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The Analysis of Assortative Mating: A LISREL
Model
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The use of linear models to discriminate between primary and secondary as-
sortative mating has allowed a significant advance in our understanding of the
mate selection process. We describe how these methods may be implemented in
the LISREL and COSANpackages and illustrate the method with data on cog-
nitive ability, education, and personality reported by Phillips et al. (Behav.
Genet. 18:347-356, 1988). Issues discussed include the interface between path
diagrams and computer program specification, the near-independence of pa-
rameters for within-person correlations from parameters for marital correla-
tions, and the fact that almost all of marital resemblance for IQ seems to be
due to assortative mating for educationalleve/.
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INTRODUCTION

The issue of whether a marital correlation for two variables arises from

direct assortment or from correlation with another variable on which assortment

occurs has a long history. Pearson and Lee (1903) published within-person

(phenotypic) and marital correlations of height, forearm length, and span in a
large sample. Surprisingly, they showed that there was likely to be direct as-

sortment for both height and forearm length. Recent developments in linear

modeling make statistical tests of such findings possible. The concepts of the
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copath (Cloniger, 1980), the delta path (Van Eerdewegh, 1982), and the con-

ditional path (Carey, 1986) permit modeling of the mate selection process which

allows for the indirect effects of assortative mating. In this article, we show

how the reticular action model's graphic and algebraic notation (RAM; see

McArdle and McDonald, 1984, McArdle and Horn, 1989) may be applied to
formulate the full expected matrix for phenotypic and marital covariances. This

method is implemented using the LISREL 7 structural equation modeling pack-

age (Jbreskog and Sbrbom, 1988) and the~COSANII package (Fraser, 1988) in

order to make the analysis of assortative mating more readily available to other
researchers.

Conditional path methods were applied by Phillips et at. (1988) to data

from two domains, cognitive performance and personality. In the cognitive
performance domain there were two variables, g-factor IQ and years of educa-

tion. In the personality domain there were four personality scales extracted from

Cattell's 16PF (Cattell et at., 1970), namely, Extraversion, Anxiety, Tough

Poise, and Independence. Phillips and co-workers' (1988) analysis focused on

the marital correlations, and the expected covariances within persons were fixed

to equal the observed in order to facilitate speedy computation. Thus, they

assumed that the phenotypic correlations were uncorrelated with parameters

describing the mate selection process. Although this assumption seems reason-

able, it was neither necessary nor tested in their analysis. We extend their

analysisby simultaneouslyfittingboth the phenotypicand the maritalcompo-
nents of the covariance matrix and examining the covariance matrix of the

phenotypic and marital parameter estimates.

MODEL DEVELOPMENT

Predicted Covariance Matrix

When marital assortment is modeled using conditional paths, the expected

covariance matrix for spouses is of the form

[
RH

2: = RwDRH

RHD/RW

]Rw '

where Rw is the phenotypic covariance matrix for wives, RH is the phenotypic

covariance matrix for husbands, and D' is the matrix of conditional paths with

rows and columns corresponding to husband and wife variables, respectively
(see Van Eerdewigh, 1982; Carey, 1986). The derivation of these expectations

has been described in detail by Fulker (1988); the basis for the conditional path

theory lies in the work on selection initiated by Pearson (1902) and generalized
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such as LISREL 7 (Joreskog and S6rbom, 1988) or COSAN (Fraser, 1988) is

not immediately obvious and is not explicitly treated in either user's guide.

Structural Model

In principle, any structural equation model may be implemented in a com-
puter program in an infinite number of ways. For example, estimation of a

variance could be achieved by estimating the 2nthroot of the variance with the

matrix product Fl . . .FnCF'n. . .F'l foranypositiveintegern. Inpractice,we
wish to use a formulation that is easily understood and simple to implement in

any of a number of packages. A further aim may be to limit the size of matrices
involved in estimation and to avoid matrix inversion if these factors increase

computational demands beyond reasonable limits. In this article we develop

formulations for the COSAN and LISREL packages.

By using RAM notation in conjunction with the multivariate generalization

of path analysis (McArdle, 1980; McArdle and McDonald, 1984; Volger, 1985),

the model for multivariate assortative mating is described succinctly by the path

diagram shown in Fig. 1. In this diagram and the following text, the subscripts

Hand W refer to husbands and wives, respectively. In RAM notation the path

Fig. 1. RAM path diagram of multivariate assortative mating between phenotypes of husbands (PH)

and wives (Pw). Latent variables (shown in circles) correspond to standardized phenotypic variables

(LH and Lw) and their sources of variation (BH and Bw) and covariation (AH and Aw). Matrices of

path coeffecients are as follows: S-diagonal matrix of standard deviations; R-within-person cor-

relation matrix of phenotypes; D' -matrix of delta paths; I-identity matrix; a-null matrix.
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analyst is required to draw all variables and model parameters in the diagram.

Parameters include single-headed "arrows" for all regression-based causal re-
lations and double-headed "slings" for all covariance-based correlations.

There are three levels of variables in this diagram: ultimate latent variables

A and B (top row), standardized intermediary variables L (middle row), and

observed variables P (bottom row). Each variable in the diagram represents a

vector of variables, and each of the path coefficients represents a matrix of path
coefficients between two such vectors. Of the ultimate variables, there are two

basic types, those that have a self-correlation of 1.0 (B variables) and those with

a self-correlation of zero (A variables). Ultimate variables without self-corre-

lation do not contribute to the variance of dependent variables; they contribute
only to covariance.

The matrices of path coefficients in Fig. 1 are of special form. Those
matrices labeled I are identity matrices, those labeled 0 are null matrices, and

those labeled R are correlation matrices. The matrices SHand Sw are diagonal
matrices containing the standard deviations of husbands' and wives' variables,

respectively. The matrix D' is the matrix of standardized copaths between hus-

band variables (corresponding to columns) and wife variables (corresponding to
rows)

Computer Programs

It is simple to develop the necessary matrices for a LISREL or COSAN

formulation of the model in Fig. 1, but slightly different approaches are used

for these two packages. For LISREL, the most efficient approach is to minimize

the size of the matrices. Thus, the ultimate variables (A and B), respectively,
are partitioned as i; and ~variables of the LISREL model. The Land P variables

are specifiedas T] andy variables,respectively.

If there are 11phenotypes for analysis, all component matrices are of order
(211x 211).The covariance of the i;variables is

<I> =
[

0"
Dn

DI,,

]0" '

the covariance matrix of the ~variables is

'II =
[

RH
0"

0,,

]
,

Rw
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in LISREL and is equal to the tJImatrix above. The regression of they variables
on the 11variables is

Ay =
[

SH

On

On

]Sw'

where SH and Sw are diagonal matrices of the standard deviations of the hus-

bands and wives respectively.

In COSAN, models are specified as Fl . . .FnCF'n. . .F'towherethema-
trices Fj may be inverses if required. In order to use the above formulation, the
partition between the A and B variables has to be removed, so that the covariance
matrix of ultimate variables is

[

On D'n On On

]

C = Dn On On On
On On RH On '

On On On Rw

where On and Dn are the null and conditional path matrices, respectively, that
are each of order n. Note that the vectors of ultimate variables have been ordered

alphabetically for this treatment. The matrix F2 corresponds to the matrices of

paths from the ultimate variables to the standardized intermediary variables in

Fig. 1. This matrix is of order (2n x 2n) and is of the form

F2 =
[

RH

On

On

Rw

In

On

On

]I" .

The matrix F] is of order (2n x 2n) and is of the form

[
SH

Fl = On

0,,

]
.

Sw

For the COSAN approach, the correspondence between diagram and program

specification is clearer. Each matrix has been formed directly from the diagram
by assigning columns of the matrix to variables that are causal and rows of the

matrix to variables that are being caused. For example, the columns of the F2

matrix correspond to the vectors AH, Aw, BH, and Bw in the top row of the

diagram, and the rows correspond to the vectors of standardized intermediary
variables LH and !-W.

In LISREL 7, it is necessary to set the admissibility test off (AD= OFF)
on the OU card, since the matrix <I>is nonpositive definite by definition. The

full LISREL 7 input file is shown in Appendix I. The shorter COSAN II input
file is shown in Appendix II.
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REANALYSIS OF IQ AND PERSONALITY DATA

The data reported by Phillips et al. (1988) were reanalyzed in order to

examine the consequencesof assuming zero correlation between estimates of

the phenotypic and marital covariances. The variance-covariance matrix part of

the COSAN input file is shown in Appendix II. Although seven places of dec-

imals were used for analysis, only four places are shown in the Appendix to

save space.

The full model has 78 parameters, and space prevents publication of the

(78 x 78) matrix of correlations between parameter estimates. There is little

reason to present the matrix since almost all of the correlations between phe-

notypic parameters and marital parameters are less than .01 for these data. In

addition, Neale et al. (1990) show that standard errors of parameter estimates

are not invariant to transformation, and the sameapplies to covariances between

parameter estimates. However, the near-complete independence of the two sets

of parameters is reflected in the goodness of fit statistics, which are very close

to the values obtained by fitting with fixed phenotypic variance covariance

matrices. The two sets of x2 statistics are shown in Table I.

DISCUSSION

LISREL and COSAN implementations of the assortative mating model of

Carey (1986) have been described. The RAM notation of McArdle (1980) is

combined with the multivariate extension of path analysis described by McArdle

(1980), McArdle and McDonald (1984), and Vogler (1985). We hope that the

LISREL formulation will assist others to explore primary and secondary assor-

tative mating in other variables. Needed extensions of the method include the

Table I. Fit Statistics for a Variety of Submodels of a Multivariate Model of Phenotypic

Assortment with Phenotypic Matrices as Free vs. Fixed Paramctcrs

Submodel

1. Symmetry of D

2. (1) and no cross-domain mating"

3. Diagonal D

4. (2) and no g-educn. cross mating

5. (4) and no g assortment

6. (4) and no educn. assortment

-" The tw.9 domains are cognitive (Education and IQ) and PersonalitY (Extraversion. A~.J'oJJ!!h

x2

Fixed Free df

20.09 20.07 15

27.42 27.41 23
41.53 41.52 30
27.76 27.74 24

32.10 32.09 25
85.27 85.26 25
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treatment of assorative mating in twins and their spouses, to allow resolution of

phenotypic and social homogamy (Heath and Eaves, 1985).
Current limitations of LISREL, which lacks any means of specifying con-

straints, and of COSAN, which does not allow for multiple groups, prevent the

development of a number of interesting alternative models of mate selection.

These models include mixed social and genetic homogamy, social homogamy

based on parental phenotypes, and mixed genetic and cultural transmission.

Relaxation of the simplifying assumptions used by Phillips et al. did not

substantively change their results because the correlations between parameter

estimates were so small. We note that phenotypic assortment for IQ is consid-

erably smaller than the assortment for the education measure. In addition, since
education was measured on a discontinuous scale, the true correlation for edu-

cational attainment is likely to have been underestimated [compare polychoric

and product-moment correlations between spouses for education given by Heath

et al. (1985)]. Only slight attenuation is expected for the (polyserial) correlation
between the continuous IQ measure and education. If the true marital correlation

for education between spouses is .48 rather than the calculated .43, then the

evidence for direct marital assortment for IQ in the CAP data disappears. The
marital correlation for IQ may simply be a secondary correlation due to the
correlation with educational attainment for these data.

There appears to be assortative mating across the four personality measures,

not simply within measures. However, the different structures of the phenotypic
covariance matrices in males and females make the cross assortment difficult to

interpret. It is possible that there is no cross assortment in the true sense, but

rather that, to some degree, Scale A measures character A in males, yet measures

character B in females. Thus apparent cross assortment between Scale A and
Scale B may just reflect within-domain assortment. A general model allowing

assortative mating between latent variables is discussed elsewhere (Neale, 1989;

Neale et aI., 1990).

ACKNOWLEDGMENTS

Dr. K. Phillips kindly provided variance-covariance matrices for reana-

lysis. The authors are grateful for helpful comments on the manuscript provided

by G. Carey, L. J. Eaves, J. K. Hewitt, A. C. Heath, J. M. Meyer, K. Phillips,
and C. A. Prescott.



294

Appendix I

LISREL program for fitting It model of multivariate
phenotypic assortat;ve mating to data from husbands

and wives. The MO card has been split over two lines;
concatenation of these lines is necessary for LISREL
input.
PHILLIPS ET AL 1988 FINAL MODEL

DA NG=1 NI=12 NO=334
LA
*

'HGFAC' 'HEDUC' 'HEXTR' 'HANX' 'HTOUGH'
'HIND'

'WGFAC' 'WEDUC' 'WEXTR' 'WANX' 'WTOUGW'
'WIND'
CM fi=casmat.dat

MO NY=12 NX=O NE=12 NK=12 GA=FU,FI

PH=SY,FI PS=SY,FI TE=ZE
LE,
'HGFAC' 'HEDUC' 'HEXTR' 'HANX' 'HTOUGH'
'HIND'

'WGFAC' 'WEDUC' 'WEXTR' 'WANX' 'WTOUGW'
'WIND'
LK
*

'HGFAC' 'HEDUC' 'HEXTR' 'HANX' 'HTOUGH'
'HIND'

'WGFAC"WEDUC"WEXTR' 'WANX' 'WTOUGW'
'WIND'
PA GA
,
6*16*06*16*06*16*06*16*06'16*06*16*0
6*06*16*06*16*06*16*06*16'06*16*06*1
PA PH
,

0
00

000
0 0 0 0
00000

000000
1000000

01000000

001111000
001"1110000

00111100000
001111000000
PA PS
*

2]*16*0 I 6*02*16*0 3*J 6*04*1 6*0 S*1 6'06*1

EQ GA(2,1) GA(I,2) PS(2,1) PS(I,2)

EQ GA(3,I) GA(I,3) PS(3,1) PS(I,3)
EQ GA(4,1) GA(I,4) PS(4,1) PS(I,4)
EQ GA(S,I) GA(1,S) PS(S,I) PS(I,5)

EQ GA(6,1) GA(1,6) PS(6,1) PS(I,6)
EQ GA(7,1) GA(I,7) PS(7,1) PS(I,7)

EQ GA(8,1) GA(I,8) PS(8,1) PS(I,8)

EQ GA(9,1) GA(I,9) PS(9,1) PS(I,9)

EQ GA(IO,I) GA(I,IO) PS(IO,I) PS(I,IO)

Neale and McArdle

EQ GA(II,I) GA(I,II) PS(II,I) PS(I,l1)
EQ GA(12,1) GA(I,12) PS(12,1) PS(I,12)
EQ GA(3,2) GA(2,3) PS(3,2) PS(2,3)

EQ GA(4,2) GA(2,4) PS(4,2) PS(2,4)

EQ GA(S,2) GA(2,5) PS(5,2) PS(2,S)
EQ GA(6,2) GA(2,6) PS(6,2) PS(2,6)

EQ GA(7,2) GA(2,7) PS(7,2) PS(2,7)
EQ GA(8,2) GA(2,8) PS(8,2) PS(2,8)
EQ GA(9,2) GA(2,9) PS(9,2) PS(2,9)
EQ GA(10,2) GA(2,10) PS(10,2) PS(2,10)

EQ GA(l1,2) GA(2,l1) PS(II,2) PS(2,l1)

EQ GA(12,2) GA(2,12) PS(12,2) PS(2,12)

EQ GA(4,3) GA(3,4) PS(4,3) PS(3,4)
EQ GA(5,3) GA(3,5) PS(5,3) PS(3,5)
EQ GA(6,3) GA(3,6) PS(6,3) PS(3,6)
EQ GA(7,3) GA(3,7) PS(7,3) PS(3,7)
EQ GA(8,3) GA(3,8) PS(8,3) PS(3,8)
EQ GA(9,3)GA(3,9) PS(9,3) PS(3,9)

EQ GA(10,3) GA(3,10) PS(10,3) P-I?(3,10)
EQ GA(II,3) GA(3,l1) PS(II,3) PS(3,1I)
EQ GA(12,3) GA(3,12) PS(12,3) PS(3,12)
EQ GA(S,4) GA(4,S) PS(5,4) PS(4,5)

EQ GA(6,4) GA(4,6) PS(6,4) PS(4,6)

EQ GA(7,4) GA(4,7) PS(7,4) PS(4,7)
EQ GA(8,4) GA(4,8) PS(8,4) PS(4,8)
EQ GA(9,4) GA(4,9) PS(9,4) PS(4,9)

EQ GA(10,4) GA(4,10) PS(10,4) PS(4,10)
EQ GA(II,4) GA(4,1I) PS(II,4) PS(4,1I)

EQ GA(12,4) GA(4,12) PS(12,4) PS(4,12)
EQ GA(6,5) GA(5,6) PS(6,5) PS(5,6)
EQ GA(7,5) GA(S,7) PS(7,5) PS(5,7)

EQ GA(8,5) GA(S,8) PS(8,5) PS(5,8)
EQ GA(9,5) GA(5,9) PS(9,5) PS(5,9)
EQ GA(IO,S) GA(5,10) PS(10,S) PS(5,1O)
EQ GA(II,S) GA(5,1I) PS(II,S) PS(5,1I)
EQ GA(12,5) GA(5,12) PS(12,5) PS(S,12)
EQ GA(7,6) GA(6,7) PS(7,6) PS(6,7)

EQ GA(8,6) GA(6,8) PS(8,6) PS(6,8)

EQ GA(9,6) GA(6,9) PS(9,6) PS(6,9)
EQ GA(10,6) GA(6,10) PS(10,6) PS(6,10)

EQ GA(II,6) GA(6,1I) PS(II,6) PS(6,1I)
EQ GA(12,6) GA(6,12) PS(12,6) PS(6,12)
EQ GA(8,7) GA(7,8) PS(8,7) PS(7,8)

EQ GA(9,7) GA(7,9) PS(9,7) PS(7,9)

EQ GA(10,7) GA(7,10) PS(10,7) PS(7,10)
EQ GA(II,7) GA(7,1I) PS(II,7) PS(7,1I)

EQ GA(12,7) GA(7,12) PS(12,7) PS(7,12)
EQ GA(9,8) GA(8,9) PS(9,8) PS(8,9)

EQ GA(10,8) GA(8,10) PS(IO,B) PS(B,IO)
EQ GA(IJ,B) GA(B,II) PS(II,B) PS(B,II)

EQ GA(12,8) GA(B,12) PS(12,8) PS(B,12)
EQ GA(10,9) GA(9,10) PS(10,9) PS(9,10)
EQ GA(II,9) GA(9,1I) PS(II,9) PS(9,1I)
EQ GA(12,9) GA(9,12) PS(12,9) PS(9,12)

EQ GA(II,IO) GA(IO,l1) PS(l1,IO) PS(10,l1)
EQ GA(12,10) GA(10,12) PS(12,10) PS(10,12)
EQ GA(12,11) GA(II,12) PS(12,1I) PS(II,12)
EQ PH(B,I) PH(7,2)

EQ P!I(9,1) P!I(7,3)
EQ PH(IO,I) PH(7,4)



t;'-l t"'I",~J t"'IH,oJ

FR LY(I,I) LY(2,2) LY(3,3) LY(4,4) LY(5,5) LY(6,6)

FR LY(7,7) LY(8,8) LY(9,9) LY(10,10)
FR LY(l1,lI) LY(12,12)
FI GA(I,I) GA(2,2) GA(3,3) GA(4,4)

FI GA(5,5) GA(6,6) GA(7,7) GA(8,8)
FI GA(9,9) GA(10,10) GA(lI,l1) GA(12,12)

FI PS(I,I) PS(2,2) PS(3,3) PS(4,4)
FI PS(5,5) PS(6,6) PS(7,7) PS(8,8)

FI PS(9,9) PS(10,10) PS(l1,l1) PS(12,12)
VA 1.0 GA(I,I) GA(2,2) GA(3,3) GA(4,4)
VA 1.0 GA(5,5) GA(6,6) GA(7,7) GA(8,8)

VA 1.0 GA(9,9) GA(10,10) GA(l1,l1) GA(12,12)

VA 1.0 PS(I,I) PS(2,2) PS(3,3) PS(4,4)
VA 1.0 PS(5,5) PS(6,6) PS(7,7) PS(8,8)

VA 1.0 PS(9,9) PS(10,10) PS(l1,l1) PS(12,12)
VA 0.0 PH(I,I) PH(2,2) PH(3,3) PH(4,4)
VA 0.0 PH(5,5) PH(6,6) PH(7,7) PH(8,8)

VA 0.0 PH(9,9) PH(10,10) PH(l1,lI) PH(12,12)
ST .1 ALL

ST 2.0 LY(I,I)-LY(12,12)
OU NS AD=OFF SO RS PC

Appendix II

COgAN input file fitting a model of multivariate phe-

notypic assortative mating to data from husbands and
wives.
PHILLIPS ET AL 1988 FINAL MODEL

D EC=6,ROWS= 12,LARG EST=24, 0 RD ER=2, C

EST=LS+ ML,NO=334,ACC=.000001 ,C
IN =LSYM,MAX=500,VAL UE=.O

(12DIO.7)
0.8195

0.74074.0259
0.01540.56943.6999

-0.0547 -0.2443 -0.0621 3.1069

0.05730.06302.12160.35522.9896
0.20900.77670.8328 -0.3515 0.9064 2.6083

0.17790.49050.0743 -0.0539 0.1146 0.3566
1.0151

0.37582.00130.7029 -0.2894 0.1197 0.8569

1.0699 5.4494
0.13960.17020.8243 -0.15810.34680.1340
-0.03610.38033.1780

0.0505 -0.2281 -0.1336 0.2673 0.0626 -0.0436
-0.1708 -0.5290 -0.8056 2.6163

0.16570.02940.0254 -0.0632 0.1553 0.2716

'W" - - -- ---
ROW 3 = 14 18 0 22 23 24 18*0
ROW 4 = 15 19220 25 26 18*0

ROW 5 = 16 202325 0 27 18*0

ROW 6 = 17 21 24 26 27 0 18*0
ROW 7 = 6*002829 30 31 32 12*0

ROW 8 = 6*0 28 0 33 34 35 36 12*0

ROW 9 = 6*0 29 33 0 37 38 39 12*0
ROW 10 = 6*0 30 34 37 0 40 41 12*0
ROW 11 = 6*0 31 353840042 12*0
ROW 12 = 6*0 32 36 39 41 42 0 12*0

INITIAL

DIAG(I,I) TO (12,12) = 12*1

DIAG(1,13) TO (12,24) = 12*1
MATRIX P 24 BY 24

PATTERN
ROW 1 = 0

ROW 2 = 2*0

ROW 3 = 3*0

ROW 4 = 4*0

ROW 5 = 5*0
ROW 6 = 6*0
ROW 7 = 43 44 45 46 47 48 0
ROW 8 = 49 50 51 52 53 54 2*0
ROW 9 = 55 56 57 58 59 60 3*0
ROW 10=61 62 63 64 65 66 4*0
ROW 11 = 6768 69 70 71 72 5*0
ROW 12 = 73 74 75 76 77 78 6*0
ROW 13 = 12*00
ROW 14 = 12*0130
ROW 15 = 12*0 14 18 0
ROW 16 = 12*0 15 19220
ROW 17 = 12*0 1620 23 25 0
ROW 18 = 12*01721 2426270
ROW 19 = 18*00
ROW 20 = 18*0 28 0

ROW 21 = 18'0 29 33 0
ROW 22 = 18'03034 370
ROW 23 = 18'0 31 35 38 40 0
ROW 24 = 18'0 32 36 39 41 42 0
INITIAL

DIAG(13,)3) TO (24,24) = 12'1
BEGIN

--
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