
 

The analysis of a conveyor belt system : a case study in
hybrid systems and timed muCRL
Citation for published version (APA):
Willemse, T. A. C. (1999). The analysis of a conveyor belt system : a case study in hybrid systems and timed
muCRL. (Computing science reports; Vol. 9910). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/929ee5f7-ff6b-48b0-b5e6-e245cbd411d5


ISSN 0926-4515 

All rights reserved 

Eindhoven University of Technology 

Department of Mathematics and Computing Science 

The Analysis of a Conveyor Belt System 

a case study in Hybrid Systems ant timed .uCRL 

by 

Tim A.C. Willemse 

99110 

editors: prof.dr. R.C. Backhouse 

prof.dr. 1.C.M. Baeten 

Reports are available at: 

http://www.win.tue.nllwin/cs 

Computing Science Reports 9911 0 

Eindhoven, August 1999 



The Analysis of a Conveyor Belt System 

a case study in Hybrid Systems and timed p,CRL 

Tim A.C. Willemse 

Eindhoven University of Technology 

Department of Mathematics and Computing Science 

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands 

timw@win.tue.nl 

Abstract 

A Conveyor belt system, together with its safety and efficiency objectives is described and studied in 

the setting of timed j.LCRL [9]). First, various safety requirements, dealing with the safe transportation of 

trays from the front end to the back end of the belt, and the speed of the belt are stated. Subsequently, a 

specification in timed peRL is given for such a system. This specification is the subject of further calcu

lations and analysis. Using various techniques and theorems, devised within the theory of timed peRL, 

such as the Sum Elimination Theorem and the Encapsulation and Expansion Theorem, properties of the 

system are proved and discussed. Also, a section is devoted to a brief comparison between the theory of 

Hybrid Automata [14} and timed "CRL. 
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1 Introduction 

Hybrid systems are systems in which the essence of the system cannot be captured by describ

ing only the continuous or the discrete behaviour, but the combination of both is essential. The 

interest in these systems has its foundations not solely in the academic world, it also shows in 

the industry, in which many real-life physical components, including complete factories have to be 

automated. For many of the hybrid systems that are considered, very strict safety and liveness 

requirements must hold. Safety requirements basically state that nothing bad ever happens. One 

can think of requirements that protect people from physical threat (e.g. in aviation, air-traffic 

control, control of nuclear power plants), or requirements ensuring no products are lost or dam

aged. The liveness requirements often deal with progress issues, ensuring eventually something 

good will happen. Apart from these requirements, efficiency is often an issue not to be discarded, 

especially from an industrial point of view. 

On top of these requirements, some of which are very hard to test in real-life, there is the fact 
that financially it is very interesting to consider models of systems. This especially applies to 

the more expensive or hazardous physical systems. Traditionally, in the engineering disciplines of 

mechanical engineering, electrical engineering, chemical engineering, etc. the (continuous) phys

ical systems are described using for instance Differential Algebraic Equations (see f.i. [6]). The 

description of the discrete parts of the hybrid system, is often a task that best fits in with the 

disciplines of (discrete) mathematics and computing science. The techniques used within these 

disciplines vary from process algebras and automata to state charts. It is rather remarkable that 

only recently, attempts have been made to integrate the techniques used in these disciplines. Al

ready, many methods and models have been proposed ([4], [17], [16], [5]) and investigation into 

these methods and techniques and their applications still is a hot topic. 

These relatively recent developments provide a new area of application for process algebras, having 

a history of being applied to discrete systems, such as (data) communications protocols. Within 

the theory of process algebras, various approaches exist, such as CCS [19], LOTOS [15] and ACP 
[3]. Already a few case studies, in which process algebras have been used to describe a hybrid 

syst.em, have been made (e.g. [1] and [11]). 

In this article, the formalism timed pCRL [9], is used to describe and analyse a hybrid system, 

consisting of a conveyor belt and its controller. The example is inspired by [20] and [7]. In this 

example, the conveyor belt is a physical system, governed by certain DAEs, and put to use for 

transportation of trays from the front end to the back end. The task of the controller, which is 

discrete in nature, is to make sure the system as a whole adheres to four (simple) requirements, 

dealing with liveness, safety aspects such as collision and speed controlling, and efficiency aspects. 

In section 2, both the controller and the conveyor belt are described in greater detail, leading to 

descriptions in timed pCRL; these descriptions are then simplified, mainly using theorems such 

as the Sum Elimination Theorem. Section 3 describes the behaviour of the hybrid system as the 

composition of the specifications derived in section 2; various invariants are formulated proving 

that, if no deadlock occurs, the system adheres to all safety requirements, provided the system is 

deadlock free. Section 4 subsequently shows the required absence of deadlock and comments on 
some operational analysis. Section 5 contains a brief comparison between the formalism of Hybrid 

Automata [14] and timed pCRL and finishes with some closing remarks on future work. 

It turns out the formalism timed ttCRL is quite suited for the description of systems which are 

hybrid in nature, and that it allows for thorough analysis of these systems. However, this case 

study also shows that still a lot of research needs to be done in the formalism timed pCRL; 

for instance the rather alarming number of timed deadlocks arising from the application of the 

Encapsulation and Expansion theorem is something to be looked into. 
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2 The components of the Conveyor Belt System 

The system described in this article is a conveyor belt system, which consists of a belt and a 

contmller. The system defining the interaction between the belt and the controller is called the 

conveyor belt system (see figure 1). 

I 
• .. 

Belte ) ( ) Controller 

Figure 1: The conveyor belt system 

It is assumed that the conveyor belt system is put to use for the transportation of trays. The 

remainder of this section is devoted to describing the design criteria for the conveyor belt system. 

2.1 The control objectives 

For reasons of convenience, the belt is assumed to have a fixed length 0 < l. The belt is 0 with 

dedicated sensors, positioned at 0, ~l and l. A sensor is triggered the moment an object passes it. 
Furthermore, it is a reasonable assumption that the trays that need transportation, have a fixed 

length of 0 < 'II, < ~l. This way, at least two trays fit on the belt. The control objectives of the 

system are as follows: 

• Trays should be transported from the front end to the back end environment. 

o Trays should not collide. 

• The velocity of the belt must be in the range of 0 to Vmax , where 0 < vmax . 

• Support a mechanism to make a trade off between the throughput of trays and the energy 

efficiency of the system. 

The first requirement is classified as a liveness property, since in the end we wish to put the conveyor 

belt system to use. The second and third objective can be classified as safety requirements, since 

the violation of these requirements will result in physical damage of either system or product. 

The fourth requirement forces no design, however, it is a control objective since it does affect the 

behaviour of the conveyor belt system. 

2.2 Narrowing the choices 

Since the control objectives leave a lot of freedom) one additional requirement is formulated, which 

proves to be sufficient to narrow the choices for a decent model of the conveyor belt system. An 

obvious choice is to allow for up to two trays on a belt, since a belt is capable of carrying two 

t.rays at a time with the system still adhering to the second control objective. The belt must then 

be able to accept a new tray when the previous tray has reached the mid point of the belt. 

2.2.1 The discrete model 

The discrete model, depicted in figure 2 is, with respect to the previous sections, the model that 

is intuitively enforced. 

The transitions between states are labelled with events, which basically have the following meaning 

<l.'3sociated with them: 

o The arrival of a tray at the front end of the belt (ar). 

o The arrival of a tray at the mid point of the belt (mid). 
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~", . .o 
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Situation 1 : Situation 2 Situation 3 

Figure 2: 4 transition diagram 

• The departure of a tray from the belt (dep). 

• The adjusting of the torque applied to the motor of the belt (F) (see also section 2.2.2). 

The model depicted in figure 2 furthermore makes a distinction towards the number of trays on 

the belt. In words, the following situations are modelled: 

• No t.ray is present on the belt (situation 1), 

• One tray is present on t.he front end OR the back end of the belt (situation 2), 

• Two trays are present on the belt (situation 3). 

2.2.2 The continuous model 

Since the position of a tray is an essential part of the discrete model, this somehow has to be 

incorporated into a hybrid model combining both the discrete and the continuous model. BaBic 

IIlechanical engineering shows that a model for the position of a tray can be written as a Differential 

Algebraic Equation (DAE) (see for instance [6]). 

distance travelled 

/ 

ar fIXed reference point 

Figure 3: The fixed reference point 

Although a number of factors can have an impact on the displacement of the trays, the following 

modelling assumptions are made: 

• The velocity of the belt (and thus of the trays on the belt), is (indirectly) controlled by the 

torque applied to the motor of the belt. 

• A tray, together with its load, is assumed to have a fixed mass, which is too small to affect 

t.he velocity of the belt in a substantial manner. 

• A t.ray is assumed to have a fixed reference point (see figure 3). 

• A tray is only carried by the belt that carries the reference point. 

The t.hird assumption is basically t.he one that allows us to write the displacement as a simple 

DAE, the other three assumptions are introduced in order to keep the model as simple as possible. 
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The system can now be described using the following three DAE's: 

x~(() = bf(() 

x;(() = Ax,(() + Bf(e) 

;c~() = Cx,(() + Df(() 

(2.1) 

(2.2) 

(2.3) 

The constants A, B, C and D are matrices of appropriate dimension, defined in equation 2.4. 

The function Xi is a function from the domain Time to JR.i+l. In words, the model expresses 

hmy the speed and the position of a tray are related in time. It is assumed that the function 

f : Time -) IR is prescribed by the controller, and represents the value of the torque in time. 

Intuitively, the functions model the following: 

• The value of xo(t) describes the velocity of the belt at time t E Time when no tray is present 

on the belt. 

• For each t E Time, the first component of Xl (t) expresses the distance covered by the tray 

at time t and the second component expresses the velocity of the belt at time t, when exactly 

one tray is present on the belt. 

• For each t E Time, the first component of X2(t) expresses the distance covered by the 

foremost tray at time t, the second component expresses the velocity of the belt at time t 
and the third component represents the distance covered by the subsequent tray at time t, 
provided that there are exactly two trays present on the belt. 

Note: Throughout this article, the constants A, B, C and D are matrices, defined as follows: 

(2.4) 

The constant b in Band D is present to account for a number of physical phenomena, such a.,-', 

friction and a fraction for the masses of the tray. 

2.3 Modelling the Conveyor Belt System 

The natural problem that arises when constructing a model of a real system, or a system that 

is yet to be built, is how to abstract from reality and capture the essence of the system. A few 

helpful paradigms are separation of concernS and orthogonality. These paradigms basically state 

that when something is irrelevant to one system, this system should not be bothered by this. 

\Vhen modelling the conveyor belt system, it is of importance to apply these two paradigms to 

the models. A natural description of the system is by decomposing it into the real-life objects, i.e. 

the belt and the controller. The objective now is to model these entities as realistic as possible, 

without having both affect each other. 

2.3.1 A hybrid model for the belt 

The idea is to combine both the discrete model and the continuous model described in the pre

vious sections into one model. This hybrid model then has to be intuitive, readable and concise. 

Using t.he formalism timed I'CRL [9J, these goals can easily be achieved: the discrete model is 

easily t.ranslated to a model in I'CRL [10], and the timed features of timed I'CRL allow for a 

synchronisation of the continuous model and the discrete model in an intuitive fashion. 

For modelling the belt in a more detailed fashion, it is assumed that the following requirements 

hold: 

• The belt is equipped with sensors, which are triggered the moment the fixed reference point 

of the tray "hits" it. 
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• The belt has no means of controlling and influencing its own speed. 

• The belt is always able to accept new trays, even if this would mean that trays would collide 

(in a more pragmatic way: the belt has no means to influence the environment). 

The model built around these requirements consists of three different processes, viz. Belto, Belh 

and Bclt2, which are subsequently explained and described. One additional abbreviation is intro

duced: (}i is written for the function space Time --+ JRi+I. 

In order to describe the discrete model in timed !,CRL, the following actions are introduced: 

• Action arb signals the arrival of a tray at the front end of the belt. 

• Action mid" signals the arrival of a tray at the mid point of the belt. 

• Action dePb signals the departure of a tray from the belt. 

• Action Fb(-r) represents the receiving of the setting of the torque of the motor to ,,(, where 

f E Torque = {-Tmax,O,+Tmax} and ° < Tmax· 

Information about a previous (continuous) state is registered in dedicated parameters. The pa

rameter t is used to denote the time the system last performed an action, parameter Xs denotes 

the the continuous state of the belt at time t (i.e. speed and positions of trays if applicable) and 

the parameter f denotes the torque applied to the motor of the belt at time t. 

Process Belto describes the situation in which no tray is occupying the belt, and in which the belt 

is essentially waiting for new trays to arrive. Furthermore, the torque of the motor can be set in 

this st.ate. The process description is as follows: 

proc Belto(t : Time, x, : If!., f : Torque) = 

Process Belt l describes the situation in which one tray is occupying the belt, which is waiting to 

be transported to the end of the belt. The events that can take place are the setting of the torque 

of the motor, the arrival of a tray at the mid point of the belt and the departure of the tray from 

the belt. Moreover, a new tray can arrive in this state. The function 7ri is introduced to denote 

the projection onto the i-th argument of a tuple. 

proc Beltr(t: Time,x, : 1i!.2,f: Torque) = 

I:,,,Ti=e,x,,B, midb'U Belh(u,xl(U),f) 
~";; (() = AXI (e) + BfAx, = Xl (t) A 1f1(XI(U)) = ~l ~ 0'0+ 

)';,.,Ti=e,x"e, arb'U Bett,(u, (Xl (u), 0), f) ~X; (e) = Axr(() + B fAx, = x, (t) ~ 0'0+ 

E",Ti=e,x"e, depb'u Betto( u, 1f2(XI (u)), f) 
~X; (() = AXI (() + B fAx, = Xl (t) A 1f1 (Xl (u)) = I ~ 0'0+ 

Process Belt2 describes the situation in which two trays are present on the belt. Because one of 

the requirements is that at most two trays can be on the belt at any moment in time, this results 

in the absence of an arb action. The action midb is also not allowed, since this would imply that 

the trays are less than ~l distance apart. The actions that are again possible are the action depb, 

a.llowing for trays to depart from the belt, and F allowing for a change of velocity of the belt. 
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This is in accordance to the discrete transition diagram in figure 2. 

proc Belt2 {t : TiIne, x, : IR3,J : Tor'que) = 

I:",Ti=e,x,,8, dePb 'U Belt, {u, {71"3 {X2 (u)), 71"2 (X2 (u))), f) 
~x~(() = CX2(() + D f II x, = X2(t) 1171"1 (X2(U)) = I ~ 6'0+ 

The model described above is a reasonable model with respect to the requirements posed so far. 

Note: this model already incorporates some of the meta knowledge that has been written down. 

For instance, the decision to not allow for a new tray to arrive when already two trays are present 

011 the belt is debatable, since this assumes that the belt itself has some way of rejecting new trays, 

which is not completely according to the third requirement. Similarly, one could argue that the 

process Belt2 is too restrictive in that it does not allow for a tray to arrive at the mid point of the 

belt. However, in order to keep the model as concise as possible, the above solution was adopted. 

2.3.2 A hybrid Illodel for the controller 

Again, in this section, the discrete model presented in section 2.2.1 and the continuous model 

presented in section 2.2.2 are combined into one hybrid model, using the formalism timed I'CRL. 

The emphasis of the controller is on adjusting the velocity of the belt. For modelling the controller 

in a more detailed fashion, it is assumed that the following requirements are met: 

• The controller has information about the velocity of the belt. 

• \Vhen no trays are present on the belt, the controller allows for some time to pass, say k time

units, before the belt is decelerated. This delay is introduced to allow for a trade off between 

energy efficiency and throughput efficiency, such that the fourth requirement in section 2.1 
can be met. 

• The controller is able to act instantaneously on events. 

In order to describe the discrete model in timed J.LCRL, the following actions are introduced: 

• Action aT, signals the arrival of a tray at the front end of the belt. 

• Action midc signals the arrival of a tray at the mid point of the belt. 

• Action depe signals the departure of a tray from the belt. 

• Action F,b') represents the setting of the torque of the motor to "I, where "I E Tarque. 

Information about a previous (continuous) state is registered in dedicated parameters. Again, 

parameter t denotes the time the system last performed an action, parameter Xs denotes the rel

evant continuous state of the belt (in case of the controller only the velocity of the belt), and the 

parameter f is used to denote the torque applied to the motor of the belt at time t. 

Process Contgd describes the situation when there is no tray present on the belt. If the controller 

is in this state, it assumes that the belt is, if it did not already come to a stand still, decelerating. 

At any time, the controller must be able to receive a signal a new tray arrived, and at the same 

time, monitor and set the velocity of the belt. 

proc Cnntgd(t : Time, Xs : ffi., f : Torque) = 
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Process C ontg is in some sense the complementary process to process C ontad
• It describes the 

situation when there is no tray occupying the belt, yet, in this state it assumes that the belt is, if 

it did not already reach Vm,ax, accelerating. The reason for this could be that a tray was on the 

belt less than k time units ago. The controller tasks are essentially the same as for the situation 

described by process Contad
. 

proc Contg(t, d : Time, x, : iR, f : Torque) = 

~lt:TiIlle,;;::o:Oo al'c'U Cont~ac,am(u, xo( u), f) 

~1;6(() = bf 1\ x, = xo(t) 1\0 S;xo(u) S;vmaxl\u S; t+doo'O+ 

~u:Tillle,xo:Oo Fc(O)(u Contg(u, d + t - u, vmax , 0) 

~";6(() = bf 1\ x, = xo(t) 1\ xo(u) = Vmax 1\ f oF 0 1\ u < t + do 0'0+ 

E",,:Ba F,(-Tmaxl'(t+d) Conto"(t+d,xo(t+d),-Tmax ) 

~:c;)(() = bf 1\ x, = xo(t) 1\ 0 < xo(t + d) S; V max 00'0 

Process Cont~ac,ds describes the situation when exactly one tray is occupying the belt. According 

to the latest information, the belt is not yet able to accept a new tray and the belt is either 

still decelerating or it has already come to a stand still. The main task in this situation for the 

controller is to set the torque of the motor such that Vmax is maintained or reached. 

proc Cont;Wc,ds(t: TiIDe,xs : IR,f: Torque) = 

Process Cont7ac,am describes the situation when exactly one tray is occupying the belt. Further

nlOre, it is assumed that in this state, the belt is accelerating or has already reached maximal 

speed. Since the controller did not yet receive a midc action, the controller must make sure, no 

new trays can arrive. 

proc Cont~ac,am(t : Time, Xs : IR, f : Torque) = 

"E"T;=e.xo:Ba mid,'u Cont~'(u, xo(u), J) < x6(() = bf 1\ x, = xo(t) 1\ 0 S; xo(u) S; Vrnax 0 0'0+ 

1:ll:Time,xo:Oo Fc(O)<u Cont~ac,am( u, V max , 0) 

<x6(() = bf 1\ x, = xo(t) 1\ xo(u) = "Urnax 1\ f oF 000'0 

Process Contle describes the situation when exactly one tray is occupying the belt and it is pos

sible to accept a new tray, without having trays collide. Furthermore, the controller must be able 

to receive a dep, action which informs the controller that the tray has left the belt. 

proc Cont1e (t : Time, Xs : IR, f : Torque) = 
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Process Cont2 describes the situation where there are two trays occupying the belt. Since in this 

state, t.he belt cannot accept a new tray because otherwise this tray could collide with the trays 

already on the belt. 

proc Cont2(t: Time, x, : 1R,J: Torque) = 

The t.ask the controller has to perform can be regarded as a rather simple task, yet, already it is 

interesting to see that this translates to a rather complex process, which is hard to check by hand. 

The essential observation here is that the main task of the controller should be, by adjusting the 

torque of the motor at appropriate times, to maintain the following expression invariant: 

\!t:Ti=eO <: vet) <: V max (2.5) 

where vet) represents the velocity of the belt at time t. This invariant is actually used in the 

process descriptions to synthesise the controller. 

2.4 Simplification of the hybrid models 

A closer inspection of the timed J.LCRL process descriptions given in the previous section yields 

the observation that some simplifications can be done. Taking a closer look to process BeltI , it is 

easy to notice that the following condition occurs in every alternative: 

:c~(() = Axr(() + EJ A x, = xr(t) 

Now, what immediately comes to mind is some elementary mathematics, which basically state 

that when we have an infinite number of functions defined by: 

in most cases there is exactly one function that satisfies these requirements, and serves as the 

solution for this function space. Since the used functions are all in Cl
, this definitely holds for the 

function described above, as some elementary calculations show: 

X'I(() = Axr(() +EJ AXr(t) =x, 
== {definition of A and E, write Xl as the vector (x,y) and x, as the vector (P,s)} 

( ~:i~l) (~~) ( ~i~l ) + ( ~ ) J A ( ~m ) = ( ~ ) 

== { Matrix calculus, rewrite to a set of equations} 

{ 
x'(e) = y(() A x(t) = P 

y'(() = bJ Ay(t) = s 

== { differential calculus} 

{ 
:E'(() = y(() Ax(t) =p 

y(e) = bJ(+CI Ay(t) = s 

'* { Calculus: instantiation of t for ( } 

{ 
x'(e) = y(() A x(t) = P 

y(e) =bJ((-t)+s 

== {substitution ofy((») 

{ 
x'(e) = bJ(( - t) + s A x(t) = P 
y(() = bJ(( - t) + s 
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'= { differential calculus} 

{ 
x(() = w.e - (bft - s)( + C2 /\ x(t) = P 
y(() = bf(( - t) + s 

=? { Calculus: instantiation of t for ( } 

{ 
,;(() = (( - t)(~bf(( - t) + 8) +p 

v(() = bf(( - t) + 8 

o 
Naturally, similar calculations can be done for the functions occurring in processes Belt01 Belt2 

and all controller (Contd processes. Using these simplifications in combination with the Sum 

Elimination Theorem (see [12]): 

which states that in this case the quantification over the infinite number of functions in the 

models can be eliminated. Another application of the Sum Elimination Theorem removes several 

quantifications over the Time domain as well. 

2.4.1 A simplified hybrid model for the belt 

After the application of the Sum Elimination Theorem, as explained in the previous section, this 

sectioIl describes the processes that define the operation of the belt. For convenience, some alpha 

conversion is applied to the processes: the different vectors Xs are replaced by ordinary variables 

of type JR_ The variable a is replacing bi, since this has become a common factor representing the 

acceleration. The variable f in the process definitions is eliminated. 

proc Belto(t : Time, s, a: 1R) = 

~lt:Time ar-b<U Belt~ (u, 0, a(u - t) + s, a) + 

proe Belel (t : Time, x, s, a: IR) = 

midb'{t + ~h/ 8
2 + a(l- 2x) - s)) Belt~ (t + ±( vs' + all - 2x) - s), ~l, V8' + all - 2x), a) 

~a '" 0 ~ 8'0+ 

midb'{t + ,j,(l - 2x)) Belt~ (t + ,j,(l - 2x), ~l, 8, a) ~ a = 0/\ S '" 0 ~ 8'0+ 

dew(t + ~ (J 8 2 + 2a(1 - x) - 8)) Belt~(t + ~(J 8 2 + 2a(1 - x) - s), J 82 + 2a(l - x), a) 

~a '" 0 ~ 8'0+ 

dew(t + ~(l- xl) Belto(t + ~(l - x), s, a) ~ a = 0 /\ S '" 0 ~ 8'0+ 

E"Ti=e (<Tb'U Belt;(u, (u - t)(~a(u - t) + s) + x,a(u - t) + s,O,a)+ 

proe Belt~(t: Time,x,s,y,a: IR) = 

dew(t+ ~ (vs 2 + 2a(l - x )-8)) Belt~ (H ~(V 8 2 + 2a(l - x) -s), y+(l-x), V 8 2 + 2a(1 - x), a) 

~a '" 0 ~ 5'0+ 
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dcpdt+~(l-x)) Belt;(t+~(I-x),y+(I-x),s,a)~a=Ol\siOoo'O+ 

1:u:Tinle,l':Torque Fb(r)'tt 
Belt~( u, (u - t) (~a( u - t) + s) + x, a(u - t) + s, (u - t)( ~a(u - t) + s) + y, b-y) 

The changes with respect to the model described in section 2.3.1 are obvious: on the one hand 

the conditions in the process descriptions have become elementary, and on the other hand, the 

Humber of alternatives decreased. Only a few quantifications over the time domain are left, yet, 

the actions that relate to these quantifications are not in the category of actions that are affected 

by the continuous dynamics of the belt. One of the essentials is that the understanding of the belt 

is more intuitive using the description above. 

2.4.2 A silllplified hybrid Illodel for the controller 

A ~imilar exercise as for the belt is undertaken for the controller. Since only the torque is adjusted 

by the controller, the process looks rather similar to the one defined in section 2.3.2. Also, the 

variable f in the process definitions is eliminated and the variable a is introduced to replace the 

more commonly occurring factor bi. The speed Xs is now replaced by the variable s. 

proc Cont,~d(t : Time, s, a: lR) = 

L:lI.:Tirne aT c<U Cont'~ac,dS (u, a(u ~ t) + s, a) <l 0 ~ a(u - t) + S :::; vmax I> 6'0+ 

proc Cont'g(t, d : Tillle, s, a: 1R) = 

Elt:Tirne ar'c<'u Cont,~aC,am(u, a( u - t) + s, a) <l 0 :::; a(u - t) + s :S Vrnax 1\ u :S t + d I> 6'0+ 

Fc(O)«t + ±(Vmax - s)) Cont'g(t + *(Vmax - s),d - *(Vmax ~ S),Vmax,O) 

~(1 i 0 1\ * (V max - S) < do 0'0+ 

P,( -Tmax)«t + d) Cont'~d(t + d, ad + s, -bTrnax) ~ 0 < ad + s :0: Urn ax 00'0 

C ,na"d'( T· "") proc ont 1 t: Ime,S,a: Il%. = 

C t ,na"arn( T· "") proc 017,'1 t: Ime,s,a: IN.. = 

~'!I,:Time midc<u Cont'~C(u,a(u ~ t) + s,a) <10 ~ a(u - t) + s::; Vrnax 1>6<0+ 

proc Cont'~C(t : Time, s, a: lR) = 

E"Ti=e ar,'u Cont'2(U, a(u - t) + s, a) 00:0: a(u - t) + s :0: Vrnax 00<0+ 

Eu:Tirne depc<u Cont'g(u, k, a(u ~ t) + s, a) <10 :S a(u - t) + s :S Vrnax l> 6<0+ 
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proc Cont'2(t: Time,s,a: IR) = 

'Eu:TilTle depc(u Conf~laC,am( u, a(u - t) + s, a) <lO :::; a( u - t) + S :::; Vmax [> 0<0+ 

The observation, made earlier with respect to the model of the belt, still holds, i.e. after elimination 

of the quantifiers, the model gets more intuitive, and the conditions become elementary_ Surprising, 

however, is the still very large descriptions compared to the rather simple nature of the problem. 

Perhaps this is also the pitfall for many systems that are to be automated: simple ideas turn out 

to behave in a complex manner. 

3 Composition of the Conveyor Belt System 

Until now, the focus has been on the individual components of the conveyor belt system. However, 

the interesting part is the co-operation between these independent parts, together defining the 

conveyor belt system. To this end, it is essential that the communications between the belt and 

the controller are defined. These communications are then what make up the conveyor belt system. 

3.1 Defining the communications 

This section will go into more detail in the subject of the communication between the controller 

and the belt. The choices made in this section are an obvious extension to the models and their 

rlesign criteria as they are defined in sections 2.4.1 and 2.4.2. 

The events that need to be synchronised, in order to have a correct functioning of the conveyor 

belt system, are the following: 

o The arrival of a new tray at the beginning of the belt . 

• The arrival of a tray at the mid point of the belt. 

o The departure of a tray from the belt. 

o The setting of the torque of the motor to the belt. 

III short: for every action that occurs at the controller, there should be an action that occurs at 

the helt at the same time and vice versa. To this end, the communications are defined as follows: 

camm 
aT arb I arc 

rnid midb Imide 

clep depb I dePe 

Fh) Fbh) I Fch) 

These communications define that if both actions can occur at the same time, they can commu

nicate, in which case a new action is visible. However, it is also possible that actions such as arb 

and arc can occur individually, i.e. without first synchronising. The set of actions that are not 

allowed to take place individually is: H = {arb,arc, midb,midc, depb,depc, Fb,Fc}. Using the 

encClpsulation operator, the actions in set H are captured and translated to deadlocks, meaning 

t.hey will not. occur. 

3.2 A hybrid model for the Conveyor Belt System 

In t.he formalism timed peRL, it is possible to compose a new process by putting other processes 

in parallel to each other. Since this is essentially what will happen with the controller and the belt 

ill real life, it is an obvious choice to define the hybrid model for the conveyor belt system as t.he 

parallel composition of the models for the belt and the controller. If we take the communications 
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,ts defined in section 3.1, and the set of actions, defined in H, as the set of actions that need to be 

encapsulated (i.e. we do not want to see them occurring individually), the model for the conveyor 

belt system is defined by: 

This process will be the subject of investigation in the subsequent sections. 

3.3 Expansion of the hybrid model for the conveyor belt system 

III order to do some elementary calculations within the theory of timed ,"CRL on the process CBS, 

t.his process must first be expanded. In this case, expansion means that the parallel composition 

has to be eliminated. A rather straightforward application of the Expansion and Encapsulation 

Theorem (see [12]), however, is not possible due to the fact that for instance processes Belt~ and 

Cont,~d are not in the form of a linear process expression (LPE) (also see [12]). The next sections 

are devoted to the transformation of the processes Belt~ and Cant'gd into LPE's. 

3.3.1 Linearisation of process Belt~ 

Linearising a process is a rather straightforward task, especially when the processes already rc

semblc the LPE format. For untimed processes, this procedure is already automated, however, for 

timed processes no such tool exists yet. In case of process Belt~, this means that all data should 

be ullited into a single process Belt. We take the set State = {O, 1, 2} to represent the number of 

trays 011 the belt. This allows for a rather straightforward translation to the following process: 

proc Belt(u : State, t : TiIne, x, s, y, a: JR) = 

(n1) ~u.T;=e ar·b<U Belt(l, u, 0, a(u - t) + s, y, a) 

~u = 0 ~ 6<0+ 

(n2) midl>'(t+ ~(.,;rcs2i-+-a"(I-_-2;C-x') -8)) Belt(l, t+ ~(.,; 82 + a(l - 2x) -8), ii, .,; s2 + a(l - 2x), y, a) 

~". = 1 II a cF 0 ~ 6<0+ 

(B3) midl>'(t + ~(l - 2x)) Belt(l, t + ~(l- 2x), 11, s, y, a) 

~(7 = 1 II a = 0 II 8 cF 0 ~ 6<0+ 

(B4) deW(t+ ~(.,; S2 + 2a(l- x) - s)) Belt(O, t + ~(";S2 + 2a(1 - x) - s), x, ";S2 + 2a(1 - x), y, a) 

~(7 = 1 II a cF 0 ~ 6<0+ 

(B5) deW(t + ~(l - x)) Belt(O, t + ~(l - x), x, s,y, a) 

~u = 1 II a = 0 II s cF 0 ~ 6<0+ 

(B6) ~u.T;=e arb<U Belt(2, u, (u - t)(~a(u - t) + s) + x, a(u - t) + s, 0, a) 

~a = 1 ~ 6<0+ 

(B 7) dew (t + H .,;r.82'+"--';-2a'( l'--x') - s)) 

Belt(l,t + ~h1s2 + 2a(l- x) - s)'y + (1- x), ";S2 + 2a(1 x),y,a) 

~a = 2 II a cF 0 ~ 6<0+ 

(B8) deW(t + ~(I - x)) Belt(l, t + l;(l- x), y + (I - x), s, y, a) 

~(T = 2 II a = 0 II 8 cF 0 ~ 6<0+ 

(B9) :E1L:Tirne,-y:Torque Fbh'}u 
Belt(a,u, (u - t)(ia(u - t) + s) + x,a(u - t) + s, (u - tlC1a(u - t) + s) + y,b2'Y) 
~u E {0,1,2}~S<0 

The relation between Belt and Belt~ is characterised as follows: Belt~(tb, Sb, ab) = 

Belt(O, t'n 3:, Sb, y, ab). Here, the values for the parameters x and y can be chosen arbitrarily. 

Although this model is easier to compute with, it does not reflect any elegance: intuition is traded 

for case of calculat.ion. 
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3.3.2 Linearisation of process Cont,~d 

The linearisation of process Cont'~d is a bit more elaborate. The problem is the finer grained pro

cess descriptions: instead of for instance one process Cont~, there are two processes, viz: Cont'g 

and Cont'gd that are to be distinguished. In order to deal with this complication, three alternative 

sets arc introduced: DState = {del, nod}, Motion = {ds, am} and Accept = {ac, nae}. Here del is 

taken to represent the delaying state of process Cont~ and nod is the not delaying state of process 

Cont~. Furthermore, ds is taken to represent the decelerating or stand still state of process Cont~ 

and ran is taken to represent the accelerating or maximal speed state of process Cont~. Finally) ac 

i~ t.aken to represent the state in which process Cont~ is able to accept a new tray and nac is taken 

to represent the state in which process Cont; is not able to accept a new tray. A straightforward 

translation to an LPE yields the following process: 

proc Cont(u: State,t,d: Time,s,a: lR,O"d: DState,m: Motion,n: Accept) = 

(Cl) :Eu:Tim.e arc'u Cont(l,u,d,a(u - t) + s,a,O"d,ds,nac) 

~a = 0/10 :s a(u - t) + s :s Vmax /I ad = nod ~ 6<0+ 

(C2) F,(O)«t -~) Cont(O,t - ~,d,O,O,nod,m,n) 

~cr = 0/1 a oF 0 /I ad = nod ~ 6<0+ 

(C3) L:u:Tim.e arc<u Cont(l, u, d, a(u - t) + s, a, O"d, am, nac) 

~a = 0 /I 0 :s a( u - t) + s :s Vmax /I ad = del/l u :s t + d ~ 6<0+ 

(C4) F,(O)«t + Hvmax - s)) Cont(O, t + ± (vmax - s), d - ~(vmax - s), Vmax< 0, del, m, n) 

"a = 0 /I a oF 0 /I ~(Vmax - s) < d /I ad = del ~ 6<0+ 

(CS) F,( -Tmax)«t + d) Cont(O, t + d, d, ad + s, -b2Tmax< nod, m, n) 

"cr = a /I a < ad + s :s V max /I ad = del ~ 6<0+ 

(CG) F,(O)<t Cont(l, t, d, s, 0, ad, am, nac) 

<l0" = 1/\ m = ds /\ n = nac /\ S = Vmax I> 8<0+ 

(C7) Fc(Tmax)<t Cont(l, t, d, s, b2 T max, Ud, arn, nac) 

<l0" = 1 /\ m = ds /\ n = nac /\ s < Vrnax I> 8<0+ 

(C8) Eu:Time rnidc<u Cant(1, u, d, a(u - t) + 8, a, ad, Tn, ac) 

"cr = 1/1 m = am/l n = nac/lO:S a(u -t) + s:S Vmax ~6<0+ 

(CO) Fc(O)«(t + ~ (1Jmax - 8)) Cant (1 , t + ~ (Vmax - s), d, Vmax , 0, O"d, am, nac) 

<l0" = 1/1 m = am /I n = nac /I a oF a ~ 6<0+ 

(CI0) ~'!l:Time arc<u Cont(2,u,d,a(u-t) +s,a,ud,m,n) 

"cr = 1/1 n = ac /I 0 :s a( u - t) + s :s Vmax ~ 6<0+ 

(Cll) ~,di~e dep,<u Cont(O, u, k, a(u - t) + s, a, del, m, n) 

"a = l/1n =ac/l0:S a(u-t) +S:S vmax~5<0+ 

(C12) F,(O)«t + ± (vmax - s)) Cont(l, t + ~(vmax - s), d, Vma"' 0, ad, m, ac) 

~(J, = l/1n =ac/laoF 0~6<0+ 

(CI3) ~u'Ti~e dep,<u Cont(l,u,d,a(u - t) + S,a,O"d,am,nac) 

<l(Tc = 2AO:S a(u-t) +8:S; vmax I>6(0+ 

(C14) F,(O)«t + ~(Vmax - Se)) Cont(2, t + ~(Vmax - S), d, Vma"' ad, Tn, n) 

~a, = 2 1\ a oF 0 ~ 6<0 

The relation between the process Contod and the process Cont is defined as follows: 

Contbul(tc, Bc, ac) = Cont(O, tc, d, sc, ac, nod, m, n), where the parameters d, m and n have arbitrary 

appropriate values. 

3.3.3 Redefining process CBS 

The processes Belt and Cant, described in the previous sections are the subject of further inves

tigation. Since process CBS is defined in terms of the processes Belt~ and Contfjd, also process 

CBS needs rewriting. Substitution of the processes Belt and Cont in the definition of the process 
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CBS yields the following (equivalent) process CBS': 

proc CBS'(Ub, O'c : State, tb, tel d : Time, X, Sb, y, Se) ab, ac : lR, 

ad : DState, m : Motion, n : Accept) = 
iJH(Bclt(O, t,,, x, Sb, y, ab) II Cont(O, t" d,s" ab, nod, m, n)) 

3.3.4 Calculating the communications of process CBS' 

Using the expansion and encapsulation theorem, defined in (12], the communications can easily 

be calculated. To this end, the communications defined in section 3.1 are used. The condition 

HIlder which these communications can occur are determined by the conjunct of the conditions 

under which both actions can occur separately. Moreover, the time at which the communication 

can occur is also determined by the intersection of the times the individual actions can occur. 

Bl,Cl: 

(1) ~tt:TiIne ar'u 

CBS(l, 1, 1[, U, d, 0, ab(u - tb) + Sb, y, ac(u - tc) + sel ab, a C1 CTd, ds, nae) 
<la,} = ae = 0 A 0:::; ac(u - t e ) + Be :::; V max A ad = nod t> 6(0+ 

Bl,C3: 

(2) Eu:Tillle UT(U 

CBS(l, 1, 11, 'll" d, 0, ab(u - tb) + Sb, y, ac(u - tc) + Se, ab, a c , ad, urn, nae) 
<Ja,} = a c = 0 A 0 ::s; ae(u - t c) + Se :::; v max A ad = del A u ::s; te + dt> 8(0+ 

Bl,ClO: 

(3) Eu:Tillle aTe'll, 

CBS(l, 2, u, u, d, 0, ab(u - tb) + Sb) y, ae(u - te) + Se, ab, a C) ad) m, n) 

<Jab = OAac = lAO:::; ae(u-te) +sc :::Svmax An = aet>6(0+ 

B2,C8: 

(4) miri'(tb + ,;, hi s~ + ab(l - 2x) - Sb)) 

CBS(l, 1, tb + f,;( ";s; + ab(l- 2x) - Sb), tb + f,;( ";s; + ab(l- 2x) - sb),d, ~l, 

B3,C8: 

..; s; + ab(l - 2x), y, a,(tb + f,;( ";s; + ab(l- 2x) - Sb) - t,) + SOl ab, a" ad, m, ac) 

<lab = rIc = 1 A Ub ::j:. 0 A m = am A n = nueA 

o ::; a,(tb + ,;, (..; s1 + ab(l - 2x) - Sb) - to) + s, ::; Vmax ~ 0'0+ 

(5) mid'(tb + -2
1 (I - 2x)) 
" CBS(l, 1, tb+,;, (1-2x), tb+2;, (1-2x), d, ~l, Sb, y, a,(tb+,;, (1-2x)-t,)+s" ab, a" ad, m, ac) 

<lab = ae = 1 A ab = 0 A Sb ::j:. 0 A m = am A n = nue/\ 

0::; a,(tb + 2;, (I - 2x) - t,) + s, ::; vmax ~ 0'0+ 

B4,Cll: 

(0) de]J'(t" + ,;, (..; s; + 2ab(l- x) - Sb)) 

CBS(O, 0, tb + f,;( ";s; + 2ab(1 - x) - Sb), to+ f,;( ";s; + 2ab(1 - x) - Sb), k, x, 

";st + 2ab(1 x), y, a,(tb + ,;, (V s; + 2ab(1 - x) - Sb) - to) + SOl ab, a" del, m, n) 

~O'b = 0', = lllab cF Olin = acllO::; a,(tb+f,;(";S; + 2ab(1 x) Sb)-t,)+s,::; vmax~o'O+ 

B4,C13: 

(7) de]J'(t" + f,; (..; s; + 2ab(1 - x) - 8b)) 

CBS(O, 1, to+ f,;( ";s; + 2ab(1 - x) - Sb), tb + f,;( ";s1 + 2ab(l x) Sb), d, x, 

Jst + 2ab(i- x),y,ae(tb + teJst + 2ub(l- x) - .'Ib) - t e ) + Be,ab,ac,ad,am,nue) 
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B5,Cll: 

(8) dep<(tb + l(l - x)) ,. 
CBS{O, 0, tb + k(l- x), tb + t(l- x), k, X, Sb, y, ac(tb + k(l - x) - tc) + Bel Uh, a C1 del, m, n) 

~<Tb = <T, = 1 II ab = ° II Sb oj 0 II n = ae II 0 ~ a, (tb + * (I - x) - to) + 8, ~ V max ~ 6'0+ 

B5,CI3: 

(9) dep'(t/, + *(l- x)) 

CBS(O,I, tb + t(l- x), tb + tu-x), d, X, Sb) y, ac(tb + t(l-x) - tc ) + Bel ab, a C1 (J"d, am, nae) 

"<Tb = 1 II <T, = 2 II ab = 0 118b oj 0 II 0 ~ a,(tb + *(1- x) - to) + S, ~ Vmax ~ 6'0+ 

B6,Cl: 

(lO)E",T;=e a7"u 

GBS(2, 1, u, u, d, (U-tb)nab(U-tb)+Sb)+X, ab( U-tb)+Sb, 0, a,(u-t,)+Sb, ab, a" "d, ds, nae) 
<Jab = 1/\ Oc = 01\ ad = nod 1\ 0 :s uc(u - tc ) + Be .::; Vmax [> 6<0+ 

B6,C3: 

(11) ~u:TiD1eaT<1J, 
GBS(2, 1, 'It, U, d, (U-tb)( ~ab(u-tb)+Sb)+X, ab( U-tb)+8b, 0, a,( u-t,)+Sb, ab, a" <Td, am, nae) 

~<Tb = 1 II ", = ° II <Td = del II u ~ d + t, II 0 ~ a,(u - to) + S, ~ Vmax ~ 6'0+ 

BG,CI0: 

(12)E u ,T;=ear'u 
G BS(2, 2, u, u, d, (u - tb)( tab( u - tb) + Sb) +x, ab(u - tb) +Sb, 0, a,(u - to) + Sb, ab, a" <Td, m, n) 

<lab = (Jc = 1/\ n = ac 1\ 0 :S a c ( u - t c ) + Be :S Vmax [> 6<0+ 

B7,Cll: 

(13)dep«tb + f,;( vsl + 2ab(1 - x) - Sb)) 

GBS(I,O,tb+f,;(vsi+2ab(l-x)-sb),tb+;t,(v'si+2ab(l x) sb),k,y+(l-x), 

B7,CI3: 

v'si + 2ab(l- x), y, a,(tb + :. (v'si + 2ab(l- x) - Sb) - to) + SCI ab, a" del, m, n) 
~<Tb = 211<T, = lila, oj Olin = aell 

° ~ a,(tb + f,;( v'si + 2ab(l- x) - Sb) - to) + s, ~ V max ~ 6'0+ 

(14)dep«tb + f,;( vs; + 2ab(1 - x) - Sb)) 

GBS(I, 1, tb + f,;( v'si + 2ab(1 - x) - Sb), tb + f,;( v'sl + 2ab(l x) Sb), d, Y + (1- x), 

B8,Cll: 

v'sl + 2ab(1 - x), y, a,(tb + :b (v' sl + 2ab(1 - x) - Sb) - to) + SCI ab, a" <Td, am, nae) 

~a/, = ", = 2 II ab oj 0 II 0 ~ a, (tb + f,; ( v'si + 2ab (I - x) - Sb) - to) + s, ~ Vmax ~ 6'0+ 

(15)defJ'(tb + l(l- x)) ", 
GBS(I, 0, tb+*(l-X), tb+*(l-X), k, y+(l-x), Sb, y, a,(tb+* (I-x) -t,)+8" ab, a" del, m, n) 

""b = 211", = 111ab =OIlSb oJOlln=aeIlO~ a,(tb+*(l-X)-t,)+s, ~ vmax~6'O+ 

B8,C13: 

(16)dep'(tb + *(1- x)) 

GBS(I, 1, tb + *(1 -x), tb + * (l- x), d, y + (I - x), Sb, y, 

ac(tb + ~(l - x) - tc) + Bel Ub, Uc) (Jd, am,nac) 

""b = 2 II <T, = 2 II ab = 0 II Sb oj 0 II 0 ~ a,(tb + *(1- x) - to) + S, ~ Vmax ~ 6'0+ 
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B9,C4: 

(18)F(0)«t, + l(vmax - so)) 
a, 

CBS(ab, 0, tc + l(vmax ~ Se), tc + ...l..(Vmax - Se), d - ...l..(Vmax - Se), 
U c U c U c 

(t,+ ;, (Vmax -So) -tb)( tab(t,+ t (Vmax -So) -tb) +S,) +X, a,(t,+ ;, (Vmax -So) -t,)+Sb, 

(t, + ;, (Vmax - So) - tb)(tab(t, + ;, (Vmax - So) - tb) + Sb) + y, Vmax> 0, 0, del, m, n) 

~<Tb E {O, 1, 2} II U, = 0 II a, op 0 II Ud = del II l(vmax - so) < dl> J'O+ 
a, 

B9,C5: 
(19)F(-Tmaxl'(t, + d) 

CBS(Ub, 0, t, + d, t, + d, d, (t, + d - tb)(~ab(t, + d - tb) + Sb) + x, ab(t, + d - tb) + Sb, 
(t, + d - tb)( ~ab(t, + d - tb) + Sb) + y, a,d + So, -b2T max> -b2T max> nod, m, n) 

~Ub E {O, 1, 2} II <T, = 0 II Ud = del II 0 < a,d + S, ::; Vmax I> J'O+ 

B9,C6: 
(20)F(0)'t, 

CBS(Ub, 1, to, to, d, (t, - tb)( ~ab(t, - tb) + Sb) + x, ab(t, - tb) + Sb, 

(t, - tb)(~ab(t, - tb) + Sb) + y, So, 0, 0, Ud, am, nae) 
<lab E {O,1,2}ACTc = lAm =dsl\n =nac/\sc = V max t>dcO+ 

B9,C7: 

(21)F(Tmax)'t, 
C BS(Ub, 1, to, to, d, (t, - tb)( ~ab(t, - tb) + Sb) +x, ab(t, - tb) +Sb, (t, - tbJ( ~ab(t, - tb) + Sb) +y, 

Sc, b2 T max, b2 Tmax , (Td, am, nac) 

~Ub E {O, 1, 2} II U, = 1 II m = ds II n = nae II S, < vmax I> J'O+ 
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Before continuing with calculating the timed deadlock terms (see section 3.3.5) that follow from 

the application of the expansion and encapsulation theorem, it turns out that it is more efficient 

to analyse the above 24 terms that are the result of a communication. Since no actions in Belt 

and Cont can occur autonomously, the 24 terms resulting from a communication are the only 

terms that can cause transitions from one state to another. Hence, all the conditions for verifying 

invariants of the resulting system are present. 

The reason for verifying (and finding) invariants may be obvious: using these invariants, the num

ber of possible timed deadlock terms may be reduced because the conditions under which they 

occur can be falsified using the invariants, meaning that they will not occur at all. Furthermore, 

conditions can be simplified using the invariants, which eases calculation (and notation). 

Careful analysis of the 24 terms resulting from a communication yields eight (easily verified) in

variants 

The first invariant is used to state the synchronisation between the controller and the belt with 

respect to the number of trays present on the belt: 

(3.6) 

The second invariant, invariant h expresses that the acceleration experienced by the belt equals 

the acceleration set by the controller: 

(3.7) 

The third invariant states that the controller and the belt are synchronised with respect to the 
time. If this invariant would not hold, the system would be running "out of sync" . 

h == t, = t, (= t) (3.8) 

Invariant 14 expresses that the speed experienced by the trays on the belt equals the velocity the 

controller expects the belt to have. 

14 == Sb=8, (=8) (3.9) 

Invariants h ... h are used to state that in these states the belt is either accelerating to reach 

maximal speed (vmax ), or the belt has already reached this maximal speed and is no longer accel
erating (or decelerating). 

CY = 0 /\ CYd = del =? a > 0 V (a = 0/\8> 0) 

CY = 1/\ (m = am V n = ac) =? a > 0 V (a = 0/\8> 0) 

CY = 2 =? a > 0 V (a = 0/\8 > 0) 

(3.10) 

(3.11) 

(3.12) 

Invariant Is states that the speed as registered by the conveyor belt system will not exceed the 

maximal speed, nor will it drop below the 0 velocity, i.e. it will not run backwards. Note that the 

actual speed of the belt may very well exceed the maximal speed if a deadlock occurs, however, 
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since this speed will not be registered by the system, this means that invariant I8 will still hold. 

(3.13) 

The last invariant, invariant 19 expresses that when there are two trays on the belt, their distance 

is at least ~l. Again, this holds as long as no deadlock occurs. 

1 
I9 == IJ = 2 ~ 21 ::: x - y (3.14) 

Wit.h respect t.o the proofs of the invariants: the proof of invariants I" I2 , Is, I4 , Is and I9 are 

trivial. The proof of h,I6 and h has to be done simultaneously and is trivial as well. 

Additional advantage is the reduction of the number of terms resulting from communication. The 

terms 3,7,9,10,11,13 and 15 are all equal to 6'0 since their conditions are all falsified by invariant 

I,. The total number of communicating terms thus equals 17. 

3.3.5 Calculating the timed deadlock terms of process CBS' 

This section will continue with a further application of the expansion and encapsulation theorem, 

nOw strengthened using invariants 11 ... [9. The following notational convention is used: BX,ey 

denot.es the two independent terms of processes Belt and Cont, and the (<; n) denotes the com
munication terms which "absorb" the timed deadlock terms (see also section 4.1). 

Note that for the fact that for IJ = 0 there are two terms, viz. the terms Bl and B9, which can 
do an action at the same time under the same conditions. This means that these actions yield 

the same timed deadlock terms after an application of the encapsulation theorem, which then can 

be joined using the idem potency of alternative choice. Instead of first calculating these timed 

deadlock terms, they are immediately joined. The timed deadlock terms for IJ = 0 now are: 

Bl,D9,Cl: 

(Jla)I:",w,Ti=e6'1L (<; 1) 

<cr = 0 1I1L ::: W II 0 ::: a( w - t) + Se ::: Vmax IIlJd = nod ~ 6'0+ 

(olb)I:",wTi=e6'W (<; 1) 

<IJ = 0 II w ::: 1L II 0::: a(w - t) + Se ::: V max IIlJd = nod ~ 6'0+ 

Bl,B9,C2: 

(o2a)I:"Ti=e6'(t - 7) (<; 17) 

<cr = 0 II t - 7 ::: 1L II a oJ 0 IIIJ d = nod ~ 6'0+ 

(o2b)I:",Ti=e6'lL (<; 17) 
<iT = 0 IIlL ::: t - 7 II a oJ 0 IIlJd = nod ~ 6'0+ 

Bl,D9,C3: 

(63a)I:".w,Ti=e6'lL (<; 2) 

<IJ = 0 II u ::: w II 0::: a(w - t) + Se ::: V max II w ::: t + d IIlJd = del ~ 6'0+ 

(63b)I:".w,Ti=e6'W (<; 2) 
<iT = 0 II w ::: u II 0::: a(w - t) + Se ::: Vmax II w ::: t + d IIlJd = del ~ 6'0+ 

Bl,B9,C4: 

(04a)I:"Ti=e6'U (<; 18) 
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(J4b)EaTi=eO'(t + ~(Vmax - so)) (C; IS) 

~o- =Ol\t+ ~(vrnax -so) S; ul\ai 01\ ~(Vrnax -so) <dl\ad = del~o'O+ 

B1,B9,C5: 

(J5a)Ea:Ti=eO'U (C; 19) 

~a = 0 1\ uS; t + d 1\ 0 < ad + S, S; Vrnax 1\ ad = del ~ 0'0+ 

(65b)EaTi=eO'(t + d) (C; 19) 
~o- = 01\ t + d S; u 1\ 0 < ad + S, S; V max 1\ ad = del ~ 0'0+ 

For 0- = 1, a similar observation as for a = 0 is made. This means that instead of calculating the 
t.imed deadlock terms for the terms B6 and B9, and for ClO and Cll independently, the calcula

tion is done in one go, resulting in the following timed deadlock terms: 

B2,C6: 

(660.)0'(t+ ~(V82 +a(l-2x) -s)) (C; 20) 

~o- = 11\ t + H V S2 + a(1 - 2x) - s) S; t 1\ m = ds 1\ n = nae 1\ s = Vmax 1\ a i 0 ~ 0'0+ 

(66b)0't (C; 20) 

~a = 1 1\ t S; t + ~ ( V 8 2 + a(1 - 2x) - s) 1\ m = ds 1\ n = nae 1\ S = V max 1\ a i 0 ~ 0'0+ 

B2,C7: 

(07a)0'(t + ~(V 8
2 + a(1 2x) - s)) (C; 21) 

00- = 1 1\ t + ~ ( V 8 2 + a( I - 2x) - s) S; t 1\ m = ds 1\ n = nae 1\ 8 < vmax 1\ a i 0 ~ 0'0+ 

(\7b)6't (C; 21) 

~a = 11\ t S; t + ~ (V 8 2 + a(1 - 2x) - s) 1\ m = ds 1\ n = nae 1\ s < Vmax 1\ a i 0 C> 0'0+ 

B2,CS: 

(JSa)E", Ti=eO'(t + ~(V S2 + a(1 - 2x) - s)) (C; 22) 

~o- = 11\ t + ~ (V 8 2 + a(1 - 2x) - s) S; u 1\ m = am 1\ n = nael\ 

OS; 0.(10 - t) + s S; Vmax 1\ a i 0 ~ 0'0+ 

(oSb)Ew:Ti=eO'W (C; 22) 
~a = 1 1\ 10 S; t + H V S2 + a(l - 2x) - s) 1\ m = am 1\ n = nael\ 

o S; a( w - t) + s S; Vmax 1\ a i 0 ~ 0'0+ 

B2,C9: 

(69a)J'(t + ~(VS2 + a(1 2x) s)) (C; 22) 

~a = 11\ V 52 + a(1 - 2x) - s S; Vrnax - S 1\ m = am 1\ n = nae 1\ a i 0 ~ 0'0+ 

(69b)0'(t + ±(vmax - s)) (C; 22) 

~a = 11\ Vrnax - 8 S; V'S,,"2 --:+-a"""'("I--"""'2'x') - s 1\ m = am 1\ n = nae 1\ a i 0 ~ 0'0+ 

B2,ClO,Cll: 

(J10a)EwTi=eO'(t + ~(V 82 + a(1 - 2x) - 8)) (C; 12 + 22) 

~a = 11\t+ ~(VS2 +a(I-2x) -s) S;wl\n = ael\O S;a(w -t)+8 S; vmaxl\ai 0~0'0+ 

(J10b)E",:Ti=eo'w (C; 12) 
~o- = 11\w S; t+ ~(VS2 +a(l- 2x) - s) I\n = ael\O S; a(w -t) +s S; Vmax I\a i 0~0'0+ 
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B2,C12: 

(Ol1a)O<(t + ~(V 8 2 + a(1 - 2x) - s)) (c:: 6) 

~(T = 1 II V s + a(1 - 2x) - s :S V max - S II n = ae II a oF 0 ~ 0<0+ 

(Jllb)O«1 + ~(vmax - s)) (c:: 23) 

~(1 = 1 II V max - S :S V's'" '-:+-(-c,("I-_-c2c;-x') - s II n = ac II a oF 0 ~ 0<0+ 

B3,C6: 

(612a)O«1 + oj,(l- 2x)) (c:: 20) 

~(T = 1 II oj,(l- 2x) :S 0 II a = 0 II s oF 0 II m = ds II n = nae II s = Vmax ~ 0<0+ 

(Jl2v)O<t (c:: 20) 

~(T = 1 II 0 :S oj, (l - 2x) II a = 0 II $ oF 0 II m = ds II n = nae II s = Vmax ~ 0<0+ 

B3,C7: 

(613a)o«1 + oj, (I - 2x)) (c:: 21) 

~(T = 1 II oj,(1 - 2x) :S 0 II a = 0 II s oF 0 II m = ds II n = nae II s < Vmax ~ 0<0+ 

(S13v)0<1 (c:: 21) 

~(T = 1 II 0 :S oj, (l - 2x) II a = 0 II s oF 0 II m = ds II n = nae II $ < Vmax ~ 0<0+ 

B3,C8: 

(J14a)~wTi=eo«1 + oj,(1 - 2x)) (c:: 22) 
~(T = 1111+ oj,(I-2x) :S wlla = Oils oF Ollm = amlin = naellO:S a(w-I)+s :S vmax~o<O+ 

(Sl4v)~wTi=eO<W (c:: 22) 

~(T = 111w:S l+oj,(l-2x)lIa = Oils oF Ollm = amlin = naellO:S a(w-I)+s:S vmax~O<O+ 

B3,ClO,C11: 

(S15a)~wTi=eO«1 + .j,(I- 2x)) (c:: 8) 

~(1 = 1 II 1+ oj,(l- 2x):S wlla = 011$ oF Olin = aellO:S a(w -I) +s:S V max ~0<0+ 

(015v)~wTi=eo<w (c:: 8) 

~,,= 111w:S 1+ .j,(1-2x)lIa=01l$ oF Olln=aell0:S a(w -1)+8:S Vmax~O<O+ 

B3,C12: 

(JlGa)O«1 + .j,(I- 2x)) (c:: 23) 

~" = 1 II oj, (l - 2x) :S ~ (vmax - 8) II n = ae II a oF 0 ~ 0<0+ 

(bl6b)6,(t + ~(Vmax - s)) (c:: 23) 

~(T = 1 II ±(vmax - s) :S 1.;(1- 2x) II n = aell a oF 0 ~ 0<0+ 

B4,CG: 

(Jl7a)ii«1 + ±( V $2 + 2a(1 - x) - s)) (c:: 20) 

~(T = 1 II t + ~(V s' + 2a(1 - x) - s) :S 1 II m = ds II n = nae II s = Vmax II a oF 0 ~ 0<0+ 

(J17b)J<t (c:: 20) 

~(T = 1 II 1 :S t + ~ ( J S2 + 2a(l - x) - s) II m = ds II n = nae II s = Vmax II a oF 0 ~ 0<0+ 

B4,C7: 

(Jl8a)6«t + ~(Vs' + 2a(l- x) - s)) (c:: 21) 

~(T = 1 II 1 + ~ (V s' + 2a(1 - x) - s) :S 1 II m = ds II n = nae II s < Vmax II a oF 0 ~ 0<0+ 
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(Sl8b)0't (<;; 21) 

~O" = 1 /\ t ::; t + ~(V 82 + 2a(1 - X) - 8) /\ m = d8 /\ n = nae /\ 8 < Vmax /\ a ~ 0 C> 0'0+ 

B4,C8: 

(o19a)EwT;=eo'(t + ~( V 8' + 2a(1 - X) - 8)) (<;; 22) 

~rr = 1 /\ t + ~ ( V 8 2 + 2a(l - x) - 8) ::; W /\ m = am /\ n = nae/\ 

0::; a(w - t) + S ::; Vmax /\ a ~ 0 C> 0'0+ 

(019b)Ew:T;=eO'W (<;; 22) 

~rr = 1/\ w ::; t + ~ (V 8' + 2a(1 - X) - 8) /\ m = am /\ n = nae/\ 

o ::; a( w - t) + 8 ::; Vmax /\ a ~ 0 C> 0'0+ 

B4,C9: 

(020a)0'(t + ~(VS2 + 2a(l- x) - 8)) (<;; 22) 

~O" = 1/\ V8' +2a(l-x) -s::; vmax-s/\m =am/\n= nae/\a~Oc>o'O+ 

(J20b)0'(t + ~(vrnax - 8)) (C 22) 

~CT = 1/\ Vmax - 8 ::; v'8"2 -'::+"""'2:;-a--;('1 ---X') - 8 /\ m = am /\ n = nae /\ a ~ 0 C> 0'0+ 

B4,C10,Cll: 

(o21a)Ewn=eo'(t + ~ (V 8' + 2a(1 - x) - s)) (<;; 23) 

~CT = 1/\ t + ±( V 82 + 2a(l- x) - 8) ::; w /\ n = ae /\ 0::; a(w - t) + 8::; Vrnax /\ a ~ 0 C> 0'0+ 

(J21b)EwT;=eo'w (<;; 23) 

~rr = l/\w::; t+ ~(V8' +2a(l-x) -8)/\n =ae/\O ::;a(w-t)+8::; vmax/\a~Oc>o'O+ 

B4,C12: 

(o22a)J< (t + ~ ( V s' + 2a(l - x) - 8)) (<;; 20) 

~O" = 1/\ VS' + 2a(1 - x) - S ::; Vm", - S /\ n = ae /\ a i 0 C> 0'0+ 

(J22b)0'(t + ~(vrnax - 8)) (<;; 20) 

~O" = 1 /\ Vrnax - 8 ::; V~82,.'--+-'2C-a'( l;---x') - 8 /\ n = ae /\ a ~ 0 C> 0'0+ 

B5,C6: 

(023a)O«t + ~(l - x)) (<;; 21) 

~O" = 1 /\ ~(l - x) ::; 0/\ a = 0/\8 ~ 0 /\ m = d8 /\ n = nae /\ 8 = Vmax C> 0'0+ 

(023b)0't (<;; 21) 

~CT = 1 /\ 0 :S ~ (I - x) /\ a = 0 II s ~ 0 II m = ds II n = nae II s = Vmax C> 0'0+ 

B5,C7: 

(624a)0'(t + ~(l - x)) (<;; 8) 

~(T = 1/\ ~(l-x)::; O/\a= OIls ~O/\m =d8/\n=nae/\8 < vmaxc>o'O+ 

(624b)o't (<;; 8) 

~O" = 1 /\ 0 ::; ~ (I - x) /\ a = 0 /\ 8 ~ 0 /\ m = ds /\ n = nae /\ 8 < Vrnax C> 0'0+ 

D5,C9: 

(025o.)0'(t + ~(I- x)) (<;; 23) 

~CT = 1 /\ ~(l - x) ::; Hvmax - 8) /\ a = 0/\ s ~ 0/\ m = am /\ n = nae /\ a ~ 0 C> 0'0+ 

(J25b)J«t + ~(vrnax - s)) (<;; 23) 
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~O" = 1/\ H V max - s) S ~ (l - x) /\ a = 0/\ solO /\ m = am /\ n = nac /\ a 01 0 ~ 0<0+ 

B5,C10,Cll: 

(J26a)I;wTi=eO«t + ~(l - x)) (<;; 23) 

~O" = 1/\ t + ~(l - x) S w /\ a = 0/\801 0/\ n = ac /\ 0 S a(w - t) + s S Vmax ~ 0<0+ 

(J2Gb)I;", Ti=eO<W (<;; 23) 

~O"= l/\w S t+ ~(l-x) /\a=O/\s i'0/\n =ac/\O Sa(w-t) +8 S vmax~o<O+ 

B5,C12: 

(o27a)J«t + W - x)) (<;; 23) 

~O" = 1 /\ ~ (l - x) S ~ (vmax - 8) /\ n = ac /\ a 01 0 ~ 0<0+ 

(027b)0«t + *(vmax - s)) (<;; 23) 

~O" = 1 /\ ~(Vmax - s) S HI - x) /\ n = ac /\ a 01 0 ~ 0<0+ 

B6,B9,C6: 

(o28a)I;",Ti=eO<U (<;; 20) 
<la = 1 All,::; t /\ Tn = ds A n = nac 1\ S = v max t> 6'0+ 

(o28b)I;"Ti=eO<t (<;; 20) 
<la = 1/\ t ::; 1.t 1\ m = ds 1\ n = nac 1\ S = V max t> 6<0+ 

B6,B9,C7: 

(o29a)I;'''Ti=eO<U (<;; 21) 

<l0" = 1/\ u :s: t /\ m = ds 1\ n = nac /\ S < Vmax [> 0'0+ 

(o29b)I;"Ti=eO<t (<;; 21) 
<la = 1 1\ t :S u 1\ m = ds /\ n = nac /\ S < V max [> 0'0+ 

BG,B9,C8: 

(o30a)I;",w,Ti=eO'U (<;; 22) 
~(T = 1 /\ 'U S w /\ m = am /\ n = naG /\ 0 S a( w - t) + s S Vmax ~ 0<0+ 

(o30b)I;",wTi=eO<W (<;; 22) 
~O" = 1/\ w S U /\ m = am /\ n = nac /\ 0 S a(w - t) + s S V max ~ 0<0+ 

BG,B9,C9: 

(031a)I;"Ti=eo<u (<;; 22) 

~O" = 1 /\ U S t + ± (Vmax - s) /\ m = am /\ n = nac /\ a 01 0 ~ 0<0+ 

(o31b)I;"Ti=eo«t + ±(vmax - s)) (<;; 22) 
~O" = 1 /\ t + ± (Vmax - s) S U /\ m = am /\ n = nac /\ a 01 0 ~ 0<0+ 

BG,B9,ClO,Cll: 

(o32a)I;",w,Ti=eO<U (<;; 12) 

~(T = 1 /\ uS w /\ n = aG /\ 0 S a(w - t) + s S Vmax ~ 0'0+ 

«)32b)I;",w,Ti=eO'W (<;; 12) 

~O" = 1/\ w S U /\ n = ac /\ 0 S a(w - t) + s S Vmax ~ 0'0+ 

B6,B9,C12: 

(033a) I;",Ti=eO<U (<;; 23) 
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~(J = 1 II u:s t + !;(Vmax - 8) II n = ac II a cF 0 ~ 0'0+ 

(J33b)~uTi=eO'(t + !;(vmax - 8)) (r;: 23) 

~(J = 111t+ !;(Vmax -8):S ulln=acllacFO~o'O+ 

For (J = 2 no further efficiency in the calculation can be introduced, except for the elimination of 

the timed deadlock terms resulting from the combination of B8 and C14, since the condition under 

which this timed deadlock terms can take place is falsified under the assumption of invariant /z. 
The timed deadlock terms that are not eliminated by the invariants are: 

B7,C13: 

(J34a)~",Ti=eO'(t + !;( V 8' + 2a(1 - x) - 8) (r;: 24) 

~(J = 2 II t + H V 8' + 2a(1 - x) - s :s w II a cF 0 II 0 :s a( w - t) + 8 :s Vrnax C> 0'0+ 

(634b)~wTi=eO'W (r;: 24) 

~a = 2 II w :s t +!;( V8' + 2a(l- x) - 8 II a cF 0 II O:S a(w - t) + s:S Vmax C> 0'0+ 

B7,C14: 

(035a)0'(t + ~(VS2 + 2a(l- x) - 8) (r;: 24) 

~a = 211 vs2 +2a(l-x) -8:S Vmax -8I1acFOc>0'0+ 

(J35b)J<(t + !;(Vmax - 8)) (r;: 24) 

~,,- = 2 II Vmax - 8 :s y'rs'" "+C02a-("I---x') - 8 II a cF 0 C> 0'0+ 

B8,C13: 

(J36a)~wTi=eJ'(t + ~(l - x)) (r;: 16) 

~,,- = 2 II t + ;(1- x) :s w II 0 :s a(w - t) + 8 :s Vmax II a = 0 II 8 cF 0 ~ 0'0+ 

(J36b)~wTi=e(hV (r;: 16) 
~a = 211w:S t+ ~(I-x)IIO:S a(w-t) +s:S vrnax lIa=01l8 cFOC>O'O+ 

B9,C13: 

(J37a)~u,w,Ti=eO'U (r;: 24) 

~(7 = 2 II u :s w II 0 :s a( w - t) + s :s Vrnax C> 0'0+ 

(J37b)~u,w,Ti=eO'W (r;: 24) 

~(J = 2 II 1V :s u II 0 :s a( w - t) + s :s Vrnax ~ 0'0+ 

B9,C14: 

(J38a)~uTi=eO'" (r;: 24) 
~(7 = 2 II u :s t + ~ (vmax - s) II a cF 0 C> 0'0+ 

(038b)~uTi=eJ'(t + !;(vmax - 8)) (r;: 24) 

~(7 = 2 II t + !; (Vmax - 8) :s u II a cF 0 C> 0'0 

The total expansion, under the assumption of invariants It .. .I91 yields 38 pairs of timed deadlock 

terms. The invariant II furthermore reduces the numbers of terms containing communications 

by seven, The total number of terms for the expansion of process CBS' thus equals 93, The 

Ilumber of timed deadlock terms is rather alarming, they make up 82 percent of the total number 

of terms. A straightforward application of the encapsulation theorem, i.e. without using the 

invariants would even yield a 91-percent rate, which is rather unacceptable. Clearly, this calls for 

more investigation into the encapsulation and expansion theorem. 
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4 Analysis of the Conveyor Belt System 

The previous sections focused mainly on the construction and transformation of OUf conveyor belt 

system. Now using the descriptions, devised in the previous sections we are now in a position 

to perform analysis on the conveyor belt system. Basically, there are two criteria that can be 

analysed, Vi2: 

• proving absence of deadlock of the model, 

• analysing the performance of the conveyor belt system. 

The first item is addressed in section 4.1. The performance is subsequently discussed in section 

4.2. 

4.1 Proving absence of deadlock 

In order to prove absence of deadlock, it suffices to be able to show that every timed deadlock term, 

calculated in section 3.3.5, can be absorbed by at least one term resulting from a communication. 

The proofs thereof, however, are tedious but require little calculation, and are therefore here 

omit.ted. Suffices to state that all deadlocks can be removed under the assumption of invariants 

IJ ... 19· It must be noted that these invariants are also necessary for the proofs, which may seem 

rather surprising. A few representative proofs can be found in appendix A. The communication 

Lerms absorbing a timed deadlock term are annotated in section 3.3.5, next to the timed deadlock 

term in question. 

The process that describes the Conveyor Belt System thus can be written as follows (after delin

earisation) : 

proc CBS,~d(t : Time, B, a: JR) = 

2:u:Tirne ar(u CBS'7ac ,ds (u, 0, a(u - t) + s, a) <:1O :'S a(u - t) + S :'S Vmax [> 5(0+ 

F(O)'(t - ~) CBS,~d(t - ~, 0, 0) 4 a i' 0" J'O 

proc CBS'g(t, d : Tilne, s, a: IR) = 

~'''Ti=e aT'U CBS'rnac, am(u, 0, a(u - t) + B, a) ~ 0::; a(u - t) + S ::; Vrnax /\ u ::; t + d" 6'0+ 

F( -Tmaxl'(t + d) CBS,~d(t + d, ad + B, -b,Tmax) ~ 0 < ad + S ::; Vrnax ~ 6'0+ 

F(O)'(t + ~(vrnax - B)) CBS'g(t + ~(Vmax - B), d - ~(Vrnax - B), Vrna" 0) 

~a i' 0/\ !,(Vrnax - B) < d~6'0 

CBS,""'·d,( T· ~) proc 1 t: Ime, x, S, a : ~ = 

F(O)<t CBS,~ac,am(t, x, s, 0) <:I S = V max [> 5(0+ 

CBS ,TULc,ant( T· ~) proc 1 t: Ime,x,s,a:~ = 

mid'(t + ,],(1- 2x)) CBS'~'(t + ,],(l- 2x), ~l, s, a) ~ a = 0/\0 < B::; Vmax ~ 6'0+ 

"'id'(t + ~h/ B' + all - 2x) - B)) CBS'~'(t + !;:( Vs2 + all - 2x) - B), ~l, VB' + a(l- 2x), a) 

~a i' 0/\0 ::; V S2 + a(l- 2x) ::; Vrnax ~ 6'0+ 
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proc CBS/~C(t : Time, x, s, a; IR) = 

LCnTi=e ar'U CBS',(u, (u-t)(ta(u-t)+s)+x,a(u-t)+s,O,a)~O <::: a(u-t)+s <::: vmax~o'O+ 

de]J'(t + ~(l - x)) CBS'g(t + ~(l - x), k, s, a) ~ a = 0 A 0 < s <::: Vmax ~ 0'0+ 

dC]J'(t + H vs 2 + 2a(l- x) - s)) CBS'g(t+ ~(VS2 + 2a(l- x) - s), k, vs' + 2a(l- x), a) 

~a oF OAO <::: vs2 + 2a(l- x) <::: V max ~0'0+ 

proc CBS',(t: Time,x,s,y,a: 1R) = 

de)J'(t + ~(l - x)) CBS,~a"am(t + ~(I- x), y + (1- x), s, a) ~ a = 0 A 0 < s <::: vmax ~ 0'0+ 

dcv(t + ± (V s' + 2a(l- x) - s )) 

CBS,;,a"nm(t + ~( Vs 2 + 2a(l- x) - s), y + (1- x), V s' + 2a(l- x), a) 

~a oF 0 A 0 <::: V s' + 2a(1 - x) <::: vmax ~ 0'0+ 

F(Ol'(t + ~(Vmax - s)) CBS',(t + ~(Vmax - S), ,'n (V;;'ax - 8
2

) + X,V rna" ,'n (V;;'ax - S') + y,O) 

~a oF 0 ~ 0'0 

In section 3,3.4 it is stated that invariant Is expresses the fact that during normal control the 

controller takes care of keeping the velocity of the belt between 0 and Vma:I;. This is valid unless 

a deadlock occurs, but since in this section it is proved that the system is deadlock free, it also 

means that the second safety requirement is met, and can actually be proved to hold. 

Since no deadlock occurs, also the safety control objective that the trays should not collide is 

proven in t.he same manner as above, since invariant 19 remains valid. 

4.2 Performance analysis of the conveyor belt system 

This section mainly deals with the performance analysis of the conveyor belt system. The items 

that fall into this category are the following: 

• the average throughput time of trays, 

• the start-up time of the system, 

• ellergy efficiency of the conveyor belt system. 

The throughput efficiency and the start-up time of the system are not too hard to define. However, 

there are some problems in defining the energy efficiency of the system. This somehow has to reflect 

(\. combination of the amount of time the belt is running idle, i.e. the belt is not decelerating while 

there are no trays on the belt, and the time the belt needs to accelerate in order to deliver a tray to 

the environment. This notion of performance is very hard to define formally. Since the performance 

of the system is greatly dependent on the delivery of the trays, i.e. on the environment, it is 

necessary to choose a specific environment in order to do the performance analysis on the system. 

Here, only two different environments are modelled, i.e. one with a continuous delivery of trays 

and one with a delivery of trays on the basis of a constant inter-arrival time T. The inter-arrival 

time is in this case defined by the time between the arrival of two successive trays. 
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4.2.1 A continuous asap delivery of trays 

The environment that is most likely to give an upper bound for the performance of the conveyor 

belt system is the system in which the conveyor belt system is actually the bottle neck. This 

means the up-stream environment is always able to deliver trays to the belt. A model for this kind 

of ellvironment is a buffer that is in principle infinite, in which case it is always possible to feed a 

tray to the conveyor belt system. Using meta-knowledge of the conveyor belt system, in this case 

the knowledge that a new tray can only arrive when the previous tray already reached the mid 

point of the belt, a specification in timed flCRL for this kind of environment is as follows: 

proc Env" (t : Time) = 

The communication between the upstream environment and the conveyor belt system is defined 

as follows: 

comm 
aTc 

mide 

ar~l I ar 

rnidu I rnid 

The actual behaviour of the system, under the assumption that the environment is as specified as 

above is as follows: 

proc Continuousasap(tu,tc,d: Time,a: State,x,s,y,a: lR, 

ad: DState,m: Motion,n: Accept) = 

011' (Envu (tu) IICBS' (a, to, d, x, s, y, a, ad, m, n)) 

\Vhere the set H' is defined as follows: HI = {aT,aTu,midu,mid}. 

Initially, the environment behaves as follows: 

Init = ContinuoU8asap (O,O,d,O,O,O,O,O,nod,m,n) 

In this system, the throughput of the belt is from one point in time and onwards constant. One 

interesting factor that can be calculated is the duration of the start-up noise, i.e. the time the 

system needs to show a stable behaviour. In this case, this equals the time the system needs to 

accelerate to vmax . 

• Assuming s = 0 when the first tray arrives, the start-up noise time can be calculated to be 
11",a", 

b2T maCl) • 

This means, that after this time, the belt is moving with the constant speed of vmax . The 

throughput, i.e. the time between the arrival of a tray and its subsequent departure, can easily 

be calculated: 

• throughput: trnin = -'-. 
VTnaCl) 

This throughput time is also a lower bound for the throughput time, since no environment utilises 

the belt in a more efficient manner than this environment. This means that the time trnin can be 

used for comparison purposes. 

Since this system does not depend in any way on the variable k (the delay) to determine the 

efficiency of the belt, the analysis of the system in this context does not yield any interesting 

results. Although this system is optimal with respect to the start-up noise time and the throughput 

time, it is also in general not very realistic, since in practice there is hardly ever an infinite buffer 

containing the trays. 
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4.2.2 A continuous, constant inter-arrival time delivery of trays 

A more realistic environment is the environment in which trays arrive at a constant inter-arrival 

time T, where the inter-arrival time is defined as the time between two successive arrivals of 

trays. The up-stream environment can in this case be described by a buffer which outputs trays 

at a constant inter-arrival time of T time-units. In order to avoid introducing a deadlock in 

the composition of the environment and the conveyor belt system, a lower bound for T is the 

time it takes for the belt to transport a tray to the mid point when running at zero speed. Pro

cess Env~L represents a timed lleRL model of the up-stream environment as defined in this section. 

proe Env~(t: Time) = 

The communications between the up-stream environment and the conveyor belt system can be 

defined as follows: 

comm 

are aru I ar 

The behaviour of the composition of the up-stream environment and the conveyor belt system is 

defined as follows: 

proc Continuousconstant(tu, te , d : Time, (j : State, x, s, y, a: JR., 
ad : DState, m : Motion, 71 : Accept) = 

DH"(Env:Jtu) II CBS'(a,t"d,x,s,y,a,ad,m,n)) 

Where the encapsulation set H" is defined as follows: H" 

Initially, the system behaves as follows: 

Init = Continuouscon8tant(O, 0, d, 0, 0, 0, 0, 0, nod, m, n) 

{aru,ar}. 

An operational analysis of this model yields the following questions: dependent on the values of 

all and T, can V max ever be reached, and what is the throughput efficiency compared to the most 

efficient throughput time tmin' To solve this problem two cases can be distinguished. On the one 

hand, there is the case when the belt eventually reaches the maximal speed, and on the other 

hand, there is the case where the belt never reaches the maximal speed. These two cases are 

~ubscquently investigated. 

Case 1 Suppose the belt can eventually be accelerated to speed v max . Abstracting from the 

st,art-up noise time, figure 4 shows the behaviour of the system when it has finally become stable. 

For the moment, it is assumed that the system can finally become stable, but whether this can 

actually be the case, is still an open question. 

Suppose T is greater than the time that is necessary for one tray to arrive on the belt and be 

transported to the end of the belt, i.e. it is always the case there is at most one tray on the belt. If 

this assumption is violated, the system is comparable with the continuous asap delivery of trays, 

and only the start-up noise time can be interesting. 

If we take the throughput to be at least p percent of the minimal throughput time (so p = lOO;m'", 
where t is the actual throughput time), then it is easy to calculate the conditions under which this 

percentage is achieved by using the following equations: 

.'3 = 'Umax - ato (4.15) 
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Figure 4: A velocity-time diagram after stabilising 

Equation 4.15 actually expresses that the maximal speed is obtained after to time units starting 

from a speed s . 

.5 =vmax -a(T- (t+k)) (4.16) 

Equation 4.16 expresses that after delivery of a tray to the environment, a new tray arrives when 

the belt has the same speed it had when the previous tray arrived. Note that altering the delay 

k also means altering the conditions on the starting speed s. 

Using the fact that t == ~ and tmin == -'-, the following equation can be derived: 
p v".. .. ", 

100ai 
" = V max + -- + a(k - T) 

PVmax 

(4.17) 

This means that the initial speed is dependent only of the length of the belt, the maximal speed, 

the inter-arrival time and the variable k which represents a delay time. Using equation 4.17, it is 

possible to calculate how great the delay should be in order to obtain a throughput efficiency of 

fJ-perccnt: 

k = T _ 100ai _ V max - S 

PVmax a 
(4.18) 

Until now we have assumed that the start-up noise time is limited and that a stable system can 

be achieved. This however l does not have to be the case. Finding out whether the system will 

stabilise is left as a future research exercise. 

Case 2 Now, ""sume the belt cannot be accelerated to Vmax , due to the too small delay k and 

a too great inter-arrival time T. This brings about the problem that the speed for the tray that 

arrives next is highly dependent on the speed the belt had when the previous tray was delivered. 

Again two cases can be distinguished. If the inter-arrival time T, in combination with the delay 

t.ime k, causes the belt to be decelerated to zero speed before a new tray arrives, the system will 

behave stable immediately: the throughput of trays will be constant, starting from the first tray, 

and the end situation will always be that the belt h"" come to a standstill. The only possible 

way to achieve a p% throughput efficiency is by choosing a specific acceleration, which can be 

calculated as follows: 

nt
2 

At = ~ 
2 ' P 

;:::; { rewrite tmin} 
(J, = 2J- 1\ t = -.!QQL 

t. pv",,,,,, 

=> { substitute t in first equation} 
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o 
These equations use the variables a and l as they are used in the model described in section 4.1, 

in which a represents the maximal acceleration {bTrnax } and I represents the length of the belt. 

The choice for a can be realistic, depending on the choice for both land V max and of course p. 

The second case is when the inter-arrival time T 1 in combination with the delay time k, causes 

the belt to be decelerated to a velocity, greater than zero before a new tray arrives. The question 

HOW is whether the p% efficiency can be achieved. This situation is sketched in figure 5. 

. ., , 
~'IrIX ------------,--------------------------------------

Wi 

lJ+/ 

v" 

o 
t+k T TH' TH'+k 2T 

Time .. 

Figure 5: A velocity-time diagram for Case 2 

Ca.ref"ul analysis and standard mathematics will in this case be the answer to this question. Under 

the assumption that, given a T and a k, V max is never reached, the following equations are known: 

Vo = 0 (4.19) 

This expresses that the belt is initially at a stand-still. Note that this is an assumption, however, 

this assumption is very straightforward. 

1110 = V2;;[ (4.20) 

The peak velocity after delivering the first tray is represented by woo In this equation the variables 

a.s llsed in the model described in section 4.1 are llsed again, in which l represents the length of 

the belt and a represents the maximal acceleration again. 

Wi - Vi 
---=a 
ti + k 

(4.21) 

Using our knowledge of the model, we know that the belt is accelerated during t + k time units 

from speed Vi to speed Wi, with an acceleration of a. This is in essence exactly what is expressed 

ill equation 4.21. The variable ti is in this case used to express the time that is needed for a tray 

to arrive at the belt and subsequently be delivered to the environment. 

(4.22) 

Equation 4.22 expresses the fact that after ti time units, the tray has travelled a distance of exactly 

l, when the speed of the belt was Vi when the tray arrived. 

(4.23) 

31 



Equation 4.23 expresses the fact that the belt, after the peak velocity is reached, is decelerated at 

the same pace as it is accelerated, until a new tray arrives. 

Using basic mathematics, the following equation can be derived from the equations 4.21 and 4.22: 

-Vi + Jvt + 2al -vi - JVT + 2al 
ti = V ti = --'------'----'---

a a 
(4.24) 

Since ti is a value that represents a time, it may be clear that only the first solution is appropriate: 

the second solution is negative unless a < 0, but this cannot be the case (see for instance invariant 

h). Note that this equation is similar to the equations found in the model in section 4.1. 

Now the equation 4.24 can be put to use for finding recurrence relations between the two peak

velocit.y Vi and Wi. Substitution of equation 4.24 in equations 4.21 and 4.22 yields the following 

t.wo relations: 

Wi = J vl + 2al + ak (4.25) 

Vi+l = 2Jvf + 2al- aT - Vi + 2ak (4.26) 

Interesting to see is that the peak velocity Vi+i can be expressed as a dependency only on the 

previous peak velocity Vi, and not as one would expect on the peak velocity Wi. This means that 

nOw the behaviour of the system after a while can be studied, by calculating what the values of 

the peak velocities Vi and Wi tend to become when i tends to go to 00. Under the assumption 

t.hat this limit actually exists, the following calculation can be made: 

limi_HX) Vi 

= { substitute i + 1 for i} 

limi----t= Vi+l 

= { definition of Vi+1 

limi-+=(2 vI + 2al- aT - Vi + 2ak) 

Based on the recurrenCe in this calculation, the following equality can be derived: 

This equality gives rise to the following equality: 

((limHoo 1Ii) + (~aT - ak))' = (limHoo Vi)' + 2al 

Now using standard mathematics, the following equation can be derived: 

. 2al - (aT - 2ak)' 
V = i~r::, v; = 4(aT _ 2ak) 

o 

o 

(4.27) 

A similar exercise can be done for the peak value Wi for i tending to 00, using the now known 

value for limi-+= Vi. This yields the following value: 

W = lim Wi = "Iv' + 2al + ak 
i-+= 

(4.28) 

Using the equations 4.27 and 4.28, the eventual throughput time can be calculated, using equation 

4.21 to express this time in the values V and W as follows: 

W-V-ak 
too = --------~ 

a 
(4.29) 
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In terms of throughput efficiency (p), this can be expressed as follows: 

[J = lOOal % 
vmax(W - V - ak) 

(4.30) 

In order to visualise the throughput efficiency for a given a,l and VmaX1 the throughput efficiency 

is plotted as a function which takes k and T as its arguments. Figure 6 shows the throughput 

efficiency for a = 0.1 m/s', I = 5 m and a maximal speed of V max = 0.75 m/ s. 
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Figure 6: The throughput efficiency for a constant maximal speed 

If the maximal speed of the belt is variable, e.g. dependent on the inter-arrival time T, the results 

arc clearly different. 

A reason for having a dependency on the inter-arrival time, could be that when the belt has a 

lot of trays that need transportation, this needs to be done as fast as possible. When the inter

arrival time is very short, the maximal speed needs to be higher as to obtain a higher throughput 

efficiency, as opposed to when the inter-arrival time is very long, in which case it can be more 

efficient to lower the maximal speed. Using the same constants for a and I, the maximal speed 

is now defined as follows: V max (T) = ~31 m/ s. The effects this would have on the throughput 

efficiency are plotted in figure 7. 

4.3 Summary 

The analysis in previous sections clearly showed that the greater k, the higher the throughput 

efficiency p is. However) the factor kiT is a measurement for the time the belt runs idle. So in 

order to obtain a high throughput efficiency and a low idle-time percentage, certain choices have 

to be made. Figures like figure 6 and 7 help in making choices about the system. Even though 

the system itself may look very elementary, its behaviour most of the time is rather complex and 

changes with every parameter that is adjusted. Analysis of such systems are very difficult to make 

aud are certainly assisted by the use of a formal model of the system. 
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Figure 7: The throughput efficiency for a variable maximal speed 

5 Related work 

In the computing science literature, a few competing theories for hybrid systems have been pro

posed. In order to understand the value of timed J.tCRL, it is desirable to make a comparison with 

these theories. To this end, the next section is devoted to a brief introduction to one of the more 

jJojJular theories, the theory of hybrid automata [14]. Subsequently, this theory is compared to 

timed I'CRL. 

5.1 Hybrid Automata 

The first accounts of the theory of Hybrid Automata date back to 1993. In essence, the theory of 

hybrid automata is a generalisation of the theory of timed automata (see for instance [2]). The 

definition of a hybrid automaton discussed in here is as defined in [14]: 

Definition 5.1 [Hybrid Automata] A Hybrid Automata H consists of the following compo· 
nents. 

Variables A finite set X = {Xl, ... 1 xn} of real-numbered variables. The number n is called the 
di'mension of H. The set X = {Xl, ... 1 X'n} I represents the first derivatives during continuous 

change and the set X' = {x~, . .. J x~} of primed variables are used to represent values at the con
clusion of a discrete change. 

Control graph A finite directed multigraph (V, E). The vertices in V are called control modes. 

The edges in E are called control switches. 

Iuitial, invariant and flow conditions Three vertex labelling functions init
J 

inv and flow that 

assign to each control mode v E V three predicates. Each initial condition init(v) is a predicate 
who8e free variables are from X. Each invariant condition inv{v) is a predicate whose free vari-
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abies are from X. Each flow condition flow(v) is a predicate whose free variables are from X U X. 

J tlInp conditions A n edge labelling function jump that assigns to each control switch e E E a 

predicate. Each jump condition jump(e) is a predicate whose free variables are from X U X', 

Events A finite set E of events, and an edge labelling function event:E --* E that assigns to each 

control switch an event. 0 

The semantics for this model is given in terms of a Labelled Transition System. A labelled transi

tion system is defined as follows: 

Definition 5.2 [Labelled transition system] A labelled transition system S consists of the 

following components. 

State space A (possibly infinite) set Q of states, and a subset QO <; Q of initial states. 

Transition relations A (possibly infinite) set A of labels, and for each label a E A, a binary 

1'elation -4 on the state space Q. Each triple q ~ q' is called a transition. 

A subset R <; Q of the state space is called a region. Given a region R 

we uwite posta(R) = {q'13q E R : q .; q'} for the region of a-successors 

pre" (R) = {qI3q' E R : q .; q'} for the region of a·predecessors of R. 

and a label a E A, 

of R, and we write 

o 

Now, for a given hybrid automaton, two labelled transition systems are defined. Both transition 

systems represent discrete jumps by transitions. The timed transition system abstracts continuous 

Hows hy transitions, whereas the time-abstract transition system also abstracts from the duration 

of Rows. 

Definition 5.3 [Timed transition system] The timed transition system S1 of the hybrid an· 

tmnaton H is the labelled transition system with the components Q, QO, A and ~ for each a E A, 

aefinal as follows: 

• Define Q,Qo <; V x IRn such that (v,x) E Q iff the closed predicate inv{v}[X:= x} is true, 

and (v,x) E QO iff both init{v}[X:= x} and inv{v}[X:= x} are true. The set Q is called the 

state space of H, and the snbsets of Q are called H ·regions. 

• A = E U lR:>o. 

• For each event (7 E E, define (v,x) -4 (v',x') iff there is a control switch e E E such that (1) 
the source of e is v and the target of e is v', (2) the closed predicate jump (e)[X, X' := x,x'} 
is true, and {3} event{e} = (7. 

• For each nonnegative real 0 E IR>o, define (v,x) ~ (v',x') iff v = v' and there is a dif

fer'entiable function f : [0,0] --* JRn, with the first derivative j : (0,0) --* IRn , such that 

(i) frO) = x and fro) = x' and (2) for all reals E E (0,0), both inv{v}[X := f(E)} and 

flow{v}[X, X := f(E), j(E)} are true. The function f is called a witness for the transition , 
(v,x) --* (x',x'). 

o 
The time-abstract transition system is defined in a similar manner, but now the duration of a 

transition is abstracted from. 

Definition 5.4 [Time-abstract transition system] The time-abstract transition system SH of 

the hybr·id antomaton H is the labelled transition system with the components Q, QO, Band -"t for 

each b E A, defined as follows: 
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• Q and QO are defined as for 5;I' 

• B = E U {T}, for some event T rt E, 

• For each event (T E :E J define ~ as for S~, 

• Define (v, x) ~ (v', x') iff there is a nonnegative real 5 E lR"o such that for 5;I' (v, x) ~ 
(v, x'). 

o 

5.2 Hybrid Automata versus timed IlCRL 

Thus far, several examples have shown that the theory of timed /LCRL is fully capable of specifying 

hybrid systems and allows for performing subsequent analysis and verification on these models. 

The transitions between various models (e.g. the simplification of the original conveyor belt model) 

is qnite natural and intuitive and involves only basic mathematics. There are differences, however, 

between the hybrid automata and models in timed /LCRL. 

5.2.1 Difference in operational semantics 

The obvious difference between the theory of hybrid automata and the theory of timed /LCRL 

is that the theory of hybrid automata explicitly describes the behaviour of the continuous vari

ables in time, by allowing flow transitions. In fact, these flow transitions are primitive in the 

theory of hybrid automata. In timed .uCRL, the primitive transitions are time steps. Moreover, 

in timed ILCRL a timed transition does not fix values for conditions, but a time transition is only 

made if it is allowed by the conditions. To emphasise this difference, the following toy example is 

devised: 

[Example] Consider a water t.ank which outputs water at a rate of x = 1 in case the outlet is 

oLstructed, and x = 2 in case the outlet is not obstructed by a small object. If the tank is empty, 

an em.pty event is signalled and the tank is filled at a constant rate of if = 3. Once the tank is full 
again, a full event is signalled and the tank again behaves as above. A timed ,uCRL description 

of this system is as follows: 

proc Drain(t : Time, x, : IR) = 

E"Ti=e,dR->" empty'u Accumulate(u, 0) ~ lit' : 1 S x(t') S 2 A x(t) = x, A x(u) = 0 ~ 0'0 

proc Accumulate(t : Time, y, : IR) = 

E"Ti=e,yJ!<->,. full'u Drain(u, -10) ~Vt' : y(t') = 3 Ay(u) = 10 Ay(t) = y, ~ 0'0 

Figure 8: A timed /L CRL description for the watertank 

A hybrid automaton for this system is described in figure 9. Clearly, the continuous component 

is described differently in this system. However, the hybrid automaton of figure 9 is not the only 

description for this system. Replacing the flow condition x E {l,2} by x E [1,2] would specify the 

same behaviour. 

The fact that, in timed pCRL the continuous system needs to be described using an interval instead 

of a finite set of behaviours, arises from the fact that in timed /LCRL an idle transition (Le. a 

t.ransition that allows passage of time) does not affect the continuous behaviour directly. This 

may cause some problems in describing certain continuous processes in timed ,uCRL. However, it 

can also be argued that the theory of hybrid automata is not discriminative enough, since it does 

not. dist.inguish the continuous behaviours x E {a, b} and x E [a, b]. 
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x = 0, y := 0, empty 

full, y = 10, x := -y 
y=3 y=o 

Figure 9: A hybrid automaton for the watertank 

5.2.2 Differen~e in expressiveness 

Apart from the difference in the operational semantics, it can be argued that the theory of 

timed ,uCRL is more expressive, in that it allows the description of systems that are not restricted 

to a behaviour described by DAEs with a constant first derivative (see f.i. the thermometer ex

ample in [11]). Formally, this cannot be expressed in hybrid automata. Although in timed !,CRL, 

these expressions are not formalised, it is conceivable that they will be in the near future. A link 

could be by incorporating some computer algebra into the tools, which, in cooperation with the 

Sum Elimination Theorem, can reduce models the way it has been done by hand in this paper. 

5.2.3 Tool support 

The strong point for hybrid automata is the fact that tool support exists (see e.g. [13]). Although in 

the untimed setting, tool support also exists for ,uCRL, the timed extensions are not yet supported 

hy tools. One can think of tool support that allows automated linearisation for timed processes, 

automating the expansion and encapsulation theorem and possibly also the automating of the 

proving (or falsifying) of absence of deadlock for systems. Obviously, more work needs to be done 

in this area. 

5.2.4 Conceptual differences 

The theory of hybrid automata differs somewhat in the notion of the parallel constructions. In 

timed I'CRL, a notion of encapsulation is defined, which is not present in hybrid automata. More

over, in timed j.LCRL, deadlocks and timed deadlocks can be denoted explicitly, whereas in hybrid 

automata these transitions are not present. This means that, in order to check for deadlocks, a 

reach ability analysis needs to be performed to find the deadlocking locations and the transitions 

that lead to these locations. On the one hand, the deadlock transitions that arise from the applica

tion of the encapsulation operator are something to worry about, yet on the other hand, it is also 

a means of finding the deadlock transitions without first having to perform a reachability analysis. 

If some way of controlling the number of deadlock transitions that arise from the application of 

the encapsulation operator can be found, this may very well result in a preference for the theory 

of timed ,uCRL for the analysis of systems, since reachability analysis is a hard problem. 

5.3 The theory of Hybrid I/O Automata 

Besides the already existing hybrid automata, another notion of automata has been devised. In 

[17], a model is proposed that is based on timed automata and phase transition systems. One of the 

differences between this theory and the theory of hybrid automata is that not only communication 

via shared actions is possible, but also communication via shared variables. Furthermore, it is 

possible to express a hybrid automaton in the sense of [14] in the theory of hybrid I/O automata 

and the theory of hybrid I/O automata is regarded as being more expressive, since it allows for 

non-constant first derivative functions for the continuous behaviours. For a detailed account on 

the hybrid I/O automata see [18]. 
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5.4 Concluding Remarks 

The theory of timed /LCRL lends itself perfectly well for the description of real time systems 

<:Lnd the control of hybrid systems. The specification of these systems is relatively easy, and 

already quite a few results and theorems are available to perform transformations' between various 

descriptions of systems. Although various issues are still to be solved, it is likely that the theory 

of timed fLCRL will become a useful addition to already existing theories in the future. Various 

topics ,vill remain future work, e.g. controlling deadlocks resulting from the expansion theorem, 

formalising the notion of continuous variables and differential algebraic equations, guidelines for 

performing analysis on timed ,uCRL descriptions, and developing tool assistance for validation and 

verification of systems. It should also be investigated whether the theory really scales up, or is 

only capable of describing problems in the theoretical domain instead of the industrial domain. 
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A Selected proofs for deadlock removal 

This section contains selected proofs of the removal of timed deadlock terms that were the result of 

an application of the encapsulation theorem. In essence) only the axioms of [9] and some lemmas 

of [12J arc used. The only additional lemma that is used is the following: 

Lemma \Veakening: 

The validity of this lemma is easily proved from the definition of <;. 

J1a <; l. 
Proof: 

Ell,w:Tirne6<U <l CJ = 0 A 11, ::; w A 0 ::; a(w - t) + s :s: vmax A CJd = nod [> 0<0 

= { axiom SUM3 } 

o 

:Ew:TirneEu:Tirne{6<w + 0'11, <l 11, ::; w [> S<O) <J a = 01\0 :s: a(w - t) + S :S V max /\ (}'d = nod [> beD 

= { axiom ATA2 } 

Ew:TirneL:u:Tirne6<W <l (J = 0/\0 :s: a{w - t) + S :::; Vmax /\ ad = nod [> beD 

<; { definition <;, axiom ATA2 } 

Ew:Tirnear'w <I a = OI\O:S a(w - t) + S ::; Vmax 1\ ad = nodI> 6<0 

Mb <; l. 
Proof: 

I:u,w:TillleO<W <l CJ = 0/\ w ::; u /\ 0::; a(w - t) + S :S V max /\ ad = nod [> 0<0 

<; { weakening law} 

ElI.,w:Tirne6<W <l a = 0/\0::; a(w - t) + s S V max /\ ad = nodf> 6'0 

<; { axiom ATA2 J 
Ew,T;=e(ar'w) «T = 01\0 ~ a(w - t) + s ~ V max 1\ CYd = nod" 0'0 

o2a <; 17. 

Proof: 

E",T;=eO'(t - ~) ~ CY = ° 1\ t - ~ ~ u 1\ a # 01\ CYd = nod" 0'0 
<;; { weakening law} 

6'(t- ~)~CY = Ol\a#OI\CYd = nod~6'0 

<; { axiom ATA2 } 

F(O)'(t - *) ~ CY = ° 1\ a # ° 1\ CYd = nod" 0'0 

62b <; 17. 

Proof: 

:Eu:Timeb"<U <J (J = 0 1\ u ~ t - ~ 1\ a 'f:. 0/\ (J'd = nod [> 6<0 

= { Lemma A.3.3 } 

(E"T;=e6'U ~ U ~ t - * ~ 6'0) ~ CY = 01\ a # 01\ CYd = nod" 6'0 
<; { axiom ATA2 } 

E",T;=eF(Ol'(t - *) ~cy = Ol\a # OI\CYd = nod~6'0 

= { axiom SUM1 } 
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o 
The next. two proofs typically state the need for invariants to prove absence of deadlock. Using 

the invariant h, we are able to conclude that a > 0, so a division by a is possible. 

oSa C; 22 

Proof: 

EwTi=eO'(t+ HVS2 +a(I-2x) -s))~(7= 1At+ ~(VS2 +a(l-2x) -8) :O;wA 

Tn = am A n = nac A 0 :0; a(w - t) + 8:0; Vmax A a ¥ 0 ~ 0'0 
~ { rewrite condition under invariance of f6, weakening} 

EwTi=eO'(t + ~(V 8
2 + a(l - 2x) - S)) ~ (7 = 1 I'd + ~(V 8' + a(l - 2x) - 8) :0; wA 

111, = am A n = nae A w ~ t + ~(vmax - s) /\ a i- 0 [> 6(0 

C; { weakening, t.ransitivity, axiom SUM1 } 

o'(t+ ±( V 8' + a(l - 2x) -8))~(7 = 1At+ ~(JS2 + a(l - 2x) -8)) :0; t+ ~(vmax -s)Aa ¥ O~o'O 
C; { axiom ATA2 } 

F(Ol'(t + *(Vmax - s) ~ (7 = 1 A a ¥ 0 ~ 0'0 

clSb C; 22 

Proof: 

Ew,Ti=eO'W ~ (7 = 1 A w :0; t + ~(V8' + a(l- 2x) - 8)A 

Tn = am A n = nac A 0:0; a(w - t) + s :0; 1Imax A a ¥ 0 ~ 0'0 

~ { rewrite condition under invariance of 16 , weakening} 

Ew,Ti=e,hll ~ (7 = 1 A w :0; t + H VS' + a(l - 2x) - s)A 

rn =arnAn = nac/\w:S t+ ~(vmax -s)/\ai-OI>6'O 

C; { weakening, axiom SUM1, ATA2 } 

'mi,f« t + ~ (1Imax - s)) ~ ()' = 1 A a ¥ 0 ~ 0'0 

B The theory timed jlCRL 

o 

o 

This Appendix is devoted to a concise description of the theory of timed !,CRL, based on a yet to 

appear paper [81, which is a revision of [12], 

The theory of timed !,CRL is a conservative extension of the theory of !,CRL, in which time was 

not yet introduced. First the axiom system pCRLt for pica CRL with time is presented. 

B.l Axioms for peRL, 

Let A be a set of atomic actions. These actions can be parameterised with data. Without loss of 

generality we assume that all actions have exactly one parameter. This is denoted by the set A'T. 
If the special symbol 0 is added, modelling inaction or deadlock, the set is written A78, Table 1 
refers to the conventions used in this appendix. 

The two elementary operators that are used to construct processes are (+) the alternative composi

tion (.) and the sequential composition. For two process terms p and q, the alternative composition 

p + q behaves like p or q, The sequential composition p , q performs the actions of p until p ter

minates, and then continues with the actions in q. Binding conventions are that· binds stronger 

than +. In table 2, the axioms AI-A5 describe the elementary properties of the sequential and 

alternative composition. Axioms A6- and A 7 are rules for the inaction. Furthermore, one addi

tional operator is added, viz. an if then else construction, denoted··· <l ... C> "', for which the 
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variable 

X,Y,Z 

p,q,T 

X,Y 

D,E 

d,e 

b, c, a, (3 

t,u,V 

a,b,c 

range 

process variables 

process terms 

functions from data to processes 

data sorts 

data variables of arbitrary sort 

variables of sort Baal 

variables of sort Time 

actions or elements from AT or ATo 

Table 1: Conventions 

axioms CI and C2 are given. In general, for n > 0 finite sums PI + ... + Pn are abbreviated by 

EiETPi where I = {I,··· ,n}. In pCRLt, a summation construct of the form L,d:DP is a binder of 

variable d of data sort D in process term p, in which D may be infinite. By convention, we write 

E iE01' = S'O. 

Al 
A2 

A3 

A4 

A5 
AG

A7 

x+y=y+x 

x+(y+z) = (x+y)+z 

X+X=X 

(x + y) . z = x . z + y . z 

(x· y) . z = x . (y . z) 

a+6=a 

6· x = 6 

SUMI 

SUM3 

SUM4 

SUM5 

SUMll 

CI 

C2 

L,d:DX = x 
EX= Xd+ EX 

Ed,D(Xd + Yd) = EX + EY 

(EX) . x = EdD(X . dx) 

(Vd E D X d = Y d) ---) EX = EY 

X<Jt[>y = x 

x~foy = Y 

Table 2: Core axioms of pCRLt , where a E AT; 

III the axioms SUMI, SUM3, SUM4, SUM5 and SUMll, a distinction is made between sum oper
ator·s E and sum constructs Ed: DP. And X in ~X may be instantiated with functions from some 

data sort to the sort of processes, such as Ad: D.p, where variable d in p may not become bound 

hy~. An expression ~d:DX, where some term p is substituted for x, it may not contain a free 

variable d. Data terms are considered modulo a-conversion. 

The t.ime line in pCRLt can be any structure, as long as it adheres to the axioms in table 3. 

Timel if t ~ u A u ~ v = t then t ~ v = t 

Time3 t ~ u V u ~ t = t 
Time4 if t ~ u A u ~ t = t then t = u 

Time5 eq(t,u) =t ~uAu ~ t 
Time6 min(t, u) = if(t ~ u, t, u) 
Time7 if(t, t, u) = t 

Time8 if(f, t, u) = u 

Table 3: Axioms for time 

The way to express that actions must occur at certain points in time is expressed using the "at" 
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operator, denoted by the special symbol'. A process pet behaves like process p with the restriction 

t.hat. its first action must take place at time t. Table 4 lists the axioms for pCR.L,. 

ATA1 

ATA2 

ATA6 

ATBl 

ATB2 

ATB3 

ATB4 

»1 

x = Et:Tim.e x't 

a't x = a't(t » x) 

x + 6'0 = x 

a't'u = (a't<u <: t~6't) <t <: u~6'u 
(x + y),t = x't + y't 

(x· y)'t = x'ty 

(EdoDX d)'t = EdDX d't 

t » x = L:u;Tim.eX'U <l t ::; U [> oct 

Table 4: Time related axioms of pCRL" where a E AT; 

The process oct models the process that deadlocks at moment t. These processes are called time 

deadlocks. Using axiom ATAl, we can write 0 = ~t:TiIneO{t. For arbitrary time t, the following 

holds: J,t + 6 = 6. Axiom AT6 expresses that 6'0 serves as a neutral element for the alternative 

composition. We require that 0 is the minimal element for Time. 

B.2 Axioms for JLCRL t 

This section is devoted to the extension of pCR.L, with parallelism, called the axiom system 

pCRL/ .. For communication we have a binary commutative and associative function 1, which 

is only defined on action names. In order for a communication to occur between action terms 

a(d), Ii(e) E AT, ,,((a, b) should be defined, and the data parameters d and e of the action terms 

should match according to axiom CF in table 6. 

The three basic operators for concurrency are the merge II, the left merge IL and the communication 

·I/I.erge I. The process pllq symbolises the parallel execution of p and q. It 'starts' with an action 

of either p or q, or with the communication between p and q. We write plL q for a process which 

behaves like pllq, but the first action must come from p. 

For the axiomatisation of the left merge 1L, the auxiliary before operator is defined; p « q should 

be interpreted as the process that behaves like p, provided that p can do a step before or at the 

moment to after which q gets definitely disabled. Otherwise p « q becomes a time deadlock at 

time to. The axioms related to the parallelism are listed in tables 5 and 6. 

ATB7 

ATB8 

ATB9 

«1 

«2 
«3 
«4 

(xly)'t = x'tly 

(xly)'t = xly't 
8H (x),t = 8H (x,t) 

x « act = Eu:Tim.e x'u <l U ::; t [> x't 

x« (y+z) =x« y+x« z 
x«y·z=x«y 

x« EX = EdoDX« Xd 

Table 5: Time related axioms of I,CRL" wher'e a E AT; and H <; A 
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SUM6 

SUM7 

SUM7' 

SUMS 

CMI 
CM2 
CM3 
CM4 
CM5 
CM6 

CM7 
CMS 

CM9 

(1:X)iLx = 1:dD (XdiLx) 

(1:X)lx = 1:d D(X dlx) 

xl(1:X) = 1:dD (xIX d) 

aH(1:X) = 1:dDaH(Xd) 

xlly = xiLY + yiLx + xly 
a't iL x = (a't « x) . x 

a't· xiLY = (a't« y). (t» xlIY) 
(x+y)iLz=xiLz+yiL z 

a· xlb = (alb) . x 

alb· x = (alb) . x 

a . xlb· Y = (alb) . (xIIY) 
(x + Y)lz = xlz + Ylz 

xl(Y + z) = xly + xlz 

CDI 
CD2 

DD 

D1 

D2 
D3 
D4 

ola = 0 

alo = 0 

aH(o) = 0 

aH(c(d)) = c(d) if e <t H 

aH(e(d)) if c E H 

aH(x + y) = aH(x) + aH(Y) 

aH(X' y) = aH(X) . aH(Y) 

CF e(d)lc'(e) = { -y(c,e')(d) ~eq(d,e)c>o if-y(c,c') defined 
o otherwise 

Tahle 6: Axioms for parallelism of !,CRL" where a, bEAT" e, e' E A and H C; A 

B.3 Basic forms 

A basic syntactic format for 1:(pCRL,)-terms is provided. 

Definition B.I A basic form over 1:(pCRL,)-terms is a process-closed term of the form 

o 

III the sequel, we will often write Ed1, ... ,d",X for Ed1:Dl ..• Edon:D>n and dm for d1 ,"', dm • By con

vention EdoX = X, and it can be proved that the order of the dk in E'dox = x may be permutated 

arbitrarily. We take care that no confusion can arise w.r.t. the sorts of the dk . For example, if we 

t.reat ~iEI and L.jEJ as formal summations we may abbreviate r in the above definition to: 

A lIlorc general format for representing basic forms is defined as follows: 

LelllITla B.I Representation Basic form r given in Definition B.l can be represented by 

whcr'c the sequence d 11 ..• ,dm contains all data variables from UiEI{ dl, ... ,d~J, and el, ... ,en 

contains all data variables from UjEJ {e{, ... ,e~j}. 0 

Theorem B.I Basic Forms If q is a process-closed term over 1:(pCRL,) then there is a basic 

form p snch that!' CRL, I- p = q. 0 
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