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Summary. General expressions are derived for the kernels of the set of 
integral equations that‘ relates the spectral matrix of the six components 
of a random electromagnetic wave field in a magnetoplasma to the wave 
distribution function for the field. The dependence of the kernels on wave- 
normal direction is examined, with particular reference to the propagation 
of very low-frequency waves in the whistler mode. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 Introduction 

This is the second paper in a series, the general subject of which is how to interpret a set of 
simultaneous measurements of the three electric and the three magnetic components of a 
random electromagnetic wave field in a magnetoplasma. 

In two short review papers that preceded this series (Storey 1971; Storey & Lefeuvre 
1974), we pointed out that a linear random field in a homogeneous magnetoplasma could be 
considered as the sum of fields due to a continuum of elementary plane waves, of different 
frequencies, propagated in different directions, without any mutual phase coherence. Such a 
field can only be described statistically. We chose to characterize it by a function that 
specifies the distribution of wave energy density with respect to frequency and to wave- 
normal direction; this we named the wave distribution function (WDF). The second of the 
two papers referenced above forms an introduction to the present series. 

In the first paper of this series (Storey & Lefeuvre 1979), henceforth referred to as 
Paper I, we considered what we called the direct problem. Knowing the distribution function 
for the waves together with the values of the characteristic parameters of the plasma, we 
sought to determine the statistical properties of the six field components. These properties 
are described by the 36 auto-covariance and cross-covariance functions of the six com- 
ponents, or by their auto-spectra and cross-spectra. We argued that it is preferable to work 
with the 36 spectra, which we arranged for convenience in a 6 x 6 spectral matrix S .  Then 
we showed that the elements of this matrix are related to the WDF by the following 
equation: 

sij (a) = @ aijm (a, x ) ~ m  (a, x ) do. (1) 
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174 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
On the left-side, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is the wave angular frequencq', while the subscripts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and j refer to the 

six field components. Sii(w) is either the mean auto-power spectrum of a single field com- 
ponent (if i = j ) ,  or the mean cross-power spectrum of two components (if i + j ) .  

On the right-side, the coefficients aii,(w,x) are related to the corresponding spectra for 
an elementary plane wave in the magneto-ionic mode m (ordinary or extraordinary), 
propagated in the direction of the unit vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ; we shall also specify this direction by a 
polar angle 8 and an azimuthal angle $, using spherical polar coordinates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF,(w,x) is the 
distribution function for waves in the mode m ,  while da is an element of solid angle centred 
on the direction of x. 

Since each of the two subscripts ranges from 1 to 6, equation (1) actually stands for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
36 different equations. This set of equations represents the solution of the direct problem, 
because it enables the spectral matrix to be predicted when the WDF is given. 

#or this purpose, however, it is necessary to know the functions aiim(w, x), which are the 
kernels of this set of integral equations. There are 72 such functions, 36 for each of the two 
modes of propagation, though it will appear later that they are not all mutually independent. 
The purpose of the present paper is to derive algebraic expressions for these integration 
kernels, as explicit functions of the frequency w ,  of the angles 8 and $, and of the 
characteristic parameters of the medium. 

L. R. 0. Storey and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. Lefmvre 

The basic formula for the kernels is equation (1 8) of Paper I ,  namely 

where ei and ei are thk'complex amplitudes of the ith and j th components of the generalized 
electric field of an elementary plane wave in the mode m and characterized by the variables 
w, 8 and $, and where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is the wave energy density. The SI unit for the kernels is the metre/ 
farad. This formula applies only to real values of w,  6 and $ at which the elementary waves 
in the mode m are propagated freely, i.e. with purely real wavenumbers: elsewhere, the 
kernels are defined to be zero. 

In this definition of the kernels aiim(w, 8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI$), the field components in question are 
measured in a rectangular coordinate system Oxyz, with the axis Oz parallel to the steady 
magnetic field Bo (see Fig. 1 of Paper I). This type of system is quite convenient for practical 
data analysis. However, for the theoretical derivation of the kernels, it is simpler to work 
with the complex principal axis coordinate system (Westfold 1949), also known loosely as 
the rotating or polarized coordinate system. Vector components measured in this system will 
be called circular components. Use of this system simplifies the algebra, because it has 
gyrotropic symmetry, like the medium (not uniaxial symmetry, as was stated wrongly in 
Paper I). The kernels defined in terms of the circular field components will be denoted 

The six kernels aii (or bii), which are related to the auto-spectra of the six field com- 
ponents, will be referred to as auto-kernels. Similarly, the 30 kernels aii (or bii) with i f- j ,  
which are related to the cross-spectra of the field components, will be called cross-kernels. 

In Section 2 of this paper, the definition of the aii is recapitulated, that of the bii is given 
in detail, and it is shown how these two sets of functions are related. Also various new 
symbols are defined for later use. So many symbols are needed that it has been impossible 
to avoid some duplication, nor some conflict with previous usage; warning is given of such 
cases. 

The derivation of the general expressions for the kernels involves eliminating the complex 
amplitudes that appear in their definitions. For this purpose, it is helpful to have expressions 
for the ratios of the complex amplitudes of all possible pairs of field components. The ratios 

bijm (u, 6, $)a 
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for pairs of components of the same type (electric or magnetic) are the polarization ratios, 
while those for mixed pairs are the wave admittances (or wave impedances). Therefore, as a 
preliminary step towards the derivation of the bij, expressions for these complex amplitude 
ratios in the complex principal axis coordinate system are derived in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. 

Expressions for the phase and group refractive indices are presented in Section 4, and for 
the wave energy density in Section 5 .  Then, in Section 6, these and the preceding results are 
combined to yield the general expressions for the integration kernels bii, from which the aji 
can be derived. 

The property of the kernels that interests us the most is the way in which they vary as 
functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 and $ at fured w. The reason is that, when we analyse multi-component wave 
data to determine F,(w, 8, $), we usually begin by dividing the frequency spectrum up into 
a number of narrow bands (see Section 2 of Paper I). Then, within any one of these bands 
(centred on the frequency wo, say), we try to estimate the functions F,(wo, 8, $) for the 
two wave modes. Only if the directional variations of the kernels at fixed frequency are 
substantial, and are different for the different kernels, can we hope to determine the 
directional variation of the WDF in detail, i.e. to obtain good directional resolution. In this 
respect, the bii behave more simply than the aii do, though the two sets of kernels are 
equivalent. Therefore our study of this question is limited to the bii. They vary with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 in 
simple ways which are described at the end of Section 6. However, their dependence on 0 
is more complicated, and is sensitive.to the relative values of the wave frequency and of the 
characteristic frequencies of the plasma. As a result, it is too diverse to be discussed here 
systematically: only its symmetry is described iri Section 6. 

Nevertheless, this subject of the dependence of the kernels on the angle 8 is pursued in 
Section 7, the discussion being limited to the whistler mode of propagation, and, within that 
mode, to the domain of validity of a simple approximate formula for the phase refractive 
index. We derive the corresponding approximations for the kernels. The whistler mode was 
chosen for this study because natural random wave fields, suitable for analysis by our 
methods, often occur in this mode, for instance in the Earth‘s magnetosphere. 

Finally, the conclusions of the paper are presented in Section 8. Like those of Paper I, 
they rest on the assumptions that the plasma is cold and collisionless. 

2 Symbols and definitions 

First we recall some symbols and definitions introduced in Paper I. From the axial com- 
ponents of the electric field E and of the magnetic field H, measured in the coordinate 
system of Fig. 1 of Paper I, we defiied a six-component generalized electric field vector 
as follows: 

Zo is the wave impedance of free space. Subject to our assumptions, an arbitrary wave field 
&(t, r), varying with time t and with the position vector r, can be regarded as the sum of a 
finite or infinite number of elementary monochromatic plane waves, each of which is a 
characteristic wave, i.e. a solution of the dispersion equation for the medium. For any one 
such elementary wave, the usual (three-component) electric and magnetic fields are of the 
form: 

E(t ,  r) = Re i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe exp [i(wt - k * r)] I 

H(t, r) = Re .I h exp [i(wt - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk r)] i 
(4) 
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176 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (ex, er, ez)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh = (hx, hy, h,) are the complex amplitude vectors, while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is the wave- 
number vector, and the symbol Re denotes the real part. In accordance with equation (10) 
of Paper I, the corresponding generalized electric field vector will be written 

L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. Storey and F. Lefeuvre 

~ ( t , r ) = R e { e e x p  [ i (wt-k*r) ] )  (5  1 

(6) 

where e = ( e l ,  e2, e3, e4, e5, e6)  is now a six-component complex amplitude vector: 

e1 ,2 ,  3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAex, y, z 

It is hoped that, with this explanation, the ambiguous use of the symbol e in equations (4) 
and (5) will not cause confusion. In fact we shall use it infrequently, and only for the 
complex amplitude of the usual (three-component) electric field vector, as in equation (4). 
Greater use will be made of the axial components of the two vectors to which it refers. 
Numeric subscripts are used for the six components of the complex amplitude of the 
generalized electric field, and alphabetic subscripts for the three components of the complex 
amplitude of the usual electric field. Likewise the symbol h with an alphabetic subscript 
denotes one of the three components of the complex amplitude vector of the usual magnetic 
field. 

In Sections 3-5 we shall need to manipulate these three-component complex amplitude 
vectors in the complex principal axis coordinate system mentioned in the Introduction. 
The definition of t h i s  system is rather long, so it has been relegated to the Appendix. First, 
we use it to define circular components for the electric and magnetic fields individually: 
E = (ER, EL, Ep) and H = (HR, HL,  Hp). In the principal axis coordinates, the generalized 
electric field vector will be called S. By analogy with equation (3), its six components are 
defmed as follows: 

e4,  5 , 6  = ZOhx, y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- 

9 1 , 2 , 3 = E R , L , P  F 4 , 5 , 6 = Z 0 H R , L , P .  (7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An arbitrarily varying field F(t, r) can be Fourier analysed into a sum of monochromatic 
elementary waves. Let the complex amplitudes of the electric and magnetic vectors for one 
such wave be e = ( e R ,  eL, ep) and h = (hR,  hL, hp). From equation (A1 1) of the Appendix, 
the relations between the components of each of these vectors in the rectangular and in the 
complex principal axis coordinate systems are 

eR = ex t ie, 

hR = h, t ih, 

eL = ex - ie, 

h ,  = h, - ih, 

ep = e, 

h ,  = h,. 

Then, by analogy with equation (6), we define a six-component complex amplitude vector f 
for the generalized electric field of this elementary wave as follows. 

f 1 , 2 , 3  = e R , L , P  f4, 5 , 6  = Z O h R ,  L , P  (9) 

The symbols & and 4, with the subscripts running from 1 to 6 ,  will stand for any of these 

Next, by analogy with equation (2), we set 
components. (Note: the symbolfwas used in another sense in Section 2 of paper I.) 

On the left-side, the variables 6 and @ specify the direction of propagation of the elementary 
wave, i.e. the direction of k. On the right-side, p is the wave energy density, which of course 
is independent of the choice of coordinates. The quantities defmed by equation (10) will 
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Analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof wave field in a magnetoplasma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA177 

also be written as b j j m ( w , x ) .  Pursuing the analogy with the ajjm, the bjjm are defined to 
be non-zero and given by equation (10) only at values of the variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK correspond- 
ing to freely propagated waves: they are zero when the waves are evanescent. 

By reasoning as in Section 4 of Paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, we can show that the spectral matrix of the 
random field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(t, r) is related to the wave distribution function F, (a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx )  by an equation 
similar to (l), but with the quantities a j j m ( w , x )  replaced by the bijm(w, x ) .  Thus the latter 
are the integration kernels in the complex principal axis coordinate system. 

We shall need to know the relationship between the two sets of kernels, so that we can 
get the ailrn once the bijm have been derived. First, by combining the equations (6), (8) and 
(9), we note that the following relations hold between the six-component complex 
amplitude vectors in the two coordinate systems: 

Substituting these expressions into equation (2), and using the definitions (9), we obtain the 
following results: 

1 

2 
a 1 3 =  - (b13  f b 2 3 )  

1 

4 
a22 = - @ 1 1 -  bl2 - b2l+ 622) 

The three other kernels with i and j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 3 can be found by using the relation aji = a;. From 
this set of nine kernels, the remaining 27 with i and/or j 2 4  can be obtained by adding 3 

to the first and/or second subscript of every term in each expression. The results expressed 
by equations (1 2a)- (1 3f) are independent of the wave mode m. 

3 Complex amplitude ratios 

For the derivation of the kernels, we require the set of ratios of the complex amplitudes of 
the three electric and three magnetic components of an elementary plane wave. To get them, 
we start from the two Maxwell equations that relate the electric field E to the magnetic field 
H. When applied to the monochromatic plane wave defined by equation (4), they yield the 
following relations between the complex amplitudes: 

k x e = o p o h ,  ( 1  3)  

k x h = - c x O E e .  (14) 
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178 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
po is the magnetic permeability and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeo the electric permittivity of free space, while E is the 
dielectric tensor of the plasma. 

For a cold magnetoplasma, the dielectric tensor is independent of the wavenumber vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k: it depends only on the angular frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  and on the plasma parameters which we now 
define. In this we follow Stix (1962), with some minor differences: in particular, we suppose 
that the plasma contains only electrons and positive ions, and that the latter, of which 
several different kinds may be present, are all singly charged. Denoting the various species of 
charged particle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- including the electrons - by the subscript s, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, be the number density 
for each species, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, the mass per particle, and qs the charge per particle. For each species, we 
now define two characteristic frequencies: the angular plasma frequency n,, such that 

L. R. 0. Storey and F. Lefeuvre 

and the angular gyrofrequency 

where Bo is the magnitude of the induction vector of the steady magnetic field. The minus 
sign has been put into this definition so as to give as the sign of the natural sense of gyration 
of the particles around the field (e.g. positive for the electrons, which gyrate in a right- 
handed sense). Lastly, we define three dimensionless quantities: 

These quantities are identical with those that Stix denotes by the same symbols. In what 
follows, they represent the properties of the plasma. 

The expression for the dielectric tensor is simplest in the complex principal axis 
coordinate system def ied in Section 2, where it is purely diagonal: 

Therefore we shall use this system in deriving the complex amplitude ratios. 

begin by eliminating h between equations ( 1  3) and (14): 
First, let us derive the three ratios that involve only the electric field components. We 

k x (k x e) + w2poeoee = 0. 

n = ck/w = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnx. 

(19) 

(20) 

We now introduce the refractive index vector 

where n = ck /o  is the phase refractive index, with c = ( p o ~ o ) - ” 2  the speed of light. In terms 
of n, equation (1 9) becomes 

n x  (nxe )+Ee=O.  (21) 
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The next step is to split this equation into its axial components in the rectangular coordinate 
system, using the fact that the components of the unit vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, which appears in equation 
(20), are 

KX = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe cos #, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK, = cos e. 
Then we go over to the complex principal axis coordinate system, using the following 
relations from Section 2: 

K~ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsin e sin 4, (22) 

1 i 

2 2 
ex = - (eR t e , ) ,  

The resulting set of three equations can be rearranged to yield the desired ratios: 

ey = - - (eR - e,) ,  e, = ep.  

eR  - L - n2 

eL R - n 2  

eR - P -  n 2  

e p  R - n 2  

eL P - n 2  

e p  L - n 2  

exp (2i@), 

tan @ exp (i#), 

- tan O‘exp (- i@). 

These are the polarization ratios for the electric field. 
Let us now derive some mixed ratios. Starting from the Maxwell equation (13) alone, we 

replace k by n, and split the equation into its components in the complex principal axis 
system as before. Remembering that Zo= (po/eo)1’2, we can write them as 

ZohR = in [cos 0 eR - sin 0 ep exp (@)I, 
ZohL = - in [cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 e L  - sin 8 ep exp (-@)I, 
Zohp = ( i /2 )n  sin 6 [eL exp (i#) - eR exp (- i#)]. 

(25b) 

(25c) 

Using equations (24a)- (24c), we obtain 

h,  i ( P - n 2 ) ( R - L )  sin2e 

e p  2 ( R - n 2 ) ( L - n 2 )  case' (26c) Z - = - n -  
0 

The complex amplitude ratios on the left-sides of equations (26a)-(26c), which have been 
multiplied by Zo to make them dimensionless, are wave admittances. Note that if the 
medium is transparent (i.e. non-absorbing), in which case the refractive index n is real, then 
these ratios are purely imaginary; t h s  fact will prove to be of importance later on. 

All the remaining complex amplitude ratios may be found by combining equations 
(24a-c) and (26a-c). They consists of six more wave admittances, involving unlike com- 
ponents of the magnetic and electric fields, and the following three ratios involving the 
magnetic components alone: 

h R -  ( P - R ) ( L - n * )  
exp (2ip), 

h L  (P-  L )  (R - 17’) 
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cot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i@), 

- -  hR - , (P-R) (L-n?  

hp 

(P - L )  (R - n2)  h L -  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hP ( P - n 2 ) ( R - L )  

(P- n2) (R - L )  

cot 0 exp (- i@). 

With these polarization ratios for the magnetic field, our list of complex amplitude ratios is 
complete. Using equation (9), they can be put into the form in which they will be required 
later, involving components of the generalized complex amplitude vector f. 

4 Phase and group refractive indices 

The expressions derived in the previous section apply equally to waves in either of the 
magneto-ionic modes. However, they involve the phase refractive index n, which is different 
for the two modes. If the vector equation (15) is split into its three axial components as 
described earlier, then the condition for their mutual consistency, namely that their 
determinant should vanish, leads to the following equation, the roots of which are the values 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn2 for the two modes (Stix 1962): 

P(n2 - R) (n2 - L )  

(sn2 - a) (n2 - P) 
t d e  = - 

where S (which is not to be confused with the elements of the spectral matrix) is 

s = (R + L)/2. (29) 

Equation (28) .is a quadratic with purely real roots. For a given 0 and given plasma para- 
meters, there may be two, one, or no roots with n2 positive. Only such positive roots, which 
correspond to freely propagated modes, are to be considered here; negative roots correspond 
to evanescent modes. Moreover, for a given positive n2, only the positive value of n will be 
considered, the negative value corresponding to a wave propagated in the opposite direction. 
On the questions of the nomenclature for-the two wave modes, of their correspondence with 
the roots of the quadratic, and of the behaviour of these roots as functions of 0, the reader 
should consult the work of Stix (1962) or that of Allis, Buchsbaum & Bers (1963), and also 
the standard works on the magneto-ionic theory (Ratcliffe 1959; Budden 1961); additional 
information about ion effects at low frequencies has been given by Smith & Brice (1964). 

When the roots of the quadratic equation for n2 are inserted into the expressions of 
Section 3 for the complex amplitude ratios, and the latter are used for computing the 
kernels, difficulties may arise if n2 goes to zero or to infinity. The former case is called a 
cut-off, and the latter a resomnce. Computational difficulties arise at cut-offs and 
resonances because negative powers of n diverge in the first case and positive powers in the 
second. Either of these two difficulties can be avoided by writing the expressions for the 
kernels in forms containing only positive or only negative powers of n respectively, but 
clearly it is not possible to avoid both simultaneously. Therefore it is important to know 
which of the two is likely to be the more troublesome in practice. 

For the reasons stated in Section 1, our prime concern is with the variations of the 
kernels as functions of wave-normal direction at a fixed frequency. Now, for a given plasma, 
the condition for a cut-off of a given type can be satisfied at only one frequency and is 
independent of direction, while the condition for a given type of resonance can be satisfied 
over a band of frequencies and depends on direction through the angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB (Stix 1962). Hence 
the commonest difficulties are those associated with resonances, so priority should be given 
to forestalling them. 
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The condition for a plasma resonance (n2 = -) is 

tan2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe = - PIS. (30) 

There is a resonance whenever P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS have opposite signs. For a two-component plasma 
(i.e. one consisting only of electrons and of positive ions of a single type), this state of affairs 
exists in regions 3, 5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, 8, 10 and 13 of the CMA diagram (Stix 1962). In each of these 
regions, and for one or other of the magneto-ionic modes, a resonance occurs at the value 
of 0 given by equation (30), which we shall call Or. It is said to be a parallel resonance if 
Or = 0, or a perpendicular resonance if Or = n/2, but evidently each of these principal 
resonances is the limit of an oblique resonance with 0 < < n/2. The family of all the wave 
normals having 6 = Or forms a cone around Bo, which is known as the resonunce cone; for 
a given plasma, the cone angle 8, is a function of the wave frequency. 

The resonance cone is the boundary between a range of 0 in which n2 > 0 and the kernels 
are nonzero, and a range where n2 < 0 and the kernels are zero by definition. Fortunately, 
as 6 tends to 0, within the first of these two ranges, all the kernels tend either to zero or to 
finite limits; this result is proved in Section 6. However, care must be taken to write the 
general expressions for the kernels in forms involving only negative powers of n,  so as not to 
have difficulties near the resonances. 

Similar considerations apply to the group refractive index ngr which enters into the 
general expressions for the kernels via the wave energy density p ;  see equation (10). This 
index is 

where V, is the modulus of the component of the group velocity in the direction of the wave 
normal, as defined by equation (3) in Paper I. (Deferring to the custom in other branches of 
physics, we now use the term group velocity to mean the velocity with which the group 
travels in the ray direction: in Paper I, we called this the group-ray velocity.) The derivative 
in equation (31) is always positive in the present context, so henceforth we omit the 
modulus sign. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn equivalent alternative expression for ng is 

ng = n3vg 

where 

i a  

g - 2  a a  v = - w 3  - [- ( a n ) - 2 ] .  (33) 

As the angle 0 approaches the value 8, for a resonance, vg remains finite while ng tends to 
infmity like n3. 

5 Wave energy density 

In a transparent medium, the energy density of an electromagnetic wave is 

P =P,IVg (34) 

where Pn (not to be confused with Stix’s parameter P )  is the component of the time- 
averaged Poynting vector parallel to the wave normal, and 
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The time-averaged Poynting vector is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% (ex h* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt e* x h). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P n = x * P =  % ( N t N % )  (37) 

N =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx *  (ex h*). (38) 

(36) 

Its component parallel to the wave normal is 

where 

With the help of equations (22) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(23), this quantity may be expressed in terms of the 
components of e and of h in the complex principal axis coordinate system, and thence in 
terms of the corresponding complex amplitude vector f for the generalized electric field: 

- sin e f 3  [f,* exp ( i ~ )  - f: exp (- i ~ ) ]  . (39) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
Now all the different terms on the right-side of equation (39) involve different types of 
product of one component of f with the complex conjugate of another. For the derivation, 
in Section 6, of each of the kernels bij, it 'will be necessary to have an expression for p 
involving only the product fi$*, for reasons already mentioned in Section 1. By extracting 
the product A$* from all the different terms above, we obtain an expression of this type 
for N :  

where the functions G, q and < are 

$ = 1 -fzfs*l f i f4*, (42) 

B = 1 - (fl /fz) exp (- 2i@), 

t = 1 - (f5*/f:) exp (- 2i@). 

(43) 

(44) 

These three functions are independent of the variable subscripts i andj. 
Finally, by inserting the expression (40) into equation (37), and the result into equation 

(34), we arrive at a general expression for the energy density p as a multiple of any one of 
the 36 productsJ;:J*, namely 

This is the required result. 
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6 The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAintegration kernels 

6.1 G E N E R A L  E X P R E S S I O N S  

By combining the above result for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp with their definition (lo), we get the following general 
expression for the kernels in the complex principal axis coordinate system: 

It involves only the wave variables o, i3 and q5, and the plasma parameters R ,  L and P. 
We remind the reader that equation (46) applies only at values of these quantities for 

which n2 > 0: if n2 < 0, then bij = 0 by deffition. In regions of the CMA diagram where an 
oblique resonance exists, n2 changes sign as 8 varies from 0 to n/2, the change occurring by 
passage through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk =. Before computing the set of kernels required for a given application, it 
is important to check whether there is a resonance, for instance by seeing whether the para- 
meters P and S have opposite signs. If so, then the next step should be to calculate the 
resonance angle Or using equation (30), since it bounds the range of i3 over which the 
computations need to be made. 

The derivation of the explicit expressions for the individual kernels is lengthy; but does 
not involve any special difficulty. Before quoting them, however, it is helpful to define a 
new quantity which we shall call t .  It involves vg, as defined by equation (33), and two other 
parameters : 

C O S ~  8, 
[ (L -P)'(1 -Rn-')* 

( R  - P)' (1 - Ln-2)2 
A z 2 ( R - P )  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt -  

(R - L)' (1 - Pn-')' 

(R -. P )  (1 - Ln-2)2 
/l= sin2 8. 

(47) 

In these terms, the necessary quantity is 

E 8 [€ovg(h t /l)]-'. (49) 

It has the dimensions of ei l ,  which are the same as those of the kernels. The above 
defmitions of A, p and differ in sign, and by multipliers that are integral powers of n, 
from those used by Lefeuvre (1977). 

We are now in a position to list the 36 kernels bii. In point of fact, it suffices to list the 
six kernels with i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  and 15 of the kernels with i + j ,  since the remaining 15 are given by the 
relation bji= b;, which follows from their definition (10). Here are the 21 expressions: 

(1 - Rn-') (1 - Pn-') 
4 cot i3 exp (i@), b ~~ 

b14 = - in-' (1 -&I-') r; cos 8, 

13 - 
R - P  

n-'(l - (L  - P) ( 1  - Pn-') 
- cos 0 exp ( 2 @ ) ,  b 

15 - 
(1 - Ln-2) (R - P) 
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184 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b16=i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. R. 0. Storey and F. Lefatvre zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

g sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 exp (i$), 
n-l (R - L )  (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPn-')' 

2(R - P) (1 - Ln-') 

(1 -Pn-')'(l - R  -' ' 
(R - P) (1 - Ln-')' 

(1 - Pn-') (1 - Rn-')' 

(R - P) (1 - Ln-') 

bzz = - I$, 

b23= g cot 6 exp (- i$), 

n-'(l -Pn-') (1 - R -' 
1 - Ln-' 

bZ4= - i g cos e exp (- 2i$), 

pz-l (1 - Pn-') (L  - P) (1 - Rn-')' 
bz5 = i g cos e, 

(R - P) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 - Ln-2)' 

n-l (R - L) (1 - Rn-') (1 - &-')' 
bZ6=i g sin 8 exp (- i@), 

2 (R - P) (1 - Ln-')' 

(1 - Rn-')2 
b33 = cotZ e, 

R - P  

bM = - in-' (1 - Rn-') g cos 8 cot 8 exp (- i$), 

b35= i -  

b36= i- g COS e, 
2(R - P) (1 - Ln-2) 

n - ' ( L - P ) ( I  - R  -' ' 
(R - P) (1 - Ln-') 

g cos e cot e exp (i$), 

n-' (R - L )  (1 - Rn-') (1 - Pn-') 

b4 = n-'(R - P) g COS' 8, 

b45= ~ _ _ _  c o s ~  e exp (2i@), 
n-' (L - P) (1 - R -' 

1 -Ln-' 

n-'(R - L )  (1 - Pn-') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t sin 0 cos 0 exp (i$), b46 = - ~~ 

2(1 - Ln-') 

n-'(L - P)'(1 - Pn-2)' 
b55 = g Cos~ e, 

(R - P)(1 - Ln-2)' 

b56=- - 
2 ( f i  - P) (1 - Ln-2)' 

b66= ~ ~ $ sin' 8 .  

n-' (L - P) (R - L )  (1 - Pn-') (1 - Rn-') 
t sin 8 cos 8 exp (- i@), 

n-Z(R - L)'(1 - Pn-2)' 

4(R - P) (1 - Ln-2)' 

With use of the appropriate values of n and of g, these results apply to both magneto-ionic 
modes. Their rather awkward algebraic forms, involving negative powers of n, have been 
adopted in order to avoid computational difficulties near the plasma resonances (see Section 

At a resonance, the kernels involving only electric field components tend to finite limits, 
those involving both electric and magnetic components tend to zero like n-'. while those 

4). 
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involving only magnetic components tend to zero like n-'. This behaviour reflects the fact 
that an electromagnetic wave acquires an increasingly electrostatic character as a resonance is 
approached: its electric field becomes relatively strong, and is mainly directed parallel to the 
wave normal (Allis et  al. 1963). 

For waves having their normal directions extremely close to the resonance cone, the 
phase velocities are not large compared to the random thermal velocities of the plasma 
electrons. Consequently these waves do not conform to the predictions of cold-plasma 
theory: in particular, they suffer collisionless damping. The analysis developed in the present 
series of papers is founded on the assumption that the waves are undamped (see Paper I), 
so it is not altogether valid if an appreciable fraction of the energy of the random field is 
carried by resonant waves. Various natural plasma instabilities tend to produce such waves, 
If there is reason to suspect that this is happening, then our analysis must be applied with 
caution. 

Returning now to the general expressions for the kernels, we might expect that the 36 
kernels defined by equations (50a)-(50u) would involve altogether 36 different functions, 
namely the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsix real auto-kernels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbii together with the 15 real and 15 imaginary parts of the 
cross-kernels bij, for instance with i < j  as above. However, a close inspection of these 
equations reveals that the cross-kernels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbI4, bzs and b36 are purely imaginary. These are the 
kernels in which one component of e is associated with the same component of h; they are 
purely imaginary because the wave admittances given by equations (26a)-(26c) have this 
property, as we pointed out in Section 3. Thus the-equations (50a)-(50u) define only 33 
independent functions. 

From these various expressions for the kernels in the complex principal axis system, the 
expressions appropriate to any other set of coordinates may be derived readily. For instance, 
the kernels aii, which belong to the rectangular system Oxyz, are obtained from the bii by 
means of equations (12a)-(12f). Since the ail are tensors of rank 2, the kernels in any other 
rectangular system can be got from them by a straightforward tensor transformation. 

It remains for us to discuss the general properties of the kernels, and especially their 
variations with wave-normal direction at fixed frequency, which is of the greatest interest to 
us for the reasons given in Section 1 In this respect the bii behave more simply than the aii 
do, because every one of the bii is the product of a function of 0 and a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, which 
is not the case for the aj j .  Therefore our discussion of the properties of the kernels will 
concern only the bij; the ways in which they depend on 0 and on 6 will be discussed 
separately, beginning with their dependence on 4. 

6.2 D E P E N D E N C E  O N  qi 

This dependence is very simple, involving no other variables. An inspection of equations 
(50a)-(50u) reveals that the kernels fall into three categories, as follows: 

- all the bij involving field components along the same axis (that is, with i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj or I i - j I = 3) 
are independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9; 

- all the bij involving one component along the axis parallel to Bo (that is, with i or j equal 
to 3 or 6), and with the other component not along this axis, vary as exp (i4) or as 
exp (- i4); 

- all the bii with i # j but with neither i nor j equal to 3 or 6, vary as exp (2i4) or as 
exp (- 2iqi). 

The first category comprises the six auto-kernels, which are purely real, together with the 
cross-kernels bI4, bzs and b36 which- as we noted in Section 6.1 above - are purely 
imaginary. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
2
/1

/1
7
3
/6

2
0
5
6
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



186 

In the general expressions for the other cross-kernels, belonging to the second or third 
categories, the factors that multiply the terms exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(k @) or exp (+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2io) are either purely real 
or purely imaginary. They are purely real for the kernels involving either two electric com- 
ponents (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  j G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3) or two magnetic components (4 G i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj G 6). They are purely imaginary 
for the kernels involving one electric and one magnetic component ( I  i - j I z 3). Thus it is 
only in virtue of their @-dependence that these kernels take complex values. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L. R. 0. Storey and F. Lefeuvre 

6.3 D E P E N D E N C E  O N  e 
This dependence is relatively complicated, since it involves the quantities R ,  L ,  P, n and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, 
all of which are functions of 0,  Only one aspect of it is amenable to general discussion, 
namely its symmetry. The 0-dependence either has reflection symmetry about the angle 
7712, meaning that by(r  - 0) = bii(0), or skew symmetry, in which case bii(n - 0) = - bji(0). 

The rules that govern the symmetry can be inferred from equations (50a)-(50u), or more 
readily from equations (56a)-(56u) in Section 7, where the presence of the factor s 
indicates that the kernel concerned is skew-symmetric. Knowing them, the dependence of 
the kernels on 0 is specified fully when it is given in the range 0 g 0 G 7712. 

The details of the 8-dependence are governed by the relative values of the wave frequency 
and of the various characteristic frequencies of the plasma. They are discussed in Section 7, 
in the important special case of the whistler mode. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 The whistler mode 

The whistler mode is the right-polarized (ordinary) mode of propagation that exists at wave 
frequencies less than both the plasma frequency and the electron gyro-frequency (i.e. for a 
two-component plasma, in regions 7, 8, 11 and 13 of the CMA diagram). In the upper part 
of this frequency range only the electrons influence the properties of the waves, but in the 
lower part the ions are equally important; the division occurs at the lower hybrid resonance. 
(LHR) frequency. In the band below the LHR frequency, whistler-mode waves are 
propagated freely in all directions in a twokomponent plasma, but in a plasma containing 
more than one type of positive ion their behaviour is relatively complicated (Smith & Brice 
1964). Above the LHR frequency there is an oblique resonance, and propagation is possible 
only with 0 < Or. In this upper band of frequencies, the whistler mode is the only one in 
which electromagnetic waves can be propagated: waves in the left-polarized (extraordinary) 
mode are evanescent. 

We shall study the 0-dependence of the integration kernels for waves in the whistler 
mode, at frequencies in the upper band. For this purpose, we shal l  replace the exact 
expressions (50a)-(50u) for the kernels by simpler approximate expressions based on the 
quasi-longitudinal (QL) approximation (Stix 1962), the condition for which is 

a: sin4 e Q 4w2 (1 - n : / ~ ~ ) ~  C O S ~  8 (51) 

where fie is the angular electron gyrofrequency and n, is the angular electron plasma 
frequency. Moreover we shall assume that TI, B ae, in which case the QL approximation 
for the phase refractive index becomes 

where, in the notation of Helliwell(1965), 

A = w/C12,, B = ne/ae. (53) 
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A is a normalized wave frequency and B a normalized plasma frequency (not a magnetic 
induction). Additionally we have written 

= I COS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 1. (54) 

er = C0s-l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. (55) 

There is an oblique resonance at the angle 

Thus Or decreases with increasing frequency. With B B 1 as assumed, the inequality (51) is 
satisfied for all 0 G Or, which is the range of 8 where wave propagation is possible (n2 > 0). 
In point of fact, for whistler-mode waves above the LHR frequency, these various 
assumptions and approximations hold reasonably well throughout much of the magneto- 
sphere. 

Here are the corresponding approximations for the kernels: 

b , ,= (2~ , ' )B -~ [A ( l  - A)2(1 +x)~x- ' ] ,  

blz = ( 2 ~ i ' ) B - ~  [A(l - A') (1 - x2)x-'] exp (2i@), 

b13=~(2ei')B-~[A'(l - A ) ( l  - ~ ' ) l / ~ ( l  +x)x-']exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i@), 

b14= - is(2e;')B-l [A1\"'(l - A) (1  + x)'o( - A)'/'x-~], 

b15= is(2ei')B-1 [A1l2(1 - A) (1 - 12) (x - A)l'zxx-'] exp (2i@), 

b16=i(2ei1)B-' [A112(1 -A) (1 - ~ ' ) ' / ~ ( 1  + x )  (x - A)1/2x-'] exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i@), 

b22= ( 2 ~ i l ) B - ~ [ A ( l  i- A)2(1 - x)'x-l], 

b23= ~ ( 2 e i ' ) B - ~  [A2(1 + A) ( 1  - xZ)!/'(1 - x)x-'] exp (- i@), 

b24= - is(2E;')B-l [A1I2(1 t A) (1 - x') o( - A)1/2x-1] exp (- 2i$), 

b 2 5 = i ~ ( 2 ~ i ' ) B - ~  [A1"(l t A) (1 - x)'o( - A)1/2~-1 ] ,  

b26= i(2e;')B-' [A112(1 t A) (1 - ~ ' ) ~ / ' ( 1  - x) (x - A)1/2x-'] exp (- i@), 

b33 = ( 2 ~ ; l ) B - ~  [A3(l - x2)x-'], 

b34= - i(2e;')B-' [A3/'(l - ~ ' ) ' / ~ ( 1  t x) (x - A)1/2x-1] exp (- i@), 
b35 = i(2ei')B-' [A3/'(l - x2)ll2(1 - x) (x - A) 1/2 x -1 I exp (i@), 

b44= (2e i l )  ((1 i- x)zo( - A>x-'I, 

b45 = - (2ei1) [(I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx') (x - A)x-'I exp (2@), 

b55= ( 2 4 )  [ ( I  - XlZ(X - Nx-l l ,  

b 3 6 =  iS(2e;l)B-l [A3l2(1 - x2) (x - A)'/2~-1], 

b46= - ~ ( 2 ~ 0 ~ )  [(l - ~ ' ) ~ / ' ( 1  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd (x - A)x-l] exp (i@), 

bS6= ~ ( 2 ~ 0 ~ )  [ ( l  - ~ ' ) ' '~ (1  - x) o( - A)x-'] exp (- i@), 

b66= (2€01) [(I - X') o( - A)x-']. 

In the expressions above, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s = sn(cos e )  = (COS @)/I cos 8 I 

where sn is the signum function. 
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Before studying how these kernels depend on the angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, let us first examine briefly their 
dependence on the other variables. 

Their dependence on the plasma frequency is represented by the factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,  which is absent 
from the expressions for the kernels that involve magnetic field components only. It appears 
as B-' in the kernels involving one magnetic and one electric component, and as B-2 in 
kernels involving two electric components. Consequently, as the plasma frequency increases 
(relative to the electron gyro-frequency), the electric field components become weaker in 
comparison with the magnetic components; this is due to the increase in the phase refractive 
index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, which is proportional to B and which enters as a multiplier into the equations 
(26a)-(26c) for the wave admittances. This influence of n on the different types of kernel 
is also apparent in equations (50a)-(5Ou). 

The dependence of the kernels on the wave frequency is represented by the factor A. 
We note that the expressions for all the kernels that involve the P-component of the electric 
field (i.e. those with a subscript 3) contain A to a power of 312 or more as a multiplier. 
Hence a decrease in frequency is accompanied by reductions of these kernels in comparison 
with the others. The reduction is most marked for b33, which is proportional to A3. It is due 
to the fact that, at the lowest frequencies, the wave electric field is almost exactly 
perpendicular to Bo; this can be shown from the equations (24a)-(24c) for the electric 
polarization ratios. 

We come now to the dependence of the kernels on 8, which is represented by the factors 
s and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. The expressions (56a)-(56u) have been written in terms of these factors because, 
when evaluating the integral of equation (l), it is helpful to take cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 as a variable of 
integration (see Paper I). 

The presence of s in an expression indicates that the 8-dependence of the kernel 
concerned is skew-symmetric with respect to the point 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n/2. Another symmetry is 
exhibited by the kernels that involve either the electric field components only, or the 
magnetic field components only: whenever the expressions for them contain the factor s, 
it is always accompanied by a 8-dependence of the form exp (@) or exp (-@). This implies 
that bii(6, @) = bii(n - 8, n + @), or - in words - that the kernel is unchanged if the wave- 
normal direction is reversed. On the other hand, all the kernels that involve both electric and 
magnetic components change sign in these circumstances. Of course, these various 
symmetries are independent of the wave mode, but they are more easily perceived in the 
approximate expressions (56a)-(56u) for the whistler-mode kernels than in the general 
expressions (50a)-(50u). 

The functional dependence of the kernels on 0 in the range 0 G 0 G n/2 is given by the 
dimensionless terms in the rectangular brackets, which contain the factor x and which we 
shall call &i. They are plotted in Figs 1-3, at values of A ranging from 0.1 to 0.8, for the 
21 kernels listed above. These graphs exhibit a number of noteworthy features. 

At the origin (0 = 0), only the kernels bl l ,  bI4 and bM remain fiiite; each of them 
involves only the R-components of the field. All the others are zero at the origin, and for 
most of them the slope is zero also. Exceptions are the kernels that involve one R- 
component and one P-component, namely b 13, b 16, b3 and b46; consistent with their f i t e  
slopes at the origin, their &dependence is of the form exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i0) or exp (-i0). 

At the resonance angle (8 = Or), the six kernels that involve only electric field components 
remain finite; the lower the frequency, the higher their values (Figs 1 and 2). All the other 
kernels tend to zero. The kernels involving only magnetic components do so with f i i t e  
slopes, while the cross-kernels involving one electric and one magnetic component have 
infinite slopes at Or. 

Between the origin and this upper limit of 0 ,  the behaviour of the kernels is quite diverse, 
in fulfilment of the hopes that we expressed in Section 1. 

L. R. 0. Storey and F. Lefeuvre 
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0.3( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
055 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.21 

0.1c 

0.25 . 

R33 

0.15 

Figure 1. &dependence of the six auto-kernels for the whistler mode of propagation. Those in the column 
on the left involve electric field components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonly, while those on the right involve magnetic components 
only. The eight curves for each kernel correspond to A = 0.1,0.2. . .0.7,0.8, in descending order of their 
intercepts with the horizontal axis at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, = cos-' A. 
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1. 

012 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.6C 

0.2c 

0.: 

013 

0 2  

0.' 

0 30 

'23 

0 20 

0.10 

0.61 

045  

0.41 

0.2 

1 .? 

'46 

A I  0.' 

1 0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' 5 6  

0.3C 

0.2C 

0.1c 

30 6 0  90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. $-dependence of the six whistler-mode cross-kernels involving field components of the same 
type. Those in the column on the left involve electric field components only, while those on the right 
involve magnetic components only. The values of the parameter A are the Same as in Fig. 1. 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
030 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Analysis of wave field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin a magnetoplasma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA191 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. &dependence of the nine whistler-mode cross-kernels involving field components of different 
types, one electric and one magnetic. The values of the parameter A are the same as in Fig. 1 .  

8 Conclusion 

On the assumptions that the plasma is cold and collisionless, general expressions have been 
derived for the kernels in the set of integral equations (1) that relates the spectral matrix 
to the wave distribution function. 

These expressions have been given in algebraic forms that are usable for computation at 
all values of the angle 8, including the resonance angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,. At 8,, the kernels either vanish or 
remain finite. Very close to the resonance, however, cold-plasma theory breaks down 
because the phase velocities of the waves cease to be much larger than the electron thermal 
velocities; the consequences of this for our analysis have yet to be examined. 

Besides these general expressions, simpler approximate expressions have been given that 
apply, under well-defined conditions, to waves propagated in the whistler mode. In the 
remaining papers of the present series, these approximate kernels will be used in worked 
examples demonstrating our various methods of analysis. The significance of the ways in 
which they depend on @ and on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, as discussed in Sections 6 and 7 and illustrated in Figs 
1-3, will then become apparent. 
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The information in the present paper, added to the findings of Paper I, completes the 
solution of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdirect problem in the analysis of six-component measurements of a random 
electromagnetic wave field. We have now to deal with the corresponding inverse problem: 
namely, knowing the kernels and given measurements from which we can estimate the 36 
elements of the spectral matrix, to what extent can the wave distribution function be 
determined and how should this be done? The solution of the inverse problem is the subject 
of the remaining papers. 

L. R. 0. Storey and E Lefeuvre 
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Appendix: the circular components of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa time-varying vector 

The concept of circular components has been explained most clearly by Kodera, Gendrin & 
de Villedary (1977), whom we shall refer to as KGV for short. However, we shall differ from 
them slightly in our definition of these components, for the sake of consistency with the 
work of Buneman (1961), of AUis etal. (1963) and of Lefeuvre (1977). 

First, let us define the circular components for some real vector U that varies with time in 
an arbitrary way. In the rectangular coordinate system Oxyz, its components are U,, Uy 
and U,. With notation similar to that of KGV, we defme the complex analytic signals Uxa(t) 

and UYa(t) corresponding to the real signals U,(t) and Uy(t ) :  
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where% is the Hilbert transform: 

1 - x(7) 

In - , t - r  
# [ ~ ( t ) ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 PP I - / __ d7). 

PP signifies the principal part. From these analytic signals, KGV define the two circular 
components of U as follows: 

('43) 1 U+(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Uxa(t) + iUya(t)IP, 

U-(t) = [Uza(t) t i ~ ; ~ ( t ) l / 2 .  

However, we prefer to work with two equivalent but slightly different quantities, namely 

(A41 1 UR(t) EE 2U+(t) = U,a(t) t iUya(t), 

U,(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 U-*(t) = Uxa(t) - iU,,,(t). 

In the present paper, the quantities defined by equation (A4) are called the circular com- 
ponents of U, or alternatively, its components in the complex principal axis coordinate 
system. The subscripts R and L signify right-handed and left-hunded, referring to the sense 
of rotation around the z-axis; this point is explained below. Finally, for the third component 
of U, directed parallel to the z-axis, we define Up = U,. Thus, in the complex principal axis 
coordinates, we have U =  (UR, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, Up); we shall refer to these circular components as the 
R-component, the L-component and the P-component. 

The significance of these definitions may be appre.ciated by applying them to a vector of 
which all three components vary sinusoidally, for instance 

V ( t )  = Re [v exp (iwt)]. 645) 
The constant vector v is the complex amplitude of V(t).  The components of V(t) in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOxy 
plane are 

V,(t) = Re [ux exp (iwt)], 

V,,(t) = Re [u,, exp (iwt)]. 

The corresponding analytic signals are simply 

Vxa(t) = u, exp (iwt), 

Vya(t) = u,, exp (iwt). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
Therefore, from equation (A3), 

I V+(t) = % (ux t iu,,) exp (iwt), 

V-Q) = % (u; + iu;) exp (- iwt). 

These quantities are complex numbers with constant - but generally different - moduli, 
and with arguments that vary linearly with time, positively for V+(t) and negatively €or 
V-(t). If Oxy is regarded as the complex plane, with Ox the real axis and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOy the imaginary 
axis, then the vectors representing V+(t) and V-(t) rotate around Oz at the angular 
frequency w ,  in a right-handed and in a left-handed sense respectively. The loci of the end- 
points of the two vectors are circles, which is why KGV called these quantities circular 
components. 

We, however, reserve this name for the related quantities 

V,(t) = 2V+(t) = (ux t ivy) exp (iwt), 

VL(t) = 2~-*(t) = (u, - iu,) exp (iwt). 

I 
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The principal advantage of our definition is that, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsince the expressions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVR(t) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVL(t) 
contain the same exponent, the phase differen= between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthese two complex components is 
constant, so it is meaningful to speak of their phase relationship. We also have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. R. 0. Storey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand F. Lefarvre 

V,(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t) = Re [vz exp (jut)]. W O )  
This third component of V ( t )  is purely red. Hence, in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe complex principal axis 
coordinates, the complex amplitude of V ( t )  is the constant vector v with components 

uR = u, + ivy, VL = u, - i vy ,  up = U, ( A l l )  

but we note that the relation between each component of V ( t )  and the corresponding 
component of v is different For uR and UL from what it is for up. Equations analogous to 
equation (A1 1) were used by Bunernan (1 961) and by Allis et al. (1 963) far defining the 
circular components of a harmonically varying vector, but in order to make the coordinate 
transformation unitary they included in their definitions 8 factor of 4 2  which we prefer 
to omit, following Quemada (1968). 

The definitions that our equations (Al)-(A4) provide, for the circular components of an 
arbitrarily varying vector U(t) ,  amount to applying the reasoning behind equations (AS)- 
(A9) to each of the elementary harmonic vectors into which U(t) can be decomposed by 
Fourier analysis. 

These various definitions and concepts are applied to an electromagnetic field in Section 
2 of the present paper. 
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