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1. Introduction

In considering two-way contingency tables, one often is concerned
with two types of models: the '"two response, no factor'" situation in
which neither margin is fixed and the "one response, one factor" situa-
tion iﬁ which one margin (say row totals) is fixed and the other is not.
For the first case, the ﬁypothesis of primary interest is one of inde-
pendence or no association between the responseé; while in the other
case, the hypothesis of primary interest is one of homogeneity over the
factor levels or equality of the distributions in the different rows.

This paper is conceéﬁed with the recognition of a third type of
model which will be called a "mixed categorical data model of order 2"
in the case ofrtwoeway tables. The experimental situation corresponding
to such a model involves exposing each of n randomly chosen subjects
from some homogeﬁeous population to both levels of a binary factor (eg.
control vs. treated) and classifying each of the two responses into one
of r categories. The resulting data are then represented in the matrix
of an rxr contingency table which will be assumed to follow a multi-
nomial distribution, It is apparent tﬁat this is a categorical data
version of the classical matched pairs design. As such, it has been

studied in a somewhat different context recently by Miettinen [1968, 1969]
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This paper is concerned with the recognition of the underlying
structure of contingency tables which are analogous to the well-known
mixed model in analysis of variance. The experimental situation cor-
responding to such a model involves exposing each of n subjects to
each of the d levels of a given factor and classifying each of the d
responses into one of r categories. The resulting data are represented
in an rXrX...Xr contingency table of d-dimensions. The hypothesis of
principal interest is one of first order marginal symmetry or equality
of the one-dimensional marginal distributions. Alternatively, if the
r categories may be quantitatively scaled, then attention is directed
at the hypothesis of equality of the mean scores over the d first order
marginals. Test statistics for these hypotheses are developed in terms
of minimum Neyman X2 or equivalently weighted least squares analysis of
underlying linear models. As such, they have a stfong resenblance to
the Hotelling T2 procedures used with continuous data in mixed models.
Several numerical examples are given to illustrate the use of the var-

ious methods discussed.
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and others (Worcester [1964], Billewicz [1964, 1965], Bennett [1967],
and Chase [1968]). In addition, the methods of Mantel and Haenszel
[1959] are also of interest for this experimeqtal situation. Although
each of the previously cited papers deal with appropriate statistical
procedures for the analysis of mixed categorical data models of order 2,
they do not indicate the way in which such contingency table data can
be analyzed as a special case of a unified general model.

One such model which will be the basis of inference in the remain-
&er of this paper is that of Grizzle, Starmer, and Koch [1969]. As a
result, test statistics are derived through weighted least squares analy-
sis of certain appropriately formulated linear models and correspond

identically with the minimum modified xi—statistics due to Neyman [1949]

or equivalently the generalized quadratic form criteria due to Wald
[1943]. Alternative methods are also appropriate in certain contexts;
eg. those of Lewis [1968] and Goodman [1970] which are based on maximum
likelihood and that of Ku and Kullback [1968] based on minimum discrim-~
ination information.

To apply the methods of Grizzle, Starmer, and Koch (GSK), it is
first necessary to recognize the underlying factor-response structure
for the data (see Bhapkar and Koch [1968]). Since only the sample size
n is fixed, this is a "two response, no factor" situation. However,
the hypothesis of interest is one of homogeneity over the factor levels;
i.e., there is no difference between the effects of control and treated.
This hypdthesis can be formulated specifically as an hypothesis of mar-

ginal symmetry in the two-way table.
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The hypothesis of marginal symmetry in two-way contingency tables
has been considered by a number of authors including Stuart [1955],
Bhapkar [1966], and most recently Ireland, Ku, and Kullback [1969]. How-‘
ever, not a great deal of attention has been given to motivating the sit-
uations in which tests of marginal symmetry are of the most interest with
respect to the interpretation of data from the biological, physical, or
social sciences. Hence, one of the principal purposes of this paper is
to demonstrate that tests of marginal symmetry are not only applicable to
mixed categorical data models, but are the only tests directed at the
question of primary interest associated with such experimental situations;
namely homogeneity over factor levels. One should also note that the
traditional hypothesis of independence which is usually applied to " two
response, no factor'" tables is of only casual interest here. This remark
follows from the fact that responses from the same subject (or units in
the same matched pair) to different factor levels are naturally expected
to be associated since they have the same initial source in common.

Finally, it is important to recognize that if the r categories are
describable in terms of some quantitative scale, then the question of
principal interest is that of equality of mean scores over the two mar-
ginals. This hypothesis, which bears a definite resemblance to the rela-
tionship tested by the classical matched pairs t-test used with continuous
data, is weaker than the hypothesis of marginal symmetry in the sense that
it specifies a restriction on only one degree of freedom rather than (r-1)
degrees of freedom. On the other hand, test statistics directed at this

weaker hypothesis are more powerful than those directed at the hypothesis
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of marginal symmetry when the inequality of the two mean scores is the

only alternative of real interest.

2. Mixed Categorical Data Models Of Order 2

TFirst let us consider the following data (see Table 1) from case

TABLE 1
s 7477 Women Aged 30~39; Unaided Distance Vision
Left Eye
Highest Second Third Lowest
Grade Grade Grade Grade
Right Eve (1) (2) L)) (4) Total
Highest Grade (1) 1520 266 124 66 1976
Second Grade (2) 234 1512 432 78 2256
Third Grade (3) 117 362 1772 205 2456
Lowest Grade (4) 36 82 179 492 789
Total 19Q7 2222 2507 841 7477

records of the eye-testing of 7477 employees in Royal Ordnance factories
which have been used as an illustrative example for tests of marginal
symmetry by Stuart [1955], Bhapkar [1966], Grizzle, Starmer, and Koch
[1969], and Ireland, Ku, and Kullback [1969]. These data may be viewed
as arising from a mixed model in which each of n = 7477 subjects is
classified according to both levels of a factor which will be called eye
position (namely right eye and left eye) with the corresponding cell fre-
quencies being assumed to follow a multinomial distribution. As such,
the hypothesis of principal interest is that the distributions of grades
of vision are the same for both eyes; in other words marginal symmetry.

The values of test statistics, each approximately distributed as x? with

D.F. = 3 if the hypothesis is true, which have been obtained by the authors

cited above are as follows:
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Stuart XZ = 11,96
Bhapkar XZ = 11.97
GSK Xz = 11.98
IKK x% = 12,00

These values are essentially the same and indicate that the two marginal
distributions are significantly different.
Let us next look at the problem of marginal symmetry in a more

formal way. If m,,, denotes the probability that a subject in the popu~

i3
lation is classified according to the j~th grade category on the right eye
and the j'-th grade category on the left eye, then the hypothesis of
marginal symmetry may be written as

T, =7, j=4'=1,2,3,64 | (2.1)

4
wherem, = L m,.,, andT ,, = T,.1» Following the GSK approach,
=] jJ «J j=l N

one would first form the unrestricted maximum likelihood estimates

.y = (n,,,/n) of m,,, where n,,, is the number of subjects classified
ij' ( ij" ) JJ' le ]

) L3

into the jj'-th cell. TFrom these, the desired estimates of m and T 5t

may be obtained by taking the appropriate marginal sums of pjj'; namely

4 4
pj = I pjj. and p ,y = pjj. respectively, If the following linear
* L d o=l

J

model is fitted to the pj and p 5!

(o] (10 0] [w
Pa. 6 1.0 )
P3, 00 1} |m
E P.]_ = 1 0 0 (2.2)
p.2 01 0
P 3 0 0 1
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by weighted least squares, then the residual sum of squares with D,F. = 3
is the GSK test statistic for (2.1) which is the same as that of Bhapkar
[1966] (except for round-off error). |

Alternatively, if scores aj, a5, a3, a, are assigned to the response

categories, then the hypothesis of equality of mean scores over the two
marginals may be written as
r r

O = jil 2 vJ' = ¥ El aj' ™ . = ogg (2.3)

One test statistic for this hypothesis is the residual sum of squares

r
th D.F. = 1, which is obtained by formin and
wi which is y g aRE j=1 J pj
= I . and fitting the linear model
U“LE j'_—_l aJ' P'jv g
RE. Lpow
E ~ = L
“LE
by weighted least squares. This statistic may be more compactly written as
X* = n(& - )2/{ ; Z [(a ~ay W) - (a )12 Pagt) (2.4)
RE T L TN i RE~OLE 33"

Tor the data in Table 1, the scores a; = 1, a, = 2 aq = 3, a, = 4 have

been assigned to the grade categories. The appropriate value of X2 may be

computed as follows:
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A 17012 A 17236 A A g 2004 2

OpE = 7477 %E = T7477 g = oqg)” = (7577 )

r I 2 1678 401 102 4200
jil j.il(aj - a0 ey = (D Gy 4G 0 G = T

X% = 7477 c§%§§)2 / {104200)(7477) - 228)%1 1 (747D%)
= 11,97

The similarity of the test given in (2.4) to the matched pairs t-test
may be seen clearly by writing down the frequency distribution of the

difference (djj' = aj - aj,) between the right eye grade and the left

eye grade. These are shown in Table 2. The value of the average

TABLE 2
Difference (d) Frequency (f)
-3 66
-2 202
~1 903
0 5296
1 775
2 199
3 36

difference d is (~224/7477) ~ -.03 and its estimated standard error F

is .0087. Hence
2 =T/ g% = (-3.46)% = 11.97 (2.5)
which is identical to the value obtained for the X2 test previously

described.



As a second example, let us consider the following data (see

Table 3) from Miettinen [1969] which pertain to a study of the extent to

TABLE 3

Previous History of Induced Abortion in Propositi
with Ectopic Pregnancy and Matched Controls

Number of Controls with
Induced Abortion
1 2 3 4 Total
Propositus no O 5 1 0 0 0 6
with induced
abortion yes 1 3 5 3 0 1 12
total 8 6 3 0 1 18

which induced abortions increase the risk of ectopic implantation in sub-
sequent pregnancies. To each of 18 propositi with ectopic pregnancy fol-
lowing at least one earlier pregnancy, four‘control subjects were matched
with respect to order of pregnancy, age, and husband's education. The
history of induced abortions terminating any of the preceding pregnancies
was then recorded for both the propositi and the controls. These data
may be viewed as arising from an asymmetric mixed model in which each of
the n = 18 sets of matched cases correspond to generalized subjects and
classification is with respect to each level of the factor propositus vs.
control. The complicating feature of these data is that the responses to
the different factor levels are measured on seemingly different scales;
i.e., propositus on a two-value scale and control on a five value scale.
This difficulty can be resolved by formulating the hypothesis of marginal

symmetry in an appropriate fashion. In particular, let ﬂjj' denote the

probability that a matched set is classified according to the j-th level

with respect to propositus and the j'-th level with respect to controls,



If scores ay = 0, a; = 1 are attached to the responses for propositus
and scores b0 = 0, bl = 1/4, b2 = 2/4, b3 = 3/4, and b4 = 4/4 are attached

to the responses for controls, then

1 1 4
o0 = I , M, = L I a, T T,,
P §=0 aJ Je 3=0 j'=0 j i3 ;
(2.6)
4 1 4
o = % b T Ly = X Z b v ..y
c §'=0 k| 3 3=0 j'=0 3" 33

represent the probability of observing an induced abortion in a propositus
and the expected relative frequency of observing an induced abortion in a
set of four controls respectively. Hence, the hypothesis of interest is

Hyt ap = 0 Essentially, the same test indicated in (2.4) is applicable

here.

Following the GSK approach, one would first apply the A-matrix
0 0 0 0 0 1 1 1 1 1

.00 .25 .50 .75 1.00 .00 .25 .50 .75 1.00

to the data in Table 3 arranged in a single (10x1) column vector with
the transpose of row 1 on top and that of row 2 underneath. This would
~ generate &p and &c to which the linear model
0.667

E .P = V where
0.222

nQ)v'_oQ>
|

is fitted by weighted least squares. The test statistic (with D.F. = 1)

again is the residual sum of squares and for these data is given by

X2 = 20.85.‘ This result is consistent with that of Miettinen [1969] who

observed essentially.X2>= 16.00 without continuity correction and X2 = 13.69
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with continuity correction. This is not unexpected since both the test
procedure given here and that of Miettinen are in some sense asymptotically
equivalent. The advantage of the one proposed here is that it is an easily

produced special case of a very general program.

3. Mixed Categorical Data Models of Higher Orders

In general a "mixed categorical data model of order d" involves ex-
posing each of n randomly chosen subjects from some homogeneous population
to each level of a factor with d levels and classifying each response into
one of r categories. The resulting data are then represented in an rXrX...Xr
contingency table of d dimensions which will be assumed to follow a multi-
nomial distribution. This represents a categorical version of the classical
mixed model with n subjects and d treatments (see Eisenhart [1947] and Koch
and Sen [1968]). The hypothesis of interest is equality of treatment effects
or homogeneity over factor levels. For the case r = 2, Cochran [1950] has
proposed a test (sometimes called the Q-test) by a permutation argument.
An alternative test due to Bhapkar [1965] has been formulated in terms of
d-th order marginal symmetry and can be produced from the weighted least
squares approach. This procedure is illustrated in Grizzle, Starmer, and Koch
[1969] for data indicating the responses of 46 subjects to each of the drugs

A, B, and C as either being favorable or not (see Table 4). This example

TABLE 4

Tabulation of Responses to Drugs A, B, and C
Response to A favorable not favorable total
Response to B fav. mnot fav. | total fav. not fav. | total

fav. 6 2 8 2 6 8 16
Response |not
to C fav. 16 4 20 4 6 10 30

total]l 22 6 28 6 -12 18 46
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is a mixed categorical data model of order 3 with drug type being the
factor and having levels A, B, and C. The hypothesis of interest is equal-
ity of the probability of a favorable response for each of the three
drugs; i.e., equality of the corresponding marginal distributions or mar-
ginal symmetry of the three one-way margins.

In the continuous case, the hypothesis of equality of treatment ef-
fects in mixed models is most appropriately tested by a Hotelling T2-
procedure (see Scheffé [1959]) unless certain symmetry relationships hold
in which case an analysis of variance test applies. Both of these tests
together with certain non-parametric counterparts are described in Koch
and Sen [1968]. Hence, it isvapparent that in the general categorical
data setting of interest here, the test statistics applied to the hypo-
thesis of marginal symmetry bear the same analogy to the Hotelling Tz—test
as the test statistics used in the previous section bore to the classical
matched pairs t-test. For the data in Table 4, the GSK approach led to
a X2 = 6,58 with D.F. = 2 indicating a significant difference (a = .05)
between drugs. The reader is referred to that paper for the details lead-
ing to this result and the Appendix for the pertinent theory.

A more complex example can be seen in terms of the following data
(see Table 5) of Lessler [1962] which have been described in Bhapkar and
Koch J1968]. 1In this case, there are two groups of male subjects in a
study of the nature of sexual symbolism in objects: Group A members were
not told the purpose of the experiment while Group C subjects were. Each
subject was asked to classify as masculine or feminine (M or F) certain

objects which had been previously characterized as being culturally
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TABLE 5

Responses of Males to Culturally Masculine and Anatomically
Feminine Objects with Weak Intensity

Resp. at 1/5 Sec. M ~_F Total
Resp. at 1/100 Sec. M F [Total M F |Total

A |Resp. at M 171 6| 177 7 7 14 191

1/1000 Sec. F 18 12 30 7 56 63 93

_ Total 189 18 207 14 63 77 284

c Resp. at M 18 10| 194 7 20 27 221

1/1000 Sec. F 38 14 52 7 114§ 121 173

Total 222 24 | 246 14 134 | 148 394

masculine and anatomically feminine but with weak intensity at three dif-
ferent exposure rates: 1/5 second, 1/100 second, and 1/1000 second.

Hence, this is a '"three response, one factor" situation with Group being’
the factor and the M or F classification at different exposure rates being
the responses. However, since it is of interest to compare the responses
at different exposure rates, it is apparent that the data from eithe; one
of the groups A or C by themselves is a mixed categorical data modél of
order 3. Thﬁs, one may call the data for the combined groups a "split plot
categorical data" model. ‘Hence, the hypotheses of interest are equality

of groﬁp (whole~plot) effects, equality of exposure rate (split-plot) effects,
and no interaction between exposure rates and groups. All of these may be
readily formulated by using the GSK approach. Tirst let us define the

following relative frequency vectors for the two groups

pp = (171, 18, 6, 12, 7, 7, 7, 56)(1/284)
(3.1)
pe = (184, 38, 10, 14, 7, 7, 20, 114)(1/394)
' = t U
R’ = (pys B
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The overall vector p is to be pre-multiplied by the following A-matrix

to determine functions F = A p where

A

1 1110000000000 O0 0
11001100000TO00O0O00O00
1 0101010000000 0O00O0

A= 10000000011 11000 0 (3.2)
0000O0O0OGO0T1T100T1T100
00000000101 010T1 0|

The resulting statistics are estimates of the probability of masculine
clagsification at the exposure rates 1/5 second, 1/100 second, 1/1000
second respectively in Groups A and C respectively. The next step in the

analysis is to fit the following linear model by weighted least squares

1 1-1 0 0 O My 0.729-

1 02 0 0 O A 0.715
Al ~

1-1-1 0 0 0} XA 0.673

E{E} = 2 where F = (3.3)

0 0 01 1-1 L ~ 0.624

0.0 01 0 2 A 0.599
!

0 0 0 1-1-1 A 0.561

L 4 L 4] - _
and Uy is a mean effect in Group A, AA is the linear effect of exposure

1

in Group A, AA is the non-linear effect of exposure in Group A, and uc,

AC , AC are similarly defined quantities in Group C. The hypothesis of
1 2

no group X exposure rate interaction may be formulated as

which may be tested by using the following hypothesis matrix

01 0 0-1 0

Q
i

0 01 0 0-1
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in accordance with the principles of weighted regression analysis. The
resulting X2 = 0.20 with D.F. = 2 indicates that the data are consistent

with this hypothesis of no interaction. Hence, the model is revised as

1 1 1 -1 Fu —A
1 1 0 2 Y
g{pr= |t T [ M (3.4)
~ 1~-1 1-1 kz
1~-1 0 2
-l -1l -1 —1_ ! |

in which p is an overall mean, y is the differential group effect, Al is
the linear effect of exposure, and Az is the non-linear effect of exposure.
The hypothesis of no group main effects may be formulated as

H:vy=0

and tested by using the hypothesis matrix
c=J0 1 0 0]

while the hypothesis of no exposure rate main effects may be formulated as

and tested by using the hypothesis matrix

0 01 O

0 0 01
The resulting test statistics respectiyely are X2 = 11.57 with D.F., = 1
and X2 = 14,55 with D.F. = 2, Hence, it is apparent that there are both
significant differences between the two groups and among the three exposure
rates. In fact, the differences among the three exposure rates are linear
as can be seen by testing separately for the linear and for the non~linear
effect of exposure. Thus, we see that split-plot contingency tables can be
analyzed by the linear model approach as readily as the more standard types

of multi-response, multi-factor experiments treated in Grizzle, Starmer,

and Koch [1969].
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4, Some Other Related Problems

The mixed models considered in this paper may be viewed as belonging
to Case III of Koch and Sen [1968] for which the Hotelling T2-test is ap-
plicable. However, since it is stated here that a single multinomial dis-
tribution applies to the entire table for the underlying homogeneous popu-
lation, it is apparent that the discussion given here not only requires
additive subject effects but also no subject effects at all. On the other
hand if subject effects are additive and are selected at random, then
this same analysis is applicable in an approximate sense.

The categorical situation, analogous to Case IV of Koch and Sen in
which the énalysis of variance F-test is appropriate, occurs when the re-
sponses of the same subject over repeated trials to the different levels of
the factor are independent. This means, in the case of a mixed model of
order d, that the rXxrX.,,.Xr contingency table with n observations in it
can be replaced by a dxr table with nd observations in which the d rows
correspond to the d different treatments or factor levels and the r columns
correspond to the levels of the.response. The frequencies in each row are
the appropriate first-order marginal distributions corresponding to each of
the d dimensions of the rxrX...Xr table. Hence, the hypothesis of marginal
symmetry in the complex table may be translated here into the traditional
hypothesis of homogeneity in a "one factor, one response' two-way table.
Thus, it may be tested by applying the classical xz—test to this two~-way
table. One important difference between this test procedure and the one in
the complex téble is that it is based on an effective sample size of nd
rather than n. Thus, if Case IV applies, then this type of test is natur-

ally more powerful than those given for Case III. Finally, as pointed out
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in Bhapkar [1968], if the response is quantitatively scaled, then the
hypothesis of equality of mean scores in the two~way table may be tested
instead of the usual homogeneity test. Here, ;his test would be a Case IV
alternative to the type of test described in (2.4).

The more general Cases I and II of Koch and Sen allow for complex
subject effects, and hence in the case of categorical data, involve pro-
ducf mul tinomial distributions. As a result, the methods given here are
not directly applicable. However, such experimental situations can be
handled to some extent by fitting complex linear models with both treat-
ment effects and subject effects. The details of this type of analysis of

product multinomial models are given in Grizzle, Starmer and Koch [1969].

5. Appendix of Theoretical Results

Let ﬂjljZ"'jd denote the probability of cell (Jl, j2""’ Jd)

where ja =1, 2,000, rwith § =1, 2,..., d in a d-dimensional table.
Define ¢£j to be the marginal probability of level j for the £-th dimen-
tion. Hence

¢E. =

d r

X rom (5.1)
J v= =
v# =

11 J1d2°7+3g
€ 3g=3
The hypothesis of d-th order marginal symmetry on the one-way margins may

be written

¢lj = ¢2j T el = ¢dj i=1l, 2,..., (5.2)

This hypothesis may be readily tested by letting nj 1 i denote the
12...d

observed frequency of cell (jl, j2,..., jd)' An A-matrix is then produced

which generates the estimates PEj of ¢€j obtained as
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d r
z where n is the total sample size. For

= B

Pr. Z n, . .
&3 v=l j,=1 J1l2°**Jq
VEE jg=]

example, if d = 3 and r = 3, we have

O O K O O+ RFE OO
©C B © O O R H OO
© O H O rH O P O O
I MR © = © O H ©O© H © O
H O O o+ O FH O O
O O H O O H O O
O H O H O O R O O
H O O H O O R O O

-
=

b
]
o O B O O B O O
QO = O O O H O O
- O O O O +FH o o M-
O O O B O o O =
o MO O B O O O =
H O O O M O O O =
© O H H O O O O ™
O = O H O © O O =
= O O H O O O O B+
© O = O O H O K+ ©
O H O O O = O = O
H O O o © +H O +H O
o O +H O H O O H O
O = O O = O© O = O
= O © O + O O +H O
o O B H O O O H O
o B O B O O O H O
- o O = O O O k= O
- O O O O = +H O ©

¢E- =1,

Since the ¢€j necessarily satisfy restrictions of the type 3

the A-matrix is modified to generate P for only the combinations

£E=1, 2,..0,d, j=1, 2,..., (r-1), In the example, this means rows

3, 6, 9 would be deleted from A. To the resulting estimates pgj, the

following linear model would be fitted by weighted least squares

E{ng} = Uj E = 1’ 23"'3 d (5-3)
i=1, 2,..., (r-1)

This can be written more fully as

P1q 0... 0 Ul

P12 1 e 0 UZ

P1,r-1 0wn 1 ]

Poy 0...0

Pygy 1...0

E ) = XK (5.4)

PZsr‘l 0 0...1

pdl 1 O L] 0

pdz 0 1 . - 0

Pd,r-1 0 0 1
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The residual sum of squares with D,F. = (d-1)(r-l) is the test statistic
for the hypothesis of marginal symmetry in (5.2). When (5.2) holds, this
statistic is approximately distributed as X? with D.F. = (d-1)(r-1).

Alternatively, if scores ays 8yseee, 8, are assigned to the response

categories, then the hypothesis of equality of mean scores over the d mar-
ginals may be written as
Oy = 0y = eow = 0y (5.5)
r
where ag = 2 aj ¢€j' The hypothesis (5.5) may be tested by obtaining the
j=1

A in
estimates o, = I a, p,. where £ =1, 2,..., d and fitting the linear
€ 41 3783

model . - - - -
ul 1 M
gl %] =1 (5.6)
&d 1

by weighted least squares; again the test statistic is the residual sum of
squares with D,F. = (d-1).

The tests given here for (5.2) and (5.5) appear similar to the classi-
cal ones of homogeneity and equality of mean scores in "one response, one
factor" tables. However, here the underlying table is d-dimensional and the
Pgy are correlated with each other while in the "one response, one factor"
tables the underlying table is two-dimensional and the PEj are independent

of Pg'j for all &' # E. Hence, in the underlying estimates of variance and

covariance, the two types of procedures are quite different.
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Finally, it is obvious that other types of hypotheses of marginal
symmetry (eg. equality of all two-way margins) may be easily tested by
this approach. All that is required is choosing an appropriate A-matrix,
and then fitting a linear model specific to the hypothesis of interest.
Since such tests are usually not readily interpreted experimentally in
the context of mixed models, they will not be discussed in any more de-

tail here.
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