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ABSTRACT 

 
 

The Analysis of Chaotic Time Series 

Joshua D. Reiss 

232 Pages 

Directed by Dr. William L. Ditto 

 

Chaotic time series analysis methods were applied to several experimental systems. Analysis of a 

Poincare section of magnetoelastic ribbon time series was used to construct symbolic dynamics and 

extract empirical quantities such as fractal dimension and Lyapunov exponents. In the pulse thermal 

combustion engine, analysis of several data sets was used to establish high dimensionality and 

complex dynamics. Data sets were also analyzed from an electric step motor. Low dimensional chaotic 

dynamics were observed and quantified. Each of these systems exhibited nonstationarity and other 

behaviors that made the analysis difficult and demonstrated flaws in established time series analysis 

techniques. Thus methods were devised to improve these techniques and synthesize them into a 

coherent package. Finally, a new design was proposed for a chaotic sigma delta modulator. Techniques 

from nonlinear dynamics and chaos theory were used to show that this modulator was stable and had 

desirable properties not exhibited in previously proposed designs. 
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CHAPTER ONE 

INTRODUCTION 

 

1. Historical background 

As opposed to the many fields of mathematical and scientific endeavour 

which have grown out of philosophy, time series analysis has its roots in the social 

sciences. The need for time series analysis came from emerging financial markets, the 

population explosion and plague epidemics. The opportunity for time series analysis 

came from more accurate recordkeeping. 

Although time series have been used extensively in astronomy since data was 

first gathered, the first work of detailed time series analysis is often attributed to a 

London cloth merchant in 1662. John Graunt
1
  devised a “Mathematiques of my 

Shop-Arithmetique” that involved the creation of his own analytical tools to search 

for, predict, and interpret cyclical patterns in time series data. Such tools included 

histogram tables, averaging and windowing techniques, and error analysis.  

Significantly, he was able to extract the plague-related deaths from the others, and 

thus could give a detailed analysis of the long-term effects of plague epidemics. His 

subsequent appointment to the Royal Society lead to a great many scientists and 

mathematicians adopting his time series analysis techniques. 

Most of the related mathematical work of the next two hundred years dealt 

more with independent observations than with time series, per se. Pascal, Fermat, 

Bernoulli and others laid down the framework for descriptions of statistical 
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processes.
2
 In 1821, Gauss developed the concept of mean squared error, one of the 

most important methods of quantifying error in data.
3
 Simple time series analysis 

continued primarily in the analysis of financial data. This was often done to obscure 

the data, such as when the Bank of England  chose to scale and index their data when 

presenting time series data to parliament in 1797. 
4
 Some notable exceptions occured 

in astronomy, such as Euler’s 1749 study of errors in the observed orbits of planets.
5
 

The late 19th century saw the exporting of financial time series analysis 

techniques to other applications. A method of interpolation was suggested by Gauss 

and Weber  in 1836.3 It was used in one of the first examples of simultaneous 

observations, thus in the creation of multidimensional time series. Poynting, known 

primarily for his work on magnetism, first provided a graph of moving averages in a 

study of public drunkenness in 1877.6 The following year, Jevons introduced the 

semi-log plot to highlight cycles in meteorological and commercial data.
7
 These and 

other developments also lead to the gradual transition towards visualization of data as 

opposed to presentation in tables (Ref. 2, p. 17-19). 

It wasn’t until the 1920s that chaos was observed in an experimental time 

series. However, Van der Pol dismissed it as “a subsidiary phenomenon.”
8
 He 

neglected to connect this to the behavior that Poincare had hypothesized at the turn of 

the century.
9
 Perhaps this was because he was unable to extract and analyze the time 

series.
10 

Statistical tools continued to be developed throughout the first half of the 

twentieth century. In the first decade, Norton
11
 developed tools for dealing with 
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nonstationary processes. In addition, Cave-Browne-Cave
12
, March

13
 and Hooker

14
 

developed tools for autocorrelations in time series. Anderson
15
 and Student

16
 

developed further techniques for elimination of noise. The 1920s saw the invention of 

the correlogram, one of the most popular tools for classifying serial correlations and 

oscillatory processes.17
 This work was also important because it assumed that the time 

series could be modeled as having self-determined dynamics. Most previous work 

assumed that time series were functions of time (typically cyclical) and noise. 

Several scientists of this era made the assumption that time series were strictly 

functions of time and superimposed random errors. This allowed them to make full 

use of Fourier’s analysis tools In a comment published in 1879 regarding a previous 

analysis of sunspots, Stokes
18

 suggested the use of harmonic analysis to plot the 

intensity of each harmonic (e.g. power spectra). Schuster
19
 and Turner

20
 followed up 

on this suggestion in two further works of sunspot analysis. Terms such as 

periodograms and harmonic analysis entered the lexicon, and hence traditional signal 

processing was born. Signal processing continued to gain in importance with the 

growth of the electronics industry, and exploded in terms of usefulness with Cooley 

and Tukey’s invention of the Fast Fourier Transform computer program in 1965.
21
 

Spectral analysis saw another fantastic leap with the introduction of wavelets in the 

mid 1980s.
21
 Now signal processing techniques could be effectively extended to 

nonstationary time series. 

The early 20th century also saw time series given proper mathematical 

underpinnings in the work of Kolmogorov
22
, Markov

23
 and other Russian 
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mathematicians. By the 1940s time series analysis had advanced beyond the 

application of statistical techniques to experimental data. With the invention of 

information theory by Shannon and Weaver,
24
 time series could be understood in 

terms of symbolic dynamics.  

It wasn’t until 1963 that chaos was recognized in time series data. Lorenz, a 

meteorologist, serendipitously noticed that his simulation was extremely sensitive to 

initial conditions.
25

 Chaos theory slowly gained acceptance through the work of 

Smale, Yorke, May and others.
10
 In the 1980s, a motley crew of researchers from UC 

Santa Cruz developed the essential tools of chaotic time series analysis. In 1980, 

Farmer and Crutchfield applied traditional signal processing techniques, in the form 

of power spectral analysis, to chaotic time series.
26, 27

 The following year, Packard 

introduced the technique of delay coordinate embedding.
28
 Shaw then applied 

information theoretic techniques to chaotic time series analysis.
29

 In these and other 

papers, these four researchers and their collaborators introduced techniques for noise 

reduction, prediction, extraction of symbolic dynamics, modeling and quantification 

of chaotic time series, experimental or simulated. Much of the work described in this 

thesis is built upon the techniques that they developed.  

The introduction of these techniques provided a framework with which one 

can analyze a chaotic time series. However, many questions remain unanswered 

about the effectiveness and practicality of each technique. Even with the vast amount 

of research within the past two decades, it is still  often unclear which analysis 

techniques are most appropriate to a given time series. From the perspective of a 
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researcher whose knowledge of time series analysis is limited, this question becomes 

even more vexing.                                                              

 

2. Goals and motivations 

 “In calmer moments we are all willing to concede that 

there is a danger that the quantitative worker may 

concentrate too exclusively upon those things which are 

incapable of measurement, and may even shape his 

concepts to the limited nature of his available data, 

while the qualitative worker – the pure theorist – may 

become so pure as to be unhelpful in a world wheree 

masureable quantities play an important role. Moreover 

in the last resort neither school will insist that it 

can progress without entering the domain of the other.” 

Translated from Marey, 1878 

 

When a researcher is presented with time series data, he has several goals in 

mind- classification, visualization, understanding, and manipulation. The data is 

analyzed with the goal of understanding more about the underlying system. What is 

known about the underlying system determines the direction of future research. The 

researcher seeks to answer several questions- 

1. What can I determine about the underlying dynamical system which 

generated the data? 

2. How best should I visualize this system? 

3. What processing of the data should be done that will reveal more about he 

underlying dynamics? 

4. Can I, from analyzing the dynamics, determine additional experiments that 

should be done to generate future data? 

5. Can I measure how well the data fit a certain model? 

6. Can I measure the complexity of the data? 
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7. Can I extract distinct processes that are contributing to the dynamics 

generating the data? 

8. Can I measure the noise in the data, and if so, can I extract the signal from 

the noise? 

9. Can I determine how the data changes over time? 

10. If I have several time series, what analysis can be made to determine the 

relationship between these series? 

11. Have I taken enough data to do analysis? Can I get away with less? 

 

Traditional methods of time series analysis come from the well-established 

field of digital signal processing.
30
 Digital signal processing seeks to answer all of the 

above questions. Most traditional methods are well-researched and their proper 

application is understood. One of the most familiar and widely used tools is the 

Fourier transform. Indeed, many traditional methods of analysis, visualization, or 

processing begin with the use of a Fourier transform on the data set. This is because a 

Fourier transform changes a set of linear differential equations into an algebraic 

problem where powerful methods of matrix manipulation may be used. 

However, these methods are designed to deal with a restricted subclass of 

possible data. The data is often assumed to be stationary, that is the dynamics 

generating the data are independent of time. It is also assumed that the dynamics are 

fairly simple, both low dimensional and linear. Compound this with the additional 

assumptions of low noise and a nonbroadband power spectrum, then it can be seen 
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that a very limited class of data is often assumed. With experimental nonlinear data, 

traditional signal processing methods may fail because the system dynamics are, at 

best, complicated, and at worst, extremely noisy.  

In general, more advanced and varied methods are often required. These new 

methods bring with them a collection of new questions. The researcher is then 

concerned additionally with the implementation of these new methods. 

1. Can I trust the results of a method of analysis or visualization? 

2. Does the method provide a way to measure its accuracy? 

3. How long will it take to implement this method? 

4. How difficult is it to implement this method? 

5. What are the limitations of this method? 

6. Are the results of analysis repeatable? 

7. How useful are the results of the analysis? 

8. Can I make the implementation of this method simpler or more useful by 

combining it with other methods? 

9. Can I eliminate duplication by replacing other methods with this method? 

Often when a time series analysis method is first presented, it is tested against 

simulated systems where the expected results are known. To show how effective it is 

with real data, it is applied to a well-known system with the addition of white or 

gaussian noise. In those cases where the authors apply it to an experimental system, a 

relatively simple well-studied system with low noise levels and low dimensional 

dynamics is often used. The goal of such an analysis is usually not to deal with the 
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peculiarities and issues presented by a particular data set, but instead to demonstrate 

that application is at least sometimes possible. However, real world data is rarely so 

simple. The analysis method may fail once applied to more realistic data, or require 

an augmentation suitable to the system that is analyzed.  

Therefore it is our hope that thorough analysis from a nonlinear dynamics 

perspective may yield more fruitful results. However, this is not a straightforward 

task. Calculation of empirical global nonlinear quantities, such as Lyapunov 

exponents and fractal dimension, from time series data is known to often yield 

erroneous results.
31, 32

. The literature is replete with examples of poor or erroneous 

calculations and it has been shown that some popular methods may produce 

circumspect results.
33, 34

 Limited data set size, noise, nonstationarity and complicated 

dynamics only serve to compound the problem.  

So the researcher is now presented with additional complications. The 

concerns about the data are  compounded by concerns about analysis. For most 

researchers, the analysis methods are simply tools for the researcher to gain a better 

understanding of the system which generated the data. What is required are analysis 

methods that are relatively simple to implement and simple to interpret. Ideally the 

results of preliminary analysis should indicate the directions of further analysis, and 

from there, further directions of research. 

This is the goal of this thesis. It is hoped that a synthesis of new methods of 

analysis in a consistent, unified form will enable researchers to perform analysis more 

efficiently and more confidently.  
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The authors have taken a skeptical approach to the analysis. We demand that 

quantitative results be confirmed by other independent methods. Even then we accept 

the results only qualitatively. Wherever possible, we point out where these methods 

may fail, and suggest criteria which may be used in validating results obtained using 

these or similar methods on other data sets. 

An additional problem is presented when new methods of data analysis are 

performed. In order to maintain generality, algorithms are usually presented with a 

vast number of parameters. This has the effect of making methods versatile and easily 

modifiable. However, suggested parameter values are often not available. A thorough 

knowledge of the subject matter is necessary in order to achieve reasonable results. 

Thus it is encouraged that the user first familiarize himself with the literature, the 

method and the programming techniques before attempting analysis. Many laymen 

and nonexperts are dissuaded from analyzing their data due to the amount of effort it 

would take to achieve reasonable results. 

Thus we argue that reasonable parameter values should be suggested wherever 

possible. If possible, instructions should be given as to how to estimate or zero in on 

ideal parameters, and criteria should be developed that help deny or confirm whether 

the implementation is correct. Output from a numerical routine should also be 

extensive. Interpretations should be suggested, but the output should also be copious 

so that, if the user prefers, he can modify and interpret the results as he wishes. We 

feel this issue has not been thoroughly addressed in the literature or in other nonlinear 

dynamics software. Rather than complicating the question by requiring that a high 
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level of understanding be present when using the analysis tools, we feel that it is 

preferable to embed extra functionality into the software. In essence, wherever 

possible, the software should incorporate the results of previous research on time 

series analysis. The onus of interpretation should be on the software, not on the 

researcher or user. We should stress that this is not simply a question of error bars. 

Error bars don’t tell about systematic errors and neither do they tell if the underlying 

assumptions are justified.  

Particular attention was paid to the graphical user interface. This is often 

neglected in scientific software. This is understandable, because the priority is placed 

on the algorithms used. However, lack of a graphical user interface also makes the 

software difficult to use and can obscure the results. Thus, we felt that an improved 

user interface would aid in the production and evaluation of quantitative results. In 

addition, we thought that a few nonscientific features would add greatly to the 

usefulness of the software. Therefore we wish to  provide the ability to work with 

many data sets at the same time, to interface with popular software, to handle multiple 

data formats, and to customize the output extensively. 

 

3. Overview 

For these reasons the Nonlinear Dynamics Toolbox was created. The 

Nonlinear Dynamics Toolbox (NDT) is a set of routines for the creation, 

manipulation, analysis, and display of large multi-dimensional time series data sets, 

using both established and original techniques derived primarily from the field of 
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nonlinear dynamics. In addition, some traditional signal processing methods are also 

available in NDT. A screen shot of the NDT user interface is provided in Figure 1. 

 

Figure 1. A screenshot of the user interface for the Nonlinear Dynamics Toolbox. This software 

was created by the author for the purpose of analyzing and visualizing chaotic time series data. 

 

The Nonlinear Dynamics Toolbox is written entirely in portable C, and 

consists of some 50,000 lines of original code. The programs utilize subroutines from 

Numerical Recipes and LabWindows/CVI. In addition, some publicly available code 

for time series analysis has been ported with only minor modifications. The software 

has been designed for use under Windows 95, 98, NT, and all other similar variants. 

However, it is semiportable, and versions for other platforms may be easily created. 
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The modules are coded assuming a flat memory model, and virtual memory support, 

all of which is handled by the operating system. On a Pentium II based PC with 64 

MB of memory, data sets of up to 1 million points can be manipulated in main 

memory without paying a virtual memory overhead penalty. In some cases, notably 

graphics, a user will notice significant differences between the modules on different 

machines. However, with these few exceptions, NDT descriptions (and functionality) 

are independent of the host computer. 

The full power of NDT lies in the ability to manipulate multiple files in many 

different ways from one simple interface. Information can be shared between 

different routines so that multiple analyses can be performed quickly in one session. 

Almost all analysis and visualization presented in this thesis was performed using 

NDT. 

Chapter 2 deals with ways that data can be generated or imported into the 

analysis program. This chapter explains the data structures used for storing and 

manipulating time series. It describes how data set parameters are stored, the format 

of the data, and how simulations are created. This chapter also contains a complete 

description of some of the most relevant routines used to analyze the data.   Some 

background information on analysis methods is included, and the methods are put in 

the proper framework concerning how and when they should be applied.  

Chapter 3 contains a description of the sorting and searching routines used. 

These are at the heart of most of the time series analysis methods that were 

implemented. The proper implementation of these methods allow complicated 
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analysis to be performed in a highly efficient manner. We place primary importance 

on the Kd-tree, which is the preferred implementation for many routines. 

Benchmarking is performed comparing the Kd-tree with the KTree, a simple 

multidimensional sort, and a box-assisted sort. A description is also given for the 

multidimensional binary representation sort, which is preferred for calculation of 

many information theoretic quantities. 

In Chapter 4, we give a more detailed description of some original analysis 

methods as well as modifications to analysis methods that we believe represent 

improvements over their original implementation.  Some of the modifications are 

quite small, such as the simplification to Alan Wolf's method of determining the 

dominant exponent, while others, such as the method of determining generalized 

dimensions, are entirely original. This chapter also deals with how to extract the 

symbolic dynamics from a time series. A new method is devised and placed on a firm 

mathematical basis. Its accuracy and efficiency are described, and its usefulness is 

shown. Some examples of its use are presented, and it is compared with other 

methods.  

The results are presented in Chapter 5. Explicit description of all the 

simulations and experimental systems analyzed in this thesis are described here. We 

perform analysis on various experimental time series and particularly complicated 

simulations. In these cases we do not have any direct knowledge of what the 

outcomes should be. Thus the only confirmation of results possible is to compare the 

results of routines that use completely different methods to estimate the same 
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quantities. We also discuss the pitfalls of analysis of experimental data, especially 

nonstationary, high dimensional, or noisy data of possibly small data sets. We make 

some suggestions as to how best to treat such data. 

In the conclusion, we summarize what was accomplished. We suggest some 

further directions of study, and point to where the greatest improvements can be 

made. We also speculate on the nature of this type of research, and on some of the 

most problematic issues. Credit is given to everyone who generously contributed to 

the work. 
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CHAPTER TWO 

SOFTWARE IMPLEMENTATION 

 

1. Data importing and simulation 

1.1. Introduction 

Throughout this work, we restrict our discussion to time series data. Typically, 

experimental time series data consists of a collection of data points sampled 

uniformly in time. However, we wish to perform analysis on a wide variety of data in 

a consistent manner. The time series may be from a simulation or from an 

experiment, and may also come in a wide variety of forms. If the data is from a 

simulation, it may be generated externally from another program or internally by the 

analysis software. In either case, the time series may have several data values at each 

time or be restricted to one data point per sample time. One would like to be able to 

deal with many types of time series data in a uniform manner. 

1.1.1. Notation 

The vectors are assumed to be sampled uniformly in time. That is, at each 

time interval ∆t, a new vector is sampled, and ∆t is a constant. Such a data set will be 

referred to in the text as a series of M vectors 0 1 1, ,..., MX X X −  where each vector is N 

dimensional, 0 1( , ,... )
i i i

N -1

iX X X X= . If the time series is from a single channel, then 

these vectors become scalar quantities, 0

iiX X= . Alternately, the data set may be 
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described as data from N channels, 0 1 1, ,..., N
X X X

− , where each channel consists of 

M consecutive samples, 
0 1 1

( , ,... )
M

j j j jX X X X
−

= .  

Data sets, both experimental and simulated, come in two distinct forms that 

need to be distinguished when implementing time series analysis methods. The first is 

true multidimensional data. This is data where the time series consists of multiple 

channels, e.g., voltage and current values recorded simultaneously from a circuit. The 

other form is scalar data, consisting of single channel data where only one 

measurement is made at each time. In this case, other dimensions may be constructed 

by manipulations of the original data. Consider data from a delay coordinate 

embedding of the x dimension of Lorenz data. If only one variable from the system 

can be observed, X(t), then (n+1)-dimensional vectors are constructed in the form 

(X(t),X(t+T),...,X(t+nT)). This is a delay coordinate embedding. It is one method of 

phase space reconstruction, since it allows the phase space to be reconstructed from 

only one coordinate. 

Mané
35

 and Takens
36
 independently showed that delay coordinate embedding 

was a valid technique for reconstructing vectors from scalar quantities. Packard, et. 

al.,
28
 applied this technique to experimental time series, and Eckmann and Ruelle

37
 

showed that it was a valid method for examining dynamics of a system. 

One dimension of the time series is extracted to use for embeddings. So we 

consider the series 
1 2
, ,...j j j

nptsX X X . The embedding is a reconstruction of vectors from 

this time series. Two parameters are used for the reconstruction, a delay d and an 
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embedding dimension, D. D describes the dimensionality of the reconstructed 

vectors, and d describes the separation between data points from the original time 

series that are used as successive points in a vector. Suitable choices for each of these 

parameters may be determined through analysis of the data (see Chapter 2). Thus, 

from the time series, the following vectors are created 

0 0 2 ( 1)

1 1 1 1 2 1 ( 1)

1 ( 1) 1 ( 1) 1 ( 2) 1

( , , ,... )

( , , ,... )

...

( , ,... )

j j j j

d d D d

j j j j

d d D d

j j j

M D d M D d M D d M

Y X X X X

Y X X X X

Y X X X

− ⋅

+ + + − ⋅

− − − ⋅ − − − ⋅ − − − ⋅ −

=

=

=

    (1) 

The ath component of the bth vector of the embedding is related to the original 

time series by 

( 1)
a j

b b a dY X + − ⋅=          (2) 

Note that the reconstructed series contains ( 1)D d− ⋅ fewer vectors than the 

time series. This is because each reconstructed vector extends over D d⋅  consecutive 

time series vectors. Any delay coordinate embedding vector past 1 ( 1)M D dY − − − ⋅  would 

have components which extend beyond the original time series. 

1.1.2. The data set structure 

One may wish to switch back and forth between the two representations. For 

instance, if one wishes to compare the results of a Lyapunov exponent calculation 

from an embedding with the results of an exponent calculation from the original data, 

then it would make sense to store all dimensions of the data, but manipulate the data 

in its original form or as an embedding. Thus a general approach has been taken. All 
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the original data is stored in memory. This data may be manipulated, analyzed and 

visualized either as embeddings of one dimension or in its original form. At no point 

does the data need to be copied to create or manipulate embeddings. If another form 

of phase space reconstruction is used, then a change needs to be made only to the 

function that states how vectors are constructed. All other aspects of an analysis 

routine may remain the same. 

In addition, it is important that the parameters for each data set be saved. This 

means that the program must store all relevant data set settings in memory while 

working with the data, as well as saving these settings to disk for the next time the 

data set is opened. This is accomplished by defining a data set type, which is a C 

structure that stores all the data in a 2 dimensional array, and all data set settings. The 

data set structure is in the following form. Some of the structure's data have been 

removed from the description because they pertain primarily to user interface settings.  

typedef struct 

{ 

 char  name[300];   

 int ndim;   

 int npts;    

 long double **matrix;  

  double samplerate;   

 int datatype;        

 int datasampling;         

 int initialpoint;         

 int finalpoint;           

 int step;                  

 int embed;                

 int dimtoembed;   

 int embeddingtype;   

 int embeddim;   

 int delaytime; 

 int kd-tree;   

     //additional optional parameters... 

} DataSetType; 
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ndim denotes the number of dimensions for each data point, and npts is the 

total number of data points. The data is in the form of matrix[npts][ndim]. 

Thus all data sets are stored in memory as two dimensional arrays in the form 

data[# of samples][# of points at each sample]. samplerate is 

just one over the sample frequency. It is the time between consecutive samples, and is 

typically given in seconds. datatype describes the type of data that is being dealt with. 

This is an integer that assumes one of the following values: 0 if the data type is 

unknown, 1 if the data comes from a simulation and 2 if the data is from an 

experiment. datasampling describes how the data was sampled; 0 if this is unknown, 

1 if the data is a Poincare section (or some similar form of sectioning flow data), 2 if 

the data is from a flow (many samples per period), and 3 if the data is from a map (it 

is not possible to take many samples per period).  

initialpoint simply specifies which is the first point in the data set to use when 

performing an analysis, processing, or visualization routine. This is useful when one 

wants to remove the transients from the analysis, but does not want to remove the 

transients from the data set. Similarly finalpoint specifies the last point in the data set 

that will be used. step specifies how data points are skipped. If step =2, for instance, 

then only every other data point is used. 

The next few parameters deal with delay coordinate embedding. In NDT, 

unless otherwise specified, delay coordinate embeddings are performed using the 

above procedure. Thus the original data is not modified, and modifications are 

performed simply by turning the embedding on or off and specifying parameters. The 
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computational overhead is small. Equation (2) is used to determine the value of any 

dimension of any coordinate in the reconstruction. In the C/C++ coordinate language, 

arrays are indexed beginning at 0. The ath component of the bth vector of the delay 

coordinate embedding are thus determined from Equation (2) as  

Y[b][a]=X[b+a*delay][j]    (3). 

Thus the added computation is only in the integer multiplication of a*delay. 

However, the memory savings may be quite large. No additional memory is required, 

since only the original series is used. In a common situation, the original data is one-

dimensional, and a three dimensional embedding is required (for example, 3d 

visualization). Under these circumstances, almost three times the original data storage 

would have been required if a new array were created to store the embedded data. 

embed is a boolean variable that is set to 1 if the data is to be embedded, and 0 

if not. embeddingtype is also boolean. A value of 1 for the embeddingtype implies that 

a forward embedding is used (e. g., 1 2( , )X X X= ), and a value of 0 implies a 

backward embedding (e. g., 2 1( , )X X X= ). dimtoembed describes which dimension 

of the original data is to be embedded. embeddim is the embedding dimension of the 

embedded data, and delaytime is the delay between data points in the embedding. 

Further parameters may be used to specify properties of the vectors. Initial or 

final vectors may be excluded, intermediate vectors may be skipped, or components 

of each vector may carry associated weights. However, the essential components of 

delay coordinate embedding have been fully described above. 
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The kd-tree parameter is used to specify if a search tree has been built. Other 

parameters, such as noiselevel, are specified but not used. These exist so that 

additional functionality may be built into the data structure at a later date. 

1.2. Generating Data 

1.2.1. Data acquisition 

Analysis of any time series data set begins with the acquisition of the data. 

Whether experimental or simulated, this can be one of the most difficult tasks in the 

analysis process. The data analyzed comes in three distinct forms- maps, differential 

equations (or flows), and experimental data. For the experimental data, both the 

method of generating data and of importing it into the analysis software are discussed. 

In this section, the methods used to acquire data are discussed. 

1.2.2. Data importing and exporting 

Any data set in standard ASCII spreadsheet format may be read in as data. 

The file is assumed to have the .dat extension and no header information. However 

the .dat extension is optional and any other extension may be used. The spreadsheet 

format consists of columns of numbers (floating point or integer) separated by tabs, 

commas or spaces with no header. Thus a single time series would just be a series of 

numbers, such as  

0.2345  

-1.2429  

3.4254472  

0.233  

1  

3.32  

 



 

 22

Two dimensional data, such as position and velocity values would have two 

columns, one for position, one for velocity. 

234.1 0.0235  

230.1 0.3235  

212.7 32.6  

219.7 134.3  

 

In conjunction with the data set, NDT looks for an ini file that stores 

information about the data. If an ini file is not found, these values are set at defaults. 

Similarly, data may be saved in ASCII spreadsheet format. Regardless of whether it is 

one generated from a sample system or from a previously opened file, it may be saved 

as a spreadsheet file with the dat extension. An associated ini file will also be saved. 

The data may be reloaded using the Open Data Set routine at a later date. 

1.2.3. Simulation 

Many systems were built directly into the software, as opposed to having the 

data collected elsewhere and then loaded into NDT. This was done for systems that 

are investigated frequently or were of special importance. It was also done so that 

many parameter settings could be compared quickly and easily. 

In order to simulate these systems, an efficient and reliable scheme for 

numerical integration of ordinary differential equations was required. Numerical 

integration is often performed using the Euler method or Runge-Kutta integration. 

However, these methods have tremendous drawbacks in their reliability
38, 39

 and do not 

offer an effective measure of their error. Even higher order variable Runge-Kutta 

integration may perform very poorly on stiff systems. For these reasons, a very 

advanced numerical integration routine, CVode
40, 41

 was chosen. 
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CVODE is a solver for stiff and nonstiff initial value problems for systems of 

ordinary differential equation (ODEs). The capabilities of many older, Fortran based 

solvers have been combined in the C-language package CVODE. One key feature of 

the CVODE organization is that the linear system solvers comprise a layer of code 

modules that is separated from the integration algorithm, allowing for easy 

modification and expansion of the linear solver array. A second key feature is a 

separate module devoted to vector operations.  

An ODE initial value problem can be written as 

0 0( , ), ( ) , ny f t y y t y y R= = ∈&      (4) 

where y&  denotes the derivative /dy dt . This problem is stiff if the Jacobian 

matrix /J f y= ∂ ∂  has an eigenvalue with a large negative real part. That is, one or 

more modes are strongly damped. Thus stiffness is a somewhat subjective call, but it 

is also an important one since it implies that numerical integration is prone to error. 

The underlying integration methods used in CVODE are variable-coefficient forms of 

the Adams (the Adams-Moulton formula) and BDF (Backward Differentiation 

Formula) methods. The numerical solution to an ODE initial value problem is 

generated as discrete values yn at time points tn.  

A nonlinear system must be solved at each time step. In the nonstiff case, this 

is usually done with simple functional (or fixed point) iteration. In the stiff case, the 

solution is performed with some variant of Newton iteration. This requires the 

solution of linear systems. They are solved by either a direct or an iterative method. 

The direct solvers currently available in CVODE include dense (full) and banded 
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methods, and a diagonal approximate Jacobian method. The iterative method is the 

Generalized Minimal Residual method. 

The estimation and control of errors is an extremely important feature of any 

ODE solver. In CVODE, local trunctation errors in the computed values of y are 

estimated, and the solver will control the vector e of estimated local errors in 

accordance with a combination of input relative and absolute tolerances. The vector e 

is made to satisfy an inequality of the form  

 
,

1
W RMS ewt

e ≤           (5) 

where the weighted root-mean-square norm with weight vector w is defined as  

 
( )2

1

,

N

i ii

W RMS w

v w
v

N

== ∑       (6) 

The CVODE error weight vector ewt has components  

 
1

i

i

ewt
RTOL y ATOL

=
⋅ +

      (7) 

where the non-negative relative and absolute tolerances RTOL and ATOL are 

specified by the user. Here RTOL is a scalar, but ATOL can be either a scalar or a 

vector. The local error test (5) controls the estimated local error ei in component yi in 

such a way that, roughly, ie  will be less than 1( )i i iewt RTOL y ATOL
− = ⋅ + . The 

local error test passes if in each component the absolute error ie  is less than or equal 

to ATOLi, or the relative error i ie y  is less than or equal to RTOL. RTOL = 0 is 

used for pure absolute error control, and ATOLi = 0 for pure relative error control. 
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Actual (global) errors, being an accumulation of local errors, may well exceed these 

local tolerances, so RTOL and ATOL should be chosen conservatively. 

2. Analysis routines 

2.1. Introduction 

At the core of all the work presented in this thesis are the routines that NDT 

uses to process, analyze, and visualize the data. These routines are all original code, 

and incorporate a mix of well-established methods and original implementations. 

They are integrated together so that analysis and visualization can be performed in 

tandem. All the data sets are analyzed using the routines described herein. 

The software that was created for this work includes a large number of 

routines that are not presented in this thesis. Specialized routines, such as the unstable 

periodic orbit analyzer, the information dimension routine, empirical mode 

decomposition, the Rosenstein method of determining dominant Lyapunov exponent, 

noise reduction and prediction routines have been successfully implemented but are 

not used in the analysis of the featured data sets from Chapter Five. Visualization 

routines, such as the two-dimensional histogram and the three-dimensional plotter are 

not described because their use should be apparent. Finally, the NDT software 

includes a large number of built in simulations. Because the emphasis here is on 

experimental systems, these simulations are not discussed. 

2.2. Nonstationarity 

Identification of nonstationarity or parameter drift in experimental data is a 

very important task before attempting to do quantitative analysis. Most analysis 
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routines assume constancy of parameters, and quantitative results are very suspect if 

that is not the case. 

No single method can definitively state that parameter drift has not occured, 

since some statistics may remain constant over the data set even while many of the 

properties are changing rapidly. However, a few simple statistics can identify many 

types of parameter drift easily and quickly. For the statistical drift routine, we look at 

how common linear statistics such as mean, maximum, minimum, standard deviation, 

skewness, and kurtosis may change when viewed over moving windows throughout 

the data. 

The main parameters to be concerned with here are the window length and the 

discriminating statistic. A good choice of statistic is mean, since a fluctuating mean 

indicates that the data may be gradually rising or falling over time. With the 

appropriate window, measuring the mean may also be useful in identifying very low 

frequency fluctuations. 

Suppose one looks at the mean with a data set of length n and window size w. 

Then starting at the first point X1, the mean of points X1 to Xw is calculated. This is 

plotted at X1 on the X-Axis. Then the mean of points X2 to Xw+1 is calculated. This is 

plotted at X2 on the X-Axis. One continues through the data set until the mean of 

points Xn-w through Xn has been plotted at point Xn-w on the X-axis. Thus one observes 

how the mean value changes over time. 

Picking the appropriate window size is very important. Too small of a window 

size means that the original dynamics are recaptured, and too large of a window size 
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will "average out" the fluctuations. Thus it is recommended that one should try a few 

windows in order to decide which is best. 

2.3. Choosing delay time 

2.3.1. Autocorrelation 

The autocorrelation is defined from the standard deviation of a time series x, 

2( )x x xσ = − . The correlation r between two time series x and y is then defined as:  

 ( )( ) / x yr x x y y σ σ= − −       (8) 

The autocorrelation rτ  is given by the correlation of the series with itself; use 

x(t) and x(t+τ) as the two time series in Equation (8). It measures how well correlated 

x and y values are under different delays.  

A good choice for the delay time to use when embedding the data should be 

the first time the autocorrelation crosses zero. This represents the lowest value of 

delay for which the x and y values are uncorrelated. However, since the 

autocorrelation function is a linear measure it does not provide accurate results in all 

situations. For Rossler data it provides a good choice of delay, but its results for 

Lorenz data are not entirely clear. For the Mackey Glass equation at default settings 

with timestep 0.25 autocorrelation should give a delay of about 50. For maps, it 

should pick a delay of one. 

2.3.2. Mutual Information 

The mutual information of two continuous random variables, X and Y with 

joint density function ( , )f x y , is given by  
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( , )

( ; ) ( , ) log
( ) ( )

f x y
I I X Y f x y dxdy

f x f y
= = ∫     (9) 

and an efficient method for estimating it from time series data is given in chapter 

four,  section 6. 

Inspection of the mutual information is a way to determine a useful delay time 

for plotting attractors. A good choice for the time delay T is one that, given X(t), 

provides new information with measurement X(t+T). Given a measurement of X(t), 

this provides an estimate of how many bits on the average can be predicted about 

X(t+T). A graph of I(T) starts off very high (given a measurement X(t), we know as 

many bits as possible about X(t+0)=X(t)). As T is increased, I(T) decreases, then 

usually rises again. Fraser and Swinney suggest using the first minimum in I(T) to 

select T, thereby revealing the first instance when the original data shares little 

information with its time delayed form . 

The data is scaled and processed in the calculation, so the mutual information 

that is found may not be the same as that found using other software. However, the 

relative values of mutual information for different delays should be correct. One 

should find a reasonable value of the delay to use when embedding at the first 

minimum of the mutual information. 

This is preferred over the autocorrelation function, because the mutual 

information can measure nonlinear correlations whereas the autocorrelation function 

only takes linear correlations into account. However, neither is definitive so it is 

recommended that both functions be used. 
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2.4. Dimension 

2.4.1. Correlation 

The Correlation Dimension routine provides an estimate of the correlation 

dimension using the Grassberger-Procaccia algorithm.
43-45

 The idea is to construct a 

function C(ε) that is the probability that two arbitrary points on the orbit are closer 

together than ε. This is usually done by calculating the separation between every pair 

of N data points and sorting them into bins of width dε proportional to ε. The 

correlation dimension is given by log( ) / log( )D d C d ε=  in the limit 0ε → , and 

N → ∞ . The Correlation Dimension is defined as the slope of the curve C(ε) versus 

ε. C is the correlation of the data set, or the probability that any two points in the set 

are separated by a distance ε. A noninteger result for the correlation dimension 

indicates that the data is probably fractal. For the Henon map, the correlation 

dimension should be about 1.2. Using NDT, the correlation dimension can be 

measured two ways.  

First, it can be measured from the slope of C(ε) versus ε. To obtain an 

estimate, move the two markers to various points on the graph. For too low or too 

high ε values, the results are inaccurate, so the slope must be measured in the 

midrange of the curve. Second, it can be measured from the points on the y-axis of 

the bottom plot. To obtain an estimate, move the markers to various points on this 

graph. Again, for too low or too high ε values, the results are inaccurate, so the 
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estimate must also be measured in the midrange of the curve. A good value should be 

in the region where measurements of the dimension are most stable.  

In order to speed up computation, we use the fact that computers store floating 

point numbers with a mantissa and integer exponent of 2. Thus it is possible to find 

the integer part of log2(ε2) by extracting the appropriate bits of the variable ε2. 

Standard C libraries are available to do this. 

The algorithm is order n
2 so it should be tried on a small data set first. By 

selecting quick, rough estimate, a fast estimate of the correlation dimension can be 

found. If the step size is increased to a value n, only every nth point is used in 

estimating correlation dimension. Thus a step size of 4 will make the program run 

roughly 4 times as fast. Nearby points in time may have a high correlation that can 

distort the estimate of correlation dimension. This problem may be overcome either 

by reducing the sample rate (using the reduce data routine) or by having a large 

number of orbits in relation to the data set size. 

2.4.2. False Nearest Neighbors 

The False Near Neighbors routine is a method of choosing the minimum 

embedding dimension of a one-dimensional time series. This method finds the nearest 

neighbor of every point in a given dimension, then checks to see if these are still close 

neighbors in one higher dimension.
46
 The percentage of False Near Neighbors should 

drop to zero when the appropriate embedding dimension has been reached. The 

appropriate embedding dimension is a bit of a judgement call. If the number of fase 

near neighbors is not zero but is very small, the embedding dimension may still be 
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suitable for most forms of analysis. For Lorenz data at default settings, an embedding 

of 4 should clearly demonstrate that a 3-dimensional embedding is appropriate. If the 

data is noisy, then it will not reach zero, but it should reach a low plateau at the 

appropriate embedding dimension. For the Henon map, the False Nearest Neighbors 

method should suggest an embedding dimension of 2. 

An n-dimensional neighbor is considered false if the distance between the 

point and its neighbor in the n+1st dimension is greater than a criterion times the 

average distance between the point and its neighbor in each of the previous n 

dimensions.  

For each vector X= (X1,X2,...Xn) in the time series look for its nearest neighbor 

Y=(Y1,Y2,...Yn) in an n-dimensional space. Calculate the distance ||X-Y||. Iterate both 

points and compute Rn = || Xn+1 - Yn+1 || / ||X-Y|| . The first criterion is if Rn exceeds a 

user-specified threshold then this point is considered a false nearest neighbor. False 

nearest neighbors may also be identified by a second criterion, if ||X- Y|| > Tolerance, 

where Tolerance is a user specified tolerance times the size of the attractor. If either 

criterion holds, then a false neighbor has been identified. An appropriate embedding 

dimension is one where the percentage of false nearest neighbors is close to zero.  

2.4.3. Generalized dimensions 

First we define the generalized entropies. For q=0,1,2…, 
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Pi(ε) is the probability, out of all occupied boxes, of a point being in the ith 

occupied box. ε is the length of the side of a box. The generalized dimensions are 

then defined as 

 
( )

( ) lim
ln

qH
D q

ε

ε
ε→∞

= −       (11) 

There are two ways to approximate the generalized dimensions for time series 

data. The first is if ε is sufficiently small such that the limit is approximately correct, 

but that we have enough data to get an accurate measurement for ( )qH ε . In which 

case we may use ( ) ( ) / lnq qD Hε ε ε≈ − . D(0) is the box counting dimension, D(1) is 

the information dimension, and D(2) is the correlation dimension.  

However, the preferred method is to simply look at the slope of a plot of 

( )qH ε vs ln(ε). 

2.5. Lyapunov Exponents  

The determination of Lyapunov exponents from noisy, experimental data is a 

difficult task.  Although many methods have been presented, there are also numerous 

examples of these methods breaking down when tested against real data, as well as 

questions concerning the validity of the methods.  Thus the results of exponent 

determination were held to scrutiny.  Criteria were established for identification of 

Lyapunov exponents.   

There should be agreement between exponents as measured from different 

algorithms, and some measurement of error should be provided.  Embedding 

parameters used in estimating exponents must be confirmed independently by other 
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methods.  The results should remain consistent under various parameter settings for 

exponent estimation.  For flow data, a zero exponent should be clearly found.  If it is 

possible to obtain both flow and sectioned data, estimation of exponents from each 

data set should be in agreement. The sum of all the exponents must be negative, and 

the sum of the positive exponents should be less than or equal to the metric entropy. 

In fact, for many cases they should be equal.47 Under the proper conditions, the 

Lyapunov exponents should all, approximately, switch sign when measured from a 

time reversal of the data.32   

The Lyapunov dimension may be defined as  
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where L is the maximum integer such that the sum of the L largest exponents 

is still non-negative. That is, 
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conjecture
48
 proposes that this is equal to the information dimension. Within error 

bounds, this seems to be true. Therefore, a final criterion is that the Lyapunov 

dimension estimates should agree with information dimension estimates.49   

It is doubtful that all criteria can be satisfied unless one is dealing with a long, 

noise-free time series of low dimensional simulated data.  Noise, high dimensionality 

and short time series length (few orbits or small number of points or both) negatively 

affect all methods of analysis.  Some criteria, such as confirmation of embedding 

parameter choices are a virtual necessity before any calculation is made.  Others, such 

as agreement between the Lyapunov dimension and information dimension, are very 
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strong indicators that Lyapunov exponents have been reasonably determined.  Still 

other criteria require calculations of quantities that are particularly difficult to 

compute from time series, such as metric entropy.  If the dynamics of the system are 

unknown, results cannot be accepted or rejected based on definitive verification of the 

criteria.  Rather, the worth of each criterion should be weighed and a subjective call 

as to the validity of Lyapunov exponent estimates should then be made.  A more 

rigorous, statistical approach would be the use of Lyapunov exponents as a 

discriminating statistic between the time series and surrogate data.  This has been 

attempted in the past, but the complexities of exponent estimation and the flaws in 

exponent estimation algorithms have made this method extremely difficult.  Previous 

authors chose to reject the use of estimated Lyapunov exponents as discriminating 

statistics.50 
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CHAPTER THREE 

SEARCHING AND SORTING METHODS 

 

1. Introduction 

Analysis of data often requires that all points in a data set that fulfill some 

criteria be selected. For analysis of multidimensional data, efficient searching 

becomes essential. If no sorting is performed, then searching may require that each 

data vector be examined. This is the brute force method, and it is a very time-

consuming task. To find the nearest neighbor of each point in a data set of n vectors 

requires the comparison of ( 1) 2n n −  distances when using a brute force method. 

Considerable work has been done in devising searching and sorting routines that can 

be run far more efficiently. An extensive review of the multidimensional data 

structures that might be required is described by Samet, et al
51, 52

. Non-hierarchical 

methods, such as the use of grid files
53

 and extendable hashing,
54
 have been applied to 

multidimensional searching and analyzed extensively. In many areas of research the 

kd-tree has become accepted as one of the most efficient and versatile methods of 

searching. This and other search mechanisms have been applied extensively 

throughout the field of computational geometry.
55, 56

 However, little work has been 

made within the nonlinear time series analysis community in this regard. It is our 

hope that we can shed some light on the beneficial uses of kd-trees in this field, and 

how they can be adapted and modified to the peculiarities of time series analysis from 

a nonlinear dynamics perspective. In this chapter, a variety of searching and sorting 
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routines are investigated and compared. It is shown when different routines may be 

preferred, how the routines may be optimized, and how they may be tailored for a 

variety of different situations. 

There are a variety of searches that are often performed on multidimensional 

data.
57
 Ideally, a sorting and searching routine should be able to perform all the 

common types of searches, and be adaptable enough so that it may be made to 

perform any search. Of course, even for an unusual search, the searching and sorting 

routine should perform at least as efficiently as the brute force method. 

Perhaps the most common type of search, and one of the simplest, is the 

nearest neighbor search. This search involves the identification of the nearest vector 

in the data set to some specified vector, known as the search vector. The search vector 

may or may not also be in the data set. Expansions on this type of search include the 

radial search, where one  wishes to find all vectors within a given distance of the 

search vector, and the weighted search, where one wishes to find the nearest N 

vectors to the search vector. 

Each of these searches (weighted, radial and nearest neighbor) may come with 

further restrictions. For instance, points or collections of points may be excluded from 

the search. Additional functionality may also be required. The returned data may be 

ordered from closest to furthest from the search vector, and the sorting and searching 

may be required to handle the insertion and deletion of points. That is, if points are 

deleted from or added to the data, these additional points should be added or deleted 
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to the sort so that they can be removed or included in the search. Such a feature is 

essential if searching is to performed with real-time analysis. 

One clear example of how search methods may need to be modified for 

nonlinear dynamics comes out of delay coordinate embedding theory. Here one is 

presented with data consisting of a single series of numbers (integer or floating point) 

that is assumed to represent one dimension of an n-dimensional system. The 

dynamics of that systems may be reconstructed by constructing multidimensional 

vectors from the original data via the use of a time delay τ: The original time series 

1 2, ,... NX X X  is thus transformed into  n-dimensional vectors 

  

1 1 1 1 2 1 ( 1)

2 2 2 2 2 2 ( 1)

( , , ,... )

( , , ,... )

...

n

n

Y X X X X

Y X X X X

τ τ τ

τ τ τ

+ + + −

+ + + −

=

=    (1) 

To do this efficiently, especially in regards to memory use, any sorting and 

searching should work only by accessing the original, one-dimensional data, instead 

of acting on n-dimensional copies of the data. This requires modifications to the 

implementation of any multidimensional search method. Ideally these modifications 

should be implemented such that they are small, encapsulated, and allow for further 

modifications at a later date. Each of the search methods discussed will be compared 

in their ability to adapt to delay coordinate embedded data. 
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2. The Kd-tree 

2.1. Method 

The K-dimensional binary search tree (or kd-tree) is a highly adaptable, well 

researched method for searching multidimensional data. This tree was first introduced 

in Bentley, et al.,
58
 studied extensively in Ref. 59 and a highly efficient and versatile  

implementation was described in Ref. 60. It is this second implementation, and 

variations upon it, that we will be dealing with here. 

There are two types of nodes in a kd-tree, the buckets (or terminal nodes) and 

the internal nodes.The internal nodes have two children, a left and a right son. These 

children represent a k-dimensional partition of the hyperplane. Records on one side of 

the partition are stored in the left subtree, and on the other side are records stored in 

the right subtree. The terminal nodes are buckets which contain up to a set amount of 

points. A one dimensional kd-tree would in effect be a simple quicksort.  

The building of the kd-tree works by first determining which dimension of the 

data has the largest spread, i.e., difference between the maximum and the minimum. 

The sorting at the first node is then performed along that dimension. A quickselect 

algorithm, which runs in order n time, finds the midpoint of this data. The data is then 

sorted along a branch depending on whether it is larger or smaller than the midpoint. 

This succeeds in dividing the data set into two smaller data sets of equal size. The 

same procedure is used at each node to determine the branching of the smaller data 

sets residing at each node.  When the number of data points contained at a node is 
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smaller than or equal to a specified size, then that node becomes a bucket and the data 

contained within is no longer sorted. 

Consider the following data. 

A. (7,-3) 

B. (4,2) 

C. (-6,7) 

D. (2,-1) 

E. (8,0) 

F. (1,-8) 

G. (5,-6) 

H. (-8,9) 

I. (9,8) 

J. (-3,-4) 

Table 1. Sample data used to depict the sorting and searching methods. 

 

Figure 2 depicts an example partition in 2 dimensions for this data set. At each 

node the cut dimension and the cut value (the median of the corresponding data) are 

stored. The bucket size has been chosen to be one. The corresponding partitioning of 

the plane is given in Figure 3. We note that this example comes from a larger data set 

and thus does not appear properly balanced. This data set will be used as an example 

in the discussion of other methods. 
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Figure 2. The kd-tree created using the sample data. 

 

Figure 3. The sample data as partitioned using the kd-tree method. 
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A nearest neighbor search may then be performed as a top-down recursuve 

traversal of a portion of the tree. At each node, the query point is compared with the 

cut value along the specified cut dimension. If along the cut dimension the query 

point is less than the cut value, then the left branch is descended. Otherwise, the right 

branch is descended. When a bucket is reached, all points in the bucket are compared 

to see if any of them is closer than the distance to the nearest neighbor found so far. 

After the descent is completed, at any node encountered, if the distance to the closest 

neighbor found is greater than the distance to the cut value, then the other branch at 

that node needs to be descended as well. Searching stops when no more branches 

need to be descended. 

The drawbacks of the kd tree, while few, are transparent. First, if searching is 

to be done in many different dimensions, either a highly inefficient search is used, or 

additional search trees must be built. Also the method is somewhat memory intensive. 

In even the simplest kd tree, a number indicating the cutting value is required at each 

node, as well as an ordered array of data (similar to the quicksort). If pointers to the 

parent node or principal cuts are used then the tree must contain even more 

information at each node. Although this increase may at first seem unimportant, one 

should note that experimental data typically consists of 100000 floating points or 

more. In fact, some data analysis routines require a minimum of this many points. If 

the database is also on that order, then memory may prove unmanageable for many 

workstation computers. 
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Bentley recommends the use of parent nodes for each node in a tree structure. 

A search may then be performed using a bottom-up approach, starting with the bucket 

containing the search point and searching through a small number of buckets until the 

appropriate neighbors have been found. For nearest neighbor searches this reduces 

computational time from O(log m) to O(1). This however, does not immediately 

improve on search time for finding near neighbors of points not in the database. 

Timed trials indicated that the increased speed due to bottom-up (as opposed to top-

down) searches was negligible. This is because almost all computational time is spent 

in distance calculations, and the reduced number of comparisons is negligible.  

 

3. The KTree 

K-trees are a generalization of the single-dimensional M-ary search tree. As a 

data comparative search tree, a K-tree stores data objects in both internal and leaf 

nodes. A hierarchical recursive subdivision of the k-dimensional search space is 

induced with the space partitions following the locality of the data. Each node in a K-

tree contains K=2k child pointers. The root node of the tree represents the entire 

search space and each child of the root represents a K-ant of the parent space.  

One of the disadvantages of the K-tree is its storage space requirements. In a 

standard implementation, as described here, a tree of N k-dimensional vectors 

requires a minimum of (2 )k
k N+ ⋅  fields. Only N-1 of the 2k branches actually point 

to a node. The rest point to NULL data. For large k, this waste become prohibitive. 
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Consider the case of two-dimensional data (k=2, K=4). This K-tree is known 

as a quadtree, and is a 4-ary tree with each node possessing 4 child pointers. The 

search space is a plane and the partitioning induced by the structure is a hierarchical 

subdivision of the plane into disjoint quadrants. If the data consists of the 10 vectors 

described in the above section, then the corresponding tree is depicted in Figure 4 and 

the partitioning of the plane in Figure 5. Note that much of the tree is consumed by 

null pointers. 

  

Figure 4. The ktree created using the sample data. 
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Figure 5 The sample data as partitioned using the k-tree method. 

 

Searching the tree is a recursive two-step process. A cube that corresponds to 

the bounding extent of the search sphere is intersected with the tree at each node 

encountered. The bounds of this cube are maintained in a k-dimensional range array. 

This array is initialized based on the search vector. At each node, the direction of 

search is determined based on this intersection. A search on a child is discontinued if 

the region represented by the child does not intersect the search cube. This same 

general method may be applied to weighted, radial, and nearest neighbor searches. 

For radial searches, the radius of the search sphere is fixed. For nearest neighbor 
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searches it is doubled if the nearest neighbor has not been found, and for weighted 

searches it is doubled if enough neighbors have not been found. 

 

4. Multidimensional quicksort 

4.1. Description 

For many analyses, one wishes to search only select dimensions of the data. A 

problem frequently encountered is that most sort methods are optimized for only one 

type of search and a different sort would need to be performed for each search based 

on a different dimension or subset of all the dimensions. 

An example of this comes out of delay coordinate embedding theory, as 

described in the Introduction. The choice of an embedding dimension is never a clear 

one. There are methods of finding a suitable embedding dimension that consist of 

comparing the results of various embedding dimensions and then the lowest 

dimension for which some criterion holds is typically chosen (61 and references 

therein). Also one may wish to compare the results of analyses under different 

embeddings.  

Using conventional methods, this would require sorting and searching the data 

for each embedding. The overhead in building a search tree or sorting the data is 

considerable. It is typically assumed that the data will only be sorted once, and so 

speed in the sort is willingly sacrificed in favor of devising an optimal search. But 

here, conventional sorts may perform poorly. If changing the embedding dimension 

requires a new sort, then an optimal search may still be slow due to the many long 
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sort times. For analyses that require many different embedding dimensions, the goals 

are modified. One would like to be able to sort the data quickly, and in such a way 

that a variety of searches can be performed.  

4.2. Method 

The data is described as a series of N vectors where each vector is n 

dimensional, 1 2( , ,... )n

k k k kX X X X= . A quicksort is performed on each of the n 

dimensions. The original array is not modified. Instead, two new arrays are created 

for each quicksort. The first is the quicksort array, an integer array where the value at 

position k in this array is the position in the data array of the kth smallest value in this 

dimension. The second array is the inverted quicksort. It is an integer array where the 

value at position k in the array is the position in the quicksort array of the value k.  

Keeping both arrays allows one to identify both the location of a sorted value in the 

original array, and the location of a value in the sorted array. Thus, if 1X  has the 

second smallest value in the third dimension, then it may be represented as 2,3X . The 

value stored at the second index in the quicksort array for the third dimension will be 

1, and the value stored at the first index in the inverted quicksort array for the third 

dimension will be 2. Note that the additional memory overhead need not be large. For 

each floating point value in the original data, two additional integer values are stored, 

one from the quicksort array and one from the inverted quicksort array. 

We begin by looking at a simple case and showing how the method can easily 

be generalized. We consider the case of two dimensional data, with coordinates x and 
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y, where we make no assumptions about delay coordinate embeddings or uniformity 

of data.  

Suppose we wish to find the nearest neighbor of the vector ( , )A x y= .If this 

vector’s position in the x-axis quicksort is i and its position in the y-axis quicksort is j 

(i and j are found using the inverted quicksorts), then it may also be represented as  

, , , , , ,( , ) ( , )i x i x i x j y j y j yA A x y A x y= = = = .  

Using the quicksorts, we search outward from the search vector, eliminating 

search directions as we go. Reasonable candidates for nearest neighbor are the nearest 

neighbors on either side in the x-axis quicksort, and the nearest neighbors on either 

side in the y-axis quicksort. The vector 1, 1, 1,( , )i x i x i xA x y− − −=  corresponding to position 

i-1 in the x-axis quicksort is the vector with the closest x-coordinate such that 

1,i xx x− < . Similarly, the vector 1, 1, 1,( , )i x i x i xA x y+ + +=  corresponding to  i+1 in the x-

axis quicksort is the vector with the closest x-coordinate such that 1x x> . And from 

the y-axis quicksort, we have the vectors 1, 1, 1,( , )j y j y j yA x y− − −=  and 

1, 1, 1,( , )j y j y j yA x y+ + += .  These are the four vectors adjacent to the search vector in the 

two quicksorts. Each vector's distance to the search vector is calculated and we store 

the minimal distance and the corresponding minimal vector. If 1,| |i xx x− −  is greater 

than the minimal distance, then we know that all vectors 1,i xA − , 2,i xA− ,... 1,xA  must also 

be further away than the minimal vector. In that case, we will no longer search in 

decreasing values on the x-axis quicksort. We would also no longer search in 
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decreasing values on the x-axis quicksort if 1,xA  has been reached. Likewise, if 

1,| |i xx x+ −  is greater than the minimal distance, then we know that all vectors 

1,i xA + , 2,i xA+ ,... ,N xA  must also be further away than the minimal vector. If either that 

is the case or ,N xA  has been reached then we would no longer search in increasing 

values on the x-axis quicksort.  The same rule applies to 1,| |j yy y− − and 1,| |j yy y+ − . 

We then look at the four vectors, 2,i xA − , 2,i xA + , 2,j yA − and 2,j yA + . If any of these 

is closer than the minimal vector, then we replace the minimal vector with this one, 

and the minimal distance with this distance. If 2,| |i xx x− −  is greater than the minimal 

distance, then we no longer need to continue searching in this direction.  A similar 

comparison is made for 2,| |i xx x+ − , 2,| |j yy y− − and 2,| |j yy y+ − . 

This procedure is repeated for 3,i xA− , 3,i xA+ , 3,j yA − and 3,j yA + , and so on, until 

all search directions have been eliminated.  We find which of these four vectors is 

closest to the search vector. We then search the next four closest points. If any of 

these points is further away in its direction of search than the minimal distance, then 

we can eliminate that direction from further search. Also, if we reach the end of the 

data set in any direction, then we can eliminate that direction. We find the distance of 

the four points from our point of interest and, if possible, replace the minimal 

distance. We then proceed to the next four points and proceed this way until all 

directions of search have been eliminated. 
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The minimal vector must be the nearest neighbor, since all other neighbor 

distances have either been calculated and found to be greater than the minimal 

distance, or have been shown that they must be greater than the minimal distance. 

Extension of this algorithm to higher dimensions is straightforward. In n 

dimensions there are 2n possible directions. Thus 2n immediate neighbors are 

checked. A minimal distance is found, and then the next 2n neighbors are checked. 

This is continued until it can be shown that none of the 2n directions can contain a 

nearer neighbor. 

It is easy to construct data sets for which this is a very inefficient search. For 

instance, if one is looking for the closest point to (0,0) and one were to find a large 

quantity of points residing outside the circle of radius 1 but inside the square of side 

length 1 then all these points would need to be measured before the closer point at 

(1,0) is considered. However, similar situations can be constructed for most 

multidimensional sort and search methods, and preventative measures can be taken. 

The power of this method comes into play when dealing with a delay 

coordinate embedding. In this case, one can sort just the original data set and perform 

all the searches from that sort. Neighbors to a point in any dimension are found from 

the sorted array of the original data. The same method of search is used. For example, 

consider 2 dimensional data constructed with a delay of one. The reconstructed data 

then ranges from (X0, X1 ) to (XN-2 , XN-1) To find the near neighbors of (Xn, Xn+1) we 

find the near neighbors of Xn, from the sorted array and the near neighbors of Xn+1 

from the same array. A near neighbor using X0 in the second coordinate or XN-1 in the 
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first coordinate can immediately be eliminated from consideration because it is not 

used in the reconstruction. Such a point would then be skipped over in our search. So 

searches can be performed using any number of delays and any number of embedding 

dimensions from only one quicksorted array.  

 

5. The box-assisted method 

The box-assisted search method was described by Schreiber, et al.
62
  as a 

simple multidimensional search method for nonlinear time series analysis. A grid is 

created and all the vectors are sorted into boxes in the grid. Figure 6 demonstrates a 

two-dimensional grid that would be created for the sample data. Searching then 

involves finding the box that a point is in, then searching that box and all adjacent 

boxes. If the nearest neighbor has not been found, then the search is expanded to the 

next adjacent boxes. The search is continued until all required neighbors have been 

found. 
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Figure 6 The sample data set as gridded into 16 boxes in two dimensions, using the box-assisted 

method. 

 

A benefit of this method is that it fits into the class of bin based sorts. Hence 

the sort time is reduced from order O(nlog n), for tree based methods, to O(n). One of 

the difficulties with this method is the determination of the appropriate box size. The 

sort is frequently tailored to the type of search that is required, since a box size is 

required and the preferred box size is dependent on the type of search to be done. 

However, one usually has only limited a priori knowledge of the searches that may be 

performed. Thus the appropriate box size for one search may not be appropriate for 

another. If the box size is too small, then many boxes are left unfilled and many boxes 
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will need to be searched. This results in both excessive use of memory and excessive 

computation. 

The choice of box dimensionality may also be problematic. Schreiber, et al.
62
 

suggest 2 or 3 dimensional boxes. However, this may lead to inefficient searches for 

high dimensional data. Higher dimensional data may still be searched although many 

more boxes are often needed in order to find a nearest neighbor. On the other hand, 

using higher dimensional boxes will exacerbate the memory inefficiency. In the 

benchmarking results shown later in the chapter, we will consider both two and three 

dimensional boxes. 

 

6. The multidimensional binary representation  

This method was designed with specific types of analysis (calculation of 

entropy, fractal dimension or generation of symbol dynamics) in mind. Consider a 

time series X1, X2, X3…, XN embedded in n dimensions with delay τ, as described in 

Eqn. (1).   This creates a series of vectors, 1 2, ,...Y Y  It is these embedded vectors that 

one would like to sort and search, not simply the original time series.  

The generalized procedure is as follows: 

First scale all points in the time series to lie between 0 and 232 –1. This is the 

range of a long unsigned integer on most computers. 

Sort the data using a quicksort based on the following comparison scheme:  

for vectors 2 ( 1)( , , ,... )i i i i i nY X X X Xτ τ τ+ + + −=  and 2 ( 1)( , , ,... )j j j j j nY X X X Xτ τ τ+ + + −= , 
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created from a delay coordinate embedding, one determines whether i jY Y< , i jY Y> , 

or i jY Y= , by making the following comparisons. 

If  the first bit in the binary representation of Xi is less than the first bit in the 

binary representation of Xj, then i jY Y< . Else if the first bit in the binary 

representation of Xi is greater than the first bit in the binary representation of Xj, then 

i jY Y> . 

If these first bits are equal, then we make the same comparison on the first bits 

of Xi+τ and Xj+τ. 

If these are equal then we make the comparison for Xi+2τ and Xj+2τ, and so on 

up to Xi+(n-1)τ and Xj+(n-1)τ. 

If all of these are equal, then we compare the second bits of Xi and Xj, and 

then, if necessary the second bits of Xi+τ and Xj+τ, and so on up to Xi+(n-1)τ and Xj+(n-1)τ. 

Again, if these are all equal we move on to the third bits of the binary representation. 

This procedure is completed until all bits of the binary representations of iY  and jY  

have been compared. If they are equal, then we know that these two vectors are equal 

up to the resolution of the computer, and so they do not need to be ordered.  

Notice that this means that the comparison of two vectors requires anywhere 

from 1 to 32n ⋅  binary comparisons. A uniform distribution implies that most vectors 

could be sorted using just a few binary comparisons, but highly clustered data would 

require far more, since for many vectors the binary representations would be quite 

similar. 
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For a two-dimensional embedding, sorted scaled data may be ordered in the 

following manner. 

(0,0) -> 00 00 00 …00 00 00 

(0,1) -> 00 00 00 …00 00 01 

(1,0) -> 00 00 00 …00 00 10 

(0,2) -> 00 00 00 …00 01 00 

(0,3) -> 00 00 00 …00 01 01 

(2,1) -> 00 00 00 …00 10 01 

(4,2) -> 00 00 00 …10 01 00 

(4,2) -> 00 00 00 …10 01 00 

(4,3) -> 00 00 00 …00 11 11 

(7,4) -> 00 00 00 …11 10 10  

(7,7) -> 00 00 00 …11 11 11  

 

where the first bit states if the first coordinate ranges from 0-3 or 4-7, the 

second bit if the second coordinate ranges from 0-3 or 4-7. The first and  third bit 

together describe whether the first coordinate ranges from 0-1, 2-3, 4-5 or 6-7, and so 

on. 

It should be noted that the vectors do not need to be stored in memory, since 

they can always be reconstructed from the original time series. Likewise, the scaling 

of the data may be performed within this step, so that the scaled data need not be 

stored either. The procedure also works if the data is not from a delay coordinate 

embedding. It can be generalized to any multidimensional time series. 

The data is gridded into n-dimensional boxes of equal length ε, such that all 

vectors lie within these boxes. Figure 7 depicts such a grid for data from the Henon 

map. If a box is labeled i, then it has an associated probability, ( )iP ε , that a vector on 

the attractor will reside within this box. ε represents which of the 32 levels of the 

binary representation we are considering. The data is now ordered so that all the 
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vectors within a box of any of the εs (1, ½, … 1/ (2^32 –1)) are ordered 

consecutively.  

 

 

Figure 7. A gridding of the Henon attractor using the multidimensional binary representation. 

An 8 by 8 grid has been created where each square is represented as a 2d, 3 bit vector (00 00 00 

to 11 11 11). Only 31 of the 64 possible squares are occupied. 

 

This suggests an accurate method to keep track of how many vectors lie inside 

of each box of any size. One can scroll through the data and count how many vectors 

are in each box. That is, a vector is compared with the previous vector. There are 32 

levels. If on any of the dimensions of the two vectors, the binary representations of 

the two vectors on that level are not equal, then we know that these vectors reside in 

different boxes.  
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An adaptation of this method that allows for insertion into the sorted data 

could be highly effective for the case of when an arbitrary number of data points can 

be generated. However, this is typically not possible for the case of experimental data.  

No use is made in the above method of the sequencing of the original data. 

Consider a vector nX  residing in the box i. If in addition to the quicksort a reverse 

sort is maintained that maps a vector in the sorted data to the corresponding vector in 

the time series, then one can determine the vector 1nX + , and hence find the box j that 

contains this vector. Thus allowable sequences of symbol dynamics can be quickly 

determined. Benefits of this can be seen in the case of noisy data. Here, one sets an 

ε based on the estimated noise level of the data. The presence of noise implies that the 

estimate ( ) 1n nf X X += , may be incorrect. However, one can state that it might be 

mapped to a location to which any of the vectors within box i are mapped. Thus we 

have the information necessary to estimate a probability transition matrix [ ]ijP , where 

{ }1Pr |ij n nP X j X i+= = = . To estimate any Pij, we find the number of vectors in box i 

that get mapped to a vector in box j, and then divide by the total number of vectors in 

box j. 

 

7. The uniform KTree  

This sort is a variation on the K-Tree that is used in estimating the generalized 

mutual information of a multidimensional time series. It is an extension of and 

variation upon a sort described by Fraser and Swinney.
42

 Its application is described in 
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detail in Chapter 4. The data is described as a series of vectors 1 2, ,..., NX X X  where 

each vector is n dimensional, 1 2( , ,... )n

i i i iX X X X= , and the number of vectors, N, is a 

power of two. The vectors are assumed to be sampled uniformly in time. That is, at 

each time interval ∆t, a new vector is sampled, and ∆t is a constant. Alternately, the 

data may be described as n time series data sets, 1 2, ,..., nX X X , where each data set 

consists of N, data points, 1 2( , ,... )i i i

i NX X X X= . We will use both of these notations 

depending on the situation.  

One important issue is determining the range of possible values for a point 

j

i jX X∈ . It is somewhat of an arbitrary choice, since the data set is confined to at 

most N distinct values, yet the full range of values may be infinite. The algorithm 

involves gridding the n dimensional space into n dimensional hypercubes and treating 

each occupied hypercube as an allowable symbol. The data is gridded into 

equiprobable partitions. This is seen in Figure 8 in the case of 16 2-dimensional data 

points. This has the added benefit that 1 2( ) ( )... ( )np x p x p x= = . 
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Figure 8. An example grid used to  compute the mutual information of two time series. The cuts 

are made such that a point may occupy each row or column with equal probability. 

 

A change of variables is first performed on the data, so that each time series 

1 2( , ,... )i i i

i NX X X X=  is transformed into integers, 1 2( , ,... )i i i

i NY Y Y Y=  such that the 

integer values fill the range 0 to N-1 and i i

j kX X<  implies i i

j kY Y< . Thus the change 

of variables gives vectors 1 2, ,..., NY Y Y . This data is used to create a 2n − ary tree (the 

n=2 tree is depicted in Figure 9). At each level of the tree a vector is sorted into one 

of the 2n branches, depending on the value of each vector coordinate. At each node in 

the tree, the number of elements in or below that node is stored. 
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Figure 9. A portion of a 2-ary tree (quadtree) used to compute the mutual information of two 

time series. 

 

Recall that N is a power of two (if not, then data points are removed), 2KN = . 

The levels of the tree define successive partitions of the n-dimensional space, 

0 1 1, ,... KG G G − . For a given level of the tree Gm, the space is partitioned into 2mj 

hypercubes, (0), (1),... (2 1)n

m m mR R R m −  such that Rm(j) may be partitioned into the 

hypercubes 1 1(2 ), (2 1),... (2 2 1)n n n n

m m mR j R j R j+ + + + − . Each hypercube has an 

associated probability P(Rm(j)), which is estimated by its frequency, the number of 

vectors in that hypercube divided by the total number of vectors, Nm(j) /N. This 

allows one to compute probabilities for each level of the tree. Pi(Rm(j)) is the 

probability of finding the i
th coordinate of a vector to reside in the same partition 

along the  i
th direction as Rm(j). Due to the equiprobable nature of the partitions, 

( ( )) 1/ 2m

i mP R j =  for all i and j.   

 

8. Benchmarking and comparison of methods  

 

In this section we compare the suggested sorting and searching methods, 

namely the box assisted method, the KD-Tree, the K-tree, and the multidimensional 

quicksort. All of these methods are, in general, preferable to a brute force search. 
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However, computational speed is not the only relevant factor. Complexity, memory 

use, and versatility of each method will also be discussed. The versatility of the 

method comes in two flavors- how well the method works on unusual data and how 

adaptable the method is to unusual searches. The multidimensional binary 

representation and the uniform K-Tree, described in the previous two sections, are not 

compared with the others because they are specialized sorts used only for exceptional 

circumstances. 

 

8.1. Benchmarking of the Kd-tree  

One benefit of the kd-tree is its rough independence of search time on data set 

size. Figure 10 compares the average search time to find a nearest neighbor with the 

data set size. For large data set size, the search time has a roughly logarithmic 

dependence on the number of data points. This is due to the time it takes to determine 

the search point’s location in the tree. If the search point were already in the tree, then 

the nearest neighbor search time is reduced from O(log n) to O(1). This can be 

accomplished with the implementation of Bentley's suggested use of parent pointers 

for each node in the tree structure.
60
. This is true even for higher dimensional data, 

although the convergence is much slower.  
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Figure 10. The dependence of average search time on data set size. 

 

In Figure 11, the kd-tree is shown to have an exponential dependence on the 

dimensionality of the data. This is an important result, not mentioned in other work 

providing diagnostic tests of the kd-tree.
60, 63

 It implies that kd-trees become highly 

inefficient for high dimensional data. It is not yet known what search method is most 

preferable for neighbor searching in a high dimension (greater than 4). 
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Figure 11. A log plot of search time vs dimension. 

 

Figure 12 shows the relationship between the average search time to find n 

neighbors of a data point and the value n. In this plot, 10 data sets were generated 

with different seed values and search times were computed for each data set. The 

figure shows that the average search time is almost nearly linearly dependent on the 

number of neighbors n. Thus a variety of searches (weighted, radial, with or without 

exclusion) may be performed with only a linear loss in speed. 
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Figure 12. A plot of the average search time to find n neighbors of a data point, as a function of 

n. This shows that the relationship remains nearly linear over small n. 10 random data sets were 

generated with different seed values and the average time it takes to find a given number of 

neighbors was computed for each data set. 

 

The drawbacks of the kd tree, while few, are transparent. First, if searching is 

to be done in many different dimensions, either a highly inefficient search is used, or 

additional search trees must be built. Also the method is somewhat memory intensive. 

In even the simplest kd tree, a number indicating the cutting value is required at each 

node, as well as an ordered array of data (similar to the quicksort). If pointers to the 

parent node or principal cuts are used then the tree must contain even more 

information at each node. Although this increase may at first seem unimportant, one 

should note that experimental data typically consists of 100000 floating points or 

more. In fact, some data analysis routines require a minimum of this many points. If 

the database is also on that order, then memory may prove unmanageable for many 

workstation computers. 
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We have implemented the kd-tree as a dynamic linked library consisting of a 

set of fully functional object oriented routines. In short, they consist of the functions 

Create(*phTree, nCoords, nDims, nBucketSize,*aPoints); 

FindNearestNeighbor(Tree,*pSearchPoint, *pFoundPoint); 

FindMultipleNeighbors(Tree, *pSearchPoint, *pnNeighbors, *aPoints); 

FindRadialNeighbors(Tree, *pSearchPoint, radius, **paPoints, 

*pnNeighbors); 

ReleaseRadialNeighborList(*aPoints); 

Release(Tree); 

 

 

8.2. Comparison of methods  

The kd-tree implementation was tested in timed trials against the 

multidimensional quicksort and the box-assisted method. In Figure 13 through Figure 

16 we depict the dependence of search time on data set size for one through four 

dimensional data, respectively. In Figure 13, the multidimensional quicksort reduces 

to a one dimensional sort and the box assisted method as described by 62 is not 

feasible since it requires that the data be at least two dimensional. We note from the 

slopes of these plots that the box-assisted method, the KDTree and the KTree all have 

an O(n log n) dependence on data set size, whereas the quicksort based methods have 

approximately O(n1.5) dependence on data set size for 2 dimensional data and O(n1.8) 

dependence on data set size for 3 or 4 dimensional data. As expected, the brute force 

method has O(n2) dependence.  

Despite its theoretical O(n log n) performance, the ktree still performs far 

worse than the box-assisted and kdtree methods. This is because of a large constant 

factor worse performance that is still significant for large data sets (64,000 points). 

This constant worse performance relates to the poor balancing of the ktree. Whereas 
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for the kdtree, the data may be permuted so that cut values are always chosen at 

medians in the data, the ktree does not offer this option because there is no clear 

multidimensional median. In addition, many more branches in the tree may need to be 

searched in the ktree because at each cut, there are 2k instead of 2 branches. 

 

Figure 13. Comparison of search times for different methods using 1 dimensional random data. 
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Figure 14. Comparison of search times for different methods using 2 dimensional random data. 

 

Figure 15. Comparison of search times for different methods using 3 dimensional random data. 
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Figure 16. Comparison of search times for different methods using 4 dimensional random data. 

 

However, all of the above trials were performed using uniform random noise. 

They say nothing of how these methods perform with other types of data. In order to 

compare the sorting and searching methods performance on other types of data, we 

compared their times for nearest neighbor searches on a variety of data sets. Table 2 

depicts the estimated time in milliseconds to find all nearest neighbors in different 

10,000 point data sets for each of the benchmarked search methods. The uniform 

noise data was similar to that discussed in the previous section. Each gaussian noise 

data set had a mean of 0 and standard deviation of 1 in each dimension. The Henon,
64
 

Lorenz,
25
 and electric step motor

65
 data sets are each from chaotic simulations. The 

identical dimensions and one valid dimension data sets were designed to test 

performance under unusual circumstances. For the identical dimensions data, uniform 
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random data was used and each coordinate of a vector was set equal, e. g., 

1 2 3 1 1 1( , , ) ( , , )i i i i i i iX X X X X X X= = . For the data with only one valid dimension, 

uniform random data was used in only the first dimension, e. g., 

1 2 3 1( , , ) ( ,0,0)i i i i iX X X X X= = .  

 
Data set Dimension Brute Quicksort Box (2) 

method 

Box (3) 

method 

KDTree KTree 

Uniform 
noise 

3 32567 2128 344 210 129 845 

Gaussian 2 16795 280 623 X 56 581 
Gaussian 4 44388 8114 54626 195401 408 3047 

Henon 2 36707 44 227 X 35 345 
Lorenz 3 59073 373 19587 26578 49 2246 

Step motor 5 102300 2019 4870 5015 174 13125 
Identical 

dimensions 
3 33010 19  1080  5405 42 405 

One valid 
dimension 

3 30261 31  1201  7033 37 453 

Table 2. Nearest neighbor search times for data sets consisting of 10000 points.  The brute force 

method, multidimensional quicksort, the box assisted method in 2 and 3 dimensions, the KDTree 

and the KTree were compared. An X indicates that it wasn’t possible to use this search method 

with this data. The fastest method is in bold and the second fastest method is in italics. 

 

In all cases the Kd-tree proved an effective method of sorting and searching 

the data. Only for the last two data sets did the multidimensional quicksort method 

prove faster, and these data sets were constructed so that they were, in effect, one 

dimensional. In addition, the box method proved particularly ineffective for high 

dimensional gaussian data where the dimensionality guaranteed that an excessive 

number of boxes needed to be searched, and for the Lorenz data, where the highly 

nonuniform distribution ensured that many boxes went unfilled. The K-tree also 

performed poorly for high dimensional data (four and five dimensional), due to the 

exponential increase in the number of searched boxes with respect to dimension. 
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9. Conclusion  

The Kd-search tree is a highly adaptable, well researched method for 

searching multidimensional data. As such it is very fast, but can be memory intensive, 

and requires care in building the binary search tree. The K-tree is a similar method, 

less versatile, more memory intensive, but easier to implement. The box-assisted 

method on the other hand, is used in a form designed for nonlinear time series 

analysis. It falls into many of the same traps that the other methods do. Finally the 

multidimensional quicksort is an original method designed so that only one search 

tree is used regardless of how many dimensions are used. 

Tests indicated that, in general, the Kd-tree was superior to the other methods. 

Unlike, the box-assisted methods, its adaptability ensures that it is optimized for most 

unusual data sets. Its construction as a binary tree offers a far quicker search 

mechanism than the 2k-ary tree approach of the K-tree. Although there are situations 

where other search methods may be preferred (such as when the time to build the tree 

is important), it is clear from the above results and analysis that the Kd-tree is the 

superior method for most searches on multidimensional data. 
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CHAPTER FOUR 

ORIGINAL ANALYSIS METHODS 

 

1. Introduction 

In the process of implementing existing analysis methods, many holes in the 

theory of nonlinear data analysis were discovered. Existing methods were discovered 

to have flaws, or found that simple corrections could improve their power or 

efficiency. Likewise it was found that they could be extended to allow the 

determination of more empirical quantities. In this section, we discuss some of the 

original improvements on existing analysis methods, as well as some original analysis 

methods that were implemented. 

 

2. Improvement to the false nearest neighbors method of 

determining embedding dimension. 

2.1. Introduction 

The identification of False Nearest Neighbors is a popular method of choosing 

the minimum embedding dimension of a time series for the purpose of phase space 

reconstruction. For a given embedding dimension, this method finds the nearest 

neighbor of every point in a given dimension, then checks to see if these are still close 

neighbors in one higher dimension. The percentage of False Nearest Neighbors 

should drop to zero when the appropriate embedding dimension has been reached. 
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We argue that the criteria for choosing an embedding dimension, as proposed in 

previous work, is flawed. We suggest an improved criterion that is still simple, yet 

properly identifies random data and high-dimensional data. We also show the limits 

of the method and of criteria that are used, and make suggestions as to how further 

improvements can be made. 

One of the goals of time series analysis is to gain an understanding of the 

underlying dynamical system. However, this is a daunting task, since the time series 

gives incomplete information about the dynamics. Only one variable is being 

measured in a time series, yet a dynamical system is often represented mathematically 

by several differential or difference equations. The task then becomes how to 

visualize the time series in such a way as to reveal the dynamics in the full phase 

space of the system.  

A phase space reconstruction is devised using a delay coordinate embedding.
66
 

From manipulations of  the time series, delay coordinate embeddings allow one to 

reconstruct vectors representing the dynamics in the phase space. Rather than simply 

stating that "the time series evolves from X1 to X2" the researcher can now state that 

"the system evolves from state 1Y  to 2Y ." Two parameters are used for the 

reconstruction, a delay τ and an embedding dimension D. From the time series, the 

vectors 0 0 ( 1)( , ,... )DY X X Xτ τ−= , 1 1 1 1 ( 1)( , ,... )DY X X Xτ τ+ + −= ,... are created. τ  describes 

the separation between data to be used as successive points in a vector and D 

describes the dimensionality of the reconstructed vectors.  
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The two parameters of importance here are the choice of τ  and the choice of 

D. Various methods are suggested for the determination of an appropriate delay, all 

with some measure of success.
42, 67, 68

 However, even after a suitable delay time has 

been found, an appropriate embedding dimension is a subjective decision. One is 

generally guaranteed that a very large embedding dimension will completely unfold 

the attractor. The Takens embedding rule
36
 states that, for an attractor of dimension 

dA, any embedding greater than 2dA will be sufficient. With experimental data of 

limited size, this rule may be used as a guideline for choosing an embedding 

dimension. Yet one may often use a much smaller embedding dimension.  For 

instance the Henon map,
64

 (dA  ~ 1.8) 

 
2

1 11 1.4 0.3n n nX X X+ −= − +      (1)  

may be completely unfolded in a two dimensional embedding  and the Lorenz 

attractor
25
 (dA ~2.1) 
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       (2) 

requires only a three dimensional embedding to unfold its attractor. Using a 

small embedding dimension may be preferable since it simplifies analysis and large 

embeddings compound the effects of noise and often require many more points for 

analysis. The question then becomes, what is the minimal embedding that is 

sufficient? 

To this end, Kennel, et. al.,
46, 69

 propose the method of false nearest neighbors. 

This is a popular analysis tool- it has been applied in a wide variety of fields,
70-74

 and 
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its meaning and implementation is an ongoing area of research.
61, 75, 76

 The main 

objective in this section is to correct an important problem associated with current 

implementations of the method of false nearest neighbors. We will demonstrate that 

an alternative definition of false nearest neighbors and their interpretation will more 

accurately yield a minimal embedding dimension. This new definition is more robust 

in the presence of noise or high dimensionality, provides a statistical measure of 

confidence, and is easier to interpret. An added feature lies in its adherence to the 

spirit and intent of the original method, without losing any of the simplicity that has 

made identification of false nearest neighbors such a popular tool. The authors 

strongly recommend that future data analysis use this alternative definition or a 

similar implementation that corrects some of the problems associated with the 

original method. 

 

2.2. Method 

Consider a phase space reconstruction that was created using a delay 

coordinate embedding of a one-dimensional time series. If the embedding dimension 

is too small then two points that appear to be close in the reconstructed phase space 

may actually be quite far apart in the true phase space. These points are described as 

false nearest neighbors. As an example, consider Figure 17. Each of the points A, B, C 

and D in Figure 17 resides on a one-dimensional curve. Embedded in 2 dimensions, 

point C is the closest neighbor to point A. In a one-dimensional embedding, point D is 

incorrectly identified as the nearest neighbor. Yet neither C nor D is the closest 
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neighbor to A on this curve. Only in three dimensions are there no self-crossings of 

this curve, and point B is shown to be the nearest neighbor of A.  

 

Figure 17 An example of false nearest neighbors. Points A, B, C, and D lie on a one-dimensional 

curve. In two dimensions, points A and C appear to be nearest neighbors.  In one dimension, 

point D appears to be the nearest neighbor of A. In three dimensions the curve would not 

intersect itself, and it could be seen that B is the nearest neighbor to A. 

 

 Explicitly, the original criteria for identification of false nearest neighbors are 

as follows: consider each vector 2 ( 1)( , , ,... )n n n n n DY X X X Xτ τ τ+ + + −=
� �

 in a delay 

coordinate embedding of the time series with delay τ  and embedding dimension D. 

Look for its nearest neighbor 2 ( 1)( , , ,... )m m m m m DY X X X Xτ τ τ+ + + −=
� �

. The nearest 

neighbor is determined by finding the vector mY  in the embedding which minimizes 
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the Euclidean distance || ||n n mR Y Y= − . Now consider each of these vectors under a 

D+1 dimensional embedding,  

2 ( 1)( , , ,... , )n n n n n D n DY X X X X Xτ τ τ τ+ + + − +′ =
� � �

  

2 ( 1)( , , ,... , )m m m m m D m DY X X X X Xτ τ τ τ+ + + − +′ =
� � �

.  

In a D+1 dimensional embedding, these vectors are separated by the 

Euclidean distance || ||n n mR Y Y′ ′ ′= − . The first criterion by which Kennel, et. al., 

identify a false nearest neighbor is if  

Criterion 1: 2 2 2 | |
( ) / n D m D

n n n TOL

n

X X
R R R R

R

τ τ+ +−′ − = >    (3)  

RTOL is a unitless tolerance level for which Kennel, et. al., suggest a value of 

approximately 15 . This criterion is meant to measure if the relative increase in the 

distance between two points when going from n to n+1 dimensions is large. 15 was 

suggested based upon empirical studies of several systems, although values between 

10 and 40 were consistently acceptable. The other criterion Kennel, et. al., suggest is 

 Criterion 2: n
TOL

A

R
A

R
′ > .       (4) 

This was introduced to compensate for the fact that portions of the attractor 

may be quite sparse. In those regions, near neighbors are not actually close to each 

other. Here, RA is a measure of the size of the attractor, for which Kennel, et. al., use 

the standard deviation of the data, RA= 2

( )x x< >−< > . If either (3) or (4) hold, then 

mY  is considered a false nearest neighbor of nY . The total number of false nearest 

neighbors is found, and the percentage of nearest neighbors, out of all nearest 
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neighbors, is measured. An appropriate embedding dimension is one where the 

percentage of false nearest neighbors identified by either method falls to 0. 

Although, these combined criteria correctly identify a suitable embedding 

dimension in many cases, they have several shortcomings. We will deal with each 

criterion in turn.  

For criterion 1: Regardless of the data being considered, | | /n D m D nX X Rτ τ+ +−  

in equation (3) approaches zero as the embedding dimension increases. This is 

because, as one increases dimension, Rn increases although | |n D m DX Xτ τ+ +− , the 

increased distance due to adding a new dimension, may not. This may lead to falsely 

underestimating the correct number of embedding dimensions. 

A neighbor may be considered false yet still be very close in the (D+1)th 

direction. This is because this criterion only measures relative increase. So in the case 

of two points are extremely close to each other in a D dimensional embedding, only a 

small separation in the (D+1)th dimension is required to identify a false nearest 

neighbor. A small amount of noise could easily generate such a situation. Whether or 

not these points are actually false neighbors is uncertain. 

As pointed out in Kennel, et. al.,
46

 and Brown,
69
 a point and its nearest 

neighbor may not in fact be close to each other. Yet the original method still includes 

this as a point to be considered. This creates serious problems because it implies that 

small data sets (where near neighbors aren't close) Rn  may be quite large. Thus the 

percentage of false nearest neighbors becomes dependent on data set size. For this 
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reason, Kennel, et. al., suggested the second criterion. But as we shall see, that 

criterion does not properly address this issue. 

For criterion 2: For the same reason that criterion 1 approaches zero as 

embedding dimension increases, this should gradually approach 100%. Criterion 2 

may be written as 
n A TOLR R A′ > , where the right hand side is constant. Yet nR′  

increases with each additional embedding dimension, since for each D, an extra 

( )2

n D m DX Xτ τ+ +−
� �

 is contributed to 
2

nR′ . So this criterion increases the percentage of 

false nearest neighbors for high embedding dimension. This holds even when the 

correct embedding dimension should be small.   

This criterion labels nearest neighbors as false. However, it would be more 

correct to say that these neighbors were never identified, correctly or incorrectly, as 

close. In fact, if this criterion is ever nonzero, one would expect it to increase with 

embedding dimension, regardless of the correct embedding dimension or of the 

structure or quantity of data. 

Standard deviation, which is Kennel, Brown, and Abarbanel's suggested 

measure of attractor size, may not be a good measure to use here. It measures the 

clustering about the mean. However, the standard deviation may be much larger than 

the distance between two neighbors, yet the neighbors may still not be close to each 

other. For instance, the Lorenz attractor has two lobes, so it should have a large 

standard deviation  (points are clustered far from the mean). This implies that points 

on the same lobe may be far from each other yet still considerably less than the 
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standard deviation. A more appropriate measure should be less dependent on the 

structure of the attractor. 

For the above reasons, we choose a new method of identifying false nearest 

neighbors. For this, we return to the essential goals of the method:   

(1) A false nearest neighbor is found if it may be correctly identified as a close 

neighbor in n dimensions, yet identified as far in the (n+1)
th dimension. 

(2) The percentage of false nearest neighbors is the percent of those neighbors 

that are identified as close which are then shown to be false nearest neighbors by (1). 

The correct minimal embedding dimension is that for which the percentage of 

false nearest neighbors falls to its minimal level. It may not be possible to identify the 

correct embedding dimension if enough close nearest neighbors cannot be found. This 

is why it is important to properly define 'close.'  Thus we provide a single explicit 

criterion definition as follows: 

The average distance between points, δ, is estimated by taking a subsample of 

the original time series, and finding the average distance between any two points from 

this subsample. We note that this average distance is only used when multiplied by a 

threshold factor (ε1 or ε2). Hence other methods of estimating the average distance 

should be acceptable as long as the thresholds are scaled accordingly. 

The distance between a point and its nearest neighbor is computed in each of 

the n dimensions. If, in each dimension, the distance is less than ε1�δ, then this 

neighbor is close. ε1 is some small, user-defined threshold, large enough so that many 

close neighbors can be found, but small enough so that these two points are still close. 
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Trials indicated that ε1=0.01 was a reasonable value for simulated data with no 

additive noise. A larger value is often necessary in the presence of white noise, since 

noise serves to increase the chances of points being far away. However, there are 

wide ranges of acceptable values for ε1, since we are concerned with which 

embedding dimension gives a minimum in the percentage of false nearest neighbors, 

not the actual number for this percentage. 

If the nearest neighbor is close to the original point, and the distance between 

the point and its nearest neighbor in the (n+1)th dimension is greater than ε2δ, then 

this is a false nearest neighbor. ε2 is another user defined constant that adequately 

describes when two points are considered distant from each other. 

 

2.3. Results 

In Figure 18, we present the results of the use of this method with 1,000,000 

points of uniform noise. Because the noise made it extremely difficult to find near 

neighbors, the thresholds for the new criterion were loosened. ε1 was set to 0.1 (as 

opposed to 0.01) and ε2 was set to 0.1 . The value obtained from Criterion 1 

dropped to 0, due to the fact that the average distance between nearest neighbors in n 

dimensions increases as a function of n, even though the average (n+1)th distance is 

constant. Criterion 2 increased with embedding dimension. This is because nR′  

increased with embedding dimension D. But because nR  also increases with D, these 

nearest neighbors were never identified as close. However, pure noise represents an 
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infinite dimensional system. So the percentage of false nearest neighbors should be 

independent of embedding dimension. The new criterion is correct in this regard since 

the percentage of false nearest neighbors it identifies remains constant with respect to 

changing embedding dimension.  

 

 

Figure 18. Data from 1,000,000 points of uniform white noise. The squares represent results from 

the first criterion, the circles from the second criterion and the diamonds from the new criterion. 

Close neighbors in n dimensions are defined as being separated by a distance no greater than 

0.1δδδδ in each of the n dimensions, where δδδδ    is the average distance between points. Far neighbors 

are defined as being separated by at least 0.1 δδδδ in the (n+1)th dimension 

 

In Figure 19, we show how the original criteria can overestimate the 

embedding dimension, and how the new criterion can be used both as a measure of 
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noise and as a measure of whether enough data has been given. The data is from 

10,000 points of the Henon map (equation 1) with the addition of Gaussian noise with 

0 mean and standard deviation at 5% the standard deviation of the original data. Since 

the Henon map has a fractal dimension of 1.2, it is known that a 2 or 3 dimensional 

embedding is appropriate. In fact, without the presence of noise, a 2 dimensional 

embedding will suffice. The original criterion detects 5.7% false nearest neighbors in 

3 dimensions. Thus the original method suggests an embedding dimension of at least 

four. This is due to the fact that, in a low dimensional embedding, this method 

incorrectly interprets the fluctuations in nearest neighbor distances due to noise as 

identification of false nearest neighbors.  

In contrast, the new method reaches a constant value of 24% false nearest 

neighbors at an embedding dimension of 3. Because the Henon map has a fractal 

dimension of approximately 1.2, the Takens embedding theorem suggests an 

embedding dimension of 3 or less. Therefore this result is within reason for the 

Henon map. For a five dimensional embedding, only 26 close nearest neighbors were 

found from the original 10,000 points. Thus the inclusion of error bars was necessary. 

Error bars were computed by computing a 95% confidence interval on the proportion 

of false nearest neighbors. Higher dimensional calculations were not calculated 

because for the parameters chosen, it was not possible to find enough close neighbors 

to get an accurate percentage of the false ones. 
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Figure 19.  Data from 10000 points of the Henon map with Gaussian noise having a standard 

deviation equal to 5% the standard deviation of the original data. Squares represent results from 

the first criterion, circles from the second criterion and diamonds from the new criterion. Error 

bars correspond to a 95% confidence level. Close neighbors in n dimensions are defined as being 

separated by less than 0.01δδδδ in each of the n dimensions. Far neighbors are defined as being 

separated by at least 0.1δδδδ in the (n+1)th dimension.    

 

2.4. Conclusion 

One possible problem with this method is the choice of parameters. If the 

maximal distance for neighbors to be considered close is set too high, then 

complicated dynamics can occur within a region less than this distance. That is, even 

with a suitable embedding dimension, neighbors can appear false simply because they 

were incorrectly identified as close. A reasonable setting for ε1 is small enough that 

the dynamics on this length scale may be considered approximately linear, but large 

enough that a sizable number of nearest neighbors can be found. If an ε1 can not be 

found fitting these qualifications, then the size of the data set does not permit use of 

the false nearest neighbors method. 
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As we move to higher and higher embedding dimension, the distance between 

nearest neighbors in the embedding must get further apart. This is because each 

additional dimension contributes additional distance. If we set the condition for 

closeness too high, then these neighbors may not be identified as close. Thus we may 

incorrectly find more false nearest neighbors with increasing dimension. This effect is 

most noticeable in noise free data, such as the Lorenz system. Also regions of the 

attractor may have both variable density and variable local dimension. For data sets of 

small size, one may then be concerned with the question of when points are close, and 

how this definition should vary for sparse regions or regions with complicated 

dynamics. A very strict definition of closeness should, for a very large data set, be 

sufficient to deal with this problem. However, this is not always possible, so we 

strongly suggest the use of error bars and the use of as small of a closeness threshold 

as possible (see Figure 19). 

There is a tradeoff here between simplicity and accuracy. A more accurate 

method would use all neighbors that can be considered close, rather than just the 

nearest neighbor. It would take into account the variable density on the attractor, and 

perhaps give a more quantitative interpretation of exactly what information is lost 

when using too small of an embedding dimension. However, the benefit of the 

method of false nearest neighbors is in its simplicity. It provides a simple method of 

determining embedding dimension that can be easily interpreted. Since it is designed 

for experimental systems, and it is designed for making reasonable estimates of a 

sufficient embedding dimension, rigor is not of high importance. Simplicity is 
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favored, as long as the method does not underestimate or grossly overestimate 

embedding dimension. 

Lastly we want to point out the relationship between dimensionality, data set 

size, and closeness threshold. For a high dimensional system, a very large number of 

points is needed to estimate fractal dimension. This is also true for estimating 

embedding dimension. Close points must be close in all dimensions, and there are 

few candidates for close neighbors until a large portion of the attractor is filled. 

Following the reasoning in Ding, et. al.,
31
 we suggest a minimum of 10D points to 

reliably determine if D is a reasonable embedding dimension. Noise only compounds 

the problem, since it causes nearby points to seem further away from each other in 

each dimension. Of course, more neighbors can be found by loosening the threshold, 

but this carries the risk of considering neighbors that are not close to each other. For 

this reason error bars are suggested, indicating whether enough neighbors are being 

considered. However, error bars only provide a measure of statistical confidence 

assuming that the underlying method of finding false nearest neighbors is correct. 

This is a problem that may be alleviated with a more rigorous definition of closeness. 
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3. Modification to the Wolf method of determining the 

dominant Lyapunov exponent. 

3.1. Introduction 

This was probably the first method implemented to estimate the dominant 

Lyapunov exponent of experimental data. Wolf
77

  defined the exponents in terms of 

the rates of divergence of volumes as they evolve around the attractor. For an n-

dimensional system, consider the infinitesimally small n-sphere centered around a 

point on the attractor. As this evolves, the sphere will become an n-ellipsoid due to 

the deforming nature of the attractor flow. Then the ith Lyapunov exponent is defined 

in terms of the exponential growth rate of the ith principal axis of the ellipsoid. 

 
( )1

lim ln
(0)
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i
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=        (5) 

where the exponents are ordered from largest to smallest. The largest exponent can be 

approximated from Equation (6)  
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Here, t∆  is the time (in seconds) of successive points in the time series. M is the 

number of steps of size s used to traverse the entire data set. That is, if there are N 

vectors, then M is the largest value such that Ms N≤ . (0)ksL  is the distance between 

the ks
th point and an appropriately chosen near neighbor such that the vector between 

these points is aligned along the direction of the first principal axis of the ellipsoid. 

( )ksL s  is the distance between these two points after they have been evolved forward 
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s positions in the time series. Thus, in the limit of an infinitely long time series where 

s → ∞ , these two equations become equal.. 

One difficulty with this method is the presence of two opposing requirements. ( )ksL s  

must be small enough such that the n-ellipsoid is reasonably small. This would be 

guaranteed in the theoretical limit of an infinitesimally small initial n-sphere. At the 

same time, ( )ksL s  must be aligned along the direction of the principal axis. Wolf 

suggests two parameter settings in the algorithm in order to meet both requirements. 

Choice of the nearest neighbor must result in a length (0)ksL  less than a specified 

value. In addition, the angle between these two vectors must be less than another 

specified value. 

In order to minimize parameter dependence, we used a variation on the Wolf method. 

In previous work,
77-79

 both maximum allowable displacement and maximum angular 

displacement were left as free parameters. This makes it difficult to determine a 

reasonable parameter setting. We suggest using one parameter- the number of near 

neighbors to consider after a given number of iteration steps. Whether or not our new 

vector is replaced is determined by finding the vector among those from the near 

neighbors that has minimal angular displacement α, as defined in Equation (7). This 

may be the original vector used. This would imply that the vector has not grown 

enough to be out of the linear regime. If this point is not among the near neighbors, 

then the near neighbor giving the least angular displacement is used.  

 acos
X Y

X Y
α

 ⋅=   
 

       (7) 
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This alleviates one of the problems that Wolf, et al., mentioned. An 

appropriate maximum displacement is not the same over the entire attractor. In dense 

regions, a small separation may be considered large and nonlinear. In sparse regions 

of the attractor, a larger distance is acceptable. This is true of the Lorenz attractor. If 

we consider a fixed number of neighbors, then these points will be closer in dense 

regions of the attractor and further apart in sparse regions. This has the effect of 

varying the maximum displacement as appropriate. In its current implementation, the 

downside is that this increases the computation time significantly. However, 

computation was not so slow as to be infeasible. 

 

4. An efficient method of computing an arbitrary number of 

generalized fractal dimensions. 

4.1. Method 

Consider a multidimensional time series, possibly generated from a delay 

coordinate embedding. Using the multidimensional binary representation sort 

described in Chapter 3, this data can be gridded into n-dimensional boxes of equal 

length ε, such that all vectors lie within these boxes. If a box is labeled i, then it has 

an associated probability, ( )iP ε , that a vector on the attractor will reside within this 

box. The generalized entropies, H0, H1, … are defined in terms of the probabilities of 

vectors occupying boxes. For q=0,1,2…, 
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In the following we keep the conventions common in dimension definitions 

and use the natural logarithm as opposed to the log base 2. The generalized dimension 

of order q is then defined as 

 
( )

( ) lim
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qH
D q

ε

ε
ε→∞

= −       (9) 

Under this definition, D(0), D(1), and D(2) are the box counting dimension, 

the information dimension and the correlation dimension, respectively. We also have 

the property that if p>q, then D(p)<= D(q). 

For the purposes of calculation we rewrite the generalized entropies as 
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where N is the total number of vectors, ( )iN ε  is the number of vectors in the ith box 

of length ε, and ( )N ε is the number of occupied boxes of length ε. In this form it is 

clear what is needed- an accurate method to keep track of how many vectors lie inside 

of each box. Preferably, so as to measure convergence, one would like to be able to 

compute entropies for many box sizes, and do so in reasonable time with limited 

memory resources. 
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ε in the generalized entropy represents which of the 32 levels of the binary 

representation we are considering. The data is now ordered so that all the vectors 

within a box of any size ε (1, ½, … 1/ (2^32 –1)) are ordered consecutively. The 

generalized entropies can be determined by scrolling through the data and counting 

how many vectors are in each box. That is, a vector is compared with the previous 

vector. Information is stored concerning each level of each generalized entropy to be 

determined. There are 32 levels. If on any of the dimensions of the two vectors, the 

binary representations of the two vectors on that level are not equal, then we know 

that these vectors reside in different boxes. That means we can process the box we 

were just looking at. Find where they disagree, and for each level below that add the 

number of vectors in the box. Each time we have determined how many vectors are in 

a box, we process that value and add the result to a running tally for the given 

entropy. When this is finished we have exactly what is needed for the generalized 

entropies. 

Once the generalized entropies have been determined, there are two ways to 

approximate the generalized dimensions for time series data. The first is if ε is 

sufficiently small such that the limit is approximately correct, and we have enough 

data to get an accurate measurement for ( )qH ε . In which case we may use 

 ( ) ( ) / lnq qD Hε ε ε≈ −       (11) 

However, the preferred method is to simply look at the slope of a plot of 

( )qH ε  vs ln(ε), since this has a quicker rate of converge to the limit of ε−>0. We 
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should mention that further information theoretic properties can be determined from 

the analysis of this sorting, such as the generalized mutual information of high 

dimensional data, In(X1,X2,…Xn), or estimation of the metric entropy.
80
 

 

4.2. Accuracy 

Unfortunately, although this is an efficient way of determining generalized 

dimensions and entropies, it is not necessarily accurate. Figure 20 and Figure 21 show 

estimates of the generalized entropies and generalized dimensions for a data set 

consisting of 5 million data points from the Ikeda map. Although convergence can be 

seen, it is a poor estimate because such a large number of points is required for 

convergence.  

It has been shown that similar "box-assisted" methods often require huge 

amounts of data, due to the very slow convergence to the limit of infinite data, 

arbitrarily small ε.
33
 This means that an adaptation of this method that allows for 

insertion into the sorted data could be highly effective for the case of when an 

arbitrary number of data points can be generated. However, this is typically not 

possible for the case of experimental data. Thus spatial correlation algorithms, 

although generally more computationally intensive, are often preferred for 

calculations of information dimension or correlation dimension. It is hoped that a 

spatial correlation algorithm could be adapted to the determination of generalized 

dimensions and generalized entropies. 
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Figure 20 The first five generalized entropies of the Ikeda map. 5 million data points were used 

in order to get strong convergence. It can be seen that there is a large range of εεεε over which the 

slopes remain fairly constant. 
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Figure 21 The first five generalized dimensions of the Ikeda map. 5 million data points were used 

in order to get strong convergence. Still there is large fluctuations in the results, particularly in 

D0, the box-counting dimension. 

 

5. Computation of symbol dynamics and information theoretic 

quantities  

 

5.1. Transition matrix 

No use is made in the above method of the sequencing of the original data. 

Consider a vector nX  residing in the box i. If in addition to the quicksort, a reverse 

sort is maintained that maps a vector in the sorted data to the corresponding vector in 

the time series, then one can determine the vector 1nX + , and hence find the box j that 

contains this vector. Thus allowable sequences of symbol dynamics can be quickly 
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determined. Benefits of this can be seen in the case of noisy data. Here, one sets an 

ε based on the estimated noise level of the data. The presence of noise implies that the 

estimate ( ) 1n nf X X += , may be incorrect. However, one can state that nX  might be 

mapped into any box for which any point in box i are mapped. Thus we have the 

information necessary to estimate a probability transition matrix as well as entropy 

rates. 

The probability transition matrix is [ ijP ], where 1Pr{ | }ij n nP X j X i+= = = . To 

calculate any ijP , we find the number of vectors in box i that get mapped to a vector 

in box j, and then divide by the total number of vectors in box j. As shown in Ref. 81, 

a similar method can be used to identify periodic orbits from symbolic dynamics. 

 

5.2. Entropy rate 

Identification of the transition matrix allows one to measure the entropy rate 

of the system, per symbol entropy of the n random variables.  

 H(χ)= 1 2

1
lim ( , ,.. )n
n

H X X X
n→∞

     (12) 

This is equivalent to the conditional entropy of the last random variable given the 

past, where {X1} is a stochastic process.  

 H(χ)= lim ( | , ,.. )
n

n n nn
H X X X X

→∞ − −

1
1 2 1     (13) 

The entropy rate describes how the entropy of the sequence grows with n, and 

thus quantifies the complexity of the system. If a suitable embedding dimension and 
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delay have been found, or if we have multidimensional data from a simulation, then 

the time series may be described as a Markov chain. Furthermore, if the process is 

stationary, then the entropy rate becomes  

 H( ) lni ij ij

ij

P Pχ µ= −∑       (14) 

where µi represents the ith eigenvalue of the transition matrix, that is, the probability 

of a vector being in the i
th box. Unfortunately, this is a fairly difficult quantity to 

compute, because it requires on the order of the square of the number of boxes to 

calculate. This is a more accurate measure of information loss than the traditional 

entropy since it takes into account the ordering of the data. However the entropy rate 

is a fairly stable quantity when measured over a great range of data set size and of 

gridding accuracy. 

 

5.3. Topological entropy and periodic orbits  

Suppose the time series data has been gridded into boxes of size ε. According 

to Baker and Gollub,82 the metric entropy is found from  
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ε

ε
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where ( , )iP Tε  represents the probability of a point being found in the ith box of size ε 

after a time T. Computation of this quantity is quite difficult because of its 

dependence on limits, but it can be estimated from the transition matrix, which gives 
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( , )iP Tε  for a given ε and T. The topological entropy can also be directly estimated 

from the transition matrix M,83 using . 

 
1

lim ln p

t
p

h tr
p→∞

= M       (16) 

This gives an upper bound on the metric entropy, Equation (15), and also provides an 

estimate of the number of periodic orbits of period p, Np, since  

 
1

lim lnt p
p

h N
p→∞

=       (17) 

Thus, with an appropriate embedding and the use of the multidimensional binary 

representation mentioned in Chapter 3, topological entropy, metric entropy and the 

entropy rate may all be estimated on the symbolic dynamics of a time series. We 

should note here that there is still some disagreement over the definitions and 

meanings of these quantities for multidimensional embedded time series data. 

Nevertheless, they do provide a measure of information loss in the system. 

 

5.4. Symbolic dynamics and Conley index theory 

5.4.1. Introduction  

Symbolic dynamics play a central role in the description of the evolution of 

nonlinear systems. Yet there are few methods for determining symbolic dynamics of 

chaotic data. One difficulty is that the data contains random fluctuations  associated 

with the experimental process. Using data obtained from a  magnetoelastic ribbon 

experiment we show how a topological approach can be used to obtain a description 

of the dynamics in terms of subshift dynamics on a finite set of symbols. These 
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topological methods have been developed in a way that allows for experimental error 

and bounded noise. 

There has been considerable effort within the scientific community to develop 

methods to determine whether a given dynamical system is chaotic (see Ref. 30 and 

references therein). On the mathematical side three issues make rigorous analysis of 

chaotic dynamics difficult. The first is that one is dealing with global nonlinearities 

making it difficult to obtain the necessary analytic estimates. The second is that the 

individual solutions are inherently sensitive to the initial conditions. Finally, the 

objects of interest, namely invariant sets, can undergo dramatic changes in their 

structure due to local and global bifurcations. The problem is dramatically more 

complicated in the setting of experimental systems because of the introduction of 

noise, parameter drift, and experimental error. 

Topological techniques for the analysis of time series84, 85 have been 

introduced  which, at least on the theoretical level, can be used to overcome these 

difficulties. As was shown in Ref. 81, these techniques can be successfully applied in 

the context of an actual physical system, a magnetoelastic ribbon subject to a 

periodically oscillating magnetic field. The actual implementation is described in 

more detail below. For the moment we remark that our ideas are extensions of the 

numerical methods developed by Mischaikow, et. al.,84, 85 along with a 

reinterpretation of what is an appropriate embedding theorem36, 37, 66 to justify the use 

of time delay reconstructions. 
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At the basis of our approach are three assumptions. The first is that the 

dynamics of the physical system can be represented by a continuous map 

:f X X×Λ →  where X represents the phase space and Λ the experimentally relevant 

range of parameter space. The second is that we are trying to describe the dynamics 

of an attractor for f in X. The third involves the relationship between the physical 

phase space and the values observed by the experimentalist. In particular, we allow 

the experimental observation to be represented as a multivalued map 

[ ]: ,x xXθ α β→ ⊂ R  where x xα β−  may be thought of as an upper bound for the 

experimental error. However, we also assume that there is a continuous map 

: Xγ → R  such that ( ) ( )x xγ θ∈  for all x X∈ . One may view γ as representing the 

``true'' measurement of the system. We hasten to point out that we are only assuming 

the existence of such a γ, but never assume that it is known. We should also point out 

that if it is impossible to choose θ and γ as above, then for some points in the physical 

phase space arbitrarily small changes in the physical system must lead to arbitrarily 

large changes in measurements. 

To describe the output of our method it is necessary to  recall that a transition 

matrix A on k symbols is a k k×  matrix whose entries 
ija  take values of 0 or 1. Given 

A one can define a subset of the set of bi-infinite sequences on k symbols,   

{ } , 1{ | 1, 2,..., and 1}
n nA n n s ss s k a +Σ = ∈ =    (18) 

Let : A Aσ Σ → Σ  denote the shift dynamics 1( )n ns sσ += . If we choose the 

dimension of the reconstruction space to be d, then applying our method results in a 
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finite collection of regions Ni, 1,2,...,i k=  in Rd and a k k×  transition matrix A for 

which the following conclusion can be justified. Given any sequence { }nλ ⊂ Λ  and 

any element As ∈Σ  there exists an initial condition x X∈  such that   

( )( ) ( )( ) ( )( )1
1, , ... ,

n

n n n d

n n n d sf x f x f x Nθ λ θ λ θ λ+ +
+ +× × × ∩ ≠ ∅  (19) 

In other words, given any sequence of perturbations in the parameter settings, 

there exists an initial condition such that, up to experimental error, the reconstructed 

dynamics describes the observed physical dynamics. 

5.4.2. Experimental setup  

Data was gathered from the magnetoelastic ribbon experiment for the specific 

purpose of providing data which could prove the validity of this technique. A full 

description of this experiment is provided in Chapter Five, Section Three. The ribbon 

was operated in a regime that appeared to give fairly low-dimensional, possibly 

chaotic dynamics. Although environmental effects were minimized, the system was 

extremely sensitive, and thus a significant amount of error needed to be taken into 

account when doing the calculations. The data set consisted of 100,000 consecutive 

data points { }| 1,...100,000nv n =  taken from voltage readings on a photonic sensor, 

sampled at the drive frequency of 1.2 Hz. The voltage readings were measured up to 

10-3 volts, and corresponded to the position of the ribbon once per drive period. 

5.4.3. Implementation of our method  

In an attempt to provide a concise and coherent description of our method we 

will present it in the context of our analysis of the above mentioned ribbon data. For 
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an abstract mathematical description of the method the reader is referred to 81. We 

selected 30,000 data { }| 30,001,...60,000nv n =  from our data set. We chose a 

reconstruction dimension of 2 producing the reconstruction plot of  

( ){ } 2
1: ,n n nU u v v += = ⊂ R , as indicated in Figure 22. 

 

Figure 22 Time delay plot of un=( vn, vn+1),  n=30,001,..., 60,000, where vn is the nth voltage. 

 

In order to produce nontrivial topology for our reconstructed system we 

divided R2 into a grid of squares with each side of length 0.0106 volts. Let G denote 

the set of squares which contain a point nu U∈ . Let 2
Y ⊂ R  denote the region 

determined by this collection of squares Figure 23. 
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Figure 23 Squares with edges of length 0.0106 volts that contain points nu U∈  of the time delay 

reconstruction. 

 

The next step is to define a dynamical system on Y. This dynamical system is 

supposed to capture the observable dynamics of the experimental system. Since we 

know that the physical system is subject to noise and experimental error the derived 

dynamical system must be very coarse. With this in mind we shall not try to describe 

the dynamics on any scale smaller than that of the squares in G and our dynamical 
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system will take the form of a multivalued map F which takes squares to sets of 

squares. 

To be more precise, let  G ∈ G  and let { }1,2,...
iau i I U= ⊂  be the set of 

points which lie in G. From the time series we know that 

( ) ( )1 1 2 1, | ,
i i i i i ia a a a a au v v v v u+ + + += → = . Let '

iG ∈ G  such that '
1ia iu G+ ∈ . Then up to first 

approximation we will require that ( )'
iG G∈ F . Unfortunately, this definition is not 

sufficient. One reason is that there may be very few samples in the grid square G, so 

that ' ' '
1 2, ,..., IG G G , are isolated squares far apart from each other. We would like 

( )GF  to be a connected set and to capture all possible images of points of G, not just 

ones for which we have samples from the time series. Therefore, we include all grid 

squares contained in the smallest rectangle enclosing ' ' '
1 2, ,..., IG G G  in ( )GF . 

However, sometimes this is still not enough. This is because the images of four 

squares meeting at one point may not intersect which prevents the map F from having 

a continuous selector. We deal with this problem in the following way. For each grid 

point we look at images of four grid squares which meet at that point. If they do not 

intersect, we increase each image by the set of all squares which intersect the set 

representing it. We iterate this process until there are no empty intersections. Finally, 

since we want F act on G, we intersect each image of a grid square with G. 

By means of this procedure we have constructed a multivalued map F which 

we believe provides outer limits on the observable dynamics of the experimental 
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system. Trajectories in this dynamical system consist of sequences of squares of the 

form ( ){ }1i i iG G G+∈ ∈G F . 

We must now face the issue of what dynamics is represented by F. To do this 

we must make several slight theoretical digressions. Entirely ignoring the question of 

the magnetoelastic ribbon for the moment, let : n n
g →R R  be an arbitrary continuous 

map. Recall that  n
S ⊂ R  is an invariant set of g if for every x S∈  there exists a bi-

infinite sequence { }i n
x S

∞

=−∞
⊂ such that x=x0 and xi+1=g(xi). While invariant sets are 

the object of interest in dynamical systems, they can be extremely difficult to study 

directly since they may change their properties dramatically through various local or 

global bifurcations. For this reason we shall make use of the following notion. A 

closed bounded set n
N ⊂ R  is an isolating neighborhood if the maximal invariant set 

in N does not intersect the boundary of N. It is easily shown that if N is an isolating 

neighborhood for the dynamical system generated by g, then it is an isolating 

neighborhood for sufficiently small perturbations of g. 

Returning to the magnetoelastic ribbon we look for isolating neighborhoods in 

Y under the multivalued dynamical system F. We begin by choosing 0C ⊂ G . There 

are a variety of criteria that can be used in choosing 0C , the important point is that it 

must be a strict subset of G. We now begin the following procedure. Define  

-1
1 0 0 0( ) ( )C C C C= ∩ ∩F F   where { }-1

0 0( ) ( )C G G C= ∈ ∩ ≠ ∅F G F . Now delete a 

component of C1 which touches the boundary of C0 relative to Y. This two step 
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procedure is repeated until Cn+1=Cn. The resulting set  Cn is an isolating neighborhood 

for F (see Figure 24). Observe that Cn consists of 4 disjoint sets labelled Ni, i=1,2,… 

 

Figure 24 The four shaded regions labelled N1,...N4 make up the set Cn. The darkly shaded 

regions on the boundary of the Ni are L. 

 

Returning to the theoretical level we need to resolve the following issue. We 

can compute isolating neighborhoods, but it is the structure of the corresponding 

isolating invariant set that we are interested in. To pass from isolating neighborhoods 

to the structure of the invariant set we will use the Conley index.
86
 We only need the 

following small portion of the theory for our purposes. Given an isolating 

neighborhood N of g, a pair of closed bounded sets (K,L) with L K N⊂ ⊂  is an index 

pair if the following conditions are satisfied: 

•  x K∈   and ( )g x N∈ , then ( )g x K∈   
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•  x L∈   and ( )g x N∈ , then ( )g x L∈   

•  x K∈   and ( )g x N∉ , then x L∈   

•  the maximal invariant set in N is a subset of the interior of K\L. 

The importance of an index pair is that the homology groups H*(K,L) and a 

homology map * * *: ( , ) ( , )g H K L H K L→%  induced by g are invariants of the maximal 

invariant set contained in N. If under a change in the dynamics N remains an isolating 

neighborhood then the homology group and map does not change. 

Returning to the multivalued dynamics of F, we produce an index pair as 

follows. Let L consist of the elements of ( )nCF  which touch the boundary of nC  

relative to Y. Let nK C L= ∩ . Then, (K,L) is an index pair for F. Figure 24 indicates 

the resulting index pair. 

We now compute H*(K,L) using Z2 coefficients and determine that it is a four 

dimensional vector space and the corresponding map on homology is the matrix  

0 0 0 1

0 1 1 0

1 0 0 0

0 1 1 0

A

 
 
 =
 
 
 

      (20) 

At this point we can describe the essential difference between this 

development and that based on the embedding theorems mentioned earlier. The 

embedding theorems assume that the points U ⊂ R
2 actually represent elements of 

trajectories of a fixed smooth map on a subset of R2 and that the dynamics of this 

map can now be embedded into the dynamics of the physical system. We make no 
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such assumption. Instead we use the existence of the continuous map : Xγ → R  to 

lift the algebraic topological quantities associated with A to X. This allows one to 

conclude that A represents a transition matrix for a symbolic coding of the dynamics 

in the physical phase space. 

At the risk of being redundant this implies that given any small random 

environmental effects on the experiment and any sequence Ab ∈Σ , there exists an 

initial condition for the physical system such that using our observational method the 

trajectory will, up to experimental error, pass through the regions labeled Ni, i=1,..4 in 

the manner indicated by b. For example the sequence ...4132224134132413... lies in 

AΣ  and hence there exists an initial condition for the ribbon such that our 

observations would indicate that up to experimental error its reconstructed trajectory 

lies in the following sequence of regions   

4 1 3 2 2 2 4 1 3 4...N N N N N N N N N N→ → → → → → → → →  (21) 

5.4.4. Conclusion  

Our method provides an explicit description in terms of symbolic dynamics of 

the chaotic behavior of the magnetoelastic ribbon. This is a much finer description of 

the dynamics than is usually presented from experimental data. For example, given A 

it is easy to conclude that the topological entropy for the ribbon must be greater than 

ln 1.4656. 

Two other methods that are commonly used to analyze chaotic data involve 

the approximation of Lyapunov exponents or the determination of a fractal 
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dimension. Both the determination of the Conley index and of Lyapunov spectra 

require some similar assumptions: 

•  The data provided is a reasonable approximation to what one would obtain if 

measurements could be performed for an infinite amount of time; 

•  Phase space reconstruction provides a good approximation to the underlying 

dynamics; 

•  The underlying system is governed by a deterministic set of equations.  

For the computation of Lyapunov spectra one must assume that the 

reconstruction has been done in a sufficiently high dimensional space. In our setting 

this is no longer an assumption. In particular, whenever one computes nontrivial 

algebraic topological quantities the resulting conclusions about the dynamics are 

correct. Of course, if one chooses a dimension that is too low, then the resulting 

multivalued map will either not contain any nontrivial isolating neighborhoods or the 

corresponding algebra will be trivial. It is easy to construct examples where the 

embedding fails but the algebra is still nontrivial. 

An even more fundamental difference is that the Lyapunov exponent is a 

global quantity that is highly dependent on noise and very sensitive to perturbations. 

What's more a lot of questions about Lyapunov exponents are unanswered. How 

much noise and parameter drift can there be before any estimate of the exponents 

becomes meaningless? The Lyapunov exponent is limited in what it can tell us about 

the dynamics. In its traditional form, it is a global quantity that tells nothing about 

what sort of changes occur in the local dynamics. Also it does not provide us with 
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significant information for use in a symbolic dynamics. This sort of description which 

we provide may be useful in applications such as control theory. 

On a more concrete level we performed Lyapunov exponent calculations and 

embedding dimension calculations on this data set. The dominant Lyapunov exponent 

seemed to be roughly 0.48. However, under reasonable parameter regimes, the 

computed Lyapunov exponent ranged between 0.45 and 0.99. This indicates that 

computation of the Lyapunov exponent is extremely parameter dependent. 

The same problems exist with a determination of fractal dimension. The 

dimension tells us little about the underlying dynamics. In addition, a reasonable 

estimate of dimension is very difficult to compute from experimental data. In theory, 

because it is a limit that is reached only with infinite data, the fractal dimension is not 

a computable object. 

Measurement of the embedding dimension also yielded somewhat 

questionable results. This algorithm identifies the percentage of false nearest 

neighbors for a given embedding dimension. Although we found that an embedding 

dimension of three should be sufficient, the minimum embedding dimension differed 

greatly depending on our criteria for identification of a false nearest neighbor. In 

some analyses, it seemed an embedding dimension of 5 was necessary to decrease the 

percentage of false nearest neighbors to less than 5%. As noted before, the symbolic 

dynamics approach implemented here does not have these problems. 
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Figure 25  Time delay plot of un=( vn, vn+1),  n=70,001,..., 100,000, where vn is the nth voltage. 

 

 

Figure 26 The four shaded regions labelled N1,...N4 make up the set Cn. The darkly shaded 

regions on the boundary of the Ni are L. 

 

This approach appears to provide robust repeatable conclusions. We repeated 

the above mentioned proceedure using the points { }| 70001,...100000nv n = . As one 
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can see from Figure 25 there are observable differences in this collection of data 

points. After applying our procedure we obtain the index pairs indicated in Figure 26 

which are also slightly different. However, on the level of the algebra and hence the 

symbolic dynamics we obtained the same transition matrix  given in Equation (20). 

In conclusion, we have proposed a theoretically justified and experimentally 

validated method which takes time series data as an input and produces the output of 

a transition matrix and its associated regions in reconstruction space which may be 

used to rigorously verify chaos, analyze and identify invariant sets, and determine 

properties of the global dynamics above the noise level. The power in this method is 

that the noise has been taken into account before any analysis is done. All analysis is 

on a scale where the results of the analysis are robust with respect to noise. Where 

commonly used, quantitative measures of chaos (such as Lyapunov exponent 

estimates) may fail because of sensitivity in the analysis. In contrast verification of 

chaos from analysis of the transition matrix is robust. 

 
 

6. Computation of the mutual information function from 

multidimensional time series.  

6.1. Introduction 

This work builds on the method of computing mutual information that was 

suggested by Fraser and Swinney.42 In that work, they suggested a method of 

estimating the mutual information between two one-dimensional time series. The 

mutual information of two random variables, X ∈ Χ  and Y ∈Ψ , is given by  
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( , )

( ; ) ( , ) log
( ) ( )x y

p x y
I X Y p x y

p x p y∈Χ ∈Ψ

=∑∑    (22) 

where the convention 0 log 0 0=  is used. The logarithm is typically taken to 

base 2 so that the mutual information is given in units of bits. This provides a 

measure of the amount of information that a measurement of X contains regarding the 

measurement of Y, and vice-versa. For instance, if X and Y are completely 

independent, then I(X;Y)=0. On the other hand, if X and Y have equal probability 

mass functions, ( ) ( )p x p y= , then the mutual information function assumes its 

maximum value, 

 ( ; ) ( ) log ( )
x

I X X p x p x
∈Χ

= −∑      (23) 

which is the Shannon entropy of X. This definition has a straightforward 

extension to the case of continuous random variables, with probability densities f(x) 

and f(y), 

 
( , )

( ; ) ( , ) log
( ) ( )

f x y
I X Y f x y dx dy

f x f y
= ∫    (24) 

Computation of the mutual information function from a time series of finite 

length where the full range of dynamics are not known becomes a challenging 

problem. In Ref. 42, 67 and 80, Fraser and Swinney gave a powerful method of 

estimating the mutual information of two time series, and examined some of its uses 

in phase space reconstruction. In particular, they conjectured on how it might be 

extended to a computation of the mutual information, In, common to n time series.  

“In is the number of bits that are redundant in a vector measurement 

(I1 is the old mutual information). The redundancy occurs because 
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knowledge of some components of a vector measurement can be used to 

predict something about the other components. In an algorithm that 

calculated In, elements would be subdivided into 2
n+1 parts at each 

level instead of just 4 and the statistical test would be altered, 

but otherwise the algorithm could be the same as the present 

version. If the vector were a time-delay reconstruction, plots of 

In(T)… could be used to choose delays for higher-dimensional 

reconstructions. If n were large enough (larger than the number of 

degrees of freedom), In should be a monotonically decreasing function 

of T, and the slope of In/n should give an estimate of the metric 

entropy.”
42

 

 

This work picks up where they left off. In the following section, we describe 

an efficient method of computing In.  

 

6.2. Method 

The data is described as a series of vectors 1 2, ,..., NX X X  where each vector is 

n dimensional, 1 2( , ,... )n

i i i iX X X X= , and the number of vectors, N, is a power of two. 

The vectors are assumed to be sampled uniformly in time. That is, at each time 

interval ∆t, a new vector is sampled, and ∆t is a constant. Alternately, the data may be 

described as n time series data sets, 1 2, ,..., nX X X , where each data set consists of N, 

data points, 1 2( , ,... )i i i

i NX X X X= . Both notations are used depending on the situation. 

For the sake of simplicity, we use a slightly different notation for the generalized 

mutual information than was suggested by Fraser and Swinney. The generalized 

mutual information is defined as  

1 2
1 2 1 2

1 2

( , ,... )
( , ,... ) ( , ,... ) log

( ) ( )... ( )
n

n n n

n

p x x x
I I X X X p x x x

p x p x p x
= =∑  (25) 
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For the case of time series data this may be written as  

1 1 2 2

1 2
1 2 1 2

1 2

( , ,... )
( , ,..., ) ... ( , ,... ) log

( ) ( )... ( )
n n

n
n n n

nx X x X x X

p x x x
I I X X X p x x x

p x p x p x∈ ∈ ∈

= = ∑ ∑ ∑ (26) 

so that I2 is the mutual information as typically defined.  One important issue is 

determining the range of possible values for a point j

i jX X∈ , and the associated 

probability mass function. That is, if the mutual information is defined for alphabets 

Χ  and Ψ , with associated probability mass functions ( ) Pr{ },p x X x x= = ∈ Χ  and 

( ) Pr{ },p y Y y y= = ∈Ψ , then Χ  and Ψ  need to be chosen.  It is somewhat of an 

arbitrary choice, since the data set is confined to at most N distinct values, yet the full 

range of values may be infinite. The algorithm involves gridding the n dimensional 

space into n dimensional hypercubes and treating each occupied hypercube as an 

allowable symbol. Thus the resulting value of mutual information depends on our 

gridding choice. However, mutual information is most useful in relative comparisons. 

The criteria used for our gridding choice are the consistency and reliability of results, 

as well as the efficiency of computation. Therefore we follow Fraser and Swinney’s 

suggestion of gridding each dimension into equiprobable partitions. This allows us to 

use the uniform KTree described in Chapter Three, Section 7. It has the added benefit 

that 1 2( ) ( )... ( )np x p x p x= = . 

The generalized mutual information is computed through a traversal of the 

tree. The levels of the tree define successive partitions of the n-dimensional space, 

0 1 1, ,... KG G G − . For a given level of the tree Gm, the space is partitioned into 2mj 
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hypercubes, (0), (1),... (2 1)n

m m mR R R m −  such that the hypercube Rm(j) may be 

partitioned into 1 1(2 ), (2 1),... (2 2 1)n n n n

m m mR j R j R j+ + + + − . Each hypercube has an 

associated probability P(Rm(j)), which is simply the number of vectors in that 

hypercube divided by the total number of vectors, Nm(j) /N. Thus the n-dimensional 

mutual information may be estimated for any level m of the tree. 

 
2 1

0 1 2

( ( ))
( ( )) log

( ( )) ( ( ))... ( ( ))

nm

m
m m

j m m n m

P R j
i P R j

P R j P R j P R j

−

=

= ∑  (27) 

where Pi(Rm(j)) is the probability of finding the ith coordinate of a vector to 

reside in the same partition along the  ith direction as Rm(j). Due to the equiprobable 

nature of the partitions, 1( ( ))
2mi mP R j =  for all i and j. Hence   

 
2 1

0

( ( )) log ( ( ))

nm

m m m

j

i mn P R j P R j
−

=

= +∑     (28) 

Note that the contribution to im of Rm(j) is 

( ( )) ( ( )) log ( ( ))m m mmnP R j P R j P R j+  and the contribution to im+1 of Rm(j) is 

2 ( 1) 1

1 1

2

( 1) ( ( )) ( ( )) log ( ( ))

n

n

j

m m m

k j

m nP R j P R k P R k
+ −

+ +
=

+ + ∑  . So in going from im to im+1 a 

( ( ))mnP R j  is added and the ( ( )) log ( ( ))m mP R j P R j  term is replaced by 

2 ( 1) 1

1 1

2

( ( )) log ( ( ))

n

n

j

m m

k j

P R k P R k
+ −

+ +
=
∑ . If the m

th level has no substructure, then 

1( (2 ))n

mP R j+ =  1( (2 1)) ...n

mP R j+ + =  1( (2 ( 1) 1)n

mP R j+ + − . So the contribution to 

im+1 of Rm(j) is the same as  the contribution to im of Rm(j). So, 1 0( (0))nI F R=  where, 
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1( ( )) ( ( )) log ( ( ))m m mF R j P R j P R j= , if no substructure   (29) 

2 ( 1) 1

1 1

2

( ( )) ( ( )) ( ( ))

n

n

j

m m m

k j

F R j nP R j F R k
+ −

+
=

= + ∑ , if there is substructure.(30) 

Fraser and Swinney suggest a χ-squared test for substructure. However, this is 

a source of error and is unnecessary. Instead, we choose to stop the calculation when 

no further subdivision of Rm(j) is possible, and hence we are guaranteed no 

substructure.. This is the case if ( ( )) 2mN R j ≤ , since 2 points will always be 

partitioned into 2 different cubes and one point can not be partitioned further. So, 

0( (0))
logn

F R
I N

N
= −  where, 

 ( ( )) 0mF R j = , if ( ( )) 2mN R j <     (31) 

 ( ( )) 2mF R j = , if ( ( )) 2mN R j =     (32) 

 
2 ( 1) 1

1

2

( ( )) ( ( )) ( ( ))

n

n

j

m m m

k j

F R j nN R j F R k
+ −

+
=

= + ∑ if ( ( )) 2mN R j > (33) 

Each node ( )mR j  in the tree contains ( ( ))mN R j  and pointers to 

1 1(2 ), (2 1),... (2 2 1)n n n n

m m mR j R j R j+ + + + − . The tree is traversed from left to right 

using equations (31)-(33) to keep a running sum of the mutual information. The 

minimum value of the generalized mutual information occurs when  1 2, ,..., nX X X  

are completely independent. In which case, 1 2 1 2( , ,... ) ( ) ( )... ( )n np x x x p x p x p x=  and 

0nI = . The maximum value of the mutual information occurs when  

1 2 ... nX X X= = . In which case 1 2 1 2( , ,... ) ( ) ( )... ( )n np x x x p x p x p x=  and  
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( 1)

( 1)

1 1 1 1 1

2 1

0

2 1

0

( , ,... ) ( 1) ( ) log ( )

( 1) ( ( )) log ( ( ))

( 1) ( ( ))( 1) ( 1)( 1)

n K

n K

n

K K

j

K

j

I X X X n p x p x

n P R j P R j

n P R j K n K

−

−

−

=

−

=

= − −

= − −

= − − = − −

∑

∑

∑

 (34) 

 

6.3. Implementation 

The following functions are used by the Mutual Information routine. 

struct MutualNode *BuildMutualTree(struct MutualNode *p,int 

**i_array,int NumberPts,int NumberDim,int  

NumberCubes,int MaxLevel,int Value,int Level,int *Cut); 

void TraverseMutualTree(struct MutualNode *p,int NumberDim,int 

NumberCubes,double *F); 

void FreeMutualTree(struct MutualNode *p,int NumberCubes); 

double MutualInformation (int **i_array,int NumberPts,int 

NumberDim); 

 

and the following functions are used to sort a matrix for use by the Mutual 

Information routine. 

 

int InverseSortVector(double *array,int NumberPoints,int 

*arraysort,int *arrayinversesort); 

int InverseSortMatrix(double **array,int NumberPoints,int 

NumberDim,int **arraysort,int **arrayinversesort); 

int InverseCompare(const void *vp,const void *vq); 

 

 

6.4. Multichannel mutual information of simulated systems 

6.4.1. Lorenz attractor 

 

The Lorenz system
25

 is a simple model of Rayleigh-Benard instability. The Lorenz 

equations are given by:  
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( )x y x

y r x y x z

z x y b z

σ= −
= ⋅ − − ⋅
= ⋅ − ⋅

&

&

&

 

where σ=10, b=8/3, and r=28. Figure 27 demonstrates the effect of scaling on the 

data. Dense regions in the data are spread out, while sparse regions are compacted. 

Although absolute distances are not preserved, relative distances are, thus making 

computation of the mutual information possible. 
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Figure 27. The Lorenz attractor before and after sorting. a) is y vs x from the original data, b) y 

vs x from the transformed data, c) z vs y from the original data, d) z vs y from the transformed 

data, e) x vs z from the original data, and f) is x vs z from the transformed data. Each plot 

contains 217 points with a time step of 0.002. 
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Figure 28 depicts mutual information as a function of time step for several data sets 

from the Lorenz system. This illustrates how mutual information can be used to 

determine whether enough data has been collected in order to map out the structure of 

the system. A sufficiently large time step implies that the proximity in space of 

nearby points in time won’t distort the measurements of information. Similarly, a 

sufficiently large data set succeeds in minimizing the error, as can be seen by the 

considerably larger error in measurements from the smaller data set in Figure 28.  

 

Figure 28. Mutual information as a function of time step for several data sets from the Lorenz 

system, the dashed-dotted line represents 218 data points of the 3 dimensional data (x, y, and z 

coordinates), the dotted line represents 213 data points of the 3 dimensional data, the dashed line 

represents 218 data points of the x and y coordinates and the filled line represents 213 data points 

of the x and y coordinates. The y-axis of the graph is on a log scale in order to accentuate the 

structure of each plot. 
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Figure 29 depicts mutual information as a function of delay for the Lorenz system. 

The first minimum of the mutual information function is easily identified from two 

dimensional embeddings, but less easily identified using a three dimensional 

embedding. This is because the information provided by the third coordinate is 

sufficient to guarantee that a large amount of information is always shared between 

the coordinates. 

 

Figure 29. Mutual information as a function of delay for 217 points from the Lorenz  system. The 

sampling rate is 0.002 and the delay is given in terms of the time step. The y-axis is on a log scale 

in order to help distinguish the plots. The top straight line is from a 3D embedding of the x data, 

the top dotted line from a 3D embedding of the y data, the top dashed line from a 3D embedding 

of the z data, the bottom straight line from a 2D embedding of the x data, the bottom dotted line 

from a 2D embedding of the y data, and the bottom dashed line is from a 2D embedding of the z 

data. 
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6.4.2. Rossler chaos 

The second system is the Rossler equations.
87

 

0.15

0.2 ( 10)

x z y

y x y

z z x

= − −
= + ⋅
= + −

&

&

&

 

The effects of scaling are depicted in Figure 30. Here the distortion is dramatic when 

compared with the results from the Lorenz system (Figure 27). This is because there 

is a very strong correlation between the y and z coordinates, as well as between the x 

and z coordinates. Scaling the data removes much of this correlation so that mutual 

information can be measured effectively. 
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Figure 30. The Rossler attractor before and after sorting. a) is y vs x from the original data, b) y 

vs x from the transformed data, c) z vs y from the original data, d)z vs y from the transformed 

data, e) x vs z from the original data, and f) is x vs z from the transformed data. Each plot 

contains 217 points with a time step of 0.002. 
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Figure 31 depicts mutual information as a function of time step for several data sets 

from the Rossler system. Compared with the Lorenz system, time step and data set 

size have a far greater effect on error for the Rossler system. This is because the 

Rossler system has regions that are very rarely visited, so that small differences in 

data sets may greatly effect how that region’s density is measured. This is less of a 

problem for the Lorenz system where a relatively small portion of the attractor can 

give a good estimate of the overall distribution 

 

Figure 31. Mutual information as a function of time step for several data sets from the Rossler 

system, the dashed-dotted line represents 218 data points of the 3 dimensional data (x, y, and z 

coordinates), the dotted line represents 213 data points of the 3 dimensional data, the dashed line 

represents 218 data points of the x and y coordinates and the filled line represents 213 data points 

of the x and y coordinates. The y-axis of the graph is on a log scale in order to accentuate the 

structure of each plot. 
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Figure 32 depicts mutual information as a function of delay for the Rossler system. 

This is similar to a plot in Fraser, et. al.,42 Like the Lorenz system, minima are less 

easily identified for three dimensional embeddings. One implication of this is that the 

delay time is less important for high dimensional embeddings. 

 

Figure 32. Mutual information as a function of delay for 217 data points from the Rossler system 

the sampling rate is 0.01 and the delay is given in terms of the time step. The y-axis of the graph 

is on a log scale in order to help distinguish the plots. The top straight line is from a 3D 

embedding of the x data, the top dotted line is from a 3D embedding of the y data, the top dashed 

line is from a 3D embedding of the z data, the bottom straight line is from a 2D embedding of the 

x data, the bottom dotted line is from a 2D embedding of the y data, and the bottom dashed line 

is from a 2D embedding of the z data. 
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CHAPTER FIVE 

RESULTS OF ANALYSIS ON VARIOUS DATA 

 

1. Introduction 

 

Time series analysis of high dimensional experimental data is a difficult task. 

Many methods of analysis fail when performed on data for which there is little a 

priori knowledge of the underlying dynamics. The true test of the viability of an 

analysis method is how well it performs on experimental data. In this chapter, we 

look at the success of analysis methods used on both simulated data (from well-

known systems and from unexplored complex models) and from experimental data. 

Specifically, the data was examined for evidence of chaotic and fractal dynamics. 

Extracting fractal dimension and Lyapunov spectra from noisy data is known to be 

problematic, so the results were interpreted with skepticism and validity criteria was 

established for the results.  

 

2. The Pulse Thermal Combustor 

2.1. Introduction 

From the theoretical work by G. A. Richards et al.,
89
 it was shown that the 

thermal pulse combustor can have a number of advanced fossil energy applications.  

The pulse combustor engine had its start in the 1940’s when Germany used them to 

propel the V-1 rockets.  Some of its descendants are still used today in rockets and 
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weapon propulsion systems. Certain heating systems use this engine as the main 

burner since it produces more efficient burning than the standard burner.  Some 

power generating stations also use similar engines for the boilers. 

Recent work on this combustor has shown that the engine has complex 

dynamics ranging from steady combustion to regular pulsating combustion to 

irregular pulsating combustion to flame-out or extinction.  Daw et al. have shown 

extensively (in both the model and the experimental system) that the thermal pulse 

combustor can produce chaotic dynamics.
88, 90 Previously this was neglected due to the 

lack of recognition of chaos as a separate state and the lack of tools to help identify it.  

With the existence of chaos also comes the possibilities of other behaviors that are 

catastrophic and undesirable such as the flaming out or quitting of the engine.   

In the chaotic system it is often found that the chaotic attractor suddenly 

ceases to exist when a parameter has changed beyond a critical point. The system 

catastrophically falls into a new attractor with less desirable properties.  Once the 

system is in this new attractor, even changing the parameter back to a region where 

chaos previously occurred can not reverse the sequence of events.  This sudden 

destruction of the chaotic attractor in favor of a steady-state or periodic motion is 

called a boundary crisis.  As a system parameter p is changed monotonically toward a 

critical parameter pc, the basin of attraction of the undesirable orbit approaches the 

basin of attraction of the chaotic attractor.  For p = pc, the two basins touch, making 

pathways for the orbit to exit the chaotic attractor.  For p > pc, the chaotic attractor is 

replaced by a chaotic transient.  For initial conditions that place the system in a region 
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of phase space within the basin of the chaotic attractor, the system will pull in and 

evolve into what seems like the chaotic attractor.  After some time the system exits 

this chaotic transient and moves to the other attractor.   

In the thermal pulse combustor, lowering the fuel/air ratio parameter will 

cause the engine to pulse chaotically.  Reducing the parameter further will cause the 

engine to suddenly flame-out.  If one were to increase the parameter to where the 

engine was pulsing before, the engine would not reignite.  But the parameter close to 

where the system makes the transition to flame-out has desirable characteristics if one 

can keep it running at that point.  First, the engine is running very lean because the 

fuel to air ratio is lower than when it pulsed regularly.  By running the engine lean 

one can save fuel, lower atmospheric emissions (due to less unburned fuel), and 

increase efficiency because of the large amplitude variation in the pressure inside the 

combusting chamber.  This large pressure variation also increases the heat transfer 

rate because the wall temperature of the combustion chamber increases dramatically. 

 

2.2. Theory  

 The thermal pulse combustor considered here has been described previously 

by Richards et al.,89 In et al.91 and Daw et al.90  The thermal pulse combustor 

consists of no moving parts.  The two main components of the combustor are the 

combustion chamber and the acoustic resonator (tailpipe).  The experimental 

combustion chamber has an interior diameter of 5.1 cm and internal volume of 295 

cm3.  The tailpipe, which acts as an acoustic resonator, has an internal diameter of 2.0 
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cm and a variable length of 30.5 to 91.5 cm.  By varying the length of the tailpipe, the 

dominant acoustic frequency can be adjusted, thus tuning how the combustion 

process and the acoustic resonator interact. 

Gas propane fuel and air are injected via two opposing jets into the 

combustion chamber from its sides at the opposite end from the tailpipe as shown in 

Figure 33 and Figure 34. Inside the combustion chamber the jets are deflected to swirl 

the gases and to enhance mixing.  The mixture is injected at a high pressure to ensure 

a choked flow, resulting in a constant mass flow into the combustion chamber even 

during the large pressure changes present in the pulsating mode.  Choked flow is used 

to maintain constant air and fuel flow rates.  The mass flow rate and equivalence ratio 

are controlled by varying either the supply pressures or the diameters of the choke 

orifices.  A spark plug is used initially to ignite the mixture;  however, once the 

combustor has warmed-up, the heat from the combustor wall and the recompression 

effect of the reversed flow from the tailpipe after the exhaust phase causes the 

mixture to auto-ignite, thus making the spark plug unnecessary. 

The combustion chamber wall is maintained at a constant temperature with a 

convection constant h.  After combustion is completed, the hot gas accelerates 

through the tailpipe and is exhausted into the surroundings.  What makes the thermal 

pulse combustor unique is that unlike conventional pulse combustors, it uses neither 

mechanical nor aerodynamical valves to regulate the inlet fuel and air.  The mixture 

flows at constant rate into the chamber.  A conventional pulse combustor regulates its 

inlet fuel and air flows based upon the pressure inside the combustion chamber. 
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Figure 33 Geometry of the model thermal pulse combustor.   

 

 

 

Figure 34 Geometry of the model thermal pulse combustor.  The combustion product is moved 

into the tailpipe.   
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2.3. Model 

The thermal pulse combustor model was based on the assumptions that the gas 

in the combustion zone is perfectly stirred, the combustion process is controlled by a 

single-step, bimolecular reaction for air and propane, combustion gases behave as 

ideal gases with constant specific heats (Cv and Cp), kinetic energy of gas is 

negligible compared to the internal energy in the combustion zone; and flow in the 

tailpipe has properties equivalent to those prevailing at its entrance.  These 

assumptions and conservation equations for momentum, mass, and energy lead to 

four normalized ordinary differential equations:  
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T%  is the combustion zone temperature normalized to the ambient temperature, 

P%  is the combustion zone pressure normalized to the ambient pressure, fY  is the 

mass of fuel per total mass inside the combustion zone (mass fraction), and eU%  is the 

tailpipe velocity normalized with the cold flow tailpipe velocity.  The variable fτ  is 

the characteristic flow time or the combustion residence time for the combustion 
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chamber and HTτ  is the characteristic heat transfer time.  The cτ  is the characteristic 

combustion time, and it is the only time constant that is dependent on the state space 

variables.  It is defined as   
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The other variables are standard, as defined in Table 3. 

     Nomenclature        Description       Initial Value   

γ Ratio of spcific heats 1.27
τ f Flow time 0.026670 s
τ HT Heat transfer time 0.040110 s
τ c Combustion time calculate in process
ρo Ambient density 1.12 kg/m3

To Ambient temperature 300.0 K
Tw Combustor wall temperature 1200.0 K
Yf, i Inlet fuel mass fraction 0.06
Cp Specific heat for constant pressure 1200.0 J/kg-K
∆Η Heat of reaction 4.6x107 J/kg
Lc1 First characteristic length 0.0119 m
Lc2 Second characteristic length 0.8486 m
f Friction factor along tailpipe 0.03
h Heat transfer coefficient 120.0 W/m2-K

DTP Diameter of the tailpipe 0.0178 m
LTP Length of tailpipe 0.6100 m
V Combustion volume 0.0001985 m3

Ck Specific heat at constant temperature 3.385x108

TA CT Dimensionless activation temperature 50.0
Po Ambient pressure 1.01325x105 Pa
A′ Kinetic constant for fuel reaction rate 3.85x108 s-1

π Usual π value 3.141592
τm Maximum resident time for mixture in

combustor chamber
0.0000 s

˜ P e
Pressure at tailpipe entrance dimensionless

˜ T e
Temperature at tailpipe entrance dimensionless

 
Table 3 Listing of the variables used in the model and initial values used in the numerical 

simulation. The subscript zero indicates the ambient condition and the subscript e indicates the 

condition at the tailpipe entrance. 



 

 131

The initial conditions corresponded to filling the combustion chamber with the 

fuel and air mixture to one atmospheric pressure.  The initial high temperature of 5.0 

times the ambient temperature ignites the fuel/air mixture.  The combustion produces 

an immediate pressure rise and accelerates the hot gases toward the tailpipe.  When 

the amount of gas quickly leaving the combustion zone exceeds the amount 

remaining in the combustion zone, pressure begins to drop.  As a result of the hot 

gases moving rapidly down the tailpipe, it drops below the ambient pressure.  The 

combined effect of cooling and pressure drop quenches the combustion reaction.  The 

incoming fuel and air continues to mix in a relatively cool environment, along with 

the remaining combustion product in the chamber.  The gas flow in the tailpipe slows, 

stops and then reverses direction.  Recompression from the backflow and heat 

transfer from the combustion chamber wall combine to cause the temperature to rise 

as the fuel and air mixture builds up until reaching the critical point for combustion.  

At this point the combustion cycle starts once more. 
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Figure 35.  Time series of the four state variables.  The parameter fτ  was set at 0.02670. 

 

The differential equations, (1) - (4) were integrated using a 4th-order 

Runge-Kutta routine with a time step of 1.00x10-5 second.  The initial conditions for 

the simulation are listed in Table 2.  Figure 35 shows an example of the four state 

space variables during the pulsing mode, and Figure 36 shows the projection of the 

full phase space onto the temperature-pressure plane. Only the pressure variable was 

used since only the pressure can be measured during actual experimental runs.  From 
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the pressure time series a peak detection algorithm was used to pick off the maximum 

of each peak.  The peak values were used to construct a return map by plotting the 

current peak versus the previous peak.   
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Figure 36.  Projection of the time series in Figure 35 onto the temperature-pressure plane. 

 

Through the course of this numerical experiment, only the characteristic 

resident time for the fuel/air mixture in the combustion chamber, fτ , was varied.  

Since it is inversely proportional to the flow rate of the fuel/air mixture, lowering fτ  

means increasing the flow rate.  This parameter was used as the bifurcation parameter 

and as a perturbing parameter.  In addition, this choice also has a relevance to the 
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actual experiment because the flow rate is the parameter that will be used to 

manipulate system dynamics.   

As fτ  was decreased (the fuel/air flow increased), the thermal pulse 

combustor model showed a period doubling route to chaos.  Similar results were also 

obtained from previous work done on the model.
88, 92

 However their observable 

variable was temperature instead of pressure.  Decreasing fτ  led to a crisis with 

,f criticalτ  at about 0.026696, and the system eventually crossed the boundary of the 

basin of attraction toward a stable fixed-point (flame-out state) at a much lower 

temperature (Figure 37).  Once flame-out had occurred, reversing fτ  to a value much 

greater than ,f criticalτ would not make the system pulse again. 
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Figure 37.  Projection of the flow onto the temperature-pressure plane. fτ  was slightly below the 

critical value for flame-out.  The system evolved on a chaotic transient, then spiraled down 

toward the flame-out state. 

 

Note that the fuel mass fraction of the pulse combustor was fluctuating around 

some mean value for regular pulsing.  The fluctuations correspond to the combustion 

cycle and the rebuilding of the fuel/air concentration in the combustion chamber.  For 

fluctuation in the chaotic parameter, the fuel mass fraction was oscillating around a 

lower mean value, which indicates a higher percentage of the fuel burns during 

combustion.  Hence the combustion in the thermal pulse combustor is more efficient 

when it is operating in the chaotic mode.  Similar behavior has been observed in the 
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actual thermal pulse combustor.  Thus, the hope of the study is to extend the 

operating range of the combustor to lower fτ  values and yet to prevent it from 

achieving flame-out.  The method utilized here will be applicable to the actual 

thermal pulse combustor as well as other systems exhibiting similar behaviors. 

 

2.4. Data acquisition 

Dynamic pressure measurements were made using a piezoelectric pressure 

transducer (Kistler 206L).  After analog band-pass filtering, the transducer output is 

collected using a PC with a National Instruments A/D card (AT-MIO-16X).  The 

pressure tap is water-cooled to prevent overheating of the transducer.  Since the tap 

acts as a second acoustic resonator, an 8.5 m coil of 0.635 cm diameter tubing was 

attached to reduce the tap’s acoustic frequency sufficiently to prevent any significant 

perturbation of the combustion process. 

The data consisted of a time series of voltage measurements at a very high 

sampling rate (20 kHz) relative to the dominant frequency (approximately 200 Hz).  

Data sampling began after the combustor had presumably reached thermal 

equilibrium, in order to avoid the transients.  (However, see comments later in this 

section.)  All of the following analysis is on a data set of 220 data points, or portions 

thereof.  A small portion of this data set is depicted in Figure 38. 
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Figure 38.  A plot of 2500 points from the data set. 

 

2.5. Analysis of data 

2.5.1. Introduction 

Although the fluid dynamics of this engine and its operation is relatively 

simple, the dynamics of its motion are poorly understood.  Traditional signal 

processing methods may fail here because the system dynamics are, at best, 

complicated, and, at worst, extremely noisy.  Therefore it is our hope that analysis 

from a nonlinear dynamics perspective may yield more fruitful results. 

 

2.5.2. Power spectral density 

The starting point for most analysis of a given data set is to see what the 

frequency distribution might look like.  If the dynamics is simple, then we might see 

only a few sharp spectral lines with some low noise floor that tell most of the story 

about the system’s behavior.  Unfortunately it is not the case here.  The spectral 
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density for this data set is very broad (see Figure 39).  The power spectral density is 

taken on the full length of the data set of 1048576 (220) points using the Welch 

windowing with segment length of 8192 points.  The graph shows a peak at about 

80.56 Hertz, which corresponds to the main resonant frequency of the thermal pulse 

combustor.  The subsequent peaks are the harmonics. In order to say something more 

quantitative about the dynamics, we will rely on subsequent analyses. 

 

Figure 39.   The power spectrum of the entire data set. 

 
 
 

2.5.3. Nonstationarity 

An important question to ask concerning complicated experimental data is 

whether or not the parameters controlling the dynamics remain stable and stationary 

throughout the data.  Stability is guaranteed in a simulation, but in an experiment it is 

far from certain.  Hence the question becomes whether or not parameter drift is 

significant. 
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A few simple tests were performed that would identify strong drifts in the 

data.  The time series was divided into 128 pieces of equal length (8192 points each, 

covering about 80 cycles).  From this it was possible to compare statistics (mean, 

standard deviation, skewness, kurtosis) on each piece of the data set.  All of these 

results except the mean did not change significantly over time.  However, this is not 

definitive.  A nonlinear system could undergo a change in the dynamics that does not 

show up on any of these measurements.  However, as can be seen from Figure 40, the 

mean value undergoes a fluctuating trend that does not appear to be random.  This 

fluctuation is quite small in relation to the full extent of the data.  The system may be 

in a long-term transient stage, since the temperature of the chamber is steadily 

decreasing because the combustor is running near a flameout regime where the fuel-

to-air ratio is very low.  In this regime, there is less heat generated from the 

combustion process.  This causes a general decrease in the wall temperature that may 

not damp out in experimentally accessible times.  Accordingly the data used in this 

analysis is limited to a portion where there is very little change in temperature over 

time.  The fluctuation in the mean is small (~ 1%) and on the order of the noise in the 

system, so it was ignored.  
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Figure 40.  Nonstationary behavior of the data mean.  Successive values of the average of 

windows of length 8192 are computed throughout the entire data set of size 1,048,576. 

 

2.5.4. Delay coordinate embedding 

 The phase space was reconstructed by taking the time series 1 2, ,... NX X X  and 

creating D-dimensional vectors using a time delay τ: With a time series of unknown 

nature, suitable values of the delay and embedding dimension may be determined 

both through other analysis methods or by visual inspection.  A reasonable value for 

the delay may be suggested either by the first zero crossing of the autocorrelation 

function or by the first minimum of the mutual information function, as either value is 

plotted as a function of delay.   
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Figure 41.  Two techniques for estimating the delay to use in a delay coordinate embedding of the 

combustion data. The first method is to choose the first minimum of the mutual information 

function. The second, less sophisticated method uses the first zero crossing of the autocorrelation 

function. Both methods suggest a delay of approximately 31. 

 

However, for the combustion engine data, the mutual information function 

and the autocorrelation function were in perfect agreement.  As shown in Figure 41 

both values suggested a delay of 31.  This was in agreement with visual inspection 

since 2 and 3 dimensional plots revealed the most structure near this value of  delay 

(see Figure 42 and Figure 43).  Structure is clearly evident in these plots.  

Unfortunately, they also reveal a complexity or noise dependence that makes the fine 

scale structure very difficult to detect. 

Choice of embedding dimension is not as precise.  Theoretically, any number 

greater than 2D  is sufficient, where D is the box counting dimension of the object. .66  
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In practice however, one can often get away with a lot less than that.  If too high an 

embedding dimension is used, then analysis becomes much more difficult and time 

consuming.  

 

 

Figure 42.  A two dimensional plot of 8000 points from the data set, with a delay of 31. 
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Figure 43.  A three dimensional plot of 30000 points from the data set, with a delay of 31. 

 
 

The method of false nearest neighbors46  was chosen as the primary technique 

for determining the embedding dimension.  The results agreed with what was 

suggested for application with real world data.  As shown in Figure 44, the percentage 

of false neighbors dropped dramatically as the embedding dimension increases from 5 

to 6.  As will be shown later, this is in at least rough agreement with what was found 

to be a suitable embedding dimension for determination of Lyapunov exponents or 

fractal dimensions. 
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Figure 44 A plot of the results of the false nearest neighbors routine. An appropriate embedding 

dimension is found when the percentage of false near neighbors drops to a value near zero. This 

plot indicates that the embedding dimension should be at least 6. 

 

2.5.5. Fractal dimension 

The most common way to estimate the fractal dimension of a time series is 

using the Grassberger-Proccacia  algorithm43,93-95 to approximate the correlation 

dimension.  One determines the correlation function, C(ε), the probability that two 

arbitrary points on the orbit are closer together than a distance ε.  In the limit 

0, Nε → → ∞ , the value log
log

d C
d ε  converges on the correlation dimension.  

The correlation dimension is determined where a plateau is found in the slope 

of a plot of log(C(ε)) versus log(ε).  This method however, has several flaws.  One is 

often concerned with other definitions of dimension, such as the information 

dimension.  Although the correlation dimension and information dimension are 

similar and usually very close, this is the first of many approximations.  Estimates of 

correlation dimension using the Grassberger-Proccacia algorithm are highly 
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susceptible to noise and data set size.  Each of these diminishes the region of the 

plateau.  For higher dimensional data these problems are aggravated since minimal 

noise and exponentially more data are required to identify the plateau region.  In 

addition, data with a high sample rate may exhibit strong correlations that skew the 

estimates.  Having a large number of orbits compared to the sample rate may alleviate 

this problem.  The approximations due to noise, data set size, nonstationarity and so 

on are inherent in the data set.  But the Grassberger-Proccacia algorithm also uses an 

approximation to the definition of correlation dimension.  Additional approximations, 

such as the use of the slope, are inherent in almost every dimension estimation 

routine.  Finally, the Grassberger-Proccacia algorithm is essentially 2O( )N , where N 

is the number of points.  Computation on a large data set can take days, even with the 

use of powerful computers.  Comparing points against only a small sample of the 

data, k points, can speed it up O( )kN .  But this is still technically an N-squared 

algorithm, and this additional approximation further compounds the problems.  

Analysis was attempted on data sets of varying size and varying embedding 

dimension.  Due to the high dimensionality and nonstationarity of the data, they 

rarely showed a clearly defined plateau, nor did they show clear convergence with 

large embeddings.  This is not surprising, given the demands and limitations of the 

Grassberger-Proccacia algorithm.  At best they indicated a fractal dimension of 

4.28 0.2±  (Figure 45). Although this value agrees roughly with the choice of 

embedding dimension, more analysis was necessary to confirm the results.  It was 

important to eliminate several sources of error in the computation of dimension.  It 
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was also necessary to compute many dimensions, such as the box counting, 

information, and correlation dimensions directly.  Second, because of the strong 

dependence of dimension calculations on data set size, it was preferable that the entire 

data set be used in computation.  This last criterion required that the method used 

must be fast- an 2O( )N algorithm was out of the question. 

 

Figure 45 A measurement of correlation dimension from the last 262144 points in the data set. 

The correlation dimension is estimated from the slope of log2(C(εεεε))))))))    vs. log2(εεεε). The straight line 

plotted has slope 4.28. 

 

 

For these reasons, a newly devised method to estimate an arbitrary number of 

generalized dimensions in O( log )N N  time was used.  A method of finding 
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generalized entropies was described in Chapter 4. Once the generalized entropies 

have been determined, the generalized dimensions may be found by calculating the 

slope of a plot of - ( )qH ε  vs ln(ε). 

 

Figure 46. The first four generalized entropies. These correspond to generalized dimensions of 

(0) 3.41 0.4D = ± , (1) 4.02 0.25D = ± , (2) 4.49 0.25D = ± , (3) 4.44 0.3D = ± . Each of these was 

calculated using the entire data set embedded in 7 dimensions. 

 

 

Figure 46 presents the results of our calculations performed on combustion 

data.  Displayed are estimates of the first four generalized entropies for varying box 

size with an embedding dimension of 7.  Additional tests were also performed for the 

embedding dimensions 3-6, and for the next four generalized entropies.  The results 

indicated that, for , ( ) ( )p q D p D q> ≤ , which agrees with theory.  For large box size, 

the box counting dimension varies widely from the others.  This is not surprising, 
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since the box counting dimension is more susceptible to errors.  It is also a  poor 

quantity to use since it says nothing about the density of the attractor, only about its 

shape.  However, the box counting dimension and all the others converge in the mid-

region, before diverging slightly and then dropping to zero (due to data set size).  It is 

this mid region that parallels the plateau region of the Grassberger-Proccacia 

algorithm.  The estimates for fractal dimension ranged from 4.0 to 4.5, for all fractal 

dimensions calculated when embedding dimension was greater than 4.  With the 

exception of the box counting dimension, this was true for all of the first eight 

generalized dimensions.  The correlation dimension, for instance, was estimated at 

(2) 4.49 0.25D = ± , where the error was estimated based on the fluctuation of the 

slope of the entropy in the mid region.  This agrees with our choice of 6 for the 

embedding dimension, and is in rough agreement with the result from the 

Grassberger-Proccacia algorithm.  A fractal dimension of 4 to 4.5 indicates that an 

embedding dimension as high as 9 may be necessary, but as is often the case, a lower 

embedding dimension may be used. 

 

2.5.6. Lyapunov exponents 

 Before determination of Lyapunov exponents was attempted, the data was 

embedded in 6 dimensions with a delay of 31, as suggested by the false nearest 

neighbors routine, the autocorrelation function and the mutual information function.  

Fractal dimension was estimated as between 4 and 4.5, so a local embedding 

dimension of 5 was chosen, yielding 5 exponents in the calculation of the full spectra.  
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As shall be seen, this is in agreement with the observation that the sum of the 

exponents must be negative. 

Two methods of determining Lyapunov exponents were implemented; the 

method of Eckmann and Ruelle96 for determining the Lyapunov spectra, and the 

method of Wolf, et al.,77 for determining the largest exponent.  Since these two 

methods are fundamentally different, one would not expect agreement between the 

estimates to be simply due to them both incorporating the same mistakes.  The Wolf 

method involves following a trajectory in its path around the attractor.  The rate of 

growth between points on this trajectory and a nearby trajectory is used to estimate 

the largest Lyapunov exponent.  When the distance between these trajectories 

becomes too large, then a new nearby trajectory is found that is within a reasonable 

angular distance from the previous nearby trajectory.  The Eckmann and Ruelle 

method involves using a small neighborhood of points and iterating them forward to 

estimate the local Jacobian, and then determining Lyapunov exponents from the 

eigenvalues of the Jacobians around the attractor. 

The folding of the attractor brings diverging orbits back together.  So any 

effects of nonlinearities will most likely serve to move all exponents closer to zero.  

Hence a slight underestimate of the positive exponents was expected.  

One check on the Wolf algorithm was calculating the average angular 

displacement.  This was typically less than 20%, well within reasonable bounds. Wolf 

showed that the angular displacement errors are not likely to accumulate, but each 

error may skew the largest positive exponent downwards. 
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Eckmann-Ruelle Method 
 

Points in 
Fit 

Iteration λ1 λ2 λ3 λ4 λ5 

10 17 0.036963 0.018985 0.00268 -0.020285 -0.061305 

10 18 0.034956 0.017727 0.001948 -0.018823 -0.062807 

10 19 0.032672 0.018569 0.000123 -0.01854 -0.057501 

10 20 0.031778 0.016857 0.000442 -0.018088 -0.054543 

10 21 0.029999 0.015513 0.000411 -0.017223 -0.052437 

 

Modified Wolf Algorithm 
 

Number of Neighbors Average angular displacement λ1 

16 0.770722 0.031167 

 

Table 4.  Estimation of Lyapunov exponents. All calculations were performed 

with a 5 dimensional embedding and a delay of 31. An iteration step size of 19 

represented the best estimate of the Lyapunov spectra (due to the high accuracy 

of the zero exponent). An estimate of the dominant exponent from the Wolf 

method is included to show that there is agreement between the two methods. 

 

In Table 4, results of exponent calculations are provided.  All calculations 

were performed with a time delay of 31, global embedding dimension (used to unfold 

the attractor when identifying nearby points) of 6 and a local embedding dimension 

(used in exponent calculations) of 5.  The exponents are given in units of 1/time, 

where the time scale is defined so that the time between samples is 1.  Many more 

calculations were performed until a reasonable and stable parameter regime was 
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found for both methods.  Note that the zero exponent snaps into place for an 

appropriate choice of the iteration step size. 

Several of our criteria are determined immediately upon inspection.  The zero 

exponent was identified with a high degree of accuracy.  The sum of the exponents is 

negative, while the sum of the first four is positive.  This indicates that a fractal 

dimension between 4 and 5 was a reasonable estimate.  These exponents also give a 

Lyapunov dimension of 4.571.  Although there is large error in both Lyapunov 

dimension and information dimension estimates, this value is within acceptable 

limits.  Results from the Wolf algorithm are included in order to show that the two 

methods provide rough agreement.  The Wolf method by itself is not sufficient since 

there are few checks on its validity. 

However, it was not possible to confirm all criteria.  Measurement of the 

metric entropy is still ongoing work.  Sectioning the data introduced additional noise 

and measurement of exponents from the section was even more uncertain.  Thus it 

was not possible to get agreement between exponent estimates from the section and 

from the flow, nor was it expected.  Time reversal results were also inconclusive at 

best.  However, simulated data with the addition of noise would not usually switch 

the signs of the exponents under time reversal either.  So the sign change of 

exponents when the data is reversed may not be a suitable criterion for noisy data. 

 
2.5.7. Comparison with other work  

To our knowledge, there has been one previous publication attempting to 

analyze the nonlinear dynamics of a thermal pulse combustion engine.
90  Some 
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differences in approach are clear.  Much of their work centered around comparisons 

of results between theory (a simulated 4th order ODE model of the combustor) and 

experiment.  They also attempted analysis of many small data sets, whereas the 

analysis contained herein concentrated on one large data set.  Some technical 

differences are also quite clear.  Although they calculated the mutual information 

function, they chose to embed the system using the singular value decomposition 

method (SVD) of Broomhead and King.68    In this section, the authors chose not to 

use SVD because of the interpretation difficulties described by Fraser, et al. (Ref. 67 

and references  therein).  However, the primary difference is their claim of low 

dimensionality in the system.  This was not seen in any of the methods used here- 

false nearest neighbors, calculation of the generalized dimensions, or calculation of 

the Lyapunov spectrum.  Some of these differences may be explained by the use of 

parameters in the data acquisition.  The authors of this work also believe that more 

stringent criteria was necessary in Daw, et al,
90
 to verify chaos in the combustion 

engine.  In light of this and the previous work, it is clear that more analysis should be 

done so that a firm conclusion may be reached and the differences between the two 

approaches may be rectified. 

 

2.5.8. Conclusion  

The data from the combustion engine appears to represent a five dimensional 

system with two positive Lyapunov exponents.  This system may therefore be 

considered high dimensional and hyperchaotic.  As such, computation of fractal 
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dimension and of Lyapunov exponents are difficult tasks.  Some consistency was 

achieved between results using various methods of analysis.  However, precise 

quantitative results were not possible.  This was not a surprise since each of these 

methods of analysis was susceptible to noise, drift and data set size, and the errors are 

more problematic with high dimensional time series.  The analysis herein 

demonstrated the limitations of many methods for time series analysis.  This work 

also showed how multiple analyses can be used to confirm each others results. 

 
 

3. The Magnetoelastic Ribbon 

3.1. Overview 

The magnetoelastic ribbon
97-99

 has rich nonlinear dynamical behavior ranging 

from periodic to chaotic and everything in between, but it is simple enough to be 

described by a low dimensional model.
100

 It was the first experimental system to 

demonstrate chaos control.
99
 Also observed in this system were quasiperiodic and 

strange non-chaotic behavior
101

,  crises
102

, scaling characteristics
103

 and stochastic 

resonance
104

. The experimental apparatus is presented in Figure 47. 
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Figure 47 Instrumental layout for the magnetoelastic ribbon setup. 

 

The magnetoelastic ribbon was clamped at the base in a Plexiglas holder such 

that the free vertical length was greater than the Euler buckling length. This gave the 

ribbon an initial buckled configuration (Figure 48).  The holder and the ribbon were 

placed within three mutually orthogonal pairs of Helmholtz coils.  The coils were 
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needed to compensate for the ambient field and to apply a nearly uniform vertical 

magnetic field along the ribbon’s length, as illustrated in Ditto et al. 
105

.  In this 

system, a magnetic field component Hdc produced from the dc current was applied to 

the ribbon in order to center the operating region at a point where the ribbon is soft.  

A magnetic field component Hac produced from the ac current was then applied to 

modulate the system around Hdc.  The alternating magnetic field Hac made the ribbon 

go from soft to stiff and back to soft again stiff again and finally soft again at a 

driving frequency f.  At a large enough Hac magnitude, the ribbon oscillated 

chaotically.  Any one of the parameters Hdc, Hac or frequency f could be varied.  

 

gH

Fiber Opt ics

To Fotonic Sensor

 

Figure 48 The ribbon setup inside the Helmholtz coils.  H is the applied magnetic field and g is 

the gravitational pull on the ribbon.  This measurement provides sufficient information to 

completely describe the state of motion of the ribbon unless the frequency is high enough to 

cause sections of the ribbon to move out of phase with each other. Such traveling waves 

traversing the ribbon is termed "shimmering." 
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3.2. Experimental Setup 

3.2.1. Ribbon 

At the core of the setup was the magnetoelastic ribbon (Metglas 2605SC™),  

an amorphous magnetic material (Fe81B13.5Si3.5C2) approximately 100 mm long by 3 

mm wide by 0.025 mm thick.  The material resembled stiff Christmas tinsel. When a 

weak field was applied, the Young’s modulus and the stiffness of the ribbon 

decreased by an order of magnitude, causing it to buckle under its own weight. The 

characteristic response of the ribbon’s Young’s modulus to the applied magnetic field 

is shown in Figure 49.  The Young’s modulus of the ribbon decreased dramatically 

with a small change of the magnetic field, which changed the ribbon from stiff to soft 

very quickly.  As the field was increased the ribbon’s Young’s modulus became level 

between 0.7 and 1.0 Oe.  The typical operating point for the experiments was in this 

region.  Any further increase in the field stiffened the ribbon quickly, as indicated by 

a sharp rise in the curve.  Overall the Young’s modulus of the ribbon could change by 

over a factor of 10 in response to a change of magnetic field.  
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Figure 49 Normalized Young’s modulus of the magnetoelastic ribbon as a function of applied 

magnetic field.  The modulus was normalized to zero field modulus.  The solid line was the 

theoretical prediction and the dots were the measured result.  (Data courtesy of Mark L. Spano). 

 

3.2.2. Coils 

The setup consisted of three sets of Helmholtz coils that were used to generate 

two orthogonal horizontal fields and a vertical field.  The design of the coils was 

based on the theory that a pair of coils, with optimal inter-coil spacing, produced the 

most uniform field possible for that size coils.  The two most important parameters 

were the desired area of uniformity and the magnitude of magnetic field required.  

The size of the coils was determined by the required area of the uniform magnetic 

field, a cylinder 2 inches in diameter by 3 inches in length along the z-axis (vertical 

axis).  Table 5 gives the complete specifications for the coils.   

 
 
Specification  X-Axis Y-Axis Z-Axis 
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Area of Uniformity   (cylinder) 

2" x 3" 
(Diameter x 
Length) 
Cylinder along 
z-axis 

    

Uniformity <0.05 % <0.05 % <0.05 % 
Overall Outer Diam. 30.75" 27.0625" 23.25" 
Nominal Intercoil Spacing (face 
to face) 

13.5" 11.875" 9.875" 

Reisistance (per coil pair at 70 
F) 

16.7  Ohms 13.1  Ohms 3.0  Ohms 

Rated Operating Current 1.0 Amps 1.0 Amps 4.0 Amps 
Central Field at Rated 
Operating Current 

5.0 Oe 5.0 Oe 15.2 Oe 

AC Operation (Yes/No) No No  Yes 
Nominal Inductance   38 mH 
Maximum Frequency   100 Hz 
Rated Operating Current   2.83 A (rms) 
Voltage at Rated Operating 
Current & Frequency  

  68.0 V (rms) 

 

Table 5. A listing of the specifications of the Helmholtz coils 

 
 

3.2.3. Power supplies 

Kepco power supplies (model CC 21-1M) were connected to each pair of coils 

that produced the horizontal fields.  The coils were used to counteract ambient fields 

in the room.  The coils that produced the vertical field were powered by a Kepco 

Bipolar Operating Power Supply (BOP 100-2M).  The bipolar operating power 

supply proportionally converted any input voltage into current. The voltage supplies 

came from a function generator (Hewlett-Packard 3325B) which supplied the ac 

component of the voltage, and from a dc voltage power source (Kepco voltage 

programmer or digital-to-analog (D-A) converter).  These were combined in a voltage 

adder box before going into the bipolar operating power supply.   
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3.2.4. Holder 

A Plexiglas holder was set at the center of the coils (Figure 47).  The holder 

consisted of two vertical cylinder-like structures.  One structure, which was placed at 

the center of the platform, was used to hold the magnetoelastic ribbon.  The other, 

which was placed off-center, was used to hold the fiber optics of the fotonic sensor.  

The ribbon holder and the fotonic sensor holder were capable of rotating horizontal 

rotation, tilting and variable height.  The base heights (the distance measured from the 

Plexiglas platform to the top of the holder) were set at the level of the bottom of the 

uniform vertical magnetic field cylinder.   

 

3.2.5. Sensor 

The fotonic sensor (MTI 2000 Fotonic Sensor) was used to measure the 

position of the ribbon.  The instrument consisted of a tungsten light source with 

constant intensity.  Light was sent through a set of randomly arranged fiber optics that 

had half of its bundles used for emitting light and the other half used to detect light.  

Light went through the fiber optics and exited at the other end, about half a meter 

from the tungsten light source. The light that reflected off the magnetoelastic ribbon 

entered the detecting fiber bundles, which were arranged randomly among the 

emitting fibers.  At the other end of the bundle was a photodetector that would 

determine the intensity of the reflected light.  From this intensity, the relative position 

of the ribbon was determined using the relationship between the outgoing beam and 

the reflected beam.  This instrument measured the position with high accuracy and 

minimal noise.  A calibration was made to account for the placement distance 
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between the ribbon and the end of the fiber optics as well as for the reflectivity of the 

surface. The intensity of the source and the loss in the fiber bundles had been 

determined and calibrated at the manufacturing site.  The output of the fotonic sensor 

was given in voltages and measured by the sensor with a high resolution multimeter 

(Hewlett-Packard 3458A).  This instrument could read up to 28-bit resolution from 

the fotonic sensor output.  Since the experiments were designed to take stroboscopic 

data, the multimeter was triggered by a synchronizing signal sent from the ac function 

generator. This allowed the multimeter to read the signal once per driving period of 

the magnetic field. 

 

3.2.6. Computer 

A desktop computer (Dell 466ME) was connected to the multimeter, the 

function generator, and the Kepco voltage programmer through a general purpose 

interface board (GPIB).  A custom program was written to communicate with each 

instrument.  Through this program the amplitude and frequency  of the ac voltage 

could be set on the function generator, and the dc voltage could be set on the Kepco 

voltage programmer.  The program could also communicate with the multimeter to 

acquire data.   

 

3.2.7. Calibration of the Helmholtz coils 

 The Helmholtz coils were calibrated to counteract the ambient fields at the 

experimental site.  Using a high precision Gauss meter, the ambient field along one of 

the horizontal axes of a pair of coils was determined.  Current was applied to the 
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corresponding set of coils until the produced field canceled the measured ambient 

field.  Next the probe was positioned along the axis of another set of coils.  The 

ambient field in this direction was determined.  Current was applied to the appropriate 

set of coils until the fields canceled each other.  Along one horizontal axis (x-axis in 

the experimental setup) a current of 41.0±1.0 mA was given to a pair of coils.  The 

other pair of coils (y-axis) was given a current of 12.0±1.0 mA. 

The vertical field was used to drive the ribbon.  Any ambient field in this 

direction would simply change the zero of the dc field.  To determine the relationship 

between the requested voltage from the computer and the vertical magnetic field 

produced in the Helmholtz coils, a series of dc voltage outputs were requested 

through the Kepco programmer.  The corresponding magnitude of the field produced 

was then recorded for each voltage output.  The field magnitude produced by the coils 

was linearly dependent on the voltage programmer outputs.   

 

3.2.8. Vibration isolation and temperature control  

The magnetoelastic ribbon was very sensitive to temperature changes and 

vibrations.  To minimize this, the Helmholtz coils and the ribbon were placed on a 

vibration isolation table (model TMC Micro-g) that was 3.5x6 feet.  The table was 

constructed from nonmagnetic stainless steel to prevent any interference with the 

magnetic field produced by the Helmholtz coils.  In addition, the table was tuned to 

isolate low frequency vibrations ranging from 3 - 21 Hertz.  Active vibration control 

was avoided for fear of small control perturbations affecting the experiment.  The 

table was placed snugly inside a temperature controlled box.  In order to minimize 
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distortion due to magnetic fields, no metal was used in the construction.  The box had 

the dimensions of 4x7x6.5 feet (W x L x H).  One inch thick Styrofoam was used to 

insulate all six sides of the box and the box was constructed using only wood and 

glue.  To control the temperature inside the box, air was pumped at a rate of 53 cubic 

feet per minute through a temperature control unit (Omega CN9000A) then through 4 

big heating resistors before passing back into the box.  Since this unit could only add 

heat to the box, it alone could not maintain the temperature.   

The entire setup, except the computer and temperature control unit, was 

placed inside a self-contained air conditioned room.  The temperature of the room 

was set at 70ο F and the temperature of the box at 87ο F.  Thus, the low temperature of 

the room brought the temperature inside the box down and the temperature control 

unit added heat to counterbalance the room effect. The temperature inside the box 

was maintained to within ±0.5ο F.  In addition, a sealed Plexiglas rectangular cover 

was placed over  the ribbon and fiber optic holder inside the Helmholtz coils.  The 

temperature at the ribbon fluctuated to within ±0.1ο F.   

 

3.3. Data Analysis 

3.3.1. Acquired Data 

A wide variety of data sets were acquired from this system. This was 

primarily because before analysis was begun, there was little knowledge of the 

parameter settings to use in order to observe a particular dynamics. This was also 

done to gain familiarity with the experimental system and to gain an appreciation for 

the subtleties of temperature, vibration and humidity dependence in the system. Thus 
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numerous bifurcation plots of the data, for ranges of applied dc and ac currents were 

collected. Figure 50 depicts a typical bifurcation diagram of this system. It is from 

this bifurcation plot that suitable parameters were chosen for a 100,000 point strobed 

data set to analyse. The applied dc current was set to 2212.454212 mV, with the ac 

current set at 3200mV, 0.95 Hz. The first fifty data points (transient stage) were 

ignored and the total data acquisition time lasted approximately 29 hours and 15 

minutes. All of the following analysis is performed on this 100,000 point data set. 

A delay coordinate embedding plot of the data set is depicted in Figure 51. A 

one dimensional wrapped string-like structure (similar to the Henon map) is evident. 

However, the folding may be an artifact of nonstationarity in the data. That is, 

parameter drift during the course of data acquisition may cause the data values to shift 

slightly.  
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Figure 50. A bifurcation plot of  strobed data from the magnetoelastic ribbon experiment. Data 

was taken with applied DC voltage ranging from 1800 to 3680 mV in intervals of 20 mV. 

Transients were ignored and the next 100 data points were acquired at each interval The ac 

current was set at 3200mV, 0.95 Hz.  
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Figure 51. Time one return map of the magnetoelastic ribbon data. 

 
 

3.3.2. Nonstationarity 

A window of length 8192 was applied to the time series  From this it was 

possible to compare how the windowed mean and the windowed standard deviation 

varied as functions of time.  As can be seen from Figure 52, the mean value 

undergoes a fluctuating trend that does not appear to be random.  This fluctuation is 

quite small in relation to the full extent of the data, 3.2Volts. There are several 

possible causes of the nonstationarity. First, the system may be in a long term 

transient stage. However, if this were so, then one would expect the mean value  and 

the standard deviation to be converging to constant values. To a small degree, this is 

evident in Figure 53, which plots the standard deviation of these windows. However, 

the convergence is not sufficient to warrant removal of a portion of the data in order 
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to analyze a stationary system. Thus we conclude that long term dynamics are evident 

in the data.  

 

Figure 52. Nonstationarity of the mean in magnetoelastic ribbon data. Overlapping windows of 

length 8192 were applied to the data and the mean of each window is plotted. 

 

Ideally, a much longer data set should be acquired so that the long term 

dynamics can be properly taken into account. But a longer data set would also 

introduce drift due to temperature changes, so this was not considered. Because the 

variation in the window mean (at most 22mV, or 0.6% of the range of the data) and 

the variation in the window standard deviation (at most 35mV or 3.0% the standard 

deviation of the entire data set) are relatively small, and because these appear to be 

part of the dynamics of the system, as opposed to part of a drift in the parameters, it 
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was assumed that nonlinear analysis was still possible. However, this nonstationarity 

does imply that one should be circumspect concerning the exact values of the 

quantitative results obtained on this data. 

 

 

Figure 53. Nonstationarity of the standard deviation in magnetoelastic ribbon data. Overlapping 

windows of length 8192 were applied to the data and the standard deviation of each window was 

plotted. 

 

 

3.3.3. Fractal dimension 

Fractal dimension was estimated using both the Grassberger-Proccacia  

algorithm to approximate the correlation dimension and the method of finding 

generalized entropies method described in Chapter 4.  The correlation dimension is 

determined where a plateau is found in the slope of a plot of log(C(ε)) versus log(ε), 



 

 168

where C(ε) is the correlation function and ε is a distance (normalized to one for the 

maximal distance between two points in the data).  This plot is depicted in Figure 54. 

Clearly, estimation of the slope is difficult because the slope is nonconstant, 

regardless of the embedding dimension chosen. This is in part because 100,000 data 

points is not sufficient to get a reasonable estimate of dimensionality for an 

embedding dimension of 4 or 5, and also because nonstationarity may appear as a 

fractal structure. For small box size ε, the distribution appears to be discrete points, 

and the correlation dimension estimate thus approaches zero. But a relatively small 

box size is necessary to identify the fine scale structure that may exist.  

 

Figure 54.  Correlation dimension from the magnetoelastic ribbon data. The correlation 

dimension is estimated from the slope of log(C(εεεε))))))))    vs. log(εεεε). This function was estimated for the 

data embedded in 2, 3, 4, and 5 dimensions. 

 



 

 169

Thus we can not trust estimates of the slope for log(ε)�<-8, since this slope is 

due to the finite number of data points. Luckily the slopes do assume a relatively 

constant value for –4<log(ε)�<-7. Estimates of the slope in this region are 

approximately 1.055, 1.129, 1.310 and 1.351 for embedding dimensions of 2, 3, 4 and 

5, respectively. This agrees with the visual inspection that suggests the structure is 

similar to the Henon map (correlation dimension 1.2). One implication of this low 

fractal dimension is that an embedding dimension of three ( 2 1.351> ⋅ ) should be 

sufficient to capture the dynamics of the system. Therefore, further analysis is 

performed using a three dimensional embedding. 

 

Figure 55. Plot of - ( )qH ε  vs ln(εεεε) for the magnetoelastic ribbon data embedded in 3 dimensions. 

These correspond to generalized dimensions of 1.33, 1.40, 1.24 and 1.16 for the zeroth, first, 

second and third order fractal dimensions, respectively. 

 

Figure 55 depicts the first four generalized dimensions of the data. Displayed 

are estimates of the first four generalized entropies for varying box size with an 
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embedding dimension of 3.  With the exception of the box counting dimension D(0), 

which is difficult to estimate, the results indicated that, for , ( ) ( )p q D p D q> ≤ . This 

agrees with theoretical arguments. In addition, for a three dimensional embedding, the 

correlation dimension estimated using the Grassberger-Proccacia algorithm and 

estimated here (D(2)), differ by only 5%. Therefore, we may assume that this is a 

fairly reliable estimate. 

 

3.3.4. Lyapunov exponents 

The dominant Lyapunov exponent was estimated using the Wolf, et al.,77 

method.  This is depicted in Table 6. Increasing the iteration step may sometimes 

underestimate the dominant Lyapunov exponent because the distance between points 

may approach the size of the attractor, and thus the rate of divergence is constrained 

by that size. Also increasing the number of near neighbors used may underestimate 

the value because this allows a larger distance between neighbors. For a significantly 

chaotic system (λ1>>0) this outweighs the accuracy improvement through aligning 

the vectors along the direction of the dominant exponent. Furthermore, prior results in 

estimation of fractal dimension suggested that an embedding dimension of three 

should be used. Thus our best estimate of the dominant exponent is given by the bold 

faced entry in Table 6, λ1=0.898.  

The Lyapunov spectrum was then estimated using the Jacobian based method 

of Eckmann and Ruelle.
96

 The data was embedded in two dimensions (as opposed to 

three), because higher dimensional embeddings force near neighbors to be close in 

time due to the finite number of data points. Ten neighbors were used in order to gain 
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an accurate fit around each point, although the large number of neighbors and hence 

large distances, guarantees some underestimation of all exponents. Finally, an 

iteration step of two was used as a compromise between the effects of noise for low 

step size and the underestimation of divergence for large step size.  

Under these conditions, the Eckmann-Ruelle algorithm provides an estimate 

of the Lyapunov spectrum as  λ1=0.2137 and  λ2=-0.7223. Because of all the inherent 

difficulties with this method, we expect these values to be underestimates and hence 

not in complete agreement with the estimate of λ1 from the Wolf method. However, 

they do agree within an order of magnitude, the sum of the exponents is negative and 

the Lyapunov dimension may be estimated as 
1

1 0.2137 1.30
-0.7223

Dλ = + = , which 

agrees with the estimate of the information dimension from Figure 55,  1 1.40D = . 

Thus we have a rough confirmation of the Kaplan-Yorke conjecture and further 

validation of the numerical analysis. 
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Embedding 
dimension 

Number of near 
neighbors used 

Iteration 
step 

λ1 

2 10 1 1.55398 
2 20 1 1.344258 
2 10 2 1.239887 
2 20 2 1.098532 
3 10 1 0.898159 

3 20 1 0.827021 
3 10 2 0.820322 
3 20 2 0.763024 
4 10 1 0.680146 
4 20 1 0.664335 
4 10 2 0.673306 
4 20 2 0.650527 

Table 6. Estimates of the largest Lyapunov exponent using the divergence based Wolf method. 

The bold faced row indicates the best estimate given knowledge of the correct embedding 

dimension and knowledge of the imperfections of this algorithm. 

 
 

4. The Electric Step Motor  

4.1. Overview 

The electric step motor is a type of motor that provides incremental motion, or 

steps, in response to pulses of current that alternately change the polarity of the stator 

poles. The main advantage of an electric step motor is its open-loop operation. That is 

the position control can be achieved without shaft position feedback. The shaft can be 

stopped in any position with a high degree of accuracy, thus producing incremental 

displacements. It is used in numerous applications such as printers, hard disks, toys 

and robots. 
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a) Iα = In, Iβ = 0      b) Iα = 0, Iβ = In                c) Iα = In, Iβ = In 

 

Figure 56 Principle of the step motor 

 

As depicted in Figure 56, the stator has windings, 1 and 3 in series fed by the 

voltage Uα , and 2 and 4 in series fed by the voltage Uβ . Iα  is the current in the 

windings 1 and 3 and Iβ  is the current in the windings 2 and 4. The rotor has 

permanent magnets. Torque is developed by the tendency of the rotor and stator 

magnetic fields to pull into alignment according to the sequential feeding of the 

phases. If phase α (windings 1-3) is fed, stator induction is horizontal and the rotor is 

also horizontal (Figure 56, part a). If phase β (windings 2-4) is fed, stator induction is 

vertical and the rotor turns one step (Figure 56, part b). If the two phases are fed 

simultaneously, induction produced by the stator has an intermediate position, the 

rotor turns a half step. Phases are switched alternately. Lets consider the following 

cycle: 

1 ( ,I In I Inα β= = − ), 2 ( ,I In I Inα β= = ),  

3 ( ,I In I Inα β= − = ), 4 ( ,I In I Inα β= − = − ) 
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The rotor has four stable positions during the switch cycle, which are -π/4, 

π/4, 3π/4, and 5π/4. This is the supply mode that is most frequently used and is called 

mode 2. 

The torque has two origins. First, teeth on the stator and on the rotor create a 

variable resistance. Second, the magnetization of the rotor creates an interaction 

between the rotor magnets and the stator currents. According to the physical 

phenomenon responsible for the torque, motors can be classified as variable 

reluctance motors, permanent magnet motors, or hybrid motors. Variable resistance 

motors have teeth on the stator and on the rotor, but no permanent magnet on the 

rotor. In this case, the torque is due to the variable resistance. Permanent magnet 

motors have rotors radially magnetized as described in Figure 56. 

 

  

Figure 57. Motor with Zr = 10 [3] 

 

The motor that we consider is a commercial motor, the Crouzet 82940 002. It 

belongs to the third type of stepper motor, the hybrid motors. The hybrid motors are 
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the most common type. The stator has salient poles, with two phases. The rotor 

includes a cylindrical axial permanent magnet, mounted on the shaft and placed 

between two iron disks with teeth (Figure 57). Due to the axial magnet, Zr teeth of the 

same disk have identical polarity, that is, one disk bears Zr south poles and the other 

bears Zr north poles. Teeth of the disks are shifted an electric angle π, so a stator tooth 

faces alternately north and south poles. 

The studied motor has Zr=12 teeth on each rotor disk, so the rotor has 

2*12=24 poles. It is fed in mode 2. That is, Uα and Uβ  are square voltages with a 

phase shift of π/2. Hence the motor has 48 stable positions. It is a 48 steps per tour 

motor. With a stepping angle of 360/48=7.5o. 

The motor is supposed to operate at synchronous speed. The rotation speed is 

usually proportional to the supply frequency. But when the frequency increases, 

erratic behavior occurs, leading to a loss of synchronism. Usual studies tend toward 

elaborate motor control that avoids this problem. It is hoped that a nonlinear 

dynamics approach will yield a better understanding and better controls. 

We study a hybrid step motor, two-phased, 48 steps/tr. The motor is unloaded. 

The two phases, respectively noted α and β, are supplied by Uα and Uβ in mode 2, i.e. 

two square voltages shifted of 
π
2

. The motor is modeled as follows 

( ) ( )sine m r mLI U t RI K Zα α α θ= − + Ω&     (7) 

( ) ( )cose m r mLI U t RI K Zβ β β θ= − − Ω&     (8) 

m mθ = Ω&         (9) 
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( ) ( ) ( )cos sin sin 4m h r m h r m d r m m cJ K I Z K I Z K Z Fβ αθ θ θΩ = − − − Ω − Γ&  (10) 

Iα and Iβ : currents in phases α and β, θm : angular position, Ωm : rotation 

speed, R=45Ω (phase resistance), L =275mH (phase inductance), Zr =12 (teeth 

number), J= 18.10-6 kgm2 (inertia), Kh=Ke=0,463 Nm/A (emf constant and torque 

constant), Kd=16 mNm (detent torque), F=10-4 Nms/rd (friction coefficient), Γc=0 

(load torque). 

In previous work it has been shown that this motor might exhibit chaotic 

behavior.
65, 106

 In this section we will analyze time series from both the model and the 

experiment. We will use a variety of techniques from chaotic time series analysis to 

show that the system is indeed chaotic and that there is considerable agreement 

between the model and the experiment. 

The analysis that follows concentrates on the simulation and four 

experimental data sets- two Poincare sections and two flow data sets. The section data 

sets both consist of 5,000 points of two dimensional data, and the flow data sets both 

consist of 1,000,000 points of 2-dimensional data. Each data set is labelled by the 

drive frequency times the number of steps per tour, 4, divided by the number of stable 

positions, 12. Hence the flow data set, Crouz203, corresponds to a drive frequency of 

50.75Hz. A typical time series from the flow data is shown in Figure 58. Results from 

all the data sets will be analyzed and compared to show the dynamics of the 

experiment and how these differ from the dynamics of the model. 
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Figure 58. A plot of 10,000 points from the data set, Crouz203 (points 10000 to 10999). This 

portion is typical of the data. 

 

4.2. Nonstationarity 

A few simple tests were performed that would identify strong drifts in the 

data.  A sliding window of length 20,000 points was applied to the two flow data sets.  

Results of the drift in the mean are depicted in Figure 59. In both data sets, it is 

clearly demonstrated that there was an abrupt change in the dynamics at the midpoint 

of each data set. The cause of this change is unknown, but it is almost certainly an 

artifact of the data acquisition system. However, this is not definitive.  A nonlinear 

system could undergo a change in the dynamics that does not show up on any of these 

measurements.  However, as can be seen from Figure 59, the mean value undergoes a 
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fluctuating trend that does not appear to be random.  This fluctuation is quite small in 

relation to the full extent of the data.  The system may be in a long-term transient 

stage. The fluctuation in the mean is small (~ 1%) but it may affect the results of 

chaotic time series analysis methods. Due to the abrupt change in the dynamics at the 

midpoint of both data sets, it was decided that the analysis should be performed on 

each half of each data set separately.  

 

Figure 59. Nonstationary behavior of the data mean.  On the left are estimates of the mean for 

windows of length 20000 from the data set Crouz203, on the right are estimates of the mean for 

windows of length 20000 from the data set Crouz239.  

 

4.3. Delay coordinate embedding 

A reasonable value for the delay may be suggested either by the first zero 

crossing of the autocorrelation function or by the first minimum of the mutual 

information function, as either value is plotted as a function of delay.  The mutual 

information often gives a better value because it takes nonlinear correlations into 

account. However, for the step motor data, the mutual information function and the 

autocorrelation function were in perfect agreement.  As shown in Figure 60 both 
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values suggested a delay of approximately 13. Other estimates of the appropriate 

delay from any of the flow data sets gave values between the range of 9 to 16. This 

was in agreement with visual inspection since 2 and 3 dimensional plots revealed the 

most structure near this value of  delay (see Figure 61).  Structure is clearly evident in 

these plots.  Unfortunately, they also reveal a complexity or noise dependence that 

makes the fine scale structure very difficult to detect. 
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Figure 60. Two different techniques for estimating a delay to use in a delay coordinate 

embedding. The first method is to choose the first minimum of the mutual information function. 

The second, less sophisticated method uses the first zero crossing of the autocorrelation function. 

Both methods suggest a delay of approximately 13. Both plots use the first half of the data set 

Crouz203. 
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Figure 61. A two dimensional plot of the first 50,000 points from Crouz203, with a delay of 11.   

 

The method of false nearest neighbors was chosen as the primary technique 

for determining the embedding dimension.  The results agreed with what was 

suggested for application with real world data.  As shown in Figure 7, the percentage 

of false neighbors dropped dramatically as the embedding dimension increases from 5 

to 6.  As will be shown later, this is in at least rough agreement with what was found 

to be a suitable embedding dimension for determination of Lyapunov exponents or 

fractal dimensions. 
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Figure 62. A plot of the results of the false nearest neighbors routine as applied to the first half of 

Crouz203. An appropriate embedding dimension is found when the percentage of false near 

neighbors drops to a value near zero. This plot indicates that the embedding dimension should be 

at least 4. 

 

4.4. Fractal dimension 

Analysis was attempted on data sets of varying size and varying embedding 

dimension.  Results of estimations of the correlation dimension for the second half of 

Crouz239 are depicted in Figure 63. A plateau is evident for log(ε) in the range –1.7 

to –3.0. Here, the correlation dimension can be estimated to be between 1.1 and 1.5. 

This is a fairly low dimensional system and thus it should be relatively easy to 

manipulate. Although this value agrees roughly with the choice of embedding 

dimension, more analysis was necessary to confirm the results.   
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Figure 63. This measures the  correlation dimension estimated from the second half of data set 

Crouz239. The correlation dimension is estimated from the slope of log(C(εεεε))))))))��vs. log(εεεε). It can be 

estimated from the plateau region of the plot, where it is between 1.1 and 1.5. 

 

Figure 64 presents the results of our calculations performed on step motor 

data.  Displayed are estimates of the first four generalized entropies for varying box 

size with an embedding dimension of 4.  Additional tests were also performed for the 

embedding dimensions 3-6, and for the next four generalized entropies.  The results 

indicated that, for , ( ) ( )p q D p D q> ≤ , which agrees with theory.  For large box size, 

the box counting dimension varies widely from the others, since the box counting 

dimension D(0) is more susceptible to errors.  It is also a  poor quantity to use since it 

says nothing about the density of the attractor, only about its shape.  However, the 

box counting dimension and all the others converge in the mid-region, before 
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diverging slightly and then dropping to zero (due to data set size).  It is this mid 

region that parallels the plateau region of the Grassberger-Proccacia algorithm.   

 

 

Figure 64. The first four generalized entropies. The values may be estimated as (0) 2.08 0.1D = ± , 

(1) 2.09 0.1D = ± , (2) 2.05 0.2D = ±  and (0) 2.02 0.2D = ± . Each of these was calculated using the 

second half of Crouz203 embedded in 4 dimensions. 

 

The estimates for fractal dimension ranged from 1.8 to 2.2, for all fractal 

dimensions calculated when embedding dimension was greater than or equal to 4.  

With the exception of the box counting dimension, this was true for all of the first 

four generalized dimensions.  The correlation dimension, for instance, was estimated 
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at (2) 2.05 0.2D = ± , where the error was estimated based on the fluctuation of the 

slope of the entropy in the mid region.  This agrees with our choice of 4 for the 

embedding dimension, and is in rough agreement with the result from the 

Grassberger-Proccacia algorithm.  A fractal dimension of up to 2.5 indicates that an 

embedding dimension as high as 5 may be necessary, but as is often the case, a lower 

embedding dimension may be used. 

 

Figure 65. This measures the  correlation dimension estimated from the first half of data set 

Crouz203. The correlation dimension is estimated from the slope of log(C(εεεε))))    vs. log(εεεε). It can be 

estimated from the plateau region of the plot, where it is approximately 2.2 

 

4.5. Lyapunov exponents 

Before determination of Lyapunov exponents was attempted, the data was 

embedded with a delay of 13, as suggested by the false nearest neighbors routine, the 
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autocorrelation function and the mutual information function.  Fractal dimension was 

estimated as between 2 and 4, so a local embedding dimension of 4,5 or 6 was 

chosen, yielding 3, 4, or 5 exponents in the calculation of the full spectra.  As shall be 

seen, this is in agreement with the observation that the sum of the exponents must be 

negative. 

The Eckmann-Ruelle
96 method was used to determine Lyapunov spectra. The 

folding of the attractor brings diverging orbits back together.  So any effects of 

nonlinearities will most likely serve to move all exponents closer to zero.  Hence a 

slight underestimate of the positive exponents was expected.  

 
exponents embedding 

dimension 
points 
in fit 

iteration 
size 

λ1 λ2 λ3 λ4 

3 3 9 1 0.381672 0.045924 -0.307301  
3 3 9 2 0.354878 0.064599 -0.189015  
3 3 9 3 0.310627 0.068485 -0.141331  
3 4 16 1 0.046712 -0.032937 -0.217158  
3 4 16 2 0.095562 -0.027207 -0.205269  
3 4 16 3 0.098218 -0.02492 -0.174718  
3 5 25 1 -0.007088 -0.04303 -0.183316  
3 5 25 2 0.048134 -0.036329 -0.202159  
3 5 25 3 0.056969 -0.037843 -0.177225  
4 4 16 1 0.099903 0.012053 -0.04605 -0.310671 
4 4 16 2 0.153753 0.018143 -0.057847 -0.252268 
4 4 16 3 0.14469 0.018831 -0.057908 -0.211251 
4 5 25 1 0.01649 -0.010436 -0.050132 -0.28072 

4 5 25 2 0.086138 -0.00244 -0.063969 -0.259551 
4 5 25 3 0.084314 -0.002873 -0.066443 -0.21669 

Table 7. Estimation of Lyapunov exponents for the first half of the flow data set, Crouz239. The 

bold faced selection represent the best estimates of the exponents, since it has an exponent closest 

to zero and the sum of the exponents is negative.  

 
 

In Table 7 and Table 8 results of exponent calculations are provided. The 

exponents are given in units of 1/time, where the time scale is defined so that the time 

between samples is 1.  Many more calculations were performed until a reasonable and 
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stable parameter regime was found for both methods.  Note that the zero exponent 

snaps into place for  appropriate parameter settings. 

 
exponents embedding 

dimension 
points 
in fit 

iteratio
n size 

λ1 λ2 λ3 λ4 

3 3 9 1 0.404882 0.04426 -0.32303  
3 3 9 2 0.37753 0.068513 -0.192187  
3 3 9 3 0.329768 0.072848 -0.137364  
3 4 16 1 0.051662 -0.033821 -0.228997  
3 4 16 2 0.106886 -0.02685 -0.208742  
3 4 16 3 0.112637 -0.024475 -0.172856  
3 5 25 1 -0.00583 -0.044957 -0.187635  
3 5 25 2 0.059612 -0.037073 -0.210866  
3 5 25 3 0.068587 -0.036298 -0.183896  
4 4 16 1 0.111423 0.014208 -0.04756 -0.306655 
4 4 16 2 0.162717 0.019409 -0.057432 -0.247336 
4 4 16 3 0.155307 0.020102 -0.056715 -0.21321 
4 5 25 1 0.021594 -0.009072 -0.045046 -0.266796 
4 5 25 2 0.088914 -0.004143 -0.063278 -0.251144 

4 5 25 3 0.089064 -0.00702 -0.066332 -0.221641 

Table 8. Estimation of Lyapunov exponents for the second half of the flow data set, Crouz239. 

The bold faced selection represent the best estimates of the exponents, since it has an exponent 

closest to zero and the sum of the exponents is negative.  

Several of our criteria are determined immediately upon inspection.  The zero 

exponent was identified with a high degree of accuracy.  The sum of the exponents is 

negative, while the sum of the first two is positive.  This indicates that a fractal 

dimension between 2 and 3 was a reasonable estimate.   
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exponents embedding 

dimension 
points 
in fit 

iteration 
size 

λ1 λ2 λ3 λ4 

2 2 5 1 2.453502 -0.172849   
2 2 5 2 1.624457 0.83530    
2 2 5 3 1.149623 0.673577   
2 3 9 1 -0.467303 -0.915287   
2 3 9 2 0.601609 -0.486722   
2 3 9 3 0.671703 0.206204   
3 3 9 1 1.440059 0.210937 -0.593496  
3 3 9 2 1.084312 0.539116 -0.225776  
3 3 9 3 0.850945 0.576722 0.149585  
3 4 16 1 -0.258083 -0.46754 -0.890886  
3 4 16 2 0.466546 -0.056553 -0.692082  

3 4 16 3 0.456796 0.142458 -0.354413  
4 4 16 1 0.953211 0.240227 -0.132071 -0.671263 
4 4 16 2 0.7604 0.425944 0.043779 -0.498245 
4 4 16 3 0.616248 0.408489 0.155694 -0.240587 
 

Table 9. Estimation of Lyapunov exponents for the sectioned data set, Crouz203section. The bold 

faced selection represent the best estimates of the exponents, since the sum of the exponents is 

negative and it is proportionally similar to the results of Table 7 and Table 8. 

 

Sectioning the data introduced additional noise and measurement of exponents 

from the section was even more uncertain.  Thus it was not possible to get agreement 

between exponent estimates from the section and from the flow, nor was it expected.  

However, Lyapunov spectrum estimates from the Poincare section data is provided in 

Table 9. We note that the estimates here are scaled from the estimates provided in 

Table 7 and Table 8, because the sampling rate is different. Although the sample rate 

for the sectioned data, Crouz203section is known to be 50.75 Hz, the sampling rate of 

the flow data sets is unknown. 

4.6. Conclusion 

The data from the step motor appears to represent a four dimensional system 

with one positive Lyapunov exponents.  This system may therefore be considered low 

dimensional and chaotic.  As such, computation of fractal dimension and of 
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Lyapunov exponents is possible and accurate.  Although the data appeared 

nonstationary, it is still an excellent system for analysis. This is because the system is 

less dependent on temperature and other external factors than the magnetoelastic 

ribbon, and less noisy than the combustion engine.  

One hindrance in the analysis was a lack of communication between the 

experimentalists and the author. Because of this, many issues such as the cause of the 

huge jump in Figure 59, and the unknown sampling rate of the flow data sets remain 

unresolved. However, the collaboration continues and it is expected that better data 

will be available for future analysis. 

 

5. Multibit chaotic sigma delta modulation 

5.1. Introduction 

Conventional analog to digital and digital to analog converters are based on 

the linear, multibit Pulse Code Modulation (PCM) format. They require high-

precision analog circuits and they are vulnerable to noise and interference. In recent 

years, the consumer audio industry has moved towards oversampled nonlinear 

converters for many applications. An important oversampling  A-D or D-A 

conversion strategy now employed is the sigma delta modulator. In sigma delta 

converters the signal is sampled at a high sampling frequency and converted to a low 

bit binary output. They are cheaper to manufacture than PCM converters, consume 

less power, and operate well at the voltage range used in battery-powered audio 

equipment. Thus sigma delta modulators are used in the digital to analog converters 
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of many compact disc players and in the audio processing of many wireless 

communications systems, such as cellular phone technology. In addition, the Sigma-

Delta bitstream format is under consideration for the mastering and archiving of audio 

recordings.  

Unfortunately, sigma delta modulators are susceptible to limit cycle 

oscillations that are not present in the input signal. These idle tones may be audible to 

the listener when sigma-delta modulation is used for audio signal processing. One 

method of eliminating idle tones is the operation of a sigma delta modulator in the 

chaotic regime. But chaotic modulation of a first order sigma delta modulator, as 

previously proposed, is a poor system for signal processing. The modulator may 

become unstable (input to the quantizer becomes unbounded) and can result in 

inaccurate output.  

In this section, we investigate chaotic phenomena in single bit and multibit 

first order sigma-delta modulators. We look at a variety of different ways to operate a 

sigma delta modulator chaotically. Particular attention is placed on the occurrence of 

periodic orbits or limit cycles. By investigating the nonlinear dynamics of these 

systems, we are able to show that a new form of chaotic sigma delta modulation may 

be used. We show that this variation on a traditional first order sigma-delta 

modulator, together with a multibit implementation, may produce an effective, stable 

chaotic modulator that accurately encodes the input and also helps prevent the 

occurrence of idle tones. 
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5.2. Background 

Sigma-delta modulators operate using a tradeoff between oversampling and 

low resolution quantization. That is, a signal is sampled at much higher than the 

Nyquist frequency, typically with one bit quantization, so that the signal may be 

effectively quantized with a resolution on the order of 14-20 bits.
108

 Recent work has 

concentrated on tone suppression
109-111

, multibit modulation
112

 and chaotic 

modulation.
109, 113-115

 

 

Figure 66. Block diagrams for the two systems. In (a), gain is applied just to the integrator 

output. In figure (b), gain is applied to the quantizer error, that is, the difference between the 

integrator output and the quantizer output. 
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The simplest, first order sigma-delta modulator consists of a 1-bit quantizer 

embedded in a negative feedback loop which also contains a discrete-time integrator, 

as depicted in Figure 66(a). The input to the modulator is sampled at a frequency 

higher than the Nyquist frequency and is converted into a binary output. The system 

may be represented by the map
116

  

1 1 1( )n n n nU U X Q Uα − − −= + −       (11) 

where X represents the input signal, bounded by –1 and +1, and Q is the quantizer 

1 if 0
( )

1 if 0

u
Q u

u

≥
= − <

       (12) 

In this representation, the output ( )nQ U  represents the quantization of input 

Xn-1. The initial conditions, X0 and U0, are typically set to 0. On average, the 

quantized output will be approximately equal to the input. If α=1, then this system 

works by quantizing the difference between the input and the accumulated error. 

When the error grows sufficiently large, the quantizer will flip in order to reduce the 

error. The operation of such a first order sigma delta modulator is depicted in Figure 

67. The input is a 1.5kHz sine wave with amplitude 0.8 sampled at a frequency of 

256kHz (these parameters were chosen to accentuate the behavior of the modulator). 

Typically, the integrator leaks due  to finite operational amplifier gain, which is 

represented by α<1. If α>1, then the modulator may behave chaotically for constant 

input. This chaotic system has been studied extensively in 115 and 117 and the 

references therein. 
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 If a gain is added to the quantization error (difference between integrator 

output and quantized output), as opposed to the integrator output, then the difference 

equation describing this modified sigma delta modulator takes the form 

1 1 1( ( ))n n n nU X U Q Uα− − −= + −      (13) 

This system is depicted in Figure 66(b). It is relatively simple to implement in a 

circuit, and still accomplishes the goals of sigma delta modulation. 

An alternative representation of (13) is found by defining /n nV U α=  and 

/n nY X α= . Hence 

1 1 1( )n n n nV V Y Q Vα α− − −= + −       (14) 

This allows the gain to be applied only to the integrator output and to the input 

signal. Thus no gain needs to be applied directly to the quantization. In the case of a 

single-bit quantizer, (14)  has the same functional form as (11).  
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Figure 67.  A 1.5 kHz sine wave with an amplitude of 0.8 is sampled at a frequency of 256kHz. 

The input sine wave and the quantized output of the sigma delta modulator are depicted.  

In this work, we consider chaotic modulators where a gain term multiplies 

either the integrator output (11) or the error term (13). In particular, we consider 

whether either form of chaotic modulation is an effective means of idle tone 

prevention. We demonstrate that for the case of gain applied to integrator output, 

although an implementation of a chaotic multibit modulator may lead to idle tone 

suppression, it may not be practical. This is because in many cases, the output of a 

chaotic modulator does not effectively approximate the input. 
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A multibit implementation of either (11) or (13) may offer increased 

resolution in the quantization. Rather than quantizing the output into –1 and 1, the 

output can instead assume a range of discrete values. For an n bit first order sigma 

delta modulator, the quantized output can assume one of m=2n states. The quantizer 

would take the form 

2( 1) / if 2( 2) /

2( 3) / if 2( 2) / 2( 4) /

( ) 2( 5) / if 2( 4) / 2( 6) /

2( 1) / if 2( 2) /

m m u m m

m m m m u m m

Q u m m m m u m m

m m m m u

− ≥ −
 − − > ≥ −= − − > ≥ −


− − − − >

M M

 (15) 

Here, for reasons explained in the section on bifurcations, we assume that quantizer 

input is in the range –2 to 2. Thus, the systems that will be studied are  

1. The 1st order, single bit sigma delta modulator with gain applied to the integrator: 

equations (11) and (12). 

2. The 1st order, single bit sigma delta modulator with gain applied to the error: 

equations (13) and  (12). 

3. The 1st order, multi bit sigma delta modulator with gain applied to the integrator: 

equations   (11) and (15). 

4. The 1st order, multi bit sigma delta modulator with gain applied to the error: 

equations (13) and (15). 
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5.3. Analysis 

5.3.1. Bifurcations 

 

System 1 (Equations (11) and (12)), a first order, single bit sigma delta 

modulator, is perhaps the most well known and simplest form of sigma delta 

modulation. It exhibits chaos if the gain is in the range 1 2α< ≤ . The bifurcation 

diagram of this system is depicted in Figure 68.  

 

Figure 68. Bifurcation diagram of a first order, one bit sigma delta modulator with 0 input and 

gain applied to the integrator output  (System 1). 
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Figure 69. Bifurcation diagram of a first order, one bit sigma delta modulator with 0 input and 

gain applied to the error (System 2). 

 

System 2 (Equations (13) and  (12)), has a slightly different bifurcation 

diagram. It also exhibits chaos if the gain is in the range 1 2α< ≤ . The bifurcation 

diagram of this system is depicted in Figure 69. Notably, the dynamics here are 

somewhat different. For instance, the integrator output does not immediately reach 

the extremes as α  is increased past 1. The full range of integrator output is between –

2 and 2, and for 1α ≥ , the range of output extends from -α  to α . This is a direct 

consequence of the fact that the bifurcation diagram measures possible values of 

n nU Vα=  from Equation (13). It may seem problematic at first, since the expected 

input, X, is between –1 and 1. However, as shall be seen later, as long as the average 

integrator output sufficiently approximates the input, then this is not a difficulty. We 
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simply require that the input signal be bounded by 1± , even though the quantizer can 

accept input bounded by 2± .  

 

Figure 70. The stability regime of a sigma delta modulator for various values of gain and 

constant input in the range 0 to 1. The solid line and below represents the bounded stable regime 

for a 1 bit modulator with gain applied to the integrator output (System 1). The dashed line 

represents the bounded stable regime for a 2 bit modulator and the dot-dot-dashed line for a 3 

bit modulator (System 3). For a modulator with gain applied to the error, the dotted line and 

below represents the stable regime for the 1 bit case (System 2), and the dot-dashed line and 

below represents the stable regime for the 2 bit case (System 4). 

 

5.3.2. Stability 

One difficulty with operating a sigma delta modulator with greater than unity 

gain is that, for nonzero input, the modulator may become unstable. That is, 

asnU n→ ±∞ → ∞ . This is illustrated in Figure 70, which depicts the size of the 
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stable regime for input 0 1X≤ ≤  (the plot is symmetric for 1 0X− ≤ ≤ ) and gain 

0 2α≤ ≤ . Operating a one bit sigma delta modulator, Equation (12), in the chaotic 

regime becomes unworkable for any large input, since the integrator output diverges. 

For this and other reasons (notably poor SNR ratio), System 1 is  considered a poor 

means of tone suppression,118, 119. Although this can be improved through the use of 

a multibit quantizer, it is still problematic. 

 

Figure 71. Clockwise from top-left. The average quantized output as a function of the input for a 

1 bit, 2 bit, 3 bit, and 4 bit sigma delta modulator with gain applied to integrator output.  The 

gain is set to 1.1. The 45 degree line represents the ideal average quantization. 
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The stable regime is significantly increased if the gain is applied to the 

difference between the quantizer output and the integrator output (Equation (13)). For 

a 1 bit quantizer, the stable regime is greater than a 2 bit traditional sigma delta 

modulator. If we move to a 2 bit quantizer implementation of Equation (13), then the 

entirety of the domain has bounded integrator output. 

5.3.3. Quantization error 

A minimum necessary requirement for sigma delta modulation is that the 

quantizer output approximate the input signal. That is,  

1

1
lim ( )

N

i
N

i

Q U X
N→∞ =

=∑        (16) 

for constant input X. This must hold for any allowable input. All the modulators 

considered have input in the range 1 1X− ≤ ≤ . With unity gain ( 1α = ), Equation (16) 

holds for the single and multibit, first order sigma delta modulators. However, this is 

typically not true for 1α ≠ . Feely and Chua
120

 showed that integrator leak, 1α < , may 

cause the average output of the sigma delta modulator to assume discrete values that 

misrepresent the input. The resulting structure of average quantized output as a 

function of the input is known as a devil’s staircase. As shown in Figure 71, this is 

also the case for a traditional sigma delta modulator with 1α >  (Equation (11)). In 

fact, for nonunity gain, the average output is approximately Xα . Using a multibit 

modulator is not sufficient to alleviate this problem. Although it increases the 

bounded region of the modulator, and minimizes the discrete steps, it does not 
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succeed in making the output more effectively track the input This is a fundamental 

problem that is often overlooked in the literature.
121

 

 

Figure 72. Clockwise from top-left. The average quantized output as a function of the input for a 

1 bit, 2 bit, 3 bit, and 4 bit sigma delta modulator with gain applied to quantization error.  The 

gain is set to 1.1. The 45 degree line represents the ideal average quantization. 

 

However, the modified modulator of (13) behaves quite differently. Figure 72 

shows that this modulator, although assuming discrete values, still approximates the 

input. That is, the average output as a function of input has a slope of 1. In addition, a 

multibit implementation helps to minimize the length of the stairs in the devil’s 

staircase structure. In other words, for a modulator operating in the chaotic region, as 
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the number of bits used by the quantizer is increased, the average quantized output 

approaches the average quantized output of an ideal sigma delta modulator. 

 

Figure 73. A three-dimensional plot of  average output error vs number of bits vs gain. Input is 

varied over the range –1 to 1. For each input number of bits, and gain, the absolute value of the 

input minus the average quantized output is found. This is then averaged over the entire input 

range, to give an average error dependent on the number of bits in the quantizer and the gain in 

the modulator (Equation  (13)).  1 to 5 bit modulators having gain ranging from 0.8 to 1.4 are 

compared. 
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To further demonstrate this, a 3 dimensional plot of average output error vs 

number of bits vs gain is depicted in Figure 73. Notice that quantizer error is greatly 

reduced as the number of bits in the quantizer is increased. Thus the loss in accuracy 

as the gain is increased (and chaos is introduced) may be compensated for by adding 

bits to the quantizer. 

5.3.4. Symbol sequences 

On a practical level the output prior to quantization is not of primary concern. 

More importantly,  the quantized output must accurately encode the input signal 

without producing idle tones. That is, tones which are not present in the input signal 

may appear in the quantized output. For instance, a constant input of 0 with α=1 and 

initial condition U0=0 will produce an output sequence of 1,-1,1,-1,1,-1… This gives 

the false impression of an oscillating input. Longer period cycles will produce tones 

at lower frequencies which may appear audible to the listener.  

One proposed method of eliminating these tones is to operate the sigma delta 

modulator in the chaotic regime. Although the output will still approximate the input, 

limit cycles might be eliminated. As an example, a constant input of 0 with α=1.5 

will produce an output 1,-1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,1… This is an endless pattern 

that never settles into a limit cycle. 
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Figure 74. The permissible 7 bit sequences that can be generated using a first order, single bit 

sigma delta modulator. 

 

Thus the bifurcation diagrams that were produced earlier are not illuminating 

because they say nothing about the range of quantized dynamics. For these reasons it 

is important to investigate the symbol sequences that can be generated for various 

values of α. Figure 74 depicts the seven bit symbol sequences that can be generated 

for a single bit sigma delta modulator with zero input (System 2). Seven bits were 

chosen simply for resolution- the qualitative structure of the resultant plot is the same 

for various choices of the number of bits. For gain ranging from 0 to 2 in increments 

of 0.001, 100,000 successive quantizer outputs were calculated. A sliding window of 

seven bits was applied to produce output sequences in the range 0000000 to 1111111 

(0 to 127). A cyclic symbol sequence would be counted as multiple sequences, e.g., 

0101010… and 1010101… are counted as separate allowable symbol sequences. This 
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figure is exactly the same for both System 1 and System 2. This demonstrates that 

limit cycles are more dominant with 2α � since there is a smaller range of allowable 

dynamics. 

5.3.5. Power Spectra 

One of the key reasons to attempt sigma delta modulation in the chaotic 

regime is to see if it can effectively eliminate idle tones, while at the same time 

preserving the frequencies in the input signal. For this reason, the power spectrum is 

an appropriate tool.  

In Figure 75, intensity plots are shown that reveal how the power spectrum is 

changed for gain from 0 to 2. Figure 75(a) depicts the power spectral intensity over 

the full range of gain and frequency for a 2 bit sigma delta modulator (System 4) with 

zero input. For 1α ≤ , an idle tone exists with a frequency of 0.5. This is due to the 

quantizer flipping between ½ and -½. This tone is effectively removed in the chaotic 

regime. (b), (c) and (d) depict the power spectral intensity at 2x, 4x, and 8x 

magnification, respectively. They depict the self-similar, fractal nature of the power 

spectrum for 1α > . This is another indication of chaos in sigma delta modulation. 
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Figure 75. Intensity plots of power spectra a)  is  for a first order sigma delta modulator with 

constant zero input and gain ranging from 0 to 2.( b), (c) and (d) are successive magnifications 

(2x, 4x, and 8x) that indicate the fractal self-similar nature of the power spectrum. 

 

In Figure 76, power spectra are depicted for an input signal with 32 times 

oversampling, 0.5 sin(2 /64)nX nπ= ⋅ ⋅ , applied to (System 4). Figure 76(a) depicts 

the power spectrum for the input. As expected, peaks are seen at frequencies of 1/64 

and 63/64. However, for a 2 bit sigma delta modulator with unity gain, the output 

power spectrum exhibits additional peaks at all multiples of 1/64 (Figure 76(b)). In 

Figure 76(c), the modulator is operated at maximum gain (Equation  (13)), 2α = . 

The idle tones are completely removed, and replaced by chaotic fluctuations similar 
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to broadband noise. This noise can be filtered, thus leaving only the frequencies that 

were apparent in the original signal. 

 

Figure 76. Power spectra for the input signal  0.5 sin(2 /64)nX nπ= ⋅ ⋅ .  (a) is the power spectrum 

for the input signal, (b) is the power spectrum for the quantized output signal with gain set to 1, 

and (c) is the power spectrum for the quantized output signal with gain set to 2. The power is 

assumed to have a base value of 10-7 (-140dB). 
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5.4. Conclusions 

A conventional first order sigma delta modulator, where gain is applied to the 

integrator output, does not approximate input for 1α ≠ . This is true even if multibit 

quantizers are used. The errors in quantization due to the Devil’s staircase structure 

introduced by chaotic modulation can be compensated for by using a multibit 

quantizer. However, this does not correct the fact that the output is offset from the 

input for a traditional chaotic sigma delta modulator. If instead the gain is applied to 

the error in quantization, then the sigma delta modulator may achieve accurate 

quantization over a far greater range of input. If a multibit quantizer is also used, then 

the modulator can be made stable over the full range of input. This has the benefit 

that idle tones can be removed from the quantization process by operating in the 

chaotic regime.  
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CHAPTER SIX 

CONCLUSION 

 

Almost by definition, chaotic data is difficult to analyze. Its extreme 

sensitivity to initial conditions imply difficulty in reproducing data. Only the slightest 

change in initial conditions or the slightest noise may cause the system to enter a very 

different trajectory. The inherent nonlinearities imply that linear analysis techniques 

either fail or become meaningless. Also the likelihood of the system exhibiting 

broadband power spectra means that most digital signal processing techniques don’t 

produce meaningful results. 

The techniques that are designed for the analysis of chaotic data also have 

inherent difficulties. Reliable fractal dimension estimation requires enormous 

amounts of relatively noise-free data. Lyapunov exponent calculations are highly 

susceptible to parameter settings of both the algorithm and of the embedding 

technique.  These routines try to estimate properties that only converge to their actual 

values in the limit of infinite data sampled with infinite accuracy, something which no 

experiment can provide. Estimation of negative exponents becomes extremely 

difficult because these quantities give rise to exponentially small effects in the data. 

In the combustion engine, the magnetoelastic ribbon and the electric step 

motor, there were additional difficulties. Primary amongst these was the 

nonstationarity. Figure 40, Figure 52, Figure 53, and Figure 59 all demonstrated that 

there were long term dynamics affecting these systems which could not be 
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sufficiently captured in the data sets provided. These effects came from several 

sources: intrinsic dynamics, errors in the data acquisition system, and fluctuations due 

to environmental effects and other factors. This should not be modeled as noise. The 

drift had an effect on the dynamics that affected all analysis. Further analyses that 

were not presented in this thesis, such as noise reduction, prediction and periodic 

orbit identification, were similarly affected.  

Yet some results were clear. Each of these systems exhibited complicated 

dynamics. They each appeared to have positive Lyapunov exponents, a strong 

indicator of chaos. The step motor and the magnetoelastic ribbon also seemed fairly 

low dimensional (fractal dimension less than 3), which implied that further analysis 

would be possible. The combustion engine was more noisy and the dynamics 

appeared complex. Thus the author would recommend a sophisticated approach to 

any control or prediction algorithm implemented on this system. 

Certain analysis methods appeared quite robust. The mutual information 

routine produced reliable results on each system. The false nearest neighbors routine 

was also successful, once the criteria had been improved. The author also showed that 

Conley Index theory could be applied to experimental systems. This provided a 

means of extracting symbolic dynamics and a rigorous verification of chaos in the 

magnetoelastic ribbon experiment. 

The use of efficient searching and sorting methods allowed the false nearest 

neighbors routine and the Lyapunov estimation routines to operate at a resonable 

speed. Thus detailed analysis became possible where otherwise time constraints 
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would have made it infeasible. Improved searching speed has applications throughout 

the field of nonlinear time series analysis. Many prediction, noise reduction, 

Lyapunov spectra, dimension estimation, and information theoretic analysis routines 

rely on the investigation of near neighbors in a multidimensional space. An optimized 

search routine, such as the kd-tree, offers improved efficiency for all of these 

methods. In fact, wherever, multidimensional data needs to be searched, the 

benchmarking and analysis of the search methods may prove useful. In addition to the 

work presented in this thesis, the author has investigated the use of efficient 

multidimensional searching routines in the field of music information retrieval.
122 

Symbolic dynamics also played a strong role in the investigation of multibit 

chaotic sigma delta modulation. Figure 74 was the equivalent of a bifurcation 

diagram, except that it represented the allowable symbol dynamics in the output of 

the modulator as the gain was varied. This provided a clear indication of how to 

modify the gain in a chaotic modulator such that idle tones are either removed or drop 

below the noise level. Although chaotic sigma delta modulation has been investigated 

before, this research into multibit chaotic modulation is new. Previous investigations 

concluded that chaotic modulation was impractical because of its instabilities. 

However, Figure 70 showed that it was possible to operate a sigma delta modulator in 

the chaotic regime such that its output was stable throughout the entire range of 

operation. This encouraging result implies that there are potentially huge practical 

applications of chaos in the field of D-A and A-D converters. Further discussion of 

this work will be available in References 107, 123 and 124. 
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Continuation of the work on sigma delta modulation is clearly recommended. 

But much work should also be done in terms of investigating the dynamics of the 

combustion engine and the electric step motor. Both of these systems have practical 

uses, and both of them may benefit from a thorough understanding of their chaotic 

regimes. Controlled operation in the chaotic regime could yield improved efficiency 

in both systems. 

The analysis methods also have room for improvement. A measure of 

reliability should be available for all dimension and exponent calculations. Although 

a method of determining errors in the false nearest neighbors routine was devised, this 

routine could benefit from a less arbitrary method of setting parameters. Furthermore, 

the interpretation of the multidimensional mutual information is uncertain. It is clear 

that it may be useful in the analysis of chaotic data, but it may also be useful in the 

analysis of a wide variety of multichannel systems. Its use as a measure of the shared 

information in multichannel sound systems has been suggested by the author.
125 

Finally, we note the benefits of providing all the analysis and visualization 

tools in one complete package. The Nonlinear Dynamics Toolbox is now a shareware 

software package that is used throughout the nonlinear dynamics community. Its 

efficiency and simplicity has allowed many researchers to use the techniques of 

chaotic time series analysis on their own data. Its continued development is a long 

term goal of the author. 
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