be selected. Gestures can
be defined by example using the “Agate” gesture
trainer (see Fig. 8), and can be easily added to conven-
tional direct manipulation interfaces without writing
much additional code. For example, adding gestures to
the circuit program took about 50 lines of code, most of
it to associate the seven gestures with the appropriate
existing commands. Gesture recognition in Amulet
uses an algorithm created by Dean Rubine [27].

Fig. 8. The Agate interactive tool allows gestures to be created by exam-
ple. Here, the gesture set for the circuit program is shown. A file is written
describing the gestures which will then be read by a gesture interactor
and used in applications. “Agate” stands for A Gesture-recognizer And
Trainer by Example and is based on a similar tool in Garnet [14].

MYERS ET AL.: THE AMULET ENVIRONMENT: NEW MODELS FOR EFFECTIVE USER INTERFACE SOFTWARE DEVELOPMENT 359

The interactors are implemented using Amulet objects,
so parameters are simply slots the programmer can set or
leave at their default values. Constraints can also be used to
compute the parameters. For example, the Am_ACTIVE slot
of an interactor often contains a constraint depending on
the global mode, and a constraint in a single move-grow
interactor might determine whether objects are moved or
grown based on which mouse button was held down.

Normally, the interactor operates on the object to which
it is attached. An important feature of Amulet’s interactors
is that they can also operate on a set of objects. For example,
the choice interactor can select among the elements of a
group, and the move-grow interactor can be attached to a
window to manipulate any object added as a part of the
window. By default, interactors make this choice based on
the type of object to which they are attached (group vs.
nongroup), but the programmer can explicitly specify
which is desired.

As an example of the use of interactors, in the circuit
program, the following code is used to create new lines.
Note that the constraint line_tool_is_selected is used
to make this behavior available only when the correct tool
in the palette is selected.

created_objs.Add_Part (

 Am_New_Points_Interactor.Create(“create_line”)

 .Set(Am_AS_LINE, true) //want to create a new line

 .Set(Am_FEEDBACK_OBJECT, lfeedback)

 //feedback while dragging

 .Set(Am_CREATE_NEW_OBJECT_METHOD,

 create_new_line)

 .Set(Am_ACTIVE, line_tool_is_selected))

The circuit program uses the selection handles widget
provided by the Amulet library to select and move objects,
so no new code needed to be written for these functions.
The following are some examples from other applications
that show how interactors can be used for moving and se-
lecting objects. Note that in the simplest cases, an object can
be made interactive with a single line of code:

//allow my_object to be moved while the left mouse button is held down

my_object.Add_Part(Am_Move_Grow_Interactor.Create());

//allow any part added to my_group to be grown using the right button

my_group.Add_Part(Am_Move_Grow_Interactor.Create()

 .Set(Am_GROWING, true)

 .Set(Am_START_EVENT, “RIGHT_DOWN”));

//allow one or more parts of my_group to be selected with the left button

my_group.Add_Part(Am_Choice_Interactor.Create()

 .Set(Am_HOW_SET, Am_CHOICE_LIST_TOGGLE));

4.5.1 Discussion

The interactor model is a successful implementation of the
“Model-View-Controller” (MVC) idea from Smalltalk [12].
The MVC design is that the model contains the data, the
view presents the data, and the controller manipulates the
view. Most previous systems, including the original Small-
talk implementation, had the View and Controller tightly
linked, in that the controller would have to be reimple-
mented whenever the view was changed and vice versa.
Indeed, many later systems such as Andrew [25] and Inter-
Views [15] combined the view and controller into one object
called the “View.” In Amulet, the interactors serve as the

controllers, Opal-level graphical objects are the view, and
the model can be implemented using Amulet objects or
regular data structures. In contrast to the earlier systems,
Amulet’s interactors are entirely independent of the view, so
the graphics associated with a interactor can be changed
without changing the interactor, and conversely, the inter-
actor associated with a set of graphics can be modified and
changed. In fact, multiple, independent interactors can be
associated at the same time with a graphical object.

We are also confident that the six types of interactors
supplied with Amulet are sufficient to cover all the behav-
iors found in today’s interfaces. Evidence for this claim is
that in none of the 50 or so applications that have been cre-
ated so far with Amulet, or the hundreds of applications
that were created with Garnet, did programmers ever need
to go around the interactors to get to the underlying win-
dow manager events. The only time new types of interactors
are needed is when a fundamentally different kind of input
is required, such as speech input. In this case, there is a
standard set of methods that can be overridden from the
base interactor prototype.

Another common design in other systems is to just have
each graphical object have a standard set of methods or
events that it handles, for example for becoming selected
and moving. Visual Basic is an example of this design since
the programmer can code methods which are activated
when the user clicks on or drags an object. There are a
number of advantages to Amulet’s design of having explicit
objects (the interactors) representing the behaviors of the
graphics. First, it provides significantly greater reuse for
such common features as gridding, undo, and enabling and
disabling operations, since these are provided in a single
place, instead of being re-implemented with each graphical
object. Second, being able to analyze, inspect, and manipu-
late the behavior objects makes debugging and tracing eas-
ier, and enables external agents, tutors, and alternative in-
terfaces like speech and gestures to control the interface
without modifications to the graphical objects or the exist-
ing behavior logic.

4.6 Widgets

Amulet supplies a complete set of widgets, including pull-
down menus, buttons, check boxes, radio buttons, text-
input fields, scroll-bars, etc. Each widget has a different
drawing routine for the Motif, Microsoft Windows, and the
Macintosh look and feel (see Fig. 9). Amulet re-implements
all the widgets rather than using the built-in widgets from
the various toolkits so that we can provide flexibility and
control to programmers who want to investigate new be-
haviors. This is necessary, for example, to create a scroll-bar
with two handles [1] or to support multiple people operat-
ing with a widget at the same time for a multiuser applica-
tion. Widgets are completely integrated with the object,
constraint and command models, so properties of widgets
can be computed by constraints, and the actions of widgets
are represented by command objects (see Section 4.7), so
they are easily undone. The various kinds of button and
menu widgets can accept strings, bitmaps or arbitrary
Amulet objects to display as the labels (most other toolkits
only allow strings or bitmaps). This is easy in Amulet since

360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 6, JUNE 1997

there is a standard way for the buttons to query objects for
their size and tell them where to draw. In the circuit pro-
gram, the actual prototypes of the gates are displayed in the
button panel, so it was not necessary to construct bitmap
pictures of the gates. Since widgets are objects, it is easy to
use constraints to compute their parameters. This design is
used in many places in the circuit program, for example to
enable and disable the widgets based on the appropriate
global state and to lay them out appropriately. Amulet’s
widgets also have an extra parameter to disable them with-
out greying out, which was added so the actual widgets can
be used by interface-builder programs which need the wid-
gets to be selected and moved when clicked on, instead of
performing their normal functions. This feature proved
useful for the circuit program as well, since the zero-one
button prototype is disabled when displayed in the tool
panel, but we do not want the number to be greyed out.

In addition, Amulet supplies other widgets for the in-
sides of application programs. For example, the selections-
handles widget implements the familiar squares around the
edges of graphical objects that show what is selected and
allows the selected objects to be moved and resized (see Fig.
7). The circuit program uses this widget as well, but it dis-
ables the growing of objects, since they must stay the same
size. All other toolkits require programmers to re-
implement selection handles and all their standard behav-
iors in every application, but in Amulet, programmers only
need to add an instance of this widget to their window.

4.7 Command Objects

Often, the interactors and widgets operate simply by setting
the appropriate slots of objects and having the values com-
puted by constraints. For example, clicking on the zero-one
button in the circuit program changes its value, and all the
other values wired to it are computed with constraints. In
other cases, extra actions are required. Rather than using a
“call-back procedure” as in other toolkits, Amulet allocates
a command object and calls its “Do” method [22]. Amulet’s
commands also provide slots and methods to handle undo,
selective undo and repeat, enabling and disabling the

command (greying it out), help, and “balloon help” mes-
sages. Thus, unlike MacApp [32], the command objects
provide a single place for describing a behavior.

Furthermore, commands promote reuse because com-
mands for such high-level behaviors as move-object, create-
object, change-property, become-selected, cut, copy, paste,
duplicate, quit, to-top, to-bottom, group and ungroup,
undo and redo, and drag-and-drop are supplied in a library
and can often be used by applications without change. This is
possible because the retained object model means that there
is a standard way to access and manipulate even applica-
tion-specific objects. The circuit program uses the standard
operations from the library.

The commands in Amulet are hierarchical, so that a be-
havior may be composed of high-level and low-level com-
mands [22]. For example, a scroll-bar command might in-
ternally use a move-object command. This improves
modularity and reuse because each command is limited to
its own local actions. This feature was necessary for the
circuit program because the built-in Delete commands
know how to delete the selected objects, but would not
have deleted the attached wires. Therefore, the circuit pro-
gram needed another command to delete the attached
wires, and this was linked to the built-in command. This
command contains an undo method to put the wires back.

4.7.1 Undo

All of the built-in operations in Amulet support undo.
Thus, if programmers use the standard interactors and
command objects, all built-in operations are automatically
undoable without writing any extra code. If the program-
mer creates custom commands that perform application-
specific actions, like deleting the wires when the gates are
deleted, then a custom undo method will have to be written
as well. However, we have found that the Amulet object
and constraint models make writing undo methods very
easy. The old values of the modified data structures can be
stored directly into the command object itself, so usually,
the application’s data structures do not need to be modified
to support undo. For any application data that is repre-

Fig. 9. Some of the widgets in Amulet with the Motif, Windows 95, and Macintosh look-and-feel in a window running under Motif. All of the widgets
are implemented using Amulet intrinsics, and the choice of the look-and-feel is controlled by a slot which defaults to an appropriate value for the
particular machine but can also be set explicitly.

MYERS ET AL.: THE AMULET ENVIRONMENT: NEW MODELS FOR EFFECTIVE USER INTERFACE SOFTWARE DEVELOPMENT 361

sented as Amulet objects, the operations are implemented
by setting slots of those objects, so the Do method simply
saves the old values of the slots before they are set, and the
Undo method restores the old values. For example, part of
the Do and Undo methods built into the supplied com-
mand for moving objects is:

Do_Method:

 old_pos = Make_Pos(obj.Get(Am_LEFT),

 obj.Get(Am_TOP))

 command_obj.Set(Am_OBJECT_MODIFIED, obj);

 command_obj.Set(Am_OLD_VALUE, old_pos);

 obj.Set(Am_LEFT, new_pos.left);

 obj.Set(Am_TOP, new_pos.top);

Undo_Method:

 obj = command_obj.Get(Am_OBJECT_MODIFIED);

 old_pos = command_obj.Get(Am_OLD_VALUE);

 obj.Set(Am_LEFT, old_pos.left);

 obj.Set(Am_TOP, old_pos.top);

If the application is implemented using a model-view-
controller design, then the internal, hidden model part will
normally be connected to the view part using constraints,
so when the command object restores the view’s old values,
the constraints will automatically propagate the changes
back to the model. Of course, for some operations such as a
global replace, this design might be too expensive and it
would be better to develop the underlying data structures
to directly support undo, in which case the undo method of
the command will invoke the undo method of the data
structures. However, experience suggests that for the vast
majority of applications, storing the old data in the com-
mand object works well.

Amulet’s commands also support investigation of vari-
ous undo mechanisms. Currently, Amulet supplies three
different undo mechanisms that the developer can choose
from: single undo like the Macintosh, multiple undo like
Microsoft Word Version 6 and Emacs, and a novel form of
undo and repeat, where any previous command, including
scrolling and selections, can be selectively undone, repeated
on the same object, or repeated on a new selection [22]. Fig.
10 shows the experimental dialog box which is supplied to
support this new style and allow users to select a previ-
ously executed command. When multiple undo is being
used, the command objects are copied and put onto a global
undo history list, so the old values in each command will be
available later if needed. The programmer can put limits on
the number of commands stored, to limit the amount of
memory required. Researchers can also create entirely new
undo mechanisms and integrate them into the Amulet sys-
tem.

4.8 Gilt Interface Builder

The Gilt interface builder allows widgets to be laid out in-
teractively using the mouse and then their properties can be
set. Gilt stands for the Graphical Interface Layout Tool. Like
interface builders that come with other frameworks, Gilt
supports creating dialog boxes and other static parts of the
interface. For the future, we will be substantially enhancing
the capabilities of this tool. Ultimately, we would like it to
be possible and easy to create a complete application inter-
actively, and thereby achieve the ease-of-use of Visual Ba-
sic. However, our tool will support C++ (instead of an in-

terpreted language) and it will provide access to Amulet’s
higher-level mechanisms.

Fig. 10. The experimental dialog box that allows users to access the
regular undo and redo operations (the first two buttons below the
scrolling list). Other buttons operate on the command selected in the
list (here, number 15), and will undo it, repeat it, or repeat it on new
objects. “Flash Object” shows the object associated with the com-
mand. The “Expand” button will allow a command which operates on
multiple objects to be separated into separate commands. Commands
can be “marked” to allow them to be repeated with a single keystroke.
Command 11 has been marked with the F9 keyboard key as an ac-
celerator. The display of each command shows the action, the name of
the objects affected, and the new value. The radio buttons on the right
cause scrolling and selection commands to be queued, so that, for
example, an accidental deselection of a set of objects can be undone.

5 DEBUGGING TOOLS

Debugging interactive applications requires additional
mechanisms than supplied with conventional development
environments. Amulet provides an interactive Inspector that
displays the object’s properties, traces the execution of in-
teractors, pauses, single-steps and traces animations, and
displays the dependencies of constraints (see Fig. 11). From
the Inspector, programmers can also set breakpoints or
have messages printed whenever the value of a slot
changes. Furthermore, extensive error checking (when de-
bugging is enabled) and helpful messages make Amulet
applications easy to develop and debug. We try to make
sure that programmers using Amulet never see
“Segmentation fault” or other common but unhelpful C++
error messages.

6 STATUS AND FUTURE WORK

The current version of Amulet (V3.0) has been released for
Unix, Windows NT, Windows 95, and the Macintosh (to get
Amulet, see http://www.cs.cmu.edu/amulet). There are
over 50 projects all over the world using Amulet, and Fig. 12
shows a few examples of the applications built with Amulet.

362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 6, JUNE 1997

In the future, we will be investigating techniques to sup-
port multi-media, speech recognition, 3-D graphics, visuali-
zations, World Wide Web access and editing, and multiple
people operating at the same time (also called Computer-
Supported Cooperative Work—CSCW). An important focus
will be on interactive tools that allow most of the user interface
to be specified without conventional programming. Our ul-
timate goal is to allow the user interface designer to simply
draw examples of the graphics of the interface, and then dem-
onstrate the interactive behaviors to show how the interface
should react to the user, since these have proven to be much
faster to use than writing code. We want to investigate add-
ing to the Gilt interface builder the ability to sketch interface
ideas as in our earlier SILK system [13]. Another tool in prog-
ress is Gamut, which is an interactive tool for creating games
and educational software by demonstration [16].

7 RELATED WORK

Amulet builds on many years of work on user interface
toolkits (see [18] for a survey). It is primarily influenced by
our previous Garnet toolkit [21]. The main other research
project investigating the prototype-instance model is SELF
[4]. There are many differences between the SELF and
Amulet models, however. SELF is its own language, so it
does not have to integrate with an existing language. SELF
uses a pure copy-down semantics, so after an instance is
created, changes to the prototype are not reflected in the
instances. Finally, SELF does not support constraints.

There are many research systems which support con-
straints. The idea for indirect constraints and integrating
constraints with a prototype-instance object system origi-
nated in Garnet [30]. EVAL/vite [8] integrates constraints

Fig. 11. Inspecting a wire in the circuit program, and the constraint in its IN_VALUE slot. The slots which are inherited are shown in blue on the
screen. Notice that the high-level names are shown for methods, constraints and objects.

(a) (b)

Fig. 12. Examples of two applications built using Amulet. (a) The Data Access Visualization Environment, a program designed to aid programmers in
optimizing and parallelizing Fortran programs. (Courtesy of Galen C. Hunt, Computer Science Department, University of Rochester.) (b) A system to
visualize the counter-examples discovered by the Nitpick analyzer for software specifications in Z, created as a class project by Craig Damon and
Geoff Langdale at CMU. Many others are shown on the Amulet web pages at http://www.cs.cmu.edu/amulet/amulet-users.html.

MYERS ET AL.: THE AMULET ENVIRONMENT: NEW MODELS FOR EFFECTIVE USER INTERFACE SOFTWARE DEVELOPMENT 363

with C++ by using a preprocessor and a special sub-
language for the constraints. EVAL/vite is a one-way
solver like Amulet’s formula constraints. MultiGarnet [28]
integrated a multi-way solver with Garnet’s one-way
solver, and inspired Amulet’s goal for providing an archi-
tecture to make this kind of investigation easier. Rendez-
vous [7] was designed to help create multi-user applica-
tions in Lisp. Like Amulet, Rendezvous allows multiple
one-way constraints to be attached to a variable. However,
Rendezvous requires that variables be explicitly declared
and uses a different implementation algorithm. Also, Ren-
dezvous requires that all side-effects from constraints be
deferred. The Artkit toolkit [10] provided a mechanism to
support animations, but it did not use the constraint system
and it required writing new methods for each object which
was to be animated.

Amulet’s interactors model is based on Garnet’s [17].
Using command objects to support undo was introduced in
MacApp [32] and has been used in many systems including
InterViews [31] and Gina [3]. Katie [11] introduced the idea
of hierarchical events and explored some implementation
issues. There is a long history of research into various new
undo mechanisms, and Amulet is specifically designed to
allow new mechanisms to be explored. The selective undo
mechanism in Amulet is closest to the Gina mechanism [3]
but adds the ability to repeat previous commands and to
undo selections and scrolling.

8 CONCLUSIONS

In summary, the Amulet user interface development envi-
ronment uses new high-level models for objects, constraints,
animation, input, output, commands, and undo to enable
graphical, hightly interactive applications to be created more
easily. The models more directly support the kinds of activi-
ties common in these kinds of interfaces, and provide for
better modularity and reuse of behaviors due to greater sepa-
ration of behaviors from graphics. In addition, Amulet fur-
thers the research into prototype-instance object systems,
constraint solving, animations, representation of behaviors,
model-view-controller architectures, gesture recognition al-
gorithms, undo mechanisms, and interactive specification of
user interfaces.

We are very excited about the potential for Amulet to be
a useful and efficient platform on which to perform further
user interface research. We also hope that it will be popular
for user interface education and for the implementation of
real systems. The innovations in Amulet and the integration
of the new models make it effective for supporting both
today’s and tomorrow’s user interfaces.

ACKNOWLEDGMENTS

We want to thank the many users of Amulet who have helped
us find bugs and improve the system. For help with this paper,
we would like to thank Bernita Myers and the referees.

This research was sponsored by NCCOSC under Con-
tract No. N66001-94-C-6037, and the Advanced Research
Projects Agency (ARPA) Order No. B326. The views and
conclusions contained in this document are those of the

authors and should not be interpreted as representing the
official policies, either expressed or implied, of NCCOSC or
the United States Government.

REFERENCES

[1] C. Ahlberg, C. Williamson, and B. Shneiderman, “Dynamic Que-
ries for Information Exploration: An Implementation and Evalua-
tion,” Proc. ACM CHI’92 Conf., pp. 619-626, 1992.

[2] G. Avrahami, K.P. Brooks, and M.H. Brown,“ A Two-View Ap-
proach to Constructing User Interfaces,” Proc. SIGGRAPH’89, pp.
137-146, Computer Graphics, Boston, Mass., July 1989.

[3] T. Berlage, “A Selective Undo Mechanism for Graphical User
Interfaces Based on Command Objects,” ACM Trans. Computer
Human Interaction, vol. 1, no. 3, pp. 269-29, 1994.

[4] C. Chambers, D. Ungar, and E. Lee, “An Efficient Implementation
of SELF, a Dynamically-Typed Object-Oriented Language Based
on Prototypes,” Sigplan Notices, ACM Conf. Object-Oriented Pro-
gramming; Systems Languages and Applications; OOPSLA’89, vol. 24,
no. 10, pp. 49-70, 1989.

[5] B. Chang and D. Ungar, “Animation: From Cartoons to the User
Interface,” ACM SIGGRAPH Symp. User Interface Software and
Technology, Atlanta, Ga., Proc. UIST’93, pp. 45-55, Nov. 1993.

[6] M. Gleicher, “A Graphics Toolkit Based on Differential Con-
straints,” ACM SIGGRAPH Symp. User Interface Software and Tech-
nology, Atlanta, Ga., Proc. UIST’93, pp. 109-120, Nov. 1993.

[7] R.D. Hill, T. Brinck, S.L. Rohall, J.F. Patterson, and W. Wilner,
“The Rendezvous Architecture and Language for Constructing
Multiuser Applications,” ACM Trans. Computer-Human Interaction,
vol. 1, no. 2,. pp. 81-125, 1994.

[8] S.E. Hudson, A System for Efficient and Flexible One-Way Constraint
Evaluation in C++, Graphics Visualizaton and Usability Center,
College of Computing, Georgia Inst. of Technology, Report 93-15,
Apr. 1993.

[9] S.E. Hudson and I. Smith, “Ultra-Lightweight Constraints”. ACM
SIGGRAPH Symp. User Interface Software and Technology, Seattle,
Wash., Proc. UIST’96, pp. 147-155, Nov, 1996. System available
from http://www.cc.gatech.edu/gvu/ui/subarctic/.

[10] S.E. Hudson and J.T. Stasko, “Animation Support in a User Inter-
face Toolkit: Flexible, Robust, and Reusable Abstractions,” ACM
SIGGRAPH Symp. User Interface Software and Technology, Atlanta,
Ga., Proc. UIST’93, pp. 57-67, Nov. 1993.

[11] D.S. Kosbie and B.A. Myers, “Extending Programming by Dem-
onstration with Hierarchical Event Histories,” Human-Computer
Interaction: Fourth Int’l Conf. EWHCI’94, Lecture Notes in Computer
Science, vol. 876, pp. 128-139. Berlin: Springer-Verlag, 1994.

[12] G.E. Krasner and S.T. Pope, “A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80 system,” J.
of Object Oriented Programming, vol. 1, no. 3, pp. 26-49, 1988.

[13] J. Landay and B.A. Myers,“ Interactive Sketching for the Early
Stages of User Interface Design,” Human Factors in Computing Sys-
tems, Proc. SIGCHI’95, Denver, Col., pp. 43-50, May 1995.

[14] J.A. Landay and B.A. Myers, “Extending an Existing User Inter-
face Toolkit to Support Gesture Recognition,” Human Factors in
Computing Systems, Adjunct Proc. INTERCHI’93, Amsterdam, The
Netherlands, pp. 91-92, Apr. 1993.

[15] M.A. Linton, J.M. Vlissides, and P.R. Calder, “Composing User
Interfaces with InterViews,” Computer, vol. 22, no. 2, pp. 8-22,
1989.

[16] R.G. McDaniel, “Improving Communication in Programming-by-
Demonstration,” Conf. Companion for CHI’96: Human Factors in
Computing Systems, Vancouver, BC, Canada, pp. 55-56, Apr. 1996.

[17] B.A. Myers, “A New Model for Handling Input,” ACM Trans.
Information Systems. vol. 8, no. 3, pp. 289-320, 1990.

[18] B.A. Myers, “User Interface Software Tools,” ACM Trans. Com-
puter Human Interaction, vol. 2, no. 1, pp. 64-103, 1995.

[19] B.A. Myers et al., The Amulet V3.0 Reference Manual. Carnegie Mel-
lon Univ., Computer Science Dept., CMU-CS-95-166-R2, Mar. 1997.
System available from http://www.cs.cmu.edu/~amulet.

[20] B.A. Myers, D. Giuse, and B. Vander Zanden, “Declarative Pro-
gramming in a Prototype-Instance System: Object-Oriented Pro-
gramming without Writing Methods,” ACM Conf. Object-Oriented
Programming; Systems Languages and Applications, OOPSLA’92,
Sigplan Notices, vol. 27, no. 10, pp. 184-200, 1992.

364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 6, JUNE 1997

[21] B.A. Myers et al., “Garnet: Comprehensive Support for Graphical,
Highly-Interactive User Interfaces,” Computer, vol. 23, no. 11, pp.
71-85, 1990.

[22] B.A Myers and D. Kosbie, “Reusable Hierarchical Command
Objects,” Proc. CHI’96: Human Factors in Computing Systems, Van-
couver, BC, Canada, pp. 260-267, Apr. 1996.

[23] B.A. Myers, R.C. Miller, R. McDaniel, and A. Ferrency, “Easily
Adding Animations to Interfaces Using Constraints,” ACM Symp.
User Interface Software and Technology, Proc. UIST’96, Seattle,
Wash., pp. 119-128, Nov. 1996.

[24] B.A. Myers and M.B. Rosson, “Survey on User Interface Pro-
gramming,” Human Factors in Computing Systems, Proc. SIG-
CHI’92, pp. 195-202, 1992.

[25] A.J. Palay et al. “The Andrew Toolkit—An Overview,” Proc. Win-
ter Usenix Technical Conf., Dallas, Tex., pp. 9-21, Feb. 1988.

[26] R. Pausch, N.R. II Young, and R. DeLine, “SUIT: The Pascal of
User Interface Toolkits,” ACM Symp. User Interface Software and
Technology, Proc. UIST’91, Hilton Head, S.C., pp. 117-125, Nov.
1991.

[27] D. Rubine, “Specifying Gestures by Example,” Computer Graphics,
Las Vegas, Nev., Proc. SIGGRAPH’91, pp. 329-337, July 1991.

[28] M. Sannella, “SkyBlue: A Multi-Way Local Propagation Con-
straint Solver for User Interface Construction,” ACM Symp. User
Interface Software and Technology, Proc. UIST’94, Marina del Rey,
Calif., pp. 137-146, Nov. 1994.

[29] B. Vander Zanden, “An Incremental Algorithm for Satisfying
Hierarchies of Multi-way, Dataflow Constraints,” ACM Trans.
Program Laanguage and System, vol. 18, no. 1, pp. 30-72, 1996.

[30] B. Vander Zanden, B.A. Myers, D. Giuse, and P. Szekely,
“Integrating Pointer Variables into One-Way Constraint Models,”
ACM Trans. Computer Human Interaction. vol. 1, no. 2, pp. 161-213,
1994.

[31] J.M. Vlissides and M.A. Linton, “Unidraw: A Framework for
Building Domain-Specific Graphical Editors,” ACM Trans. Infor-
mation Systems, vol. 8, no. 3, pp. 204-236, 1990.

[32] D. Wilson, Programming with MacApp. Reading, Mass.: Addison-
Wesley, 1990.

Brad A. Myers received a PhD in computer
science at the University of Toronto, where he
developed the Peridot UIMS. He received the
MS and BSc degrees from the Massachusetts
Institute of Technology during which time he was
a research intern at Xerox PARC. He is a senior
research scientist in the Human-Computer Inter-
action Institute in the School of Computer Sci-
ence at Carnegie Mellon University, where he is
the principal investigator for the User Interface
Software Project, the Demonstrational Interfaces

Project, and the Natural Programming Project. He is the author, or
editor of over 170 publications, including the books Creating User In-
terfaces by Demonstration and Languages for developing User Inter-
faces and is on the editorial board of five journals. From 1980 until
1983, he worked at PERQ Systems Corporation. His research interests
include User Interface Development Systems, user interfaces, Pro-
gramming by Example, Visual Programming, interaction techniques,
window management, and programming environments. He belongs to
SIGCHI, the IEEE, the IEEE Computer Society, the Association for
Software Design, and Computer Professonals for Social Responsibility.

Richard G. McDaniel is a PhD candidate in
computer science at Carnegie Mellon University.
He received his BSc from the University of Vir-
ginia in 1991. He is a member of the User Inter-
face Software Project and a significant contribu-
tor to the Amulet project. His current work and
thesis involves making a programming by dem-
onstration system able to produce a wider range
of applications. He worked as an intern for the
OLE group at Microsoft for three years where he
prototyped advanced OLE 2.0 interfaces such as

inplace-editing. His research interests include programming environ-
ments, visual languages, programming by demonstration, and user
interfaces.

Robert C. Miller is a PhD candidate in computer
science at Carnegie Mellon University. His re-
search interests include programming lan-
guages, user interfaces, end-user programming,
and programming by demonstration.

Alan S. Ferrency received a BS in math/ com-
puter science at Carnegie Mellon University in
1994, where he was a research assistant on the
Sphinx II speech recognition project. He is cur-
rently the Director of Systems Software Design
at Luce-McQuillin Corporation, where he over-
sees the development and integration of custom
client-server applications. After graduation, he
completed a research internship at Battelle Labs,
where he simulated the flow and reactions of
radioactive metal compounds in groundwater at

contaminated Department of Energy (DOE) sites. From 1995 to 1996
he worked at Carnegie Mellon University on the Amulet User Interface
project. His research interests include natural language processing and
game theory.

Andrew Faulring is an undergraduate in the
School of Computer Science at Carnegie Mellon
University, where he is double majoring in com-
puter science and human-computer interaction.
His work with the Amulet Project stems from an
interest in research concerning tools for design-
ing, developing and implementing user inter-
faces.

Bruce D. Kyle holds a master of science degree
from University of Alaska Fairbanks in engineer-
ing-science managment and bachelors degree in
technical journalism from Oregon State Univer-
sity. He is a research programmer in the Human-
Computer Interaction Institute in the School of
Computer Science at Carnegie Mellon Univer-
sity. He has worked on commerical cross-
platform C++ libraries for developers including
Rogue Wave Software Tools.h++ and Datapak
Software’s multimedia PAIGE library. His back-

ground also includes accounting, financial services, marketing and
public relations. Kyle’s research interests include visual programming,
direct manipulation and constraints to describe complex financial, sci-
entific and technical concepts.

Andrew Mickish worked on the Amulet project
as both an undergrad and as full-time staff at
Carnegie Mellon University, where he received a
BS in mathematics and computer science. He is
now working at Vanderbilt University Medical
Center developing web-based patient record
systems, building monitoring tools for wide area
networks, and implementing enterprise level
solutions to problems of single sign-on, cross-
platform interaction, and directory services.

MYERS ET AL.: THE AMULET ENVIRONMENT: NEW MODELS FOR EFFECTIVE USER INTERFACE SOFTWARE DEVELOPMENT 365

Alex Klimovitski received his MS from Berlin
Polytechnic. He works in the Developer Rela-
tions Group of Intel GmbH, Munich. He devel-
oped a number of applications and libraries for
digital signal processing, circuit emulation, 2D
and 3D graphics and animation and others. In
1994–1995, Alex participated in the Carnegie
Mellon University’s User Interface Software Proj-
ect as a research scholar. He took part in the
development of the graphics and windowing
parts of Amulet environment and performed the

initial port from Unix to Win32. His current research interests include
3D data visualization, 3D user interfaces, multiuser Internet applica-
tions, component-based software development, and automated code
optimization.

Patrick Doane is a third-year undergraduate
student in the School of Computer Science at
Carnegie Mellon University. His research inter-
ests include enhancing the art of programming to
provide increased safety and reliability through
better integration and design of programming
languages, compilers, operating systems, and
hardware. In addition to his research work,
Doane has been involved in commercial soft-
ware development projects, working for compa-
nies, such as Sierra Online, to create strategy

and simulation games. He worked on the Amulet project in 1995-1996
and performed most of the Macintosh port.

