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Abstract—Android mobile devices have reached a 

widespread use since the past decade, thus leading to an 
increase in the number and variety of applications on the 
market. However, from the perspective of information 
security, the user control of sensitive information has been 
shadowed by the fast development and rich variety of the 
applications. In the recent state of the art, users are subject to 
responding numerous requests for permission about using 
their private data to be able run an application. The awareness 
of the user about data protection and its relationship to 
permission requests is crucial for protecting the user against 
malicious software. Nevertheless, the slow adaptation of users 
to novel technologies suggests the need for developing 
automatic tools for detecting malicious software. In the present 
study, we analyze two major aspects of permission-based 
malware detection in Android applications: Feature selection 
methods and classification algorithms. Within the framework 
of the assumptions specified for the analysis and the data used 
for the analysis, our findings reveal a higher performance for 
the Random Forest and J48 decision tree classification 
algorithms for most of the selected feature selection methods. 

Keywords—cyber security, android application, machine 
learning, static analysis, feature selection, classification, 
malware detection 

I.  INTRODUCTION 
Mobile devices of various operating systems have 

exhibited a steep increase in the past decade, thus leading to 
an increase in the number and variety of applications that 
run on mobile devices. Smartphones are recently used either 
in a complementary manner to a desktop computer or even 
to replace it. A closer look at the purpose of using mobile 
phones reveal that they are mostly used for web browsing, 
social networking, and online banking. In addition, they are 
used for mobile-specific functions such as SMS messaging, 
read-time broadcasting of location, and ubiquitous access 
[1]. As the capabilities in mobile phone functionality 
increase (e.g., applications for personal health), mobile 
phones become more and more attractive for a wider 
population. Market data surveys reveal that the number of 
smartphone sales worldwide reached 208 million in 2012. 

This was a 38.3% increase compared to the sales in 2011 
[2]. 

The development of smartphones and mobile 
applications has resulted in a major change in people’s way 
of doing tasks in various aspects of daily life, such as 
making business and conducting social communication. 
Mobile phone applications exhibit a rich variety not only in 
common daily life activities but also for users with more 
specific needs. From games to multimedia applications, 
navigation systems, and health-related applications, recently 
available mobile application markets, such as Google’s Play 
Market, Apple’s App Store, or Microsoft’s Windows Store 
offer a wide variety of applications to users with different 
needs [4]. The major application markets have been growing 
steadily both in terms of the applications offered to the users 
and the downloads performed by the users (e.g., see [5] for 
the development of Google Play Market since the past 
several years). 

The fast increase in the popularity of smartphones has 
led to an increase in their potential as a target for malicious 
activities [1]. This is mainly because users provide access 
for various types of private information by means of mobile 
applications [3]. As a result, some applications in the market 
have been identified as performing malicious activities. The 
spread of malicious software is also influenced by the policy 
of the market providers. For instance, Apple’s App Store 
recently applies a policy that is subject to strict registration 
and company-issued digital certification before the release 
of any application, thus providing a security check for the 
applications listed in their application platform regularly [6]. 
Others, such as Google’s Play Market, introduce more 
freedom to developers in uploading their own software to 
the market. The applications are then removed from the 
market in case of reported malicious activity. In particular, 
the Android operating system (in its recent form) allows 
removal of the malicious application from the device 
remotely. A similar mechanism of removal is also employed 
by Apple’s App Store (namely, by kill switch) [7]. The 
policy of post-detection removal of malicious software 
brings the need for early detection of malware applications. 
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In the present study, we focus on malware detection in 
Android operating systems. 

Malware detection analysis of Android applications may 
be performed in two ways: Static analysis and dynamic 
analysis [8]. Static analysis is conducted by reverse-
engineering an application, without running the application.  

 In particular, this process involves analyzing the file 
with the .apk extension and by focusing on the content of 
the two files: AndroidManifest.xml and classes.dex [9]. On 
the other hand, dynamic analysis (also called behavior-based 
detection) is conducted by running the application and 
analyzing its execution traces in a controlled environment 
[10]. A comparison between the static analysis methods and 
the dynamic analysis methods reveals that the latter requires 
more computing resources in terms of memory space and 
execution time. This is due to the fact that in dynamic 
analysis, the traces are extracted online during the course of 
application running on the system, whereas online detection 
is not necessary in static analysis [11]. The static analysis 
methods, however, require an intensive analysis of feature 
selection methods and processing algorithms for malware 
detection, as we explain in more detail below. 

Android applications run by employing functions 
provided by the operating system. For this, applications 
need various permissions that should be granted by the 
mobile device user. Those requests for permissions are 
usually asked to the user during the course of installation of 
an application. The list of permissions that may be asked to 
the user by Android application is provided by [12]. The 
permissions that are used in the present study are presented 
in Section V.  

The permissions specify affordances of an application in 
the operating system. Therefore permissions have the 
potential to allow malicious access of user data by the 
application. In addition, the analysis of malicious software 
through the investigation of the permissions is a static 
analysis, because the application does not run but the 
permissions are analyzed. In the present study, we use 
permissions for the backbone of data input to our static 
analysis.  

Two major important aspects of permission-based 
analysis of malicious software are feature selection 
methods and classification algorithms. In general, feature 
selection methods are used for reducing the dimension size 
of a dataset. For this, some of the features (attributes) which 
are not useful in the analysis are removed from the data set. 
The remaining features are selected by taking into account 
the representational power of all the features in the dataset.  

An efficient feature selection method introduces 
performance gains in data analysis. Therefore, it is usually 
conceived as a necessary step for preparing a dataset with a 
manageable size for the analysis (in terms of the availability 
of computational resources). Choosing an appropriate 
feature selection method among alternatives is, however, a 
challenge. It is not only influenced by the characteristics of 
the dataset but it also interacts with the selected algorithm 
for data classification. In the present study, we selected a set 

of feature selection methods and classification algorithms, 
as presented in Table 1 below.  

TABLE 1. Feature selection methods and classification algorithms 
for data analysis. 

Feature Selection Methods Classification Algorithms 

• Gain Ratio Attribute 
Evaluator 

• ReliefF Attribute Evaluator 
• Cfs Subset Evaluator 
• Consistency Subset 

Evaluator 

• Bayesian Classification 
• Classification and Regression 

Tree (CART) 
• J48 Decision Tree 
• Random Forest 
• Sequential Minimal 

Optimization (SMO) 
 

The rest of the paper is organized as follows. The next 
section presents the related work. Section III gives 
information about the dataset used in the analysis. In Section 
IV, we introduce the methodology used in the analysis. 
Section V discusses the issues about the implementation of 
the methodology for data analysis. In Section VI, we discuss 
the results and the general findings obtained from the 
analysis. Finally, Section VII presents conclusions and 
further research agenda.     

II. RELATED WORK 
Previous research employed various classification 

algorithms for the classification of malicious Android 
applications by static analysis. For instance, [13] performed 
a permission-based analysis of the applications at Google’s 
Play Market by extracting the permission set from the 
relevant AndroidManifest.xml files, as stated in the previous 
section. Utilizing the Information Gain feature selection 
method to reduce the size of the feature set, and applying the 
J48 Decision Tree, Classification and Regression Tree 
(CART) and Random Forest classification algorithms onto 
the reduced data set, performances were compared in terms 
of true positive, false positive, precision and recall rates. 
According to their results, J48 and Random Forest 
outperform CART by showing higher precision rates and 
lower false positive rates. In another study, the behavior of 
selected Android applications were characterized by a 
feature-based learning framework which included API calls 
as features combined with permissions. The analysis 
employed SVM, J48 and Bagging classification algorithms. 
The results revealed that the combination of API calls with 
the requests for permissions increases the efficiency of 
malware detection [14]. In another study [15], frequent 
combinations of request for permissions, intents, broadcast 
receivers and native code were added to the feature set. The 
analysis was performed by employing Random Forest 
classification and by using Android Malware Genome 
Project public data, as well as a set of benign applications 
obtained from third party markets. The results revealed that 
the method outperformed conventional anti-malware tools, 
even for novel malware software. Another study [16] using 
the Malware Genome Project data classified Android 
applications with Bayesian classifier based on static code 
analysis. API calls, Linux system commands and 
permissions were extracted as features by reverse 
engineering the .apk files. Mutual Information (MI) 



maximization technique was used to select features 
considering classes of applications (as malicious or benign). 
Results reported better detection rates than then popular 
signature-based antivirus software on the same set of 
malware samples. In [30], a method was presented by 
analyzing the information only within manifest files with 
J48 Decision Tree algorithm to detect Android malware. 

As introduced in Section I, malware detection methods 
do not only include static analysis but also include dynamic 
analysis. Among many others, one approach, called 
Crowdroid, employed crowd-sourcing for obtaining 
application execution traces. The analysis applied a 
behavioral framework to distinguish Trojan horses from 
benign applications which had the same name and the same 
version but a different dynamic behavior. By uploading the 
crowd-sourcing application to Google’s Play Market and 
feeding the algorithm by non-personal (but behavior-related) 
data obtained from the users, an efficient malware detection 
method was developed. The algorithms was based on the 
system calls that built feature vectors for k-means 
classification [10]. Another host-based behavioral analysis 
framework is called Andromaly, which continuously 
monitors features and events obtained from the mobile 
device. Andromaly then applies various classification 
algorithms, including k-means, logistic regression, 
histogram, decision tree, Bayesian networks and Naïve 
Bayes after feature selection (Chi-square, Fisher Score and 
Information Gain as feature selection algorithms) [17]. 

In the present study, we focus on static analysis methods 
by extending the previous studies, in particular, by 
introducing a broad variety feature selection methods and 
classification algorithms. Three types of classification 
algorithms, namely Bayesian, Decision Tree and Support 
Vector Machines (SVM) are used for a performance 
comparison. Moreover, two types of feature selection 
methods, which are attribute-based and subset-based, were 
evaluated with their performance contribution to the 
classification algorithms. To the best of our knowledge, 
some of those feature selection methods (namely 
Consistency Subset Evaluator and ReliefF Attribute 
Evaluator) have not been used previously for the purpose of 
malware detection in mobile applications. In the following 
section, we describe the data set before introducing the 
feature selection methods and the classification algorithms. 

III. DATA 
The dataset, which was used in the analysis, was 

provided by COMODO Security Solutions, Inc., a private 
security company [18]. A branch of COMODO Security 
Solutions, Inc. is located at the Middle East Technical 
University (METU) campus, Turkey. The dataset includes 
3,784 android applications, 2,338 of which are benign and 
1,446 of which are malware applications. The label as 
‘benign’ or ‘malware’ was provided in the dataset, as 
specified by the company. This label was used for 
supervised learning in the feature selection and 
classification analyses, as described in the following section. 

IV. METHODOLOGY 
As introduced in Section II, feature selection allows 

removing some features from the dataset which are already 
redundant or irrelevant for the analysis. The resulting 
dataset usually leads to a reduced processing duration and 
higher accuracy compared to the raw dataset. In the present 
study, four feature selection methods and five classification 
algorithms were examined by investigating the accuracy of 
classification prediction of the applications into ‘benign’ or 
‘malware’ (Table 1). Weka (Waikato Environment for 
Knowledge Analysis) software tool was employed for 
implementing the feature selection methods and the 
classification algorithms [19]. The evaluation of the feature 
selection methods and the classification algorithms were 
performed by using the following measures. 

• Overall Accuracy (ACC) 
• True Positive (TP) Rate 
• False Positive (FP) Rate 
• Precision 

 

Android applications (i.e., .apk files) include all the data 
required for the installation of an Android application on the 
mobile device, including the requests for permission. For 
example, android.permission.CALL_PHONE allows an 
application to initiate a phone call without going through the 
Dialer user interface for the user to confirm the call being 
placed. Similarly, android.permission. INTERNET allows 
applications to open network sockets. The set of all the 
permissions and their functions in Android applications can 
be seen in [12]. The features that are used in the present 
study are presented in the following section. The focus of 
our analysis is to examine whether there exists a relationship 
between the requests for permission (as processed by 
features) and the classification of the application as benign 
or malicious. 

Android applications are developed in Java 
programming language. The installation package is a 
compressed (ZIP) bundle of the files including the manifest 
file (AndroidManifest.xml) and classes.dex. The components 
of an Android application, such as the activities, services, 
broadcast receivers, and content providers that the 
application is composed of are described in the manifest file 
[20]. The manifest file specifies the permissions the 
application must have to access the protected parts of the 
API and to interact with the applications’ components and 
other applications. Therefore the permissions specified in 
the manifest file should be granted by the user during the 
course of installation. Below we present the features that are 
employed to identify permissions in the present study. 

A. Features 
Features are the attributes used for defining the 

permission characteristics of an application. Each feature 
(e.g., android.permission.CALL_PHONE) corresponds to a 
permission specified by the application. A feature set can be 
specified as a feature vector, which includes all the 
permissions that are requested from the user. In the present 
study, we also added version code and version name to the 



feature set, which are included in the manifest file. This 
resulted in a feature set which was composed of 182 data 
points. Below is an example of a feature vector (for a single 
application), which includes binary values for the 182 
features. We included the version code and the version name 
without conversion (cf. the first two data points in the 
vector). 
(3,1.2,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,
1,1,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,0,0,0,1,1,0,0,0,1,0,1,0,
1,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,
1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,0,1,
0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0) 

Figure 1: A sample feature vector. 

In the following section, we present the feature extraction 
process. 

B. Feature Extraction 
In order to reach the permission data of an application, 

the apk file must be extracted from the .apk extended file 
and then the AndroidManifest.xml file must be read. We 
employed the APKTOOL [21] to extract the apk file into the 
Android Manifest file and the Smali file. Then, the 
permissions defined in the Android manifest file were 
examined to extract which type of permissions were 
required to run the application. Figure 2 depicts the process 
of apk file extraction 

 

 

 

 

 

 
Figure 2: APK File Extraction 

 

C. Feature Selection 
Feature selection is performed to reduce the dataset size 

by removing the features (attributes) which are not 
beneficial to be used in the analysis. The features are 
selected according to their representation capability of all 
the dataset. Efficient feature selection methods introduce 
performance gains by reducing the dataset size and the time 
spent in classification analysis. Feature selection methods 
can be divided into two approaches, called attribute-based 
feature selection methods and subset-based feature selection 
methods. Attribute-based feature selection methods evaluate 
each feature separately, independent of other features. It is 
mainly based on class features. Dependencies among the 
features are ignored, but the relation to the class feature is 
taken into account. On the other hand, in subset-based 
feature selection methods, feature subsets are constructed 
randomly and the subset that best represents the whole 
features is selected. Dependencies among the features are 
taken into account. In the present study, we employed the 
following attribute-based and subset-based feature selection 
methods.  

Gain Ratio Attribute Evaluator: This feature selection 
method evaluates the worth of an attribute by measuring the 
gain ratio with respect to the class. It requires a class feature 
to evaluate features. The benign/malware characteristic is 
used for the class feature in this method. Also, the number 
of features has to be specified in this selection method. In 
the present study, 25 and 50 features were assumed to be 
sufficient for the representation of 182 features. Hence, the 
number of features was separately reduced to 25 and 50 
features by applying this method, as specified by the 
following formulation. 

  GainR(Class, Attribute)  
      = (H(Class) – H(Class | Attribute)) / H(Attribute) 

ReliefF Attribute Evaluator: This method evaluates the 
worth of an attribute by repeatedly sampling an instance and 
by considering the value of the given attribute for the 
nearest instance of the same and different class. It can 
operate on both discrete and continuous class data [22]. The 
method also requires a class feature and a specified number 
of features. In the present study, benign/malware status was 
used as a class feature, and 25 and 50 features were assumed 
to be satisfactory for representing the whole feature set. 

Cfs Subset Evaluator: This method evaluates the worth 
of a subset of attributes by considering the individual 
predictive ability of each feature along with the degree of 
redundancy between them. Subsets of features that are 
highly correlated with the class, while having low 
intercorrelation, are preferred [23]. It does not require a 
class feature because it selects the subset randomly by using 
a specified number of features. In the present study, 25 and 
50 features were assumed to be satisfactory for the purpose 
of the analysis. 

Consistency Subset Evaluator: This method evaluates 
the worth of a subset of attributes by the level of consistency 
in the class values when the training instances are projected 
onto the subset of attributes. Consistency of any subset can 
never be lower than that of the full set of attributes [24]. It 
does not require a specified number of features. The method 
determines the optimum number of features and it returns 
the optimum feature subset in the result. 

The four feature selection methods described above were 
separately run on the dataset, which included 3,784 android 
applications with different feature sets. 

D. Classification 
Classification algorithms were run on the datasets, which 

were obtained after feature selection. In the present study, 
we employed the following classification algorithms.  

Bayesian Classification: This algorithm is based on so-
called Bayes classifier, which employs estimator classes. In 
the present study, numeric estimator precision values were 
selected based on the analysis of training data. [28]. 

Classification and Regression Tree (CART): This algorithm 
implements minimal cost-complexity pruning [25]. 

J48 Decision Tree Algorithm: This algorithms generates 
either a pruned or an unpruned C4.5 decision tree [26].  

Smali 
File 

APK 
File 

AndroidManifest.xml 
File 

Permissions 

APK 
Tool 



Random Forests (RF): The idea behind this classification 
algorithm is to construct a forest of random trees [27]. 

Sequential Minimal Optimization (SMO): This algorithm 
presented by John Platt implements training of a support 
vector classifier [31]. 

V. IMPLEMENTATION 
The data set consisted of 3,784 apk installation packages 

for the Android applications. We developed C# scripts for 
bunch extraction of the installation packages to avoid 
manual extraction. After the extraction of the installation 
packages, we separated the AndroidManifest.xml files to 
identify the permission requests for each package. The 
permissions are written by standard keywords in Manifest 
files. For instance, the lines below exemplify the permission 
request of  the application to make a phone call.  

   <uses-permissionandroid:name  
           = android.permission.CALL_PHONE />  

Another example is below, which asks for permission 
for internet usage.  

    <uses-permissionandroid:name  
           = android.permission.INTERNET/> 

Similar standard statements are used for each permission 
type in the Manifest files. Therefore, an Android application 
should involve each and every permission statement within 
the Manifest file. Accordingly, we searched for those 
statements in all the Manifest files in the dataset of 
application packages. If the searched permission statement 
was found in a manifest file, the corresponding binary 
feature vector value (in the relevant column) was updated 
for the relevant application (in the relevant row). This 
process resulted in a data matrix, which consisted of 3,784 
Android applications, represented by the rows, and 
permissions represented by the columns. This data matrix 
was then used as input for the analysis. 

The selected feature selection methods were employed 
to identify their performance, as well as their compatibility 
with the classification algorithms. The Gain Ratio Attribute 
Evaluator, the ReliefF Attribute Evaluator, and the Cfs 
Subset Evaluator feature selection methods require 
predefined number of features as input for further 
processing. In the present study, we used 25 features and 50 
features, and we used more than one feature selection 
implementation for Gain Ratio Attribute Evaluator, ReliefF 
Attribute Evaluator and Cfs Subset Evaluator by assuming 
that 25 features might not have been enough to represent the 
whole feature set and 50 features might have included 
redundant features. Furthermore, the Consistency Subset 
Evaluator feature selection method does not require a 
predefined number of features. Instead, the method 
determines the optimum number of features itself and after 
implementation, it returns the best feature set. Consequently, 
seven different feature selection methods were implemented 
in feature selection method step to reduce the total of 182 
features to an optimum number of features. 

The results of the application of the seven feature 
selection implementations revealed a total of 97 features, 
which were identified as important in representing the whole 
feature set. Among the 97 features, one of them 
(WRITE_APN_SETTING) was identified as important in 
representing the whole feature set by all four feature 
selection methods, whereas 34 of them were identified as 
important in representing the whole feature set by at least 
three of four feature selection methods. The selected 
features are presented in Table 2 below. 

TABLE 2. Selected features by the feature selection methods 
Permission Name                                       Permission Name
WRITE_APN_SETTINGS* RECEIVE_WAP_PUSH
ACCESS_WIFI_STATE WAKE_LOCK
CHANGE_WIFI_STATE WRITE_EXTERNAL_STORAGE
DELETE_PACKAGES WRITE_SETTINGS
MOUNT_UNMOUNT_FILESYSTEMS WRITE_HISTORY_BOOKMARKS
READ_PHONE_STATE ACCESS_FINE_LOCATION
READ_SMS BAIDU_LOCATION_SERVICE
RECEIVE_BOOT_COMPLETED CLEAR_APP_CACHE
RECEIVE_SMS GET_TASKS
RESTART_PACKAGES INTERNET 
SEND_SMS READ_EXTERNAL_STORAGE
SYSTEM_ALERT_WINDOW ACCESS_FIND_LOCATION
INSTALL_SHORTCUT DEVICE_POWER
CALL_PRIVILEGED GET_ACCOUNTS
CHANGE_NETWORK_STATE INTERNAL_SYSTEM_WINDOW
INSTALL_PACKAGES PROCESS_OUTGOING_CALLS
READ_LOGS WRITE_SMS
*Only “WRITE_APN_SETTINGS WRITE_APN_SETTINGS” feature was 
selected by 4, the remaining ones were selected by 3 feature selection 
algorithms. 

 
For the next step after feature selection, we formed 

seven datasets with different number of features and feature 
contents. The number of android applications was the same 
in each dataset with 3,784 applications. The only difference 
between the datasets was related to feature dimension. The 
datasets were used as input to the classification step of the 
analysis, as described below. 

Five classification algorithms (Bayesian Classification, 
Classification and Regression Tree CART, J48 Decision 
Tree, Random Forests RF and Sequential Minimal 
Optimization SMO) were run on the seven datasets obtained 
in the feature selection step. This resulted in a total of 35 
classification iterations. We employed the default settings as 
specified by the Weka data mining and classfication 
software tool.   

To improve the validity of the training and testing, we 
employed k-fold cross validation to divide the training and 
the test data in the datasets, as suggested by the previous 
research [29]. The steps below are followed for the cross-
validation process. 

• Step 1: Divide the data randomly into k folds 
(subsets) of equal size. 

• Step 2: Train the model on k 1 folds, use one fold 
for testing. 

• Step 3: Repeat this process k times so that all the 
folds are used for testing. 



• Step 4: Compute the average performance on the k 
test sets. 

This cross validation process effectively uses all the data 
for both training and testing. In the present study we 
assumed k = 5. The following section presents the results of 
the classification process and for each dataset as formed by 
the feature selection methods. 

VI. IMPLEMENTATION RESULTS AND EVALUATION 
The evaluation of the classification algorithm 

implementations were performed in terms of the following 
evaluation measures: Overall Accuracy, True Positive Rate, 
False Positive Rate, and Precision. These measures are 
derived from four basic measures that are described below. 

True Positive (TP): This measure specifies the number of 
correctly identified benign applications. 

False Positive (FP): This measure specifies the number of 
incorrectly identified malware applications. In other words, 
a false positive classification identifies an originally 
malicious application incorrectly as a benign application. 

True Negative (TN): This measure specifies the number of 
correctly identified malware applications. 

False Negative (FN): This measure specifies the number of 
incorrectly identified benign applications. In other words, a 
false negative classification identifies an originally benign 
application incorrectly as a malicious application. 

Table 3 presents four basic classification measures in terms 
of the relationship between malicious and benign status of 
the application.  

TABLE 3. The summary of four basic measures for evaluation. 
Prediction 

Malicious Benign 

Reality 
Malicious TRUE 

NEGATIVE 
FALSE 

POSITIVE 

Benign FALSE 
NEGATIVE 

TRUE 
POSITIVE 

 
 
The derived evaluation measures are described in terms of 
the basic measures, as presented below: 
 
Overall Accuracy: The ratio of correctly identified 
applications. In other words, it shows the ratio of correctly 
classified instances. 

      Overall Accuracy = (TP + TN) / (TP + TN + FP + FN) 

True Positive Rate: The ratio of correctly identified benign 
applications. True Positive Rate is also called Recall.  

TPR = TP / (TP + FN)  

False Positive Rate: The ratio of incorrectly identified 
malicious applications. 

FPR = FP / (TN + FP)  

Precision: It is the ratio of retrieved instances that are 
relevant. It is also called positive predictive value. 

Precision = TP / (TP + FP) 

Precision reflects the fraction of correctly classified 
instances within all classified instances. Precision is a 
different measure than the accuracy of classification. In the 
following section, we present the performance evaluation of 
the selected feature selection methods. 

A. The Performance Evaluation of Feature Selection 
Methods 
As presented in the previous section, the number of 

features in the three feature selection methods were 
specified as 25 and 50. The fourth feature selection method, 
namely Consistency Subset Evaluator, determines optimum 
number of feature itself. For this reason, it wasn’t possible 
to use 25 and 50 features for the Consistency Subset 
Evaluator. The feature selection methods applied in the 
present study produced different prediction output values 
depending on the classification algorithm used (Table 4). 
For instance, the Bayesian classification algorithm returned 
the best results for all evaluation parameters (TPR, FPR, and 
precision) when it was used with the Cfs Subset Evaluator 
(25) feature selection method with 25 features. On the other 
hand, the J48 Decision Tree algorithm revealed the best 
accuracy when it was used with the dataset formed by the 
Gain Ratio Attribute Evaluator (50) and the dataset formed 
by the Cfs Subset Evaluator (25) feature selection methods. 
The Random Forest (RF) classification algorithm returned 
the best result with the Cfs Subset Evaluator (25) feature 
selection method in terms of prediction accuracy. The 
Classification and Regression Tree (CART) algorithm 
returned close prediction results with J48 Decision Tree for 
all of the selected feature selection methods. In addition, it 
complied best with the Gain Ratio Attribute Evaluator (50) 
and the Cfs Subset Evaluator (25) feature selection methods 
as the CART algorithm did. Finally, the Sequential Minimal 
Optimization (SMO) SVM algorithm revealed the best 
performance for all evaluation parameters when it was used 
with the ReliefF Attribute Evaluator (50) feature selection 
method. 

The Consistency Subset Evaluator feature selection 
method determined the optimum number of features as 36 
features. The Consistency Subset Evaluator method 
exhibited the weakest performance in all classification 
algorithms with the lowest overall accuracy and the lowest 
true positive rate. Following the Consistency Subset 
Evaluator that, the second weakest feature selection method 
was the ReliefF Attribute Evaluator. 

An overall evaluation of the results obtained by the 
classification algorithms shows that the Cfs Subset 
Evaluator (25) and the Gain Ratio Attribute Evaluator (50) 
gave a good performance in three classification algorithms. 
Another significant outcome of the analysis is that the Cfs 
Subset Evaluator (25) showed a better performance than the 
Cfs Subset Evaluator (50). In other words, 25 features which 
were selected for the Cfs Subset Evaluator better 
represented the whole feature set.   



TABLE 4. The results of the analysis. 

 

B. The Performance Evaluation of Classification 
Algorithms 
The Random Forest classification algorithm exhibited 

the best performance almost in all feature selection methods, 
except for the ReliefF Attribute Evaluator (25), for which 
the SMO classification algorithm returned better accuracy, 
and the Gain Ratio Attribute Evaluator (25), for which the 
J48 Decision Tree classification algorithm returned better 
accuracy. Moreover, the J48 Decision Tree algorithm was 
the second best because it showed the best results for one 
(Gain Ratio Attribute Evaluator (25))  and the second best 
results for two feature selection methods (Gain Ratio 
Attribute Evaluator (25) and Cfs Subset Evaluator (25)). 
The SMO classification algorithm returned the second best 
results for two feature selection methods, therefore it can be 
evaluated as being worse when it is compared to the J48 
Decision Tree algorithm. The Bayesian classification 
algorithm pointed out the weakest performance nearly for all 
feature selection methods, except for the Consistency Subset 
Evaluator (36). 

The results obtained by the evaluation of the 
classification algorithms suggest that the Random Forest 
and the J48 Decision Tree classification algorithms might be 

preferred for the task of permission-based Android malware 
detection. On the other hand, the results suggest that the 
Bayesian algorithm should be avoided in permission based 
classification analysis of Android applications. 
 

C. The Compatibility of Feature Selection Methods and 
Classification Algorithms 
Bayesian classification showed a relatively high 

performance (the overall accuracy of 89.32%.) with the Cfs 
Subset Evaluator with 25 features. The J48 Decision Tree 
algorithm returned high accuracy when it was with Gain 
Ratio Attribute Evaluator with 50 features and Cfs Subset 
Evaluator with 25 features, with 93.90% overall accuracy in 
both cases. The Random Forest showed the best 
performance with the Cfs Subset evaluator with 25 features 
and Gain Ratio attribute evaluator with 50 features, with 
94.90% and 94.50% overall accuracies respectively. This 
finding shows that 25 features and 50 features exhibited 
close accuracy. These were the highest overall accuracy 
values obtained in the analysis. The Classification and 
Regression Tree (CART) algorithm displayed the best 
performance with the Cfs Subset Evaluator with 25 features 
and Gain Ratio Attribute Evaluator with 50 features. 
Finally, the Sequential Minimal Optimization (SMO) 
revealed the best compatibility with the ReliefF Attribute 
Evaluator with both 25 and 50 features. 

VII. CONCLUSION 
In the present study, we performed a permission-based 

analysis of malware classification for Android applications 
in two major steps. In the first step, we applied a set of 
feature selection methods (Gain Ratio Attribute Evaluator, 
ReliefF Attribute Evaluator, Cfs Subset Evaluator and 
Consistency Subset Evaluator) to reduce the size of the 
feature dimension of the dataset, which originally had 182 
features. We then used the reduced datasets as input sets to 
five classification algorithms (J48 Decision Tree, Bayesian 
Classification, Random Forest, Classification and 
Regression Tree and SMO). The performance of the 
algorithms was evaluated by means of a set of measures, in 
particular by Overall Accuracy, True Positive Rate, False 
Positive Rate and Precision measures.  

The findings revealed that the Cfs Subset Evaluator 
feature selection method gave a good performance when it 
was used with 25 features. Moreover, increasing the number 
of features to 50 did not improve accuracy. As for the 
classification algorithms, the results suggested that the 
permission based classification analysis of Android 
applications can be more accurately performed with 
Random Forest and J48 Decision Tree classification but not 
with the Bayesian algorithm. The prediction results of the 
classification algorithms revealed that the permission based 
Android malware detection model can be performed more 
accurately by using the Random Forest algorithm. 
Furthermore, the Random Forest and J48 Decision Tree 
work best with the Gain Ratio Attribute Evaluator with 50 
features and with the Cfs Subset Evaluator with 25 features, 

Feature 
Selection 
Method 

Classification 
Algorithm 

Overall 
Accuracy 
(ACC) 

TP 
Rate 

FP 
Rate Precision 

Cfs Subset 
(25) 

Bayesian 89.32% 0.893 0.120 0.893 
CART 93.58% 0.936 0.073 0.936 
J48 93.87% 0.939 0.072 0.939 
Random Forest 94.90% 0.949 0.060 0.949 
SMO 91.62% 0.916 0.082 0.918 

Cfs Subset 
(50) 

Bayesian 88.35% 0.883 0.139 0.883 
CART 89.98% 0.900 0.097 0.903 
J48 90.51% 0.905 0.078 0.913 
Random Forest 92.79% 0.928 0.078 0.928 
SMO 92.68% 0.927 0.082 0.927 

Consistency 
Subset 

Bayesian 72.89% 0.729 0.367 0.727 
CART 74.05% 0.740 0.373 0.749 
J48 73.39% 0.734 0.384 0.744 
Random Forest 74.21% 0.742 0.369 0.750 
SMO 72.78% 0.728 0.399 0.742 

Gain Ratio 
Attribute 
(25) 

Bayesian 87.66% 0.877 0.150 0.876 
CART 91.99% 0.920 0.081 0.921 
J48 92.23% 0.922 0.078 0.924 
Random Forest 92.15% 0.922 0.081 0.922 
SMO 91.15% 0.911 0.085 0.914 

Gain Ratio 
Attribute 
(50) 

Bayesian 87.95% 0.879 0.146 0.879 
CART 93.60% 0.936 0.071 0.936 
J48 93.90% 0.939 0.069 0.939 
Random Forest 94.50% 0.945 0.062 0.945 
SMO 92.60% 0.926 0.081 0.926 

ReliefF 
Attribute 
(25) 

Bayesian 87.18% 0.872 0.155 0.871 
CART 89.59% 0.896 0.103 0.899 
J48 90.35% 0.904 0.085 0.909 
Random Forest 91.91% 0.919 0.094 0.919 
SMO 92.34% 0.923 0.088 0.923 

ReliefF 
Attribute 
(50) 

Bayesian 87.84% 0.878 0.144 0.878 
CART 89.69% 0.897 0.100 0.900 
J48 91.15% 0.911 0.081 0.915 
Random Forest 93.42% 0.934 0.072 0.934 
SMO 93.18% 0.932 0.077 0.932 



whereas Bayesian returned poor performance independent 
of the feature selection method. 

We expect that the results of the current study might 
provide the basis for future research in malware detection. 
Our future research will address a finer-grained analysis of 
the effect of dataset size in terms of the number of data 
points (i.e., the number of Android applications). We predict 
that an optimum dataset size can be determined depending 
on the selected feature selection method and the 
classification algorithm. In addition, the future research 
should address other static features existing in an apk files to 
conduct static analysis of Android malware,  including but 
not limited to specific API calls though the requirements of 
higher resources for the analysis. Finally, the future research 
may focus on clustering analysis to identify emergent 
clusters in the dataset. 
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