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1. Introduction and summary. Let me begin this lecture in commemo-
ration of Henry L. Rietz, the first president of the Institute of Mathematical

Received July 1984; revised October 1984.

! This paper is the written version of the Henry L. Rietz Memorial Lecture for 1983, presented at
the invitation of the Institute of Mathematical Statistics, at the joint annual meeting of the Institute
of Mathematical Statistics, the American Statistical Association, the Canadian Statistical Society,
and the Biometric Society, in Toronto, Canada, on 16 August 1983. Part of the research presented
here (the material on the relationship between association models and correspondence analysis) was
discussed briefly by the author at the International Meeting on the Analysis of Multidimensional
Contingency Tables, at the University of Rome, under the auspices of the Italian Statistical Society,
on 26 June 1981.

2 Support for this research was provided in part by National Science Foundation Grant SES-
8303838. The written version of the Rietz Memorial Lecture was completed while the author was a

10

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é
The Annals of Statistics. I3

www.jstor.org
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Statistics, by noting that his main research in statistics was on the theory and
measurement of correlation (Rietz and Shade, 1908; Rietz and Smith, 1910; Rietz,
1912, 1916, 1919, 1920, 1924 (Chapter 8), 1927 (Chapter 4), 1932); and that a
major part of my lecture will be devoted to the further development of this
subject in situations where the variables under study pertain to qualitative/
categorical classifications.

Henry Rietz began his career in statistics seventy-five years ago with his
correlation studies, and he continued to contribute to this topic (among others)
for roughly the next twenty-five years. In addition to his research work, Rietz
took great pride in his teaching; and among his students we find Samuel S. Wilks,
who also began his carrer in statistics (more than fifty years ago) with a strong
interest in the study of correlation (see Wilks, 1931, and related articles cited in,
e.g., Wilks, 1962). In view of Rietz’s teacher-student connection with Wilks, and
Wilks’ teacher-student connection with me, the audience may view this Rietz
Memorial Lecture as transmitted, in a sense, by lineal descent.

In the past, correlation (i.e. the usual Pearsonian product-moment correlation
coefficient) has not played an important role in my work on the association
between qualitative variables. Fifteen years ago, when the development of log-
linear models for the analysis of qualitative variables was in its beginning stages,
my R. A. Fisher Memorial Lecture made no mention of correlation (see Goodman,
1968); and thirty years ago, when joint work with William Kruskal on measures
of association was in its beginning stages, there was only a passing reference to
correlation (see Goodman and Kruskal, 1954). (In Kruskal’s 1958 article on
ordinal measures of association, there was some discussion of this topic, “for the
sake of completeness and contrast.”) Subsequent work on log-linear models and
on measures of association continued either to ignore this topic or to pay only
minimal attention to it (see, e.g., Goodman, 1978; and Goodman and Kruskal,
1979). However, with the introduction of association models for the analysis of
qualitative variables (as described in, e.g., Goodman, 1979a), and the discovery
that results obtained with these models are often related to (but different from)
corresponding results obtained with canonical correlation analysis, interest grew
in the study of correlation methods for the analysis of qualitative variables (see,
e.g., Goodman, 1981a). In this Rietz Memorial Lecture, these methods will be
developed further.

To illustrate the models and methods that will be discussed in this lecture, I
shall reconsider three cross-classification tables analyzed in the earlier statistical
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12 L. A. GOODMAN

literature: Table 1, studied earlier by Treloar (1939, page 228), Williams (1952),
and Kendall and Stuart (1979, page 619); Table 2, studied earlier by Srole et al.
(1962, page 213), Haberman (1974a; 1979, page 375), Gross (1981), Escoufier
(1982), and Gilula and Haberman (1984); Table 3, considered earlier by many
statisticians, including Stuart (1953, 1955), Tukey (1977, page 519), Gokhale and
Kullback (1978, page 255), Kendall and Stuart (1979, page 618), Plackett (1981,
page 25), and Agresti (1984, page 215).

Many different kinds of cross-classification tables can be analyzed using the
models and methods that will be discussed in this lecture. I use these three
examples to facilitate comparison with the methods discussed in the earlier
literature and to illustrate a variety of problems that can arise in analyzing such

TABLE 1
Cross-classification of 135 women according to their periodontal condition and calcium intake level

calcium intake level

perlo(%o-n tal Total
condition 1 2 3 4
A 5 3 10 11 29
B 4 5 8 6 23
C 26 11 3 6 46
D 23 11 1 2 37
Total 58 30 22 25 135

TABLE 2
Cross-classification of 1,660 people according to their mental health and their parents’
socioeconomic status

parents’ socioeconomic status

mental-health status Total
A B (o] D E F
well 64 57 57 72 36 21 307
mild symptom formation 94 94 106 141 97 n 602
moderate symptom formation 58 54 65 Y 54 54 362
impaired 46 40 60 94 78 71 389
Total 262 245 287 384 265 217 1660
TABLE 3

Cross-classification of 7,477 women according to their right eye grade and left eye grade with respect to
: unaided distance vision

left eye grade

right eye grade Best Second Third Worst Total
(1) (2) 3) 4)

Best (1) 1520 266 124 66 1976

Second (2) 234 1512 432 78 2256

Third (3) 117 362 1772 205 2456

Worst (4) 36 82 179 492 789

Total 1907 2222 2507 841 7477
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data and in interpreting the results that can be obtained by applying these models
and methods.

The class of models presented in this lecture includes models that can be
applied to I X J cross-classification tables in which the row categories and/or
column categories are considered to be either unordered or ordered, and in which
the spacing (or distance) between the ordered categories is considered to be either
unspecified or specified. I shall not distinguish here between the case where the
categories of a classification (either the row classification or the column classi-
fication) are considered unordered (e.g., categories pertaining to a classification
that is nominal in principle) and the case where the categories are considered
ordered but the ordering is unspecified (e.g., categories pertaining to a classifi-
cation that is ordinal in principle but the ordering of the particular categories is
not known a priori). In my initial article on association models (Goodman,
1979a), I considered a class of models that included models for the various kinds
of cross-classification tables just described. This class of models (which I shall
describe more fully in Section 2.1) consists of the null association model (the 0
model), the uniform association model (the U model), the row-effects association
model (the R model), the column-effects association model (the C model), and
two assoclation models that included both row effects and column effects (the
RC model and the R + C model). (The RC and R + C models were called models
IT and I, respectively, in Goodman, 1979a.) Table 4A describes the various cross-

TABLE 4A
Models for the scores of the row categories and the column categories in a cross-classification table,
with unspecified or specified order for the categories, and with unspecified or specified spacing between
the categories

specified order

models unspecified order
unspecified spacing specified spacing

0 Rows and Columns

U Rows and Columns

R Rows Rows* Columns

C Columns Columns* Rows

RC Rows and/or Columns Columns and/or Rows*

R+C Rows and Columns

* With specified order and unspecified spacing for the categories, the R, C, and RC models are
modified as indicated later herein.

TABLE 4B
Degrees of freedom for the models applied to the
: I X J table
models degrees of freedom
0 I-DJ -1
U J~1-J
R (-1 -2)
C I-2)J-1)
RC I-2)J-2)

R+C U-2)J-2)
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classification tables and the kind of association model suited to each kind of
table. For example, the null association model (the 0 model), which is the usual
model of statistical independence between the row classification and the column
classification, is suited to the case where the order of the row categories and the
order of the column categories is unspecified (i.e., the model is invariant with
respect to permutation of the rows and permutation of the columns, and so
information about the order of the row catgories and the order of the column
categories is not used in the model); while the uniform association model (the U
model) is suited to the case where both the order of the row categories and the
order of the column categories are specified, and both the spacing between the
ordered row categories and the spacing between the ordered column categories
are also specified. Of course, a model that is suited to the case in which a
classification’s categories have, say, unspecified order can also be applied when
the classification’s categories have specified order; but the information about the
specified order is not used in the model. Similarly, a model that is suited to the
case in which a classification’s categories have, say, specified order with unspec-
ified spacing between the ordered categories can also be applied when the
classification’s categories have specified order with specified spacing between the
ordered categories; but the information about the specified spacing is not used in
the model. '

When the order of the row categories and the order of the column categories
are specified, use of the natural numbers (i.e., the integers) has been proposed as
a simple scoring system for the ordered row categories and the ordered column
categories (see, e.g., Yates, 1948); and other relatively simple scoring systems
have also been considered (see, e.g., Kendall and Stuart, 1979, page 597). However,
suitable statistical methods have not been available for determining whether a
proposed scoring system yields an adequate picture of the association between
the row classification and the column classification in a given I X J cross-
classification table. If the scoring system is intended to yield a picture of the
association in the I X J table (with association measured in the way described in
Section 2.1 below), then the class of association models considered in my earlier
article (Goodman, 1979a) can be used to provide a statistical test of whether the
proposed scoring system yields an adequate picture. On the other hand, if instead
of measuring association as we do with association models (and as we do in
Section 2.1 below), we use a different measure of “nonindependence,” then a
different class of models is needed. T'o meet this need, I shall consider in Section
2.2 a different class of models, which I shall call correlation models (for reasons
that will become clear later). If the scoring system is intended to yield a picture
of the nonindependence in the I X J table (with nonindependence measured in
terms of the Pearsonian correlation beween unknown true row scores and
unknown true column scores), then the class of correlation models considered in
this lecture can be used to provide a statistical test of the proposed scoring
system. '

The class of correlation models that will be considered here is analogous to
the particular class of association models I mentioned earlier. In this class of
correlation models, I shall include the following models: (1) a model in which the
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correlation between the row classification and column classification is nil (the 0
correlation model); (2) a model with specified (e.g., uniform or unvarying) row-
spacing and column-spacing (the U correlation model); (3) a model in which row-
spacing is estimated (the R correlation model); (4) a model in which column-
spacing is estimated (the C correlation model); and (5) a model in which both
row-spacing and column-spacing are estimated (the RC correlation model). As
with the association models, Table 4A can be used now to describe the kind of
correlation model suited to each kind of cross-classification table.

The correlation models are related to, but different from, the corresponding
association models. The statistical methods appropriate for the application of
the correlation models are also related to, but different from, the corresponding
methods appropriate for the application of the association models. (For example,
the test of whether a particular correlation model is congruent with the observed
data is related to, but different from, the test of whether the corresponding
association model is congruent with the data.) In order to test whether a particular
scoring system (e.g., the natural numbers or some other specified scoring system)
is suitable for the row categories and/or column categories, we recommend (a)
the test obtained using the association models (and the corresponding statistical
methods appropriate for them) if the proposed scoring system is supposed to be
relevant to the association (as measured in 'Section 2.1); and (b) the test obtained
using the correlation models (and the corresponding statistical methods appro-
priate for them) if the proposed scoring system is supposed to be relevant to the
correlation (as measured in Section 2.2). Some comparisons between the associ-
ation models and the correlation models will be made in Section 2.3.

The association models can be used to fit a cross-classification table when the
row and column classifications arise from underlying continuous random vari-
ables having a bivariate normal distribution (if the classification categories are
not too wide), and they can be used also under more general circumstances
(Goodman, 1981a, 1981b). The correlation models will not be as suitable for this
purpose, as we shall see later.

The results obtained with the models considered here are related to results
obtained with the canonical correlation approach and the correspondence analysis
approach to the analysis of the I X J cross-classification table. Interest in these
approaches has been increasing in recent years (see, e.g., Gabriel, 1971; Benzécri,
1973; Hill, 1974; O’Neill, 1978; Nishisato, 1980; Goodman, 1981a; Haberman,
1981; Escoufier, 1982; Deville and Malinvaud, 1983; Greenacre, 1984; Lebart,
Morineau, and Warwick, 1984); and the results I shall present here can be viewed
as a contribution to the development of these approaches. (With respect to the
evaluation of correspondence analysis, various authors have commented on the
need for the further development of the inferential aspects of this approach (see,
e.g., Nishisato, 1980, page 205; Aitkin, 1982); and the models and methods that
will be introduced in the present lecture should help to meet this need.) The
models and methods introduced here can be used to simplify and supplement the
analyses based upon these other approaches. To illustrate the utility of the
models and methods introduced here, I shall apply them to reanalyze Tables 1
and 2, which were analyzed earlier using the canonical correlation approach and
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the correspondence analysis approach, respectively (see Kendall and Stuart,
1979, page 619; and Escoufier, 1982).

The models considered here in Section 2 pertain to the study of association
and correlation in the I X J table. In the special case where I = J and there is a
one-to-one correspondence between the row categories and the column categories
(see, e.g., Table 3), other aspects of the cross-classification table (e.g., the possible
lack of homogeneity between the row classification distribution and the column
classification distribution) will often be of interest. To analyze the various
possible kinds of asymmetry that may be present in the table, I shall introduce
in Section 3 a class of asymmetry models (or generalized symmetry models). This
class of models is related to, but different from, the class of generalized indepen-
dence models I introduced years ago (Goodman 1972). (The class of asymmetry
models includes in it some of the models introduced in.Goodman, 1979b, 1981c.)
The development of the generalized symmetry and generalized independence
models then leads us to a class of models that can be used to study simultaneously
both asymmetry and nonindependence; viz., the generalized symmetry + inde-
pendence models. (The class of generalized symmetry + independence models
also includes in it some of the models considered in, e.g., Goodman, 1979b, 1981¢;
see also Hope, 1982; and Sobel, Hout, and Duncan, 1985.) To illustrate the utility
of these models, we shall apply them to Table 3.

With the general perspective of this lecture in mind, I shall discuss briefly in
Section 4 how to analyze models of the kind considered in the lecture both in the
case where the order of a set of related parameters in the model is unspecified
and in the case where this order is specified. This topic is touched upon in
Section 2 and is developed further in Section 4.

2. Models for row scores and column scores in the I x J table.

2.1. Association models. For the I X J cross-classification table, let P; denote
the probability that an observation will fall in the ith row and jth column of the
table (i=1,2,---,I; j=1,2, - - -, J). The usual model of statistical independence
between the row classification and the column classification can be expressed as
follows:

(2.1) Py = a;,

where o; and §; are nonnegative parameters. The «; and §; in (2.1) pertain to the
row marginals and the column marginals in the I X J table. (When no entries in
the I X J table are deleted—i.e., when (2.1) applies to all cells (i, j) in the table—
the «; is proportional to the probability that an observation will fall in the ith
row, and the B; is proportional to the probability that an observation will fall in
the jth column; but when some specified entries in the table are deleted—i.e.,
when (2.1) does not apply to all cells (i, j) in the table—the interpretation of the
a; and B; is somewhat less straightforward. For further details, see, e.g., Goodman,
1968.)

Model (2.1) will be called the null association model (the 0 model). Next we
consider some generalizations.

Let u; and »; denote additional parameters pertaining to the ith row and the
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Jth column of the I X J table; and let the probability P; now be
2.2) P;= aiﬁje‘f’l‘i"j_

The parameter ¢ in (2.2) is a measure of the association in the I X J table, with
¢ = 0 for the null association model (the 0 model). The y; and »; in (2.2) are row
scores and column scores, respectively, which will be estimated from the data
(i.e., from the observed frequencies in the I X J table) in the case where the order
and spacing of the row categories and/or the column categories is not specified;
and these scores will be determined by the specified spacing (and by condition
(2.14) below) in the case where the spacing of the row categories and the column
categories is specified. (To unify the exposition of the class of association models
to be considered here, we have found it convenient to refer to the u; and »; as
parameters, both in the case where the spacing is not specified and in the case
where it is.) The meaning of the u;, »;, and ¢ in (2.2) is clarified further by (2.4),
(2.6), and (2.14) below, and by additional comments in my earlier work (Goodman
1979a, 1981a, 1981b).

Model (2.2) is called the RC association model. The class of association models
that will be considered here includes the RC association model and various
modifications of this model. These association models are related, in one way or
another, to models in Birch (1965), Rasch (1966), Haberman (1974a; 1979, page
371), Simon (1974), Duncan (1979), Goodman (1979¢), Andersen (1980, page
210), Plackett (1981, page 76), and Clogg (1982a, 1982b). When the association
models that will be considered here (including model (2.2)) are reexpressed in
terms of the natural logarithm of P;, we also find that they are somewhat similar
to nonadditivity models in the analysis of a two-way array with continuocus data,
of the kind considered in, e.g., Mandel (1971), Johnson and Graybill (1972), and
Tukey (1977, page 421). For some discussion of this similarity, see, e.g., Goodman
(19814). (Although my attention in the present lecture is focused on the contin-
gency table context, it may be worth noting that the development of methods
appropriate for the analysis of association models in the contingency table context
(as presented here) can also lead to the development of some related methods
appropriate for the analysis of nonadditivity models in a two-way array with
continuous data, and these related methods will make a new contribution to the
statistical tools now available for the analysis of nonadditivity with the analysis
of variance; see Goodman and Haberman, 1984.)

I shall now proceed with the development of the association models for
the I X J cross-classification table. Let 0, denote the odds-ratio for the
2 X 2 subtable obtained from the ith and i’th rows and the jth and j’th columns
@£V, J#]),

(2.3) 0y, = (PyPyj)/[(PyiPy);

and let ®;;;» denote the natural logarithm of 9, ;. We see from (2.2) and (2.3)
that ‘

(2.4) @y = ¢ — pir)(w; — ).

From (2.4), we see that ¢ measures the association &, obtained from the
2 X 2 subtable when the rows (i and i’} are one unit apart (u; — u = 1) and the
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columns (j and j’) are also one unit apart (»; — v = 1). The parameter ¢ is a
measure of “intrinsic association,” and it is expressed in units proportional to
the scales used to specify p; and »;.

When the order of the rows and the order of the columns is specified, we
rearrange the rows and the columns in the specified order, with i =1, 2, ...,
and j =1, 2, ---, J denoting now the specified order. In this case, we let 0; be
defined as follows:

0y = Oy,
for '=i+1, j/=j+1 (¢=1,2,.---,I-1;j=1,2,...,J—1)

and we let ®; denote the natural logarithm of ©;. (In Anscombe, 1981, page 327,
the 0, are called Goodman ratios.) Thus, from (2.4) and (2.5) we see that

(2.6) @5 = ¢ — pir ) (¥ = vjra)-

Consider now the RC model (2.2) with, say, the following conditions imposed
upon the y; and »;:

(2.5)

(2.7) i— i =4, and vy =y = A7,

with the spacing parameters A’ and A” either specified or unspecified. In (2.7),
the rows are equally spaced and the columns are equally spaced. From (2.6) and
(2.7), we see that

(2.8) P; =¢A'A” (fori=1,2,---,I-1;j=1,2,--.,J —1).

Thus, the ®; are constant (i.e., uniform). The RC model (2.2) with condition
(2.7) imposed is called the U model, and we can also use this name to denote the
generalized form of this model obtained when condition (2.7) is replaced by the
more general condition:

(2.9) M — pivr = Af, and v =y = Af,

with the spacing parameters A/ and A/ specified except for possible scale factors
(see Goodman, 1979a). In the U model considered here, each difference u; — pi+1
is specified (and unvarying or fixed) in accordance with (2.9) (except for a
possible scale factor), and similarly for each difference »; — vj,.1; with (2.7) being
a special case of (2.9).

In a similar way, we obtain the R association model when the following
condition (2.10) or the more general condition (2.11) is imposed:

(2.10) v = vy = A,
or ’
(2.11) v = Vi1 = Af,

with the spacing parameter A/ specified except for a possible scale factor. And
we obtain the C association model when the following condition (2.12) or the
more general condition (2.13) is imposed:

(2.12) Wi — B =4,
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or
(2.13) B — pier = 4],

with the spacing parameter A/ specified except for a possible scale factor.

Since the general form of the RC model (2.2) remains unchanged when the
parameters p; and »; are replaced by linear functions of the y; and »;, respectively,
the following restrictions can be imposed upon these parameters without any
loss of generality:

Y wPi =0, XL yP,;=0,
(2.14)
i wiPi=1, ¥ viP;=1,

where .
Pi, = Z;]=1 P,'j, and P.j = 2{=1 PU

These particular restrictions are imposed here for expository purposes, to facili-
tate comparison later with the results obtained using the correlation models, the
canonical correlation approach, and the correspondence analysis approach.

Without loss of generality, any two independent restrictions could have been
imposed on the y; (e.g., any restriction on the mean of the y; (as defined in (2.14))
and any restriction on the second moment of the u; (as defined in (2.14)));
similarly, any two independent restrictions could also have been imposed on the
v;. (For an example of restrictions on the yu; and »; that are different from, but
related to, the restrictions in (2.14), see, e.g., Goodman, 1979a). Any restrictions
of this kind simply replace the u; and »; by linear functions of the y; and »;,
respectively. The only arbitrariness in the u; and »; is with respect to their
location and scale, and the kind of restrictions considered here simply remove
this arbitrariness. The interpretation of the u; and »; is not seriously affected by
this arbitrariness, since it is easy enough to change the y; and »; to any linear
functions of the u; and »;, respectively. The restrictions in (2.14) simply facilitate
comparison with the correlation models, the canonical correlation approach, and
the correspondence analysis approach; and they also have some other advantages
in certain contexts. (For example, in the situation where the I X J table is
modified by combining a given subset of the rows and/or by combining a given
subset of the columns, the u; and »; in the modified table, with restriction (2.14)
imposed, are directly comparable to the corresponding quantities in the original
table, with restriction (2.14) imposed, under conditions described in Goodman,
1981a). ,

By the way, it may also be worth noting here that even in the case where the
spacing of rows and columns is specified, some of the observed data (viz., the
observed row marginals and column marginals) are used to estimate the y; and ;
when (2.14) is imposed, since these data are relevant in the calculation of the
location and scale of the u; and v;; but when (2.14) is replaced by restrictions of
the kind presented in Goodman (1979a), the observed data are not used for this
purpose. Since some of the observed data are used here to estimate the y; and v;
even in the case where the spacing of rows and columns is specified, this is an
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additional reason why we refer to the u; and »; as parameters in this case, as well
as in the case where the spacing is not specified. (When (2.14) is replaced by
restrictions of the kind presented in Goodman (1979a), we need not refer to the
w: and »; as parameters in the case where the spacing is specified, but we still
need to refer to them as parameters in the case where the spacing is not specified.)

To illustrate the application of the association models, we present in Table 5
results obtained when these models are applied to Table 1. The goodness-of-fit
and likelihood-ratio chi-squared values are given in Table 5A for each of the
models, and the maximum-likelihood estimates of the parameters appear in
Table 5B. (The U, R, and C models in Table 5 were applied here using (2.7),
(2.10), and (2.12), respectively, and the RC model was obtained with (2.2).
Methods for calculating maximum-likelihood estimates for the association and
correlation-models considered in this lecture will be discussed in the Appendix.)
The C and RC models fit the data well; and the corresponding estimated scores
(viz., the g; and 7;) provide an adequate picture of the pattern of association
between row and column classifications, using (2.4) to describe this picture with
the various quantities in (2.4) replaced by their corresponding maximum-like-

Table 5A
Association models applied to Table 1
. . degrees goodness- likelihood-
association . .
models of of-fit ratio
freedom chi-squared chi-squared
0 9 44,34 46.89
U 8 11.13 11.86
R 6 9.29 9.88
C 6 4.29 4.35
RC 4 1.76 1.74
TABLE 5B

Estimated scores, j1; and v;, obtained with association models applied to Table 1, the estimated
intrinsic association ¢, and the observed correlation between the ji; and ¥;

association models

U R C RC
intrinsic association .58 .59 .65 .66
correlation 49 51 54 .56
row g
1 -1.53 —1.38 —1.53 -1.34
2 —.62 -1.01 -.62 -1.06
3 .30 49 .30 46
4 1.21 1.10 1.21 1.14
column 7
.96 .96 .83 .85

1

2 .09 .09 51 44
3 -.78 -.78 —1.53 —1.62
4 —-1.65 —1.65 -1.19 —1.08
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lihood estimates. Since both the C and RC models fit the data well, in comparing
these two models we note that the C model is more parsimonious than the RC
model, and the corresponding picture of the association pattern obtained using
(2.4) is also more parsimonious for the C model.

As we noted earlier, the C model can be used when the order of the row
categories is specified and the spacing between them is also specified (see (2.12)~
(2.13)), with the order of the column categories unspecified (see Table 4A). We
shall now show how to modify this model when the order of the column categories
is also specified '(but column spacing is unspecified). When the order of the
column categories is specified as indicated in, say, Table 1, the #; for the C model
in Table 5B indicate that the order of the 7; is not monotonic (see 7; and 7,). On
the other hand, when there is this specified column order, we could impose, say,
the following restriction on the »; parameters in the C model:

(2.15) b= (forj=1,2, ---,J — 1).

Since the likelihood function under the C model is concave (Haberman, 1973), if
the unrestricted C model yields estimates »; that contradict the restriction—e.g.,
if 3 < 74 (as in Table 5B)—then the likelihood function will be maximized on
the boundary, with »3 = »,. When this kind of equality restriction is imposed, the
analysis can be carried out simply by applying the C model to the original cross-
classification modified by combining columns 3 and 4. Thus, we obtain for the
original cross-classification table with restriction (2.15) imposed, #; = .83,
vy = .51, and »3 = », = —1.36 under the C model, and », = .86, v, = .45, and
v3 = v, = —1.35 under the RC model. (For the sake of completeness, we present
in Table 6 results obtained when the various association models are applied to
the original Table 1 modified by combining columns 3 and 4.)

If all the »; were replaced by —»; (i.e., if the #; were multiplied by minus one),
then the observed correlation would change its sign and there would be no other
change in our results. A similar remark applies if all the u; were replaced by
—p;. To facilitate comparison with the canonical correlation approach, we have
adopted the convention here of using the g; if i, < 0, and the —g; if g4; > 0. (If
f1 = 0, then we use the 4, if ji, < 0, and the —; if 4, > 0; etc.) We then use either
the #; or the —7;, whichever makes the observed correlation nonnegative. The
corresponding convention is also adopted in Section 2.2 with our correlation
models. On the other hand, to facilitate comparison with the correspondence
analysis in Section 2.4, we use there the g; if 43 > 0, and the —g; if g, < 0.
(Compare Tables 5B, 6B, 7B, and 8B with Table 12.)

The above comments pertain to the case where only one of the pairs (; and
Viq1, for j=1,2, ..., J — 1) contradicted restriction (2.15); viz., the pair 5; and
. b4. These comments can be directly extended to the case where more than one of
the pairs contradict the restriction. For related material, see the discussion later

in Section 4.

2.2. Correlation models. We begin this section by returning for a moment to
the usual model of statistical independence between the row classification A and
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TABLE 6A
Association models applied to modified Table 1
. s degrees goodness- likelihood-
association . .
models of of-fit ratio
freedom chi-squared chi-squared
0’ 6 42.86 45.39
u’ 5 7.87 7.70
R’ 3 4.33 4.51
C’ 4 3.11 3.29
RC’ 2 1.20 1.18
TABLE 6B

Estimated scores, ji; and i;, obtained with association models applied to modified Table 1, the
estimated intrinsic association ¢, and the observed correlation between the fi; and v;

association models

U’ R’ C’ RC’

intrinsic association .61 .62 .64 64
correlation 51 .53 .54 .55
row i

1 -1.53 -1.37 —-1.53 -1.37

2 —.62 —-1.07 —-.62 -1.01

3 .30 .59 .30 45

4 1.21 1.01 1.21 1.14
column »

1 1.05 1.05 .83 .86

2 -.09 -.09 .51 45

3 -1.23 -1.23 —1.36 -1.35

the column classification B. This model is usually expressed as follows:
(2.16) PL] = Pi.P-j’

where

P,‘, = 2}":1 PU and P,j = E{:l PU

The P, and P, are the usual ith row marginal probability and jth column
marginal probability, respectively, in the I X oJ table. To facilitate the exposition
in this section on correlation models, model (2.16) will now be called the null
correlation model (the 0 model).

The null correlation model (2.16) is equivalent to the null association model
(2.1) in the case where no entries in the I X ¢J table are deleted (i.e., where (2.1)
applies to all cells (i, j) in the table). We shall comment later.on the analysis of
cross-classification tables in which specified entries in the table are deleted. For
expository purposes, we use the parameters «; and B; to describe the null
association model (2.1), and the parameters P, and P; to describe the null
correlation model (2.16), since the association models considered here can be
easily extended to the analysis of cross-classification tables in which specified
entries in the table are deleted (and the formulation in terms of the parameters
«; and B; is appropriate for this purpose), whereas a corresponding extension for
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the class of correlation models is less straightforward (even if we had formulated
the null correlation model in more general terms).

We shall next consider generalizations of the null correlation model (2.16).
Let x; and y; denote additional parameters pertaining to the ith row and jth
column of the I X ¢ table, and let A denote an additional parameter pertaining
to the correlation between x; and y;. Using these additional parameters, we now
define our first generalization of model (2.16), viz., the RC correlation model

(2.17) P; = P, P;(1 + \x;y)),

where
ShixP, =0, I yP,=0,

1—1 szz _“1 21—1 y}P —'1
The parameter A in (2.17) is a measure of the correlatlon between x; and y;, since

(2.19) o Sk xy Py =\,

under (2.17)-(2.18). When A =0 in (2.17), we obtain the null correlation model
(2.16). The x; and y; in (2.17) are row scores and column scores, respectively,
which will be estimated from the data (i.e., from the observed frequencies in
the I x J table) in the case where the order and spacing of the row categories
and/or the column categories is not specified; and these scores will be determined
by the specified spacing (and by condition (2.18)) in the case where the spacing
of the row categories and the column categories is specified. Together with (2.18)-
(2.19), the meaning of A, x;, and y; in (2.17) is clarified further by (2.20)-(2.23)
below. (We followed the usual convention of using Greek letters for parameters
in our introduction of the parameters y; and y; in the association model (2.2), but
have used English letters for corresponding parameters x; and y; in the correlation
model (2.17) because this will facilitate comparison with results presented in the
earlier literature on canonical correlation and on correspondence analysis. A
similar remark could also be made with respect to our use of the English letter P
for the probability parameter rather than the Greek II.)

The x; and y; in the RC model (2.17) can yield a picture of the pattern of
nonindependence in the I X J table, since

(2.18)

(2.20) (Pyj — Pi.P)/(P.P,;) = MYy,
and ;.
(2.21) (Py — Pi.P.j)z/(Pi.P.j) = Nx? Yi iP; P,

From (2.18) and (2.21), we obtain
(222) z—l 21—1 (sz P P])z/(P P]) = >\2(Zz—-l x2P )( 21—1 ny ) = )\2

with the partitioning of the goodness-of-fit measure (2.22) into components
pertaining to the relative contribution x?P;, of the ith row (fori=1,2, ---,I) or
to the relative contribution y?P of the jth column (for j=1,2, ..., J).

From (2.19) we saw that the parameter X\ in the RC correlatlon model (2.17)
is the correlation between the row scores x; and column scores y;; and now we
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see from (2.22) that the square of X is equal to the goodness-of-fit measure (2.22)
under model (2.17). In addition, we see that the row scores x; and column scores
y; also pertain to the partitioning of the goodness-of-fit measure. The total
goodness-of-fit measure (2.22) can be partitioned into components pertaining to
the ith row (viz., x?P;\?) fori =1, 2, - .., I; and it can also be partitioned into
components pertaining to the jth column (viz., y?P ;)\, forj=1,2, ..., J. From
(2.21) we see that the product of the ith row component and the jth column
component (viz., x?y?P;. P;\*) is proportional to the component pertaining to the
cell (7, j) inthe I X J table, fori=1,2, -.-,ITand j =1, 2, ... J. Additional
insight into the meaning of the x; and y; is also obtained from (2.23) below.
From (2.17)-(2.18), we see that

(2.23a) YL yi(Py/P.) = A\x;,
and
(2.23b) YL xdPy/Pj) = Ny;.

Thus, the row scores x; are proportional to the weighted average of the y;, using
the conditional distribution in the ith row as weights; and the column scores y;
are proportional to the weighted average of the x;, using the conditional distri-
bution in the jth column as weights.

As earlier with association models in Section 2.1, we now introduce the
conditions:

(2.24) X — %y = AF, and y;, — yi = AN,
or just

(2.25) Yi = Y =AM,

or just

(2.26) X — %1 = A,

with the spacing parameters A¥ and A* specified except for a possible scale
factor. (Compare (2.24)-(2.26) with (2.9), (2.11), and (2.13).) The U model, the
R model, and the C model are obtained from the RC model (2.17), by imposing
conditions (2.24), (2.25), and (2.26), respectively.

Let f; denote the observed frequency in the ith row and jth column of the
I X J table, and let N denote the sample size; N = Y., 37, f;. Let p; denote the
corresponding observed proportion f;;/N, with p;. and p; defined by

Di. = E}]=1 Dijs and D;= 2{=1 Pij-

Let P denote the maximum-likelihood estimate of P; under a particular
model, with P;. and P, defined by

pi. = 2?:1 p,], and P,j = ,l=1 pil"
Under the RC correlation model (2.17), we find that
(2.27) b.=p., and P;=p;
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but these equalities will generally not hold true for the U correlation model (with
(2.24) satisfied). With the R correlation model, the second equality in (2.27) will
hold true, but the first equality will generally not hold true; and with the C
model, the first equality in (2.27) will hold true, but the second equality will
generally not hold true. Because of this, I also introduce here estimated “approx-
imate correlation models,” by obtaining maximum-likelihood estimates of param-
eters in the models subject to the restriction (2.27), for the U, R, and C models.
For further details, see the Appendix.

To illustrate the application of the correlation models, we present in Table 7
results obtained when these models are applied to Table 1. (The U, R, and C
models in Table 7 were applied here using (2.24), (2.25), and (2.26) respectively,
with A} = A* and A}* = A**) The results obtained with the approximate
correlation models in Table 7 are generally similar to those obtained with the
corresponding correlation models, and they would be even more similar in cases
where | A | is smaller. On the other hand, estimates obtained with the approximate
correlation model are not efficient estimates under the corresponding correlation
model (when A # 0), and so the values in parentheses in Table 7A, which were

TABLE TA
Correlation models and approximate corrélation models* applied to Table 1
. degrees goodness- likelihood-
correlation .
models of of-fit ratio
freedom chi-squared chi-squared
0 9 44.34 46.89
U 8 13.20 (13.31) 14.37 (14.42)
R 6 9.59 (9.65) 10.71 (10.74)
C 6 5.46 (5.52) 591 (5.95)
RC 4 1.85 1.83

* Values obtained with approximate correlation models are in parentheses.

TABLE 7B
Estimated scores, %; and 3;, obtained with correlation models applied to Table 1, and the estimated
correlation A between the %; and y;

correlation models canonical
U R C RC score
correlation 43 .49 .50 .56 .56
row x
1 —1.54 -1.34 -1.53 ~1.36 -1.39
2 -.63 -1.16 ~.62 -1.10 -1.06
3 29 .59 .30 61 .60
4 1.20 .99 1.21 .99 1.00
column y

1 97 95 .82 84 84
2 .10 .09 .58 49 48
3 =77 —.78 —1.45 -1.55 —1.58
4 —1.64 —1.65 -1.24 -1.17 -1.14
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obtained with the approximate correlation models, will not have asymptotic chi-
squared distributions.

As we noted earlier with the association models in Table 5, we now find with
the correlation models that the C and RC models fit the data well; and the
corresponding estimated scores, %; and J;, provide an adequate picture of the
pattern of nonindependence between the row and column classifications, using
(2.20)—(2.22) to describe this picture, with the various quantities in (2.20)-(2.22)
replaced by their corresponding maximum-likelihood estimates. Since both C
and RC correlation models fit the data well, we note (as we did earlier with the
association models) that the C model is more parsimonious; and, as we noted
earlier, in the case where there is specified column order with unspecified column
spacing (in addition to the specified row order and specified row spacing in the
C model), the nonmonotonicity of the y; in Table 6B under the C model (see ¥
and ¥,) leads us to an analysis of the original cross-classification modified by
combining columns 3 and 4. This analysis is included here in Table 8.

Some of the results obtained here in our analysis of Table 1 and the modified
Table 1 can be summarized in a table that partitions the total chi-squared value
(i.e., the chi-squared value under the 0 model) into appropriate components. This
was done for association models in Goodman (1979a, 1981a). Now we show how

TABLE 8A

Correlation models and approximate correlation models™ applied to modified Table 1
. degrees goodness- likelihood-
correlation N .
models of of-fit ratio
freedom chi-squared chi-squared
14 6 42.86 45.39
U’ 5 9.07 (9.32) 9.78 (9.92)
R’ 3 4.95 (5.10) 5.40 (5.53)
c’ 4 4.47 (4.51) 4.82 (4.86)
RC’ 2 1.18 1.16

* Values obtained for approximate correlation models are in parentheses.

TABLE 8B
Estimated scores, %; and y;, obtained with correlqtion models applied to modified Table 1, and the
estimated correlation A between the %; and 3;

correlation models canonical
U’ R’ C’ RC’ score
correlation A7 52 .50 .56 .56
row x
1 -1.50 -1.24 -1.53 -1.36 —1.41
2 -.59 -1.16 -.62 -1.09 -1.02
3 .32 57 .30 .59 .59
4 1.23 1.08 1.21 1.02 1.01
column y
1 1.04 1.05 .82 84 .84
2 -.10 -.09 .58 49 49

3 -1.24 -1.23 —1.34 —1.36 —1.36
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to combine the partitioning obtained for Table 1 and for the modified Table 1
(which we shall now call Table 1’ or Ti) into a single partitioning for the
association models (Table 9A) and a corresponding single partitioning for the
correlation models (Table 9B). The numerical results in Table 9A were obtained
using entries from Tables 5A and 6A, and the corresponding results in Table 9B
were obtained using entries from Table 7A and Table 8A. Tables 9A and 9B
focus our attention on the analysis of the components of association and corre-
lation in Table 1’ (i.e., in T{) and on the component for heterogeneity between
columns 3 and 4 in Table 1 (i.e., in T;). These partitionings shed light on the
possible homogeneity between columns 3 and 4 in Table 1, on the adequacy of
the RC models [(2.2) and (2.17)] in Table 1’, on the possible equal spacing of the
u; and the x;, and on the intrinsic association and correlation in Table 1’ using
unequally spaced »; and y; and equally spaced u; and x;.

With respect to the model for the homogeneity between columns 3 and 4 in
Table 1, this model can be tested by using the difference between the likelihood-
ratio chi-squared values obtained for the 0 model in Table 1 and the 0" model in
Table 1’, as with the fourth component in Tables 9A and 9B. (The 0’ model
refers here to the 0 model applied to Table 1’. For the fourth component in
Tables 9A and 9B, the difference between the chi-squared values for models 0
and 0’ is referred to, in an abbreviated notation, in the second column of the
tables.) An equivalent (but more direct) test of the homogeneity model could

TABLE 9A
Analysis of association (ANOAS) in Table 1 and Table 1': components of association

models deil;‘ees likelihood-

components used ratio
freedom chi-squared
General effect and column o -C 6—4=2 42.10
effect in T}
Row effect in T'; C’' = RC’ 4-2=2 2.11
Other effects in T’ RC’ 2 1.18
Heterogeneity between cols. 0-0 9-6=38 1.50
3and4in Ty
Total effects in T, 0 9 46.89
TABLE 9B

Analysis of correlation (ANOCOR) in Table 1 and Table 1’: components of correlation

degrees likelihood-

‘ models .
components ased of ratio
freedom chi-squared
General effect and column o -C 6—4=2 40.57
effect in T
Row effect in T'; C’' — RC’ 4-2=2 3.66
Other effects in T'{ RC’ 2 1.16
Heterogeneity between cols. 0-0 9-6=3 1.50
3and4inT,

Total effects in T, 0 9 46.89
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have been obtained by using the chi-squared value for a test of independence in
the subtable formed from Table 1 by deleting all cells that are not included in
columns 3 and 4. (For further development of the corresponding two general
approaches to the analysis of homogeneity, see, e.g., Goodman 1968, 1981d.)
With respect to the other components in Tables 9A and 9B, they are all obtained
by direct application of the general partitioning approach to the analysis of
association models in Goodman (1979a, 1981a).

Somewhat different partitionings are presented next in Tables 10A and 10B.
These tables shed light on the adequacy of the RC models in Table 1, on the
possible equal spacing of the w; and x;, on the possible equality v3 = v, and
¥y3 = ¥4, and on the intrinsic association and correlation in Table 1 using unequally
spaced v; (with »; = v,) and y; (with y; = y,) and equally spaced g; and x;.

Some comments about the interpretation of the components in Table 10 may
be helpful. The C model in Table 1 with v; = v, is equivalent to the combined
model of homogeneity between columns 3 and 4 and the C’ model in Table 1’
(see Goodman 1981a, 1981d). A test pertaining to the general effect and column
effect in the C model in Table 1 with v3 = v, (i.e., a test of null association in
Table 1, assuming that the C model with »; = »; holds true) is obtained by
comparing the chi-squared value for the 0 model in Table 1 with the chi-squared

TABLE 10A
Analysis of association (ANOAS) in Table 1 and Table 1": components of association

degrees likelihood-
components models used of ratio
freedom chi-squared

General effect and column 0 -C’ 6—4=2 42.10
effect in C model with
vg=p,in T,

Inequality between »3 and v 0-0+C'-C 7—-6=1 0.44
in C model in T,
Row effect in RC model in T, C - RC 6—-4=2 2.61
Other effects in RC model in T, RC 4 1.74
Total effects in T 0 9 46.89
TABLE 10B

Analysis of correlation (ANOCOR) in Table 1 and Table 1’: components of correlation

degrees likelihood-
components models used of ratio
freedom chi-squared

General effect and column 0 -C’ 6—4=2 40.57
effect in C model with
Ys=yainTh
Inequality between y; and y, 0-0+C ~-C 7—-6= 0.41
in C model in T,
Row effect in RC model in T} C—-RC 6—4=2 4.08
Other effects in RC model in T, RC 4 1.83
Total effects in T} 0 9 46.89




RIETZ MEMORIAL LECTURE 29

value for the combined model of homogeneity between columns 3 and 4 (viz., the
difference between the chi-squared values obtained for models 0 and 0’) and the
C’ model. The test obtained is therefore based on the chi-squared statistic

(2.28) X*0) — {[X3(0) — X2(0")] + X*(C")} = X*(0’) — X*(C"),

where X2%(M) denotes the chi-squared value obtained under model M. Similarly,
a test pertaining to the component for the possible inequality between v»; and v,
in the C model in Table 1 (i.e., a test of the null hypothesis that »3 = », in the C
model) is obtained by comparing the chi-squared value for the combined model
described above with the chi-squared value for the C model; thus obtaining

(2.29) {{X2(0) — X2(0")] + X3(C")} — X*(C).

(Formulae (2.28) and (2.29) are referred to, in abbreviated notation, in the second
column of Tables 10A and 10B, for the first and second components, respectively.)
Note that the sum of the statistics (2.28) and (2.29) is

[X?(0) — X*(C")] + [X*(0) — X*(0") + X*(C") — X*(C)]
= X*(0) — X*(C).

The statistics (2.28) and (2.29) can serve as.the components in a partitioning of
the statistic (2.30), where (2.30) is used as a test pertaining to the general effect
and column effect in the usual C model in Table 1.

We noted in Goodman (1981a, 1981d) that formulae of the kind described by
(2.28) and (2.29) can be extended in a straightforward way to study the possible
equality of a given subset of the parameters »;. In this case, these formulae can
be applied directly, using as the modified cross-classification table (say, a Table
1’) the original table modified by combining the columns pertaining to the given
subset. Also, with respect to the parameters »; in the C model, if the columns of
the original table are partitioned into mutually exclusive and exhaustive subsets,
in a study of the possible equality of the »; that are included within each subset,
the modified cross-classification table would be the original table modified by
combining the columns included within each subset. (With respect to Table 1, in
the example I first used here, the particular application of (2.28)-(2.29) that was
presented could have been described as a partitioning of the four columns into
three mutually exclusive subsets, where the first two subsets consist of one
column each and the third subset consists of two columns (columns 3 and 4).)
Similarly with respect to the parameters »; and g; in the RC model, if the columns
of the original table are partitioned into mutually exclusive and exhaustive
subsets, and the rows are also partitioned into mutually exclusive and exhaustive
subsets, in a study of the possible equality of the »; that are included within each
subset of the columns and the possible equality of the u; that are included within
each subset of the rows, formulae (2.29) can be applied directly, replacing C and
C’ in this formula by RC and RC’, respectively; and using as the modified cross-
classification table the original table modified by combining the columns that
are included within each subset of the columns and also combining the rows
included within each subset of the rows.

(2.30)
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In closing this discussion of the extension of formulae (2.28) and (2.29), we
return for a moment to our earlier comment on the equivalence between the
statistic for testing the homogeneity model (viz., X?(0) — X*(0’)), which was
included in these formulae, and the corresponding statistic obtained with a more
direct test of the homogeneity model. If the columns and the rows of the original
table are partitioned as described above, then the homogeneity model in this
context states that the columns included within each subset of columns are
homogeneous, and the rows included within each subset of rows are homogeneous.
With the explicit formulae for the maximum-likelihood estimate of the expected
frequencies under this homogeneity model (see, e.g., Goodman, 1981d), the
corresponding chi-squared statistic can be calculated directly (comparing the
observed frequencies in the original cross-classification table with these esti-
mated expected frequencies), and this statistic is equivalent to the statistic
X2%(0) — X%(0’). The chi-squared statistic calculated directly reduces, in certain
special cases, to a statistic for testing independence or quasi-independence applied
to a subtable formed from the original cross-classification table by deleting the
cells that are not relevant to the particular homogeneity model. (For further
details, see Goodman 1981a, 1981d.) In some special cases, it will be simpler to
apply the chi-squared statistic calculated directly (or the equivalent statistic for
testing independence or quasi-independence applied to the appropriate subtable
of the original I X oJ table); and in other cases, we would calculate the equivalent
difference statistic, X2(0) — X?(0’).

The number of degrees of freedom for testing the homogeneity model is simply
the difference (I — 1)(J — 1) — (I’ — 1)(J’ — 1), where I’ and J’ are the number
of rows and the number of columns, in the modified table (see, e.g., Goodman,
1981d). (When I’ = I, this difference is equal to (I — 1)(J — J’).) The correspond-
ing number of degrees of freedom for the statistic (2.28) is the difference

I'-DJ-1)-T'=-2)J' -1)=J" -1

and similarly the number of degrees of freedom for the statistic (2.30) is J — 1.
In view of the relationship between (2.28), (2.29), and (2.30), we see that the
number of degrees of freedom for the statistic (2.29) is simply J — J’. When the
C and C’ in formula (2.29) are replaced by RC and RC’, respectively, we obtain
I+ J— 1" — J' degrees of freedom for the statistic (2.29). (Note also that the
number of degrees of freedom for the term in brackets in formulae (2.29) is equal
to

J-J)V+U-2)J-1)=U-1)J-1)—=JJ - 1)=lJ-1I-J—-J +2
and similarly the corresponding number of degrees of freedom is equal to
I+J-T-JI)V+I-2DJ-2)=T-1)J-1)—-T"+J =3
=lJ-1-J—-I—-J +4,

when the C’ in the term in brackets in (2.29) is replaced by RC’.)
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2.3. Comparison between association models and correlation models.

2.3.1. Introductory comments. Let us begin this section with a comparison
between the association models and correlation models in the simple case of the
2 X 2 table. In this case, the U, R, C, RC models are all saturated models, and
estimation is thus simplified. Also, for the 2 X 2 table, we see from (2.14) and
(2.18) that

=X = "(Pz./Pl.)l/z, Mo = Xo = (Pl-/P2-)l/2’
n=nN-= _(P.2/P.1)1/2, Vg = Y2 = (P.I/P.2)1/2-

Under the association models, we see from (2.6) and (2.31) that

(2.31)

(2.32) d; = {10g[(pup22)/(p12p21)]}(p1.p2.p.1‘p.2)1/2;

and under the correlation models, we see from (2.19) (or from (2.20) and (2.31))
that

(2.33) f\ = (puP22 — P12P21)/ (Pl.pz.P.1P.2)1/2-

As we have already noted in the more general I X J table, the é pertains to the
logarithm of the odds-ratios (see (2.6)), while A pertains to the correlation (see
(2.19)).

When A is close to zero, the estimates (2.32) and (2.33) will be close to each
other; but they can differ greatly when X is not close to zero. In the more general
I x J table, we see from (2.2) and (2.17) that the association models and the
corresponding correlation models will give similar results when A (or ¢) is close
to zero; but the results can be quite different when A is not close to zero. (Of
course, when A = ¢ = 0, models (2.2) and (2.17) are identical.)

In my first article comparing the association models and the canonical corre-
lation approach (Goodman, 1981a), I described conditions under which the j;
and »; of the association model (2.2) (with ¢ # 0) will be approximately equal to
the %; and y; of the correlation model (2.17). These conditions can be characterized
as follows: (a) when a sample cross-classification table arises from an underlying
(discretized) joint bivariate normal; or (b) when it arises from an underlying
bivariate distribution that is not necessarily normal, but where separate trans-
formations of the row scores and the column scores can be found so that the
transformed scores have a discretized joint bivariate normal distribution (see
Goodman, 1981a).

It is interesting to note that the association model (2.2) (with ¢ # 0) can be
quite different from the correlation model (2.17), even when the yu; and »; of
model (2.2) are approximately equal to the %; and ¥; of model (2.17)—e.g., even
when the conditions described in the preceding paragraph are satisfied. To
illustrate this point, we first note that in order to describe a bivariate normal
distribution, the tetrachoric series based upon Tchebycheff-Hermite polynomials
can be used (see, Lancaster, 1957, 1969; and Kendall and Stuart, 1979, page 602),
and application of only the first term in the series will usually not be adequate



32 L. A. GOODMAN

(unless the correlation is close to zero). Since the correlation model (2.17)
corresponds only to the first term in the tetrachoric series, this model will usually
not be adequate as a description of the cross-classification arising from an
underlying bivariate normal. On the other hand, the association model (2.2) can
provide an excellent approximation to the discretized bivariate normal, as we
shall see in Section 2.3.2. Thus we find that when the cross-classification arises
from, say, an underlying discretized bivariate normal (with row and column
scores pertaining to the corresponding levels of the underlying variables), the
estimated scores %; and y; obtained from model (2.17), and the corresponding
estimated scores 4; and 7; obtained from model (2.2), will be approximately equal
to the corresponding row and column scores (see Goodman, 1981a); but the
bivariate distribution obtained with the correlation model (2.17) will not provide
as good an approximation of the distribution in the cross-classification table as
will the association model (2.2).

There is a direct relationship between the parameter ¢ in (2.2) and the
correlation between the row scores and column scores, u; and »;, when the cross-
classification table arises from an underlying bivariate normal, and also under
some more general conditions (see Goodman, 1981a). Even when these conditions
are not satisfied, the parameter ¢ in (2.2) will be relevant as a measure of intrinsic
association (see (2.4)), but the correlation between the row scores and column
scores will not be particularly meaningful under (2.2).

In comparing the association model (2.2) with the correlation model (2.17),
we note that the association model (2.2) is defined for all possible values of u;
and v;; whereas the correlation model (2.17) is defined only when

(2.34) xy; =z -1/IN|, for i=1,2,---,1; j=1,2,...,d.

Condition (2.34) can be very limiting, as will be evident if an attempt is made to
apply the correlation model in, say, the examples of Section 2.3.2 (see Table 11),
where condition (2.34) is violated. In addition, as noted earlier, with the identify-
ing condition (2.14) applied in the association model, there is no loss of generality;
but this is not the case, in a certain sense, when condition (2.18) is applied
in the correlation model. (If the right-hand side of (2.17) is replaced by
a;8;(1 + Ax:y;), the corresponding conditions pertaining to zero mean in (2.18)
introduce a loss of generality.)

Here is another way in which association models are preferable to correlation
models: The methods developed for maximum-likelihood estimation and testing
using association models can be directly extended to the case where the I X J
table has deleted entries (which are missing, void, unreliable, or restricted in
certain ways); see, e.g:, Goodman (1979a). But the correlation models are defined
in a way that would make it more difficult to extend these models to the case
where there are deleted entries in the I X </ table, without changing the character
of the models to some extent. (With the simplest correlation model (where
A = 0), if there are deleted entries in the I X J table, the formulation of the
correlation model would be changed to the same formulation used with the
corresponding association model in order to make it applicable; compare (2.16)-
(2.17) with (2.1)-(2.2).) It is possible to generalize the correlation models in order
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to make an extended version of them applicable to the case where there are
deleted entries in the I X J table, but this is less straightforward than the
corresponding generalization of the association model, and it is also beyond the
scope of this lecture. In addition, although we noted earlier that the association
model (2.2) and the corresponding correlation model (2.17) will give similar
results when M (or ¢) is close to zero, the results can be quite different if any of
the x;y; is sufficiently negative (and large in absolute value) so that condition
(2.34) is either violated or almost violated. (In this lecture, when we comment on
the case where ) is close to zero, we shall limit consideration to the case where
\x;y; is also sufficiently close to zero, fori=1,2;-.-,I;j=1,2,...,J.)

Before closing this section, we return briefly to (2.32) and (2.33). These
formulae for maximum-likelihood estimates of ¢ and A, respectively, were ex-
pressed explicitly in terms of the observed proportions p;;. There was no need to
use iterative procedures in the calculation of these maximum-likelithood esti-
mates, since the association models and correlation models (U, R, C, and RC)
are all saturated models for the 2 X 2 table (see Table 4B). Similarly, since the
R and RC models are saturated models for the I X 2 table, and the C and RC
models are saturated models for the 2 X J table, explicit formulae that are
generalizations of (2.32) and (2.33) can be obtained in these cases. For example,
from (2.22) we obtain ‘

(2.35) A =[3L 3L (py — pip )/ (Rip Y2,

in the cases noted above (viz., the I X 2 tab}e and the 2 X J table, with the
corresponding saturated models). The sign of A in (2.35) is arbitrary in a certain
sense (since the sign of A in (2.19) changes when the x; are replaced py —X;, O
when the y; are replaced by —y;), but we take here as the sign of A\ the sign
obtained with (2.33) applied to a 2 X 2 subtable (formed from, say, rows 1 and 2
and columns 1 and 2) of the full I X J table. If the sign obtained with (2.33) is
different for different 2 X 2 subtables, then we can take whichever sign predom-
inates when considering all subtables formed from, say, rows i and i + 1 and
columns jand j+ 1,withi=1,2, ..., I—1and j=1,2, ---,J — 1. (The sign
of A obtained in this way can differ from the sign obtained following the usual
convention in canonical correlation analysis; but in the present context, the
method used here is preferable to some extent. With respect to the usual
convention in canonical correlation analysis, where either the J; or the —j; are
used, whichever makes the correlation A nonnegative, we could instead decide
between the 3; and the —j; following the same general method used in deciding
between the x; and the —zx;, and the sign of the correlation A would be a direct
consequence of this decision.)

For the I X ¢/ table with I = 2 and/or J = 2, further simplification of (2.35)
will shed some additional light on the relationship between the A %;, and y;
obtained with the RC correlation model. We shall illustrate this point for the
case where I = 2 and J = 2. In this case, the %; are given by (2.31); and from
(2.23b) we see that y; can be expressed as

(2.36) 5= 91/A,
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with

(2.37) 9} = (pr.py — P2.py)/[P(Pr.D2)"?),
and

(2.38) X =[2k (91

The §{ can also be written as
9/ = —(py = P1.p)/[P(P1.p2)""]
(py — P2.p)/P.i(PLP2)Y?];

(2.39)

see, e.g., (2.20).

Similarly, with respect to the relationship between (3, i, and »; for the RC
association model in this case (with I = 2), the ji; are given by (2.31); and from
(2.6) we see that »; can be expressed as

(2.40) 5 = 5//9,

with

(2.41) vha — 5! = &(prp2)Y?,
and

(2.42) ¢ =[Sk G p Y2

The 5/ can be written as ¥/ = »”(p1.ps2.)"?, with
iy $1,(1 — Stapy), for j=1
57— i i, for j>1;

(2.43a) by = {

or equivalently as

Yot &y + 57, for j=1,2,.-.-,Jd—1
_Z;:;__ll ‘i’lk(zf;l p.), for j=4d.

These formulae can be expressed also in other equivalent terms; e.g.,

A J-1 J A J-1 3 J
by = k=1 ‘I>1k(2t=k+1 p.t), vy = — k=1 ®(1 — 2#k+1 p.t)’

(243b) 57 {

etc. .
From the results in the preceding two paragraphs, we find, among other things,
that the difference between the estimated »; is a function of the log-odds &y;; i.e.,
(2.44) Vi1 — U = ‘i’lj(pl.Pz.)l/Z/&;

and that the estimate of y; is a function of the difference between observed and
expected frequencies (under the null hypothesis of independence), weighted
inversely by p;; i.e.,

(2.45) ¥ = (pLpy — pZ-PU)/[P-j(Pl.pz.)l/Zx]-
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2.3.2. Association models and a generalized bivariate normal with arbitrary
marginals. Let us begin this section by considering first the usual bivariate
normal distribution in which the univariate marginal distributions are, of course,
also normally distributed. Various authors have compared this bivariate normal
with Plackett’s model (see, e.g., Plackett, 1965; Mardia, 1967; and Anscombe,
1981, page 307), and have concluded that the two distributions are close to one
another. A particular example of Plackett’s model was compared with the
bivariate normal distribution having correlation p = 0.5 in Pearson (1913) and
Plackett (1965), p = 0.45 in Mardia (1967), and p = 0.6 in Anscombe (1981, page
307). With p = 0.5, the central ordinate of each cumulative distribution function
is equated; with p = 0.6, the central ordinate of each density function is equated;
and with p = 0.45, a special kind of correlation coefficient calculated for each
distribution is equated (see Mardia, 1967). In the section on approximation to
the bivariate normal distribution in Mardia (1967, Section 7), he concludes that
his method (viz., equating a special kind of correlation coefficient calculated for
each distribution) is “better than Plackett’s method [viz., equating the central
ordinate of each cumulative distribution] everywhere except at points in the
neighborhood of (0, 0). However, ... if the D.F. [distribution function] around
(0, 0) is of importance then Plackett’s method is recommended.” (In addition,
using Plackett’s distribution as an approximation to the bivariate normal, Mardia
presents methods for estimating the correlation coefficient of an underlying
bivariate normal distribution in the I X J table; see Mardia, 1967, Section 9;
1970, Section 8.7.) Anscombe (1981, page 306) first compares the bivariate normal
and Plackett’s model by equating the central ordinate of each density function;
and he then suggests that, for the particular example of Plackett’s model under
consideration, a value of p in the neighborhood of 0.4 be chosen. (He equates
moments to obtain this value.)

For the bivariate normal distribution with p = 0.5, comparison of Plackett’s
model with the association models shows that the latter models agree more
closely with the normal than does Plackett’s model (Goodman, 1981b). Now
Tables 11A, 11B, and 11C yield similar results for p = 0.6, p = 0.45, and p = 0.4.
In addition, with respect to the estimation of the correlation coefficient, we find
that in all these cases, the estimate ¢, when transformed as described in Goodman
(1981b), yields estimates of p that agree with the true p to two decimal places;
and a similar result is obtained with an estimate of p based upon the correlation
between the row scores and column scores, j; and »;, estimated under the model.

Plackett’s model did not agree so well with the bivariate normal because of
the skewness of the conditional distributions obtained with this model and the
nonlinearity of its regressions (Pearson, 1913), and because “quadrant associa-
tion” is constant in Plackett’s model but not in the bivariate normal (Mosteller,
1968). Of course, if we were to compare Plackett’s model and the association
models with respect to how well they approximate some other bivariate distri-
bution (different from the bivariate normal), the results obtained would depend
upon the particular distribution under consideration.

Let X and Y now denote continuous random variables, and let u(X) and »(Y)
denote functions of X and Y that have a standard bivariate normal distribution
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TABLE 11A
Bivariate normal distribution with p = 0.6 (first entry) compared with the corresponding uniform
association model (second entry) and Plackett’s model (third entry). Probability = Entry/10*

x
Y 0.0 0.5 1.0 1.5 2.0 2.5
3 8 13 15 12 10
3.7 8.7 13.9 15.2 115 7.1
11 12 14 7 5 1
2.5
17 32 40 35 21 12
16.8 314 403 35.4 214 115
27 36 33 23 8 5
2.0
68 101 104 .73 35 15
6.7 101.3 104.0 73.1 35.4 15.2
76 97 88 52 24 6
1.5
188 224 184 104 40 13
187.7 224.7 184.7 104.0 403 13.9
180 210 165 88 32 15
1.0 '
356 340 924 101 32 8
356.5 341.7 224.7 101.3 314 8.7
340 331 210 97 36 12
0.5
463 356 188 68 17 3
464.7 356.5 187.7 67.7 16.8 3.7
458 340 180 71 26 11
0.0
415 256 109 32 6 1
415.7 255.3 107.6 311 6.2 11
397 239 115 49 17 6
-0.5
256 127 43 10 2 0
255.3 125.5 423 9.8 1.6 0.2
238 131 64 26 10 3
-1.0
109 43 12 2 0 0
107.6 423 114 2.1 0.3 0.0
116 63 30 14 4 2
-1.5
32 10 2 0 0 0
311 9.8 2.1 0.3 0.0 0.0
49 27 13 5 2 1
-2.0
6 2 0 0 0 0
6.2 16 0.3 0.0 0.0 0.0
17 9 5 2 1 0
-2.5
1 0 0 0 0 0
11 0.2 0.0 0.0 0.0 0.0
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TABLE 11B
Bivariate normal distribution with p = 0.45 (first entry) compared with the corresponding uniform
association model (second entry) and Plackett’s model (third entry). Probability = Entry/10*

x
Y 0.0 0.5 1.0 1.5 2.0 2.5
7 12 14 12 8 5
7.7 12.0 138 11.7 7.3 43
11 12 14 7 5 1
2.5
26 35 35 26 14 8
25.9 35.3 35.4 26.1 14.3 7.3
27 36 33 23 8 5
2.0
82 97 84 54 26 12
81.7 97.1 84.8 54.6 26.1 11.7
76 97 88 52 24 6
1.5
191 197 150 84 35 14
190.9 197.9 151.0 84.8 35.4 13.8
180 210 165 88 32 15
1.0
328 296 197 97 35 12
328.8 297.5 197.9 97.1 35.3 12.0
340 331 210 97 36 12
0.5
416 328 191 82 26 7
416.6 328.8 190.9 81.7 25.9 7.7
458 340 180 77 26 11
0.0
389 269 137 51 14 3
389.2 268.0 135.8 50.7 14.0 3.6
397 239 115 49 17 6
-0.5
269 162 72 24 6 1
268.0 161.1 71.2 23.2 5.6 1.3
238 131 64 26 10 3
-1.0
137 72 28 8 2 0
135.8 71.2 2756 7.8 1.6 0.3
116 63 30 14 4 2
-1.5
51 24 8 2 0 0
50.7 23.2 7.8 1.9 04 0.1
49 27 13 5 2 1
-2.0
14 6 2 0 0 0
14.0 5.6 1.6 0.4 0.1 0.0
17 9 5 2 1 0
-2.5
3 1 0 0 0 0
3.6 13 0.3 0.1 0.0 0.0
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TABLE 11C

Bivariate normal distribution with p = 0.4 (first entry) compared with the corresponding uniform
association model (second entry) and Plackett’s model (third entry). Probability = Entry/10*

x
Y 0.0 0.5 1.0 1.5 2.0 2.5
9 12 13 11 6 4
9.0 12.6 13.2 10.3 6.0 3.4
11 12 14 7 5 1
2.5
28 35 33 23 12 6
28.4 35.3 33.0 23.1 121 6.0
27 36 33 23 8 5
2.0
85 94 79 49 23 11
85.0 94.5 78.9 49.3 23.1 10.3
76 97 88 52 24 6
1.5
191 190 141 79 33 13
190.9 189.6 141.5 78.9 33.0 13.2
180 210 165 88 32 15
1.0
321 285 190 94 35 12
320.7 284.5 189.6 94.5 35.3 12.6
340 331 210 97 36 12
0.5
405 321 191 85 28 9
404.7 320.7 190.9 85.0 28.4 9.0
458 340 180 77 26 11
0.0
383 271 144 57 17 4
382.5 270.8 144.0 57.3 17.1 48
397 239 115 49 17 6
-0.5
27 171 81 29 8 2
270.8 171.2 81.3 28.9 7.1 2.0
238 131 64 26 10 3
-1.0
144 81 34 11 3 1
144.0 81.3 345 11.0 2.6 0.6
116 63 30 14 4 2
-1.5
57 29 11 3 1 0
57.3 28.9 11.0 3.1 0.7 0.1
49 27 13 5 2 1
-2.0
17 8 3 1 0 0
17.1 7.7 2.6 0.7 0.1 0.0
17 9 5 2 1 0
-2.5
4 2 1 0 0 0
4.8 2.0 0.6 0.1 0.0 0.0
6 3 2 0 1 0
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with correlation coefficient p. Then the probability density function for (X, Y)
can be expressed as

(2.46) fx, ) = alx, p)B(y, p)e® ™,
where .
(247) ¢’ = p/(1 — p?),

and

a(x, p) = exp(—p%(x)/2(1 — p?)(dp/dx)(2m) 21 — p?)~/4
B(y, p) = exp(—v?(y)/2(1 — p?))(dv/dy)(27)/2(1 — p?)'/4,

with du/dx and dv/dy the derivatives of u(x) and »(y). (Here we consider functions
p(x) and »(y) that are differentiable and have inverses.) Consider the class of all
random variables (X, Y) that have density functions of the general form (2.46)-
(2.48), i.e., all random variables (X, Y) that can be expressed in terms of separate
transformations of random variables that have a joint bivariate normal distri-
bution with correlation coefficient p. The corresponding density functions form
the translation family obtained from the bivariate normal (see, Mardia, 1970,
page 30). This family of density functions can be further extended by considering

(2.49) Ax, ¥) = a*(x, p)B8*(y, p)edz'#(x)v(y)’

where a*(x, p) and 8*(y, p) are nonnegative functions of (x, p) and (y, p),
respectively, which need not necessarily satisfy (2.48). The only restriction on
a*(x, p) and 8*(y, p) is that the resulting f(x, ¥) be a density function, with the
integral over the range of (x, ¥) equal to one. This family of density functions is
richer than the translation family, and will prove more useful in various ways.
The association models can be viewed as the discrete analogue of this family of
density functions.

To further clarify the difference between the family of density functions
(2.46)~-(2.48) (i.e., the translation family) and the more general family (2.49)
introduced above, we note that the restrictions (2.48) for the translation family
can also be expressed as follows:

a(x, p) = o’ (x)exp(—p*(x)p%/2(1 — p?))(1 — p?)™*

(2.48)

2.50
(2.50) B(y, p) = B’ (y)exp(—v2(y)p%/2(1 — p?))(1 — pD)™4,
with
o’ (x) = exp(—u®(x)/2)(dp/dx)(27)"V/?
(2.51)

B’ (y) = exp(—v(x)/2)(dv/dy)(27) "2,

where «’(x) and 8’ (y) are the marginal density functions for the random variables
X and Y, respectively. With the more general family (2.49), the a*(x, p) and
B8*(y, p) need not be of the same form as a(x, p) and B(y, p) in (2.50)-(2.51).

2.3.3. Correlation models, association models, and generalized bivariate multi-
nomial distributions. With the usual multinomial distribution applied to the



40 L. A. GOODMAN

I X J table, the marginal distributions for the row classification and for the
column classification will be multinomial distributions, with P;, being the prob-
ability that an observation will fall in the ith row category (i=1, 2, .- -, I), and
P being the probability that an observation will fall in the jth column category
(j=1,2, ..+, J). The correlation model (2.17) yields a bivariate multinomial
distribution, with the corresponding marginal multinomial distributions defined
in terms of the P; and P, in (2.17). This bivariate distribution is a direct
generalization of the bivariate binomial distribution considered by Aitken and
Gonin (1935) and Hamdan and Martinson (1971). Formula (2.35) for the I X
table with I = 2 or J = 2 is a generalization of a corresponding result obtained
by Hamdan and Martinson (1971) for the 2 X 2 table.

The association model (2.2) yields a different bivariate multinomial, with the
corresponding marginal distributions defined in terms of

(2.52) P, =q Z}Ll Bie®, P,= g T, ae®,

As we noted in Section 2.3.2, the association model (2.2) can also be viewed as a
discretized version of a generalization of the bivariate normal in which the
marginal distributions are not necessarily normal.

2.4. Correlation models, association models, canonical correlation, and corre-
spondence analysis. We shall show in this section how the association models
and correlation models can simplify and supplement results obtained with can-
onical correlation and correspondence analysis.

For an I X J cross-classification table, let M = min(/ — 1, J — 1). The canonical
correlation model is

(2.53) Py = P P;(1 + Yu_1 AnimYjm),
where

Shi %im Pi. = 0, Y5 YimPj =0,
(2.54) L x%,P=1, i ¥iaPy =1,

Shi Zinkim Pi. = 0, St YimYim P =0,

for m # m’. The parameter A, in (2.53) is a measure of the correlation between
Zim and ¥, since

255 - Tht Tk %inYimPs = A,

under (2.53)-(2.54). Model (2.53) will be called the saturated RC correlation
model. We next introduce the unsaturated RC correlation models

(2.56) P;=P.P;(1+ ¥M, A Xim Yjm)s

where 1 < M* < M. The case where M* = 1 was considered in (2.17), and the
methods used for this case can be directly extended to the more general case. See
the Appendix herein; and, for related material, see Williams (1952), Kendall and
Stuart (1979, page 599), and Gilula and Haberman (1984).

We can also extend the association models considered earlier. In this case, the
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saturated RC association model is
(2.57) Py = a;8;exp(SM_; GmbtimVjm),

where the y;, and v, in (2.57) satisfy the same kind of conditions as described
by (2.54). (Compare (2.57) with (2.53).) Similarly, we can introduce next the
unsaturated RC association models

(258) sz = aiﬂjexp(zi‘n{;l d)mﬂimyjm):

where 1 <= M* < M. Here, too, the methods developed earlier for the case where
M* =1 (see (2.2)) can be directly extended. For related material, see Goodman
(1981a), and Chuang, Gheva, and Odoroff (1983).

Table 1, analyzed in Sections 2.1 and 2.2, is a 4 X 4 table, so M = 3. The last
column of Table 7B gives the A1, %, and ¥j1 obtained with the saturated
correlation model (M = 3) for the 4 X 4 table. With our earlier analysis of the
unsaturated RC model with M* = 1 (see Table 7A), we found that it was not
necessary to consider M* = 2 or M* = 3 in the 4 X 4 table. Also, we found with
our more detailed analysis of the case where M* = 1, using the U, R, C, and RC
models, that further simplification was possible. A similar comment applies also
to our earlier analysis of the modified Table 1 (see Table 8A).

Now let us consider Table 2. This table was analyzed earlier using correspond-
ence analysis in Escoufier (1982). Correspondence analysis is a reparameteriza-
tion of canonical correlation analysis. In this case, we can express the correspond-
ence analysis model as

(2.59) Py = P.P(1 + I x[nYim/ M),
where
(2-60) xi,m = >\mxim; yj’m = Amyj”l’

From (2.54) and (2.60), we see that
L xl, P =0, E}’=1 YimPj=0,
L xZPL=2L, Y yiaPi= Ak

This is the saturated model, and we can introduce an unsaturated version as we
did earlier in (2.56):

(2.61)

(2.62) ‘ Pj = P Pi(1 + 302 XinYm/ Am),
for1 <= M* SVM .
As earlier, we see that the correlation between x/, and y/. is equal to A\,
(2.63) Yt s XY im Pyl A = A,
and also

3L, (P; — P.Py)?*P.P;
= 2%=1 (2{=1 xz,rrthl)(Z;Ll yjlrrzlP.j)/Arzn =¥M AL
Thus, with the saturated model, the goodness-of-fit measure (2.64), which is

(2.64)
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used in testing the null correlation model (A, = 0, for m =1, 2, ..., M),
can be partitioned into M components A% (for m = 1, 2, ---, M); and from
(2.61) we see that the component A% can be partitioned into I components
x/2P;, (for i =1,2, -+, I) or into J components y/,2P,; (for j =1, 2, ..., J).
Since Table 2 is a 4 X 6 table, we have M = 3. Table 12 gives the correspondence
analysis for the saturated model. The proper value (or characteristic value) in
this table is A2, (for m = 1, 2, 3). From Table 12 we see that 94% of the goodness-
of-fit chi-squared value is due to A in the first dimension (see (2.64)). With our
statistical analysis of the unsaturated correlation models (see Table 13), we find
that it is sufficient to consider only M* = 1; and, in addition, further simplifica-
tion is possible. The i/, scores can be equalized for i = 2, 3, and the ¥/, scores
can be equalized for j = 1, 2 and for j = 3, 4, without any great loss. Also, from
Table 13 we see that the RC model can be replaced by models C, R, or U, where
model U is the most parsimonious, for the data in Table 2 unmodified; and a
similar comment also applies to the data in Table 2 modified as indicated in the
second section of Table 13.

To facilitate comparison between the correspondence analysis and the corre-
lation models, the row coordinates and column coordinatqs for the correlation
models in Table 12 were given as %/ and ¥/, where £/ = A%; and y; = \y; (see
(2.60)). Also, to facilitate comparison, we present in Table 12 the proper value
(or characteristic value) 5\2, rather than the correlation A (see (2.63)-(2.64)). If
we had instead been comparing here the canonical correlation approach with the
correlation models considered in this lecture, we would have compared the row
and column canonical scores with the z; and y;, respectively (see Tables 7B and

TABLE 12
Correspondence analysis and related results obtained with correlation models applied to Table 2

correlation models

correspondence
analysis RC RC’ c’ U
dimension 1 2 3
proper value 0260 .0014 .0003 .0266 0257 0257 0253
percentage 94% 5% 1% 96% 93% 93% 91%
row coordinates x’
1 .260 012 023 .261 .262 .261 258
2 .030 024 —.019 .031 011 .012 012
3 -.013 -.069 —.002 —.014 .011 012 .012
4 -.236 019 016 —.241 —.235 —.236 —.234
column coordinates y’
1 .181 -.018 028 177 .185 .185 179
2 185 —-.011 -.026 191 .185 185 179
3 .059 -.021 -.010 060 019 019 019
4 —.008 .042 011 —.009 019 019 019
5 -.164 .044 -.009 -.165 -.167 -.167 -.142
6 —.287 —.061 .005 —-.293 —.285 —.286 -.303

*The RC’, C’, and U’ correlation models were applied with restrictions imposed on columns 1 and
2, columns 8 and 4, rows 2 and 3.
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TABLE 13
Assoctation models and correlation models applied to Table 2

association models correlation models

degrees
models of goodness- likelihood- goodness- likelihood-
freedom of-fit ratio of-fit ratio
chi-squared chi-squared chi-squared chi-squared

for Table 2 unmodified

0 15 45.99 47.42 45.99 47.42

U 14 9.73 9.89 9.50 9.64

R 12 6.29 6.28 5.83 5.82

C 10 6.78 6.83 5.76 5.78

RC 8 3.57 3.57 2.74 2.75
for Table 2 modified, with cols. 1 and 2 combined, cols. 3 and 4 combined, rows 2 and 3

combined .

0’ 6 42.04 43.44 42.04 43.44

U’ 5 1.27 1.27 .39 40

R’ 4 1.09 1.09 39 40

C’ 3 .98 98 12 12

RC’ 2 .86 .87 a2 12
for Table 2 with cols. 1 and 2 interchanged

0 15 45.99 47.42 45.99 47.42

U 14 9.10 9.21 8.45 8.52

R 12 6.02 6.03 5.10 5.10

C 10 6.78 6.83 5.76 5.78

RC 8 3.57 3.57 2.74 2.75

8B); and we would also have presented the estimated correlation A for comparison
with the usual principal canonical correlation.

Some of the results obtained here in our analysis of Table 2 and the modified
Table 2 (which we shall call Table 2’) can be summarized in Tables 14 and 15.
The interpretation of the components in Tables 14 and 15 is somewhat similar
in form to the corresponding interpretation presented earlier for components in
Tables 9 and 10 (see, e.g., (2.28)-(2.30)).

With respect to the heterogeneity component (i.e., the third component) in
Tables 14A and 14B, we see that the homogeneity model for columns 1 and 2,
columns 3 and 4, and rows 2 and 3 is congruent with the data. This kind of
analysis was also applied to the homogeneity model for columns 5 and 6 (included
with the other pairs of columns and rows listed above), and this model, too, was
congruent with the data (see Gilula, 1984); but I did not include this model in
our analysis here because there is actually enough heterogeneity between columns
5 and 6 in the data so that models that incorporated the supposed homogeneity
of columns 5 and 6 turned out to provide, in some respects, a somewhat less
adequate description of the data. For example, while the first RC correlation
model in Table 12 (i.e., the RC model without homogeneity restrictions) ex-
plained, in a certain sense, 96% of the total goodness-of-fit chi-squared value,
the corresponding RC model that incorporated the supposed homogeneity of
columns 5 and 6 (together with the other pairs of columns and rows listed above)
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TABLE 14A
Analysis of association (ANOAS) in Table 2 and Table 2': components of association

degrees likelihood-
models .
components of ratio

used freedom chi-squared
General effects in T'% o -u 6—-5=1 42.17
Other effects in T'; U’ 5 1.27
Heterogeneity between cols. 1 and 2, 0-0 15—-6=9 3.98
cols. 3 and 4, rows 2 and 3 in T,
Total effects in T 0 15 47.42
TABLE 14B

Analysis of correlation (ANOCOR) in Table 2 and Table 2’: components of correlation

degrees likelihood-

models .
components used of ratio
freedom chi-squared
General effect in T'; o -uU 6—-5=1 43.04
Other effects in T} u’ 5 0.40
Heterogeneity between cols. 1 and 2, 0-0' 15-6=9 3.98
cols. 3 and 4, rows 2 and 3 in T
Total effects in T 0 15 47.42

explained only 89%. (While the maximum-likelihood estimate A} for the proper
value (or characteristic value) A? was .0266 for the first RC correlation model in
Table 12, it was only .0246 for the corresponding RC model that incorporated
the supposed homogeneity of columns 5 and 6, together with the other pairs of
columns and rows.) Although the heterogeneity between columns 5 and 6 in the
data was not statistically significant, and models that incorporated the supposed
homogeneity were more parsimonious, these models are not included here since,
in this section on the comparison between correspondence analysis and an
analysis based upon the correlation models or association models (described
earlier herein), I include models that would be of greater interest to those who
are more at home with correspondence analysis.

In the case where the order of the column categories is specified as indicated
in Table 2, the ¥, for the first RC correlation model in Table 12 indicate that the
order of the y; is not monotonic (see y; and J3), and similar results (not included
in Table 12) are obtained with the corresponding C correlation model, and with
the RC and C association models. When the order of the column categories is
specified, we can impose restriction (2.15) on the column parameters in the
association models, or a corresponding restriction on the parameters in the
correlation models. As in the earlier analysis of Table 1, the imposition of
restriction (2.15) now would lead us to an analysis of Table 2 modified by
combining columns 1 and 2. We have omitted this analysis here because it
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TABLE 15A
Analysis of association (ANOAS) in Table 2 and Table 2': components of association
degrees likelihood-
components models used of ratio
freedom chi-squared
General effect in U model o -U 6-5=1 42.17
with V1 =Va, V3 S V4,
pe = p3 in Ty
Row and column effects in RC U’ ~ RC’ 5—2=3 0.40
model with vy = vy, v3 =v4,
pe = pg in T
Inequality between v; and v,, 0—-0'+RC’'—RC 11-8=3 1.28
va and v4, ue and us in RC
model in T,
Other effects in RC model in T, RC * 8 3.57
Total effects in T, 0 15 47.42
TABLE 15B
Analysis of correlation (ANOCOR) in Table 2 and Table 2’: components of correlation
degrees likelihood-
components models used of ratio
freedom chi-squared
General effect in U model 0 -u 6—-5=1 43.04
with y;, = y2, ¥3 = vy,
X2 = X3 in Tz
Row and column effects in U’ —RC’ 5—2=3 0.28
RC model with y, = y,,
V3= Y4, X2=x3in T3
Inequality between y; and y., 0~0'+RC'-RC 11-8=3 1.35
ys and y4, x; and xg in RC
model in T,
Other effects in RC model in T RC 8 2.75
Total effects in T: 0 15 47.42

T

is similar in form to the corresponding analysis carried out earlier herein for
Table 1.

In the case where the order of the column categories is not specified (see Table
4A), we can use the estimated parameters in the RC model (or the C model) to
suggest a possible order for the column categories. Thus, for example, the
estimated column parameters in the RC model in Table 12 would suggest that
columns 1 and 2 be interchanged. When this is done, the cross-classification
table thus obtained can be analyzed using the general approach presented in this
lecture. Some results are included in the final section of Table 13. From these
results, we see that in this case the interchange of columns 1 and 2 yields a slight
improvement. (Compare the chi-squared values in Table 13 for the U model
obtained for Table 2 unmodified and for Table 2 with columns 1 and 2 inter-
changed.) Although the improvement is slight in this particular example, the
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general approach suggested here can sometimes yield dramatic improvements
when the order of the categories is not specified.

2.5. An overview and some additional models. Each class of models considered
here—the association models and the correlation models—includes within it a
large number of models, starting first with the most parsimonious (the null 0
model, (2.1) or (2.16)), then with the second most parsimonious (the U model,
(2.2) with (2.9), or (2.17) with (2.24)), and proceeding step by step to the least
parsimonious (the saturated RC model, (2.57) or (2.53)). To distinguish between
the different unsaturated models, we now let (RC); denote the unsaturated RC
models introduced in Sections 2.1 and 2.2 (viz., (2.2) and (2.7)). Thus, these
(RC); models are obtained from (2.58) and (2.56), with M* = 1. In a similar way,
we can define (RC),, (RC)s, etc.

The relationships between these models, with respect to their implications
and degrees of freedom, are displayed in Figure 1, for the null 0 model and the
various unsaturated models with M* = 1 and M* = 2. (For other displays of this
general kind, see, e.g., Goodman, 1973, 1978.) Also included in Figure 1 are

Association models and correlation models. Degrees of freedom*
0 (1-1)(J-1)
U 1J-1-J
(I-1)(J-2)
\>( (1-2) (J-1)
(RC)l (R+C) (I-2)(J-2)
(U+RC) 1J-21-2J+3
(RO (1-2)(J-3)
\ (CHRO) (1-3) (J-2)
(RC)> (R*C+RC) (1-3) (J-3)

* When I = 2 and/or J = 2, see relevant comments in Section 2.5.

Fi6. 1. The relationship between some models with respect to their implications and degrees of
freedom, for the I X J table.
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additional related models that have not yet been discussed. These will be
considered briefly next.

For expository purposes, we shall focus our attention again now on the
association models. (The corresponding correlation models could also have been
presented here.) We begin with the R + C model in Figure 1, which we shall
describe first in terms of the ®;, the natural logarithm of the odds-ratio 9; in
(2.5). The R + C model can be described as

(2.65) O = (¢ + 0! + nf)AlA],

where ¥ is a general-effect parameter, n/ is a row-effect parameter, and ! is a
column-effect parameter, and where A/ and A/ are specified except for possible
scale factors. (The R + C model described in Goodman (1981a) is a special case
of (2.65) in which the A’s are all equal to a (specified or unspecified) constant,
say, A.) Since the effect parameters ¢, 4/, and n/ in"(2.65) are additive effects,
this model will also be called here the R + C model (or, more specifically, the
(R + C); model). From (2.6), (2.9), (2.10), and (2.11), we see that the U, R, and
C models are all special cases of (2.65).
We next consider the following generalization of (2.65):

(2.66) B =+ ! +a] + o vIv)AIA,

where the parameters ¢*, v/, and v/ in (2.66) are multiplicative factors that
combine to form an additional term in (2.66). (The R + C + RC model in
Goodman (1981a) is a special case of (2.66) in which the A’s are all equal to a
(specified or unspecified) constant, say, A.) Model (2.66) will also be called here
the R + C + RC model (or, more specifically, the R + C + (RC); model). From
(2.6) we see that the RC model is a special case of (2.66) (with ¢ = 0, n/ = 0,
7/ = 0); and from (2.65) we see, of course, that the R + C model is also a special
case of (2.66) (with ¢* = 0). Similarly, we obtain the U + RC model from (2.66)
with g/ =0,9/ =0(fori=1,2,...,I-1;j=1,2, -..,J — 1), the R + RC
model from (2.66) with n/ =0 (j=1,2, ---,J — 1), and the C + RC model from
(2.66) withn/ =0(i=1,2,...,I—1).
The U + RC model can now be written as

(2.67a) ®; = (Y + ¢*viv/)Al A},
or equivalently as
(2.67b) - ;= (§ + & + &) + GElE)AIA],
where

- N - *
(2.68) v=v + ¢% ¢ =1/9%

gl =(vi — 1o% 7= — e¢*.

From (2.67a) we see that the RC model is a special case of the U + RC model
(with ¢ = 0); and from (2.67b) we see that the U + RC model can also be viewed
as a generalization of the R + C model in which the additional parameter ¢ has
been introduced in (2.67b). Formulae (2.67a)-(2.67b) are a direct extension of
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corresponding formulae in Goodman (1981a). In (2.67)-(2.68), the v/ and v/
have been normed (without loss of generality) so that (}; v{)/I =1, (X;v/)/J =
1, and the ¢* has been adjusted accordingly; and a similar remark applies also to
the corresponding formulae in Goodman (1981a). (For a related result in the
analysis of a two-way array with continuous data, see the discussion of Tukey’s
test for additivity in, e.g., Tukey, 1977, page 421.)

With respect to the additional models considered in this section (the R + C,
U+ RGC R+ RC,C+ RC, and R + C + RC models), we have described above
how these models are related to one another; and an overview of these relation-
ships is included in Figure 1. In this overview, we have also included the models
discussed in the earlier sections (the 0, U, R, C, (RC);, and (RC); models). Figure
1 could be extended further, in a straightforward way, to include additional
models of the general kind we have considered here (e.g., U + (RC)s, R + (RC),,
C + (RC)2, R + C + (RC),, (RC)3, U + (RC)3, etc.). .

Before closing this section, we note that the formulae for the degrees of
freedom in Figure 1 should be interpreted with caution. There are actually zero
degrees of freedom when a formula in Figure 1 yields either zero or a negative
value. (In the special case of the 2 X 2 cross-classification table (I = J = 2), the
last formula in Figure 1 is inapplicable.) For further details, see Goodman (1981a).

Models (2.65)-(2.67) were expressed here in terms of the &;; but they could
have been expressed equivalently in terms of the P;. (Compare, e.g., (2.6) with
(2.2).) In this case, we would obtain (2.58) with M* = 2 for (2.65) and (2.67), and
with M* = 3 for (2.66); and with appropriate conditions placed upon the y;, and
Vjm in (2.58). (In the R + C model (2.65) and the R + C + RC model (2.66), the
¥ term can be ignored by including it as part of the n/ or 5/ terms.) Appropriate
formulae expressed in terms of the P; are direct extensions of the corresponding
formulae in Goodman (1981a).

3. Models for generalized symmetry, independence, and symmetry +
independence in the K X K table.

3.1. Introductory comments. The general approach considered in Section 2
can be viewed as providing a model building apparatus for the analysis of
association and/or correlation in the I X J table (see, e.g., Tables 4A and 4B, and
Figure 1). In the special case where I = J, and where there is a one-to-one
correspondence between the row categories and column categories in the square
cross-classification table, this feature of the table can be taken into account by
modifying, in various ways, some of the models considered in Section 2 above.
(See, for example, the RC model modified to have homogeneous row-column
scores, which was introduced in Goodman, 1979a.) We next present a somewhat
different general approach, which will provide a model-building apparatus spe-
cifically designed for the analysis of square cross-classification tables of this
general kind. We shall be concerned here with the situation where the order of
the categories is specified, and shall consider both the case where the order of a
set of related parameters is unspecified and the case where it is specified.

3.2. Generalized symmetry models. We begin this section by considering first
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the usual symmetry model for the square table:
3.1) PlJ = Pijy with Pij = Pjis for i< j, I # j.

To facilitate the exposition in this discussion of generalized symmetry models,
model (3.1) will now be called the null (0) asymmetry model.

A simple generalization of model (3.1) is then the triangle (T) asymmetry
model,

= PiiT1, for i< j,
(3.2) PU {pisz, fOI‘ i> jy

where the 7 parameters pertain to the upper-right triangle and lower-left triangle
in the square table. Another generalization of the 0 asymmetry model is the RC
asymmetry model,

(3-3) P,, = pi,-a,-ﬁj, for i# j,

where the o; and 8; parameters pertain to the ith row and jth column, respectively.
And still another generalization is the diagonals (D) asymmetry model,

(34) Pl.l = pij5k, for i# j, k=1i- j,

where the 8, parameters pertain to the upper-left lower-right diagonals, with
k=i—j,fork==1 %2, ..., (K~ 1), in the K X K table.

The triangle (T') asymmetry model (3.2) is related to but different from the
triangles-parameter model introduced in Goodman (1972), and it is equivalent to
the conditional symmetry model in Bishop et al. (1975, page 286), and McCullagh
(1978). The RC asymmetry model (3.3) is the usual quasi-symmetry model
introduced by Caussinus (1965), and it is equivalent to the symmetric association
model in Goodman (1979a). And the diagonals (D) asymmetry model (3.4) is the
diagonals-parameter model introduced in Goodman (1979b).

The first section in Table 16A gives the degrees of freedom pertaining to each
of these asymmetry models, and the corresponding section in Table 16B gives
the chi-squared values obtained when each of these models is applied to Table 3.
Starting with the 0 asymmetry model (3.1) applied to Table 3, we find that this
model does not fit the data adequately, and we then note that the D asymmetry
model (3.4) provides a dramatic improvement in fit over the other asymmetry
models considered here.

3.3. Generalized independence models. Each of the generalized symmetry
models in Section 3.2 pertains to entries that are not on the main diagonal of
the square table, and we shall consider next some other models (viz., generalized
independence models) that pertain to the same entries (for i # j). First we
consider the usual model of quasi-independence between the row classification
and column classification:

(35) Pu = aiﬁj, for i# j.

To facilitate the exposition in this section on generalized independence models,
model (3.5) will now be called the null (0) nonindependence model (for i # j).
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TABLE 16A
Degrees of freedom for generalized symmetry, independence, and symmetry + independence models
applied to the K X K table (for K = 3)

models degrees of freedom

Asymmetry models

0 KK -1)/2

T (K+ 1)(K - 2)/2

RC (K- 1)K - 2)/2

D (K- 1)(K-2)/2
Nonindependence models (with main diagonal deleted)

0 K:-3K+1

T K(K - 3)

DA (K-1)(K - 3)*

DAT (K2 — 4K + 2)*

D (K% - 5K + 5)*
Non- symmetry + independence models (with main diagonal deleted)

0 K(K-2)

T K:—-2K-1

DA (K-1)(K - 2)*

DAT (KE-3K+1)*

D . (K- 1)(K - 3)*
Nonindependence models (with no entries deleted)

0 ' (K-1)2

T KE-2K-1

DA (K- 1)(K-2)

DAT KZ—-3K+1

D (K-2)?
Non- symmetry + independence models (with no entries deleted)

0 KK -1)

T K+ 1)(K-2)

DA (K-1)2

DAT K(K-2)

D (K-1)(K-2)

* The asterisk indicates that the formula does not apply for K = 3. For this special case, see comments
in Section 3.3.

A simple generalization of model (3.5) is the triangle (T) nonindependence
model,

= (o871, for i<,
oo Py aifiTe, for i>j.

In addition, wé take note now of the diagonals (D), diagonals-absolute (DA), and
diagonals-absolute triangle (DAT) nonindependence models:

(37) Pi' = a,—ﬁ,—&k, for i# j, k=1— j;
(3.8) Py = a;f;6z, for i#j, k=]i—jl;
and

_ JeiBioir, for i<},

(3.9) Py |Bidirs, for i>j.
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TABLE 16B
Generalized symmetry, independence, and symmetry + independence models applied to Table 3
degrees of goodness-of-fit likelihood-ratio
models N .
freedom chi-squared chi-squared

Asymmetry models

0 6 19.11 19.256

T 5 7.26 7.35

RC 3 7.26 7.27

D 3 .50 .50
Nonindependence models (with main diagonal deleted)

0 5 198.01 199.10

T 4 195.90 196.98

DA 3 7.26 7.27

DAT 2 6.78 6.82

D 1 22 . 22
Non- symmetry + independence models (with main diagonal deleted)

0 8 209.44 209.24

T 7 195.99 197.34

DA 6 19.11 19.25

DAT 5 7.26 7.36

D 3 .50 50
Nonindependence models (with no entries deleted)

0 9 8096.86 6671.50

T 7 463.03 488.12

DA 6 54.60 54.40

DAT 5 54.03 53.92

D 4 46.82 46.97

The second section in Table 16A gives the degrees of freedom pertaining to
each of these generalized independence models, and the corresponding section in
Table 16B gives the chi-squared values obtained when each of these models is
applied to Table 3. Starting now with the 0 nonindependence model (3.5), we
also find that this model does not fit the data, and we then note that the D
nonindependence model (3.7) provides a dramatic improvement in fit over the
other generalized independence models considered here.

Before closing this section, we note that the formulae for the degrees of
freedom given in Table 16A apply to all the models considered there for K X K
tables, with K = 3; except for the asterisked formulae when K = 3. (With respect
to the models presented in this section, asterisked formulae are given in Table
16A for the DA, DAT, and D nonindependence models.) When K = 3, the correct
formulae are obtained by adding 1 to the asterisked formulae.

3.4. Generalized symmetry + independence models. While the models in
Section 3.2 describe various forms of asymmetry, and the models in Section 3.3
describe various forms of nonindependence (for i # j), the models that will be
presented in this section can be used to study simultaneously both asymmetry
and nonindependence (for i # j). First we shall consider here the model that
describes simultaneously both symmetry and independence:

(310) Pll = a5, for i# ]



52 L. A. GOODMAN

(Model (3.10) is model (3.5) with 8; = a;, for j =1, 2, - - -, K, in the K X K table.)
We shall call this model the null (0) non- symmetry + independence model.

A simple generalization of model (3.10) is the triangle (T) non- symmetry +
independence model

(3.11) Py = {aiaj‘fl, for i<},

Q;aTe, for i>].

Now we take note of the diagonals (D), diagonals-absolute (DA), and diagonals-
absolute triangle (DAT) non- symmetry + independence models:

(312) Ptj = aiajbk, for L# j, k=1i-— j;
(3.13) Py = ayadf, for i#j, k=|i—jl;
and

= [asajorr, for i<j,
(3.14) Pl] aiajalé’rz, fOr i > j_

The null (0) non- symmetry + independence model (3.10) was described in
Goodman (1981c) and Hope (1982), and the diagonals (D) non- symmetry +
independence model (3.12) was introduced in Goodman (1979b, 1981c). For
related material, see Sobel, Hout, and Duncan (1985).

Each of the generalized symmetry + independence models considered in the
present section is included in the third section of Table 16A, and the chi-squared
values obtained when these models are applied to Table 3 are included in the
corresponding section of Table 16B. Starting now with the 0 non- symmetry +
independence model (3.10), we also find that this model does not fit the data,
and we then note that the D non- symmetry + independence model (8.12)
provides a dramatic improvement in fit over the other generalized symmetry +
independence models. We shall next compare the results obtained here for the
generalized symmetry + independence models with those obtained in the preced-
ing sections on generalized symmetry and generalized independence.

3.5. Some comparisons, an overview, and some additional models. From Table
16B, we saw that starting with the null model of symmetry, we were led to the D
asymmetry model, which fits the data very well; starting with the null model of
independence (for i # j), we were led to the D nonindependence model, which
also fits the data very well; and starting with the null model of symmetry +
independence, we were led to the D non- symmetry + independence model, which
also fits the data very well. For the 4 X 4 table, using the general methods
presented in Goodman (1972), we find that the D asymmetry model (3.4) and
the D non- symmetry + independence model (3.12) are equivalent. Since both
the D non- symmetry + independence model (3.12) and the D nonindependence
model (3.7) fit the data well, we note that the former model is more parsimonious
(for K = 3). (The D non- symmetry + independence model is also more parsi-
monious than the D asymmetry model for K > 4, and the two models are
equivalent when K = 3 or 4.)

Using the general methods presented in Goodman (1972), we also find that,



RIETZ MEMORIAL LECTURE 53

for K = 4, the T asymmetry model (3.2) is equivalent to the DAT non- symmetry
+ independence model (3.14), the 0 asymmetry model (3.1) is equivalent to the
DA non- symmetry + independence model (3.13), and the RC asymmetry model
(3.3) is equivalent to the DA nonindependence model (3.8).

The relationships between the generalized symmetry models and generalized
symmetry + independence models, with respect to their implications and degrees
of freedom, are displayed in Figure 2A; and a corresponding display for the

Fi1G. 2A. Generalized Symmetry and Symmetry + Independence Models

Models Degrees of
freedom*

Symmetry Symmetry + independence

.

O\I 8 (12)
/// T 7 (10)
9 w_ /

/T = a1 : o
4

5 (8)
RC

3 (6)

*The degrees of freedom in parentheses are for the generalized symmetry + independence models
with no entries deleted.

F16. 2B. Generalized Independence and Symmetry + Independence Models

Models Degrees of
freedom*

Independence Symmetry + independence

8 (12)

/ ~
T 7 (10)

DA / 6 (9

NN 5 (%)

/ \ 1 IR
D 3 (6)

\Dé\T 2 (5)
D 1@

* With no entries deleted, the degrees of freedom for the 0 nonindependence model and the DAT
non- symmetry + independence model are 9 and 8, respectively.

F1G. 2. The relationship between various models with respect to their implications and degrees of
freedom, for the K X K table; with degrees of freedom given for K = 4 with main diagonal deleted, and
with no entries deleted in parentheses.
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generalized independence models and generalized symmetry + independence
models is presented in Figure 2B. All the relationships described in the preceding
two paragraphs are included in these figures except for the final relationship
described there (viz., the relationship between the RC asymmetry model (3.3)
and the DA nonindependence model), which can be inferred from the display in
Figure 3.

In Sections 3.2, 3.3, and 3.4, we were concerned with models for the K X K
table with the main diagonal deleted; but the models presented in the latter two
sections can be directly extended to the K X K table with no entries deleted.
With respect to these extensions, see the final sections in Tables 16A and 16B.
In addition, we include in Figures 2 and 3 information about the generalized
independence models and generalized symmetry + independence models with no
entries deleted, as well as with the main diagonal deleted.

In Figure 3, we have described the relationships between the generalized
independence models, some of the generalized symmetry models, and some of
the association models considered in Section 2.1 above and in Goodman (1979a).
All the association models in Figure 3 describe forms of symmetric association
applied to the K X K table (where I = J = K). From (2.6) we see that the 0
association model and the U association model describe forms of symmetric
association, since the association measure ®; is equal to zero with the former
model, and is constant with the latter model, for i = 1, 2, ..., K — 1, and
J=12,---, K- 1. (We have assumed in Figure 3 that the U association model
is defined by (2.7)-(2.8), or by (2.9) with A/ = A, fori=1,2, ..., K — 1.)

Models

Degrees of
Symmetric Generalized Generalized freedom*
association symmetry independence

9‘ 0 9 (5)
U \ 8 (4)
/ \ T 74
(RC)H (R+C)H 0 DA\ / 6 (3)
Dl'\T 5 (2)
v D 4 (1)

Qs = RC 3

* The generalized symmetry models are with main diagonal deleted, with 6 and 3 degrees of freedom
for the 0 and RC models, respectively; and the QS symmetric association model is also with main
diagonal deleted, and with 3 degrees of freedom. The degrees of freedom for the (RC)x and (R + C)y
symmetric association models and the DA nonindependence model are 6 with no entries deleted and
3 with main diagonal deleted.

F16. 3. The relationship between various models with respect to their implications and degrees of
freedom, for the K X K table; with degrees of freedom for K = 4 with no entries deleted, and with main
diagonal deleted in parentheses.
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Similarly, the RC association model (2.2) with homogeneous row and column
effects (i.e., the (RC)y model, with y; = »;in (2.2),fori=1, 2, ..., K — 1), which
was introduced in Goodman (1979a), and the corresponding R + C association
model (2.65) with homogeneous row and column effects (i.e., the (R + C)x model,
with of =8¥and A/ = A/ in (2.65),fori=1, 2, ..., K — 1), also describe forms
of symmetric association. And the DA nonindependence model (3.8) in Figure 3,
which was introduced in Goodman (1972), can also be included as a form of
symmetric association. Finally, we note again that the usual quasi-symmetry
(QS) model (i.e., the RC asymmetry model (3.3)) is equivalent to the model of
symmetric association (see, e.g., Goodman 1979a). Table 17A gives the degrees
of freedom pertaining to each of these symmetric association models, and Table
17B gives the chi-squared values obtained when each of these models is applied
to Table 3. Except for the usual quasi-symmetry model, the other models in
Table 17A can be applied to the K X K table with no‘entries deleted, as well as
with the main diagonal deleted. (The quasi-symmetry model can also be extended
to the K X K table with no entries deleted, but we shall not consider this model
here.)

TABLE 17A
Degrees of freedom for symmetric association models applied to the K X K table (for K = 3)
models degrees of freedom
With main diagonal deleted
0 K*-3K+1
U K(K - 3)
(RC)u (K% — 4K + 2)**
R+ C)y (K? - 4K + 2)**
DA (K- 1)(K-3)*
Qs (K - 1K - 2)/2
With no entries deleted
0 . (K-1)?
U K(K - 2)
(RO)u (K-1}(K-2)
(R+Cu (K-1D)(K-2)
DA (K-1)}(K~-2)

* The asterisks indicate that the formula does not apply for K = 3 (single asterisk), and for K = 3
and K = 4 (double asterisk). For this special case, see comments in Section 3.5.

TABLE 17B
Symmetric association models applied to Table 3
models degrees of goodness-of-fit likelihood-ratio
freedom chi-squared chi-squared
With main diagonal deleted
0 5 198.01 199.10
U 4 64.60 61.31
(RC)n 3 7.26 7.27
R+ C 3 7.26 7.27
DA 3 7.26 7.27
Qs 3 7.26 7.27
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The asterisked formulae for the degrees of freedom given in Table 17A need
to be interpreted with caution. With the main diagonal deleted, when K = 3 the
(RC)y and (R + C)y models are equivalent saturated models, with 0 degrees of
freedom, and the DA model has 1 degree of freedom (see Goodman, 1972); and
when K = 4, the three models are equivalent, with 3 degrees of freedom. (Also,
with the main diagonal deleted, when K = 3 the DA model and the QS model are
equivalent, with 1 degree of freedom; and when K = 4, the (RC)y, (R + C)y, and
DA models are all equivalent to the QS model, with 3 degrees of freedom.)

The class of generalized independence models considered here was introduced
in Goodman (1972). Now using also the corresponding class of generalized
symmetry models, generalized symmetry + independence models, and symmetric
association models, which have been under consideration here, we have a more
flexible model-building apparatus for the square cross-classification table. Addi-
tional generalized independence models were also included in Goodman (1972)
(see, e.g., the crossings-parameter models considered there), and these models,
too, can be modified in a straightforward way to provide the corresponding
asymmetry, non- symmetry + independence, and symmetric association models;
but we shall not go into these details here.

In discussing association models in the present section, we have considered
only symmetric association models, in order to focus attention in Figure 3 on the
relationship between these models and the generalized symmetry and generalized
independence models. We could have also included here a more general discussion
of the association and correlation models (both symmetric and asymmetric
models) applied to the K X K table. Of course, these models, which were defined
in Section 2 for the I X J table, can be directly applied to the K X K table (with
I =J = K). All the association models considered in this lecture (in Sections 2
and 3) and all the generalized independence models (in Section 3) can be viewed
as members of a single class of models; viz., a more general class of association
models (i.e., models that do not pertain to the row marginal and column marginal
of the cross-classification table). The generalized symmetry models considered
in Section 3.2 (except for the RC asymmetry model (3.3)), and the generalized
symmetry + independence models in Section 3.4, are not included in this larger
class (i.e., the general class of association models), since they do pertain to the
row marginal and column marginal of the table. (For further details, see the
discussion of models of association vs. models for the joint distribution of the
cross-classification table, in Goodman, 1981c.) For the sake of completeness, we
also note here that, with respect to the correlation models considered in Section
2.2, the 0 and RC models are equivalent to models that are included in the general
class of association models, but the U, R, and C correlation models are not; and
a similar comment applies to the extensions of the correlation models in Section
2.4. (See the remarks immediately following (2.27) pertaining to the U, R, and C
models.)

We comment briefly now on a model for the K X K table that is quite different
from all the models considered above. This model is not included in any of the
general classes of models described here, although it is somewhat related to the
diagonals (D) asymmetry model (3.4). The latter model was modified earlier
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herein to obtain the more parsimonious diagonals (D) non- symmetry + indepen-
dence model (3.12). An alternative modification of (3.4), which also provides a
more parsimonious model, is the following model:

(3.15) P; = 6,6}, for i#], =i-J

where the 6}; parameters pertain to the upper-right/lower-left diagonals. This
model states that there is quasi-independence between the difference-diagonal
classification (i.e., the difference between the row and column classification) and
the sum-diagonal classification (i.e., the sum of the row and column classifica-
tion), for i # j. We can refer to this quasi-independence model as [Dq ® D,}, for
i # j, where D4 and D, denote the difference-diagonal classification and sum-
diagonal classification, respectively. The number of degrees of freedom for testing
this model is K2 — 5K + 7 (for K = 3). The model is more parsimonious than
model (3.4) for K > 4, and the two models are equivalent for K = 3 and K = 4.
Thus, when model (3.15) is applied to Table 3, we again obtain chi-squared values
of 0.50, with 3 degrees of freedom.

Instead of considering model (3.15) for i # j, we could instead have considered

(316) P,, = 51@5?-‘;.,', for k=1i- j,

applied to all entries in the cross-classification table. The number of degrees of
freedom for this model is (K — 2)%, which is greater than the corresponding
number for model (3.15) except for K = 3, in which case the two models are
equivalent. When this model is applied to Table 3, the goodness-of-fit and
likelihood-ratio chi-squared values are 28.81 and 28.88, with 4 degrees of freedom.
Thus, the model does not fit the data. Comparing the chi-squared values just
obtained for model (3.16) with the corresponding values obtained in the preceding
paragraph for model (3.15), we see that the inadequacy of fit obtained with model
(3.16) is due almost entirely to the entries on the main diagonal (more particu-
larly, to the entries in cells (2, 2) and (3, 3)).

Since (3.16) is a model of quasi-independence for the two diagonal classifica-
tions (D4 and D), we shall call this model the DD model. We shall also call (3.16)
the diamond (DD) model, since it can be viewed as a model of quasi-independence
applied to the diamond shape formed by rotating the K X K table forty-five
degrees (so that the 2K — 1 difference-diagonals in the original table now form
the entries in the rows of the diamond, and the corresponding 2K — 1 sum-
diagonals in the original table form the entries in the columns of the diamond).
This model is related to, but different from, a “diamond model” discussed by
Hope (see, e.g., Hope, 1982). Model (3.16) is the quasi-independence model
[Da ® D] with no entries deleted from the original K X K table, and model (3.15)
is the quasi-independence model [Dy ® D,] with the main diagonal of the original
K X K table deleted. In view of this, we refer to models (3.15) and (3.16) as the
DD models, or as diamond models for the reason noted above.

As we noted earlier in this section, there are (K — 2)? degrees of freedom for
the DD model (3.16); and as we noted in Section 2, there are also (K — 2)? degrees
of freedom for the RC and R + C association (and correlation) models; see, Table
4B or Figure 1. However, the DD model (3.16) is very different from the RC and
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R + C models. The DD model is a particular kind of model of quasi-independence
(viz., [Dq ® D,]), whereas the RC and R + C association (and correlation) models
cannot be described in these terms.

Almost all the models for the K X K table considered in the present section
(aside from the association models considered here) can be viewed simply as
models of independence or quasi-independence applied to appropriate rearrange-
ments of the cells in the table. Thus, for example, the T asymmetry model (3.2)
is equivalent to the model of independence applied to a 2 X L table (with
L = K(K — 1)/2) obtained by placing in the first row of the 2 X L table the L
entries from the upper-right triangle of the K X K table, and by placing in the
second row of the 2 X L table the corresponding entries from the lower-left
triangle of the K X K table. Similarly, the T' nonindependence model (3.6) is
equivalent to the model of quasi-independence applied to a K X K X 2 table,
where the first of the two layers in the three-way table is the original K X K
table with the L entries from the lower-left triangle deleted, and the second layer
in the three-way table is the original K X K table with the L entries from the
upper-right triangle deleted. (In the three-way table with entries deleted as
indicated above, we apply the model that states that the corresponding three
variables—the row, column, and layer variables—are mutually quasi-independ-
ent.) As another example of this general method, the [Dy ® D,] model (3.16) is
equivalent (as we noted earlier) to the model of quasi-independence applied to a
(2K — 1) X (2K — 1) table obtained by rotating the K x K table 45° so that the
2K — 1 difference-diagonals form the entries in the rows of the (2K — 1) X
(2K — 1) table and the corresponding 2K — 1 sum-diagonals form the entries in
the columns of the (2K — 1) X (2K — 1) table. (This model can be simplified
further by removing entries from the K X K table that are irrelevant with respect
to this model; e.g., the entries in cells (1, 1), (K, K), (1, K), and (K, 1); and also
by partitioning the quasi-independence model for the (2K — 1) x (2K — 1) table
into components pertaining to models of independence applied to appropriate
separable subtables.) For additional examples, see, e.g., Goodman (1972).

The only models for the K X K table considered in the present section that
are not equivalent to models of independence or quasi-independence applied to
appropriate rearrangements of the cells in the table are the following models:
The 0 asymmetry model (3.1) (which can be viewed simply as a model of
conditional equi-probability applied to each of the L columns in the 2 X L table
described at the beginning of the preceding paragraph); the generalized symmetry
+ independence models applied to the entire K X K table; and the (RC)y and
(R + C)y association models. With respect to the generalized symmetry +
independence models mentioned above, these models can be expressed as log-
linear models, and a suitable computer program can be applied. This is true also
for the (R + C)ig model (and for the R + C model in Section 2); but not for the
(RC)y model (nor for the RC model in Section 2). With respect to the (RC)y
model (and the RC model in Section 2), and other association models as well,
the methods in Goodman (1979a) are suitable.

Before closing Section 3, we comment briefly now on the application of the
models considered in this section to the case where the K X K table has deleted
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entries. We have already considered here the deletion of entries on the main
diagonal, but we could also consider the deletion of entries in other sets of cells.
As we noted above, almost all the models in this section can be viewed as models
of independence or quasi-independence (in a rearrangement of the cells in the
K X K table), and the few models that cannot be viewed in this way can be
viewed instead as models in the more general class of log-linear models. (The
only exception to the above statement is the (RC)y model in this section, which
can be applied to the K X K table with or without deleted entries using the
methods in Goodman, 1979a.) All the models that can be viewed as models of
independence or quasi-independence can be directly extended to the case where
the entries in a given set of cells are deleted (see, e.g., Goodman, 1968), and the
other (log-linear) models can be extended in a similar way.

4. Unordered parameters and/or ordered parameters. Aside from the
models of symmetry (3.1), quasi-symmetry (3.3), independence (3.5), symmetry
+ independence (3.10), and the (RC)y; model, the other models in Section 3 took
into account the specified order of the categories. In some contexts, it will be
sufficient to consider models that take into account the specified order in the
way we have done with the models of Section 3; and in other contexts, the
ordering of a set of parameters in the model (as we did, say, with (2.15)) will also
be worthwhile. Although we did consider briefly in Section 2 the ordering of a
set of parameters in some of the models considered there (e.g., with the applica-
tion of (2.15)), we have not yet considered the ordering of a set of parameters in
models of the kind considered in Section 3. We shall do so now.

Let us return for a moment to, say, the D asymmetry model (3.4). The diagonals
parameter §, in this model can be interpreted as the odds that the difference
between the observed row and column classification will be equal to k& rather

than —k, for k = 1; with 6, = 1 for k = —1, =2, ..., —(K — 1). For the data in
Table 3, we find that the maximum-likelihood estimates are
4.1) 5, = .86, &, =.99, & = .55.

In view of the above interpretation of the §,’s, we might wish to consider the
following restriction on the order of the §,’s:

(4.2) Or = Opt1, for k=1,2, ---,K—2.

Since the likelihood function is concave for model (3.4) (recall that it is a log-
linear model), when this model is applied to the data in Table 3 with restriction
(4.2) imposed, we find that the maximum likelihood will be obtained with
01 = 8. In this case, the corresponding maximum-likelihood estimates are

(4.3) 6, =8, = .88, &, = .55.

In fitting the D asymmetry model (3.4) to the data in Table 3 (without
restriction (4.2)), the goodness-of-fit and likelihood-ratio chi-squared values were
both 0.50, with 3 degrees of freedom (see Table 16B); and now with the restriction
61 = 82 imposed, the corresponding chi-squared values are 2.04 and 2.03, respec-
tively, with 4 degrees of freedom. This model also fits the data well.
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_In fitting the D asymmetry model (3.4), we examine the paired estimates
(6%, 0r+1) to see which pairs violate (4.2), for k =1, 2, ..., K — 2. Since model
(3.4) can be viewed as a log-linear model and the likelihood function is concave
(Haberman, 1973), if one pair of estimates (5x, 6x+1) violates (4.2) (e.g., as in
(4.1), with & = 1), then the maximum likelihood will be obtained on the boundary
dgtermined by the one violation (e.g., with 6, = 6;, when the violator is
(61, $5)); and so the violating pair is pooled in this case (e.g., as in (4.3), with
k = 1). Similarly, if more than one pair violates (4.2), the maximum likelihood
will be obtained with the pool-adjacent-violator rule (see, e.g., Barlow, et al.,
1972, Section 2.4). To test model (3.4) with restriction (4.2) imposed, we obtain
a conditional chi-squared test with (K — 1)(K — 2)/2 degrees of freedom (as in
the case when restriction (4.2) is not imposed) if no pairs violate (4.2); and we
obtain a conditional chi-squared test with [(K — 1)(K — 2)/2] + (k = 1) degrees
of freedom, if the pool-adjacent-violator rule yields K ~ & distinct estimates, for
k=1,2, ..., K— 1. (For example, for the 4 X 4 table (Table 3) with restriction
(4.2) imposed, the chi-squared statistic obtained would have 3 degrees of freedom
if no pairs violated (4.2), 4 degrees of freedom if two estimates were pooled, and
5 degrees of freedom if the three estimates were pooled.)

The conditional test considered above has the advantage of ease of application
since it applies the usual tabulated chi-squared distribution, but it has the
disadvantage of conditioning on a statistic (viz., the number K — k of distinct
estimates obtained with the pool-adjacent-violator rule) that is not ancillary (see,
e.g., Cox and Hinkley, 1974, page 31). To ameliorate this disadvantage, instead
of using the same level of significance «; in assessing the conditional test with
K — k distinct estimates (with o, = o, for k=1, 2, . . ., K — 1), we would suggest
the use of o, with ap < apy, fork=1,2, ..., K— 2.

The likelihood-ratio chi-squared statistics used in calculating the conditional
test (for k=1, 2, ..., K — 1) can also be used to form the likelihood-ratio test
of the D asymmetry model (3.4) with restriction (4.2) imposed. This test is formed
when the chi-squared statistic that is obtained is assessed using the percentiles
of the marginal distribution of this statistic, which is (asymptotically) a mixture
of K — 1 chi-squared distributions with degrees of freedom [(K — 1)(K — 2)/2] +
(k—1),fork=1,2, ..., K— 1. (For related results, see, e.g., Barlow, et al., 1972,
Chapter 3; Robertson and Wegman, 1978.) This mixture will depend, in general,
upon the relative size of the variances of the estimates Ok, fork=12, ...,
K — 1. (When K = 3, there are only two estimates (8, and ds), and the marginal
distribution, in this special case, is an equal mixture of two chi-squared distri-
butions (with 2 and 3 degrees of freedom); but for K > 3, the mixture of the
K — 1 chi-squared distributions will depend upon the relative size of the vari-
ances.) If the conditional test is applied using the same level of significance
ar=a, fork=1,2, ..., K — 1, then this test is less conservative (i.e., more
likely to reject the hypothesis when the hypothesis is true) than the corresponding
test based upon the marginal distribution when the number K — k of distinct
estimates is equal to K — 1 (or is close to K — 1) in the conditional test; and it is
more conservative than the marginal test when the number K — & of distinct
estimates is equal to 1 (or is close to 1) in the conditional test.
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If the hypothes1zed restriction (4.2) is correct with strict 1nequahty applying
for k=1, 2, ..., — 9), then we would find that &, > &y (for & =
1,2, ..., K—2) almost certamly (asymptotlcally), and the need to pool estimates
would not arise. If (4.2) is correct (for k=1, 2, - .., K — 2) with strict inequality
applying for all but one value of k (say, for & = k ), and O’ = w41, then we would
find that 8 > 841 with probability Y, and that by < b4y with probability Y4
(asymptotically). In this case, we would be led to calculate the chi-squared
statistic with no restrictions imposed, with probability %; and the chi-squared
statistic with one restriction imposed (- = 6;/+1), with probability %. (For related
comments, see, e.g., Agresti, Chuang, and Kezouh, 1984.) On the other hand, if
(4.2) is correct (for k =1, 2, --., K — 2) with strict inequality applying for all
but two (or more) values of k (say, for k = k’ and k = k”, with &’ # k"), then we
would be led to calculate the chi-squared statistic with no restrictions imposed,
or the corresponding statistic with one or more restrictions imposed (say, 6, =
8w+1 and/or 6, = 8++1), but the corresponding probabilities associated with these
events would depend upon the relative size of the variances of the 8.

With respect to our analysis of the data in Table 3, model (3.4) with the
ordering (4.2) imposed fits the data well, if equality is applicable in the ordering;
but we would reject the model with ordering (4.2) imposed if strict inequality
applied in the ordering. If equality is applicable, the conditional test is based on
the chi-squared value of 2.03 (or 2.04), which is assessed using the usual tabulated
chi-squared distribution with 4 degrees of freedom; and the marginal test would
be based on this value assessed using the appropriate mixture of three chi-squared
distributions (with 3, 4, and 5 degrees of freedom). With the conditional test and
also with the marginal test, we see that the model fits the data well.

We have considered above tests of the hypothesis that model (3.4) holds true
with restriction (4.2) imposed. We shall now consider briefly the hypothesis that
restriction (4.2) holds true under the assumption that model (3.4) holds true. To
test this hypothesis, we simply consider the difference between the chi-squared
statistic with restriction (4.2) imposed and the corresponding statistic without
(4.2) imposed. Using this difference, we obtain a conditional chi-squared test of
hypothesis (4.2), with & — 1 degrees of freedom, where K — k is the number of
distinctestimates as above (for k=1, 2, - - -, K — 1). This difference is equivalent
to the corresponding test of homogeneity that is obtained when the K — 1 original
estimates 6, (for k=1, 2, - .., K — 1) are partitioned into their pooled subsets,
and the original estimates within each subset are tested for homogeneity within
the subset. "

Consider next the hypothesis that

(4.4) op=6, for k=1,2,---, K— 1.

To test this null hypothesis under the assumption that model (3.4) holds true
with restriction (4.2) imposed, we simply consider the difference between the chi-
squared statistic with restriction (4.4) imposed and the corresponding statistic
with (4.2) imposed. Using this difference, we obtain a conditional chi-squared
test of hypothesis (4.4), with (K — 2) — (k — 1) = K — k — 1 degrees of freedom,
where K — k is the number of distinct estimates as above. This difference is
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equivalent to the corresponding test of homogeneity applied to the K — k distinct
estimates. Tests of this general form were considered earlier by Bartholomew
and others (see Barlow et al., 1972, Chapter 3), in a somewhat different, but
related, context.

In the preceding two paragraphs, we considered conditional tests of hypotheses
(4.2) and (4.4). The comments earlier in this section comparing conditional
tests with the corresponding marginal (likelihood-ratio) tests can be applied
in the present context as well. If the conditional test is used with ar, = «
(fork=1, 2, ..., K— 1), then the conditional test of (4.2) is less conservative
than the corresponding test based upon the marginal distribution, and the
conditional test of (4.4) is more conservative than the corresponding test based
upon the marginal distribution, when the number K — k of distinct estimates is
equal to K — 1 (or is close to K — 1) in the conditianal test; and the reverse is
the case when the number K — k of distinct estimates is equal to one (or is close
to one) in the conditional test.

The preceding discussion was concerned with the imposition of ordering on a
set of parameters in a given model and/or the imposition of related equality
restrictions on the parameters. For expository purposes, the discussion focused
on the imposition of ordering (4.2) on parameters in model (3.4). The results
described in this discussion are applicable more generally. For example,
with respect to the imposition of the ordering (2.15) on the parameters »;
(j=1,2, ---,J) in the C association model applied to Table 1 in Section 2.1, or
the corresponding imposition of ordering on parameters in the analysis of Table
2 in Section 2.4, the results described above are applicable.

Since each of the models considered in Section 3 (except for the (RC)x model)
is a log-linear model and the likelihood function is concave (and also, with these
particular models, there is an order-preserving relationship between the maxi-
mum-likelihood estimates of the relevant parameters and the corresponding
sufficient statistics), the methods described above can be applied more generally
with any of these models. A similar comment applies also to the association
models considered in Section 2, except for the RC model (and generalizations of
it). With respect to this particular non- log-linear model, it is possible to show
that its likelihood function will be concave (and the relationship between the
maximum-likelihood estimates of the relevant parameters and the corresponding
sufficient statistics will be order-preserving) in a neighborhood of the true value
for the parameters in the model when the sample size is large, and the methods
described earlier in this section can be applied with this model too (for large
samples).

APPENDIX
Maximum-likelihood estimation

The method introduced in Goodman (1979a) for calculating maximum-like-
lihood estimates for the RC association model and related association models
will be modified here for the RC correlation model and related correlation models.
We shall begin with the RC correlation model (2.17).
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The maximum-likelihood equations for (2.17) are

(A1) is Pics(N) = 0,

(A.2a) ¥ Piii(X) — Di. Dk,j Pritei(Xs) = 0,
(A.2b) X Pibi(3) — pj Tik Prbr(Ir) = 0,
with

(A.3) cs(N) = &3/(1 + M),
(A.4a) ay(&) = M/ + &),
(A.4b) bi(9) = Aa/(1 + Aéd).

For the RC model, formula (2.27) alsoAholds true. For simplicity, we assume that
pi. >0 and p,; > 0. In addition, when A = 0, the #; and ¥; are unidentifiable, and
so we also assume here that A # 0 (i.e., that p; # p;.p; for some i and j).

To solve (A.1)-(A.2), we can apply Newton’s elementary (unidimensional)
method, thus obtaining the following formulae which can be applied iteratively:

(A.5) A= \* + % pici(N*)/ T piiles V)P,
Y Piji(xF) — Pi. Ynj Driari{x})
¥ pila;(xHPFQ — pi)

i Pibi(¥}) — p; Yir PabalyE)

¥ pilbs(yHIP(1 — p) '

?

(A.6a) ¥ =x¥ +

(A.6b) yiF =y +

From (2.27), we also obtain

(A.7) 2i%&p.=0, ¥;¥p,;=0,
(A.8) Yi&ip=1, X;¥pi=1

and the trial values for %; and y; can be adjusted at each iterative step to satisfy
(A.7)-(A.8). (It actually is not necessary to make the adjustment to satisfy (A.8)
at each iterative step, since the purpose of this adjustment is only to define the
scale of the #; and ;; and this can be done at the end of the iterations.)

Note that (A.2a) implies (A.1) if ¥; %;p;. = 0, and (A.2b) implies (A.1) if
Y, ¥;p.; = 0. Thus, equation (A.1) is redundant; and so we can delete (A.5), and
the A term in (A.4), and the adjustment to satisfy (A.8) for either the %; or the
;. If the adjustment to satisfy (A.8) is deleted for the %;, we now define %; to be
the product of the original A and the original %. With initial trial values for %;
(as now defined) and ¥; inserted in (A.6a), this formula can be applied to obtain
a new trial value for %;, then this new value can be used in (A.6b) to obtain a new
trial value for y;, then the new values of %; and y; can be used again in (A.6a). Et
cetera.

The iterative method described above for the RC model (2.17)—i.e., (2.56)
with M* = 1—can be directly extended to the more general case of (2.56) with
1 < M* < M. Initial trial values can be obtained from the analysis of the saturated
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model with M = min(l — 1, J — 1), using the singular value decomposition (see,
e.g., Kendall and Stuart, 1979, page 599); but in come cases more elementary
methods can be used to obtain initial values. (For example, estimates obtained
below with the U correlation model can be used sometimes to suggest initial trial
values for the R and C correlation models, and estimates obtained below with
the R and C correlation models can be used sometimes to suggest initial trial
values for the RC model.)

The iterative method described above, using Newton’s elementary (unidimen-
sional) method, is different from the scoring algorithm applied in Gilula and
Haberman (1984). However, the iterative method and the scoring algorithm will
have similar convergence properties. The iterative method is easier to apply, but
the rate of convergence will be slower.

We next consider the U correlation model (2.17) with (2.24) imposed. For
simplicity, we begin with the estimation of the corresponding “approximate
correlation model” in which restriction (2.27) is also imposed. In this case, (A.1)
is applicable, (A.2) can be deleted, and the %; and y; can be expressed explicitly.
With

(A.9) = —(SEL AN + &, 9=~ A + P
(A.10) = Np(S AN, 5 =3, piT AP,

the corresponding %; and y; are obtained by imposing (A.8). With %; and y; thus
defined, (A.1) can be solved iteratively using (A.5). (The initial trial value for \*
in (A.5) can be, say, the correlation between &; and y; in the observed I X J table.)
This simple procedure provides the estimates for the “approximate correlation
model”; but it needs to be modified to obtain the maximum-likelihood estimates
for the U correlation model (2.17) with (2.24) imposed (without the imposition
of (2.27)). (The approximate model will serve as a good approximation when | A |
is small (e.g., as in Table 2), but it will be less good when | A ] is larger (e.g., as
in Table 1).) We next show how to modify the simple procedure described above.

With the U correlation model, we will now find it simpler not to impose (A.8),
and the %/ and 3/ defined by (A.9) will be used directly, with (A.10) replaced by

(A.11) =Y P(XEL AR, v =3 PASEL ar).

With %/ and y/ thus defined, we shall now deﬁne the parameter A\’ to be the
ratio of the original X and {[3; #2P.IE; (37)2P,1}Y2 The maximum likelihood

equations for the U correlation model are

(A.12) Yo Pkl 91/(1 + N'&3)) =0,

with

(A.13) P. =p./(Q + i!a), p.j = p,/(1 + y}b),
where

2707

(A14) a= XN S,pidl /(1 + N&l9)), b=XN 3 pskl/(1+ X&)
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From (A.9), (A.11), and (A.13), we see that
(A.15) L P.=1 3,P;=1
and from (A.13) and (A.15), we find that
(A.16) a= (% & p)/3i @)?Pi, b= (Z; 9 p)/%; (9

Note that (A.12) is of the same form as (A.1), and it can be solved in the same
way as (A.1), using (A.5) with the %; y,, and A replaced by i/, y/, and N,
respectively. With initial trial values for %/, 3/, and N inserted in (A. 5), this
formula can be applied to obtain a new trial value for \’, then this new value can
be used in (A.14) to calculate trial yalues fora and b, which can be used in turn
in (A.13) to obtain trial values for P,. and P, which can be used in turn in (A.9)
and (A 11) to obtain new values for %/ and y/; then the new values of £/, 3/,
and A\’ can be inserted again in (A.5). Et cetera. (Wlth %!, 9}, and \’ as defined
above, the intial trial value of \’ can be, say, the ratio of the correlation between
i/ and y; in the observed I X J table and {[3; (&/ YB X, (91)%P 12, with p.
and p,; taken as initial trial values for P and P )

Next we comment briefly on the R and C correlatlon models (2.17) with (2.25)
and (2.26) imposed, respectively. With respect to the estimation of the corre-
sponding “approximate correlation models” in which restriction (2.27) is also
imposed, a suitable set of formulae can be obtained by combining the appropriate
part of (A.9)-(A.10) for the U approximate correlation model with the appropriate
part of the maximum-likelihood equations for the RC model (see (A.1)-(A.3)).
With respect to the maximum-likelihood estimation of the R and C correlation
models (without the imposition of (2.27)), the corresponding equations can be
obtained by combining the appropriate part of (A.11)-(A.15) for the U correlation
model with the appropriate part of the maximum-likelihood equations for the
RC model. However, formulae (A.2a) and (A.2b) should be replaced by

(A.17a) ¥, piai(E) — P hi priani(E) = 0,
(A.17b) ¥ piibi(9) — P.j Yik Piebi(Fe) = 0;

and (A.6) would also need to be modified appropriately.

We shall now use the above formulae to prove that (2.27) holds true for the
RC model, that P,j = p,; for the R model, and that P; = p;. for the C model.
Under the RC model, both (A.17) and (A.13)-(A.14) hold true (with the prime
superscripts deleted from the latter formulae). Thus, (A.17) can be rewritten as

(A.18a) N 5 pidi/ (1 + Ai3) — Pigia =0,
(A.18b) Ny 3 piki/ (1 + A&y — Pyb =0,
which is equivalent to

(A.19a) — 3 pi/(1 + A&:9) — Pria =0,
(A.19D) — 3 pi/(1 + Az:9) — P,3;b = 0.
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From (A.13) and (A.19), we see that

(A.20a) b, =3, py /(1 + A&y,
(A.20b) P, =3 py/(1 + Ai;9)).

From (A.20), we find that the condition that ¥; %P, = 0 and ¥; 3,2, = 0 is
equivalent to the condition that

(A.21a) S piki/ (1 + A&:5) = 0,
(A.21b) Y. pidi/ (1 + M) = 0;

so that b and a defined by (A.14) are equal to zero. Thus, from (A.13) we see that
P;=p,and P; = p;, for the RC model. 0

For the R correlation model, the y; are defined by (A.9) and the y; are defined
accordingly, while the %; are obtained from (A.17a). Thus, we obtain (A.18a),
(A.19a), (A.20a), and (A.21a), which proves that b defined by (A.14) is equal to
Ze10; and therefore, from the second equation in (A.13), _we also see that
P = p,;. Similarly, for the C correlation model, we find that P, =p..

It is also worth noting that, when | A’ | is close to zero, then both @ and b in
(A.14) are close to zero (when the summation term on the right-hand side of
each equation in (A.14) is not too large). Thus, when | A’ | is close to zero, we
find that P,. is approximately equal to p;, with the R correlation model, and that
P is approx1mately equal to p,; with the C correlation model. (In the preceding
paragraph we had noted that P = p,; with the R model, and that P, = p.
with the C model.)

Before closing this section, we also take note of the fact that, since the
likelihood function for these models need not be concave throughout the param-
eter space, the iterative method introduced here should use initial trial values
that are in a neighborhood of the true value for the parameters. Care should be
exercised to insure that a global maximum (rather than a local maximum) has
been obtained for the likelihood function. Various sets of initial trial values can
be used, and also various alternative versions of the iterative method can be
applied. (For example, with the iterative method described above for the RC
model, a new trial value was obtained first for %;, then for y;, then again for %;;
et cetera. And with an alternative version of the iterative method, a new trial
value could be obtained first for J;, then for ;, then again for J;; et cetera.) The
comments in this paragraph apply also to the other particular non- log-linear
models discussed in this article (e.g., the RC association model and generaliza-
tions of it).
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