
The Analysis of Feature Selection Methods and
Classification Algorithms in Permission Based

Android Malware Detection

Abstract—Android mobile devices have reached a

widespread use since the past decade, thus leading to an
increase in the number and variety of applications on the
market. However, from the perspective of information
security, the user control of sensitive information has been
shadowed by the fast development and rich variety of the
applications. In the recent state of the art, users are subject to
responding numerous requests for permission about using
their private data to be able run an application. The awareness
of the user about data protection and its relationship to
permission requests is crucial for protecting the user against
malicious software. Nevertheless, the slow adaptation of users
to novel technologies suggests the need for developing
automatic tools for detecting malicious software. In the present
study, we analyze two major aspects of permission-based
malware detection in Android applications: Feature selection
methods and classification algorithms. Within the framework
of the assumptions specified for the analysis and the data used
for the analysis, our findings reveal a higher performance for
the Random Forest and J48 decision tree classification
algorithms for most of the selected feature selection methods.

Keywords—cyber security, android application, machine
learning, static analysis, feature selection, classification,
malware detection

I. INTRODUCTION
Mobile devices of various operating systems have

exhibited a steep increase in the past decade, thus leading to
an increase in the number and variety of applications that
run on mobile devices. Smartphones are recently used either
in a complementary manner to a desktop computer or even
to replace it. A closer look at the purpose of using mobile
phones reveal that they are mostly used for web browsing,
social networking, and online banking. In addition, they are
used for mobile-specific functions such as SMS messaging,
read-time broadcasting of location, and ubiquitous access
[1]. As the capabilities in mobile phone functionality
increase (e.g., applications for personal health), mobile
phones become more and more attractive for a wider
population. Market data surveys reveal that the number of
smartphone sales worldwide reached 208 million in 2012.

This was a 38.3% increase compared to the sales in 2011
[2].

The development of smartphones and mobile
applications has resulted in a major change in people’s way
of doing tasks in various aspects of daily life, such as
making business and conducting social communication.
Mobile phone applications exhibit a rich variety not only in
common daily life activities but also for users with more
specific needs. From games to multimedia applications,
navigation systems, and health-related applications, recently
available mobile application markets, such as Google’s Play
Market, Apple’s App Store, or Microsoft’s Windows Store
offer a wide variety of applications to users with different
needs [4]. The major application markets have been growing
steadily both in terms of the applications offered to the users
and the downloads performed by the users (e.g., see [5] for
the development of Google Play Market since the past
several years).

The fast increase in the popularity of smartphones has
led to an increase in their potential as a target for malicious
activities [1]. This is mainly because users provide access
for various types of private information by means of mobile
applications [3]. As a result, some applications in the market
have been identified as performing malicious activities. The
spread of malicious software is also influenced by the policy
of the market providers. For instance, Apple’s App Store
recently applies a policy that is subject to strict registration
and company-issued digital certification before the release
of any application, thus providing a security check for the
applications listed in their application platform regularly [6].
Others, such as Google’s Play Market, introduce more
freedom to developers in uploading their own software to
the market. The applications are then removed from the
market in case of reported malicious activity. In particular,
the Android operating system (in its recent form) allows
removal of the malicious application from the device
remotely. A similar mechanism of removal is also employed
by Apple’s App Store (namely, by kill switch) [7]. The
policy of post-detection removal of malicious software
brings the need for early detection of malware applications.

U ur PEHL VAN, Nuray BALTACI, Cengiz ACARTÜRK, Nazife BAYKAL

CyDeS, Cyber Defense and Security Laboratory of METU-COMODO, Informatics Institute
Middle East Technical University (METU), Ankara, Turkey

{ugur.pehlivan, nbaltaci, acarturk, baykal} @metu.edu.tr

978-1-4799-4521-4/14/$31.00 ©2014 IEEE

In the present study, we focus on malware detection in
Android operating systems.

Malware detection analysis of Android applications may
be performed in two ways: Static analysis and dynamic
analysis [8]. Static analysis is conducted by reverse-
engineering an application, without running the application.

 In particular, this process involves analyzing the file
with the .apk extension and by focusing on the content of
the two files: AndroidManifest.xml and classes.dex [9]. On
the other hand, dynamic analysis (also called behavior-based
detection) is conducted by running the application and
analyzing its execution traces in a controlled environment
[10]. A comparison between the static analysis methods and
the dynamic analysis methods reveals that the latter requires
more computing resources in terms of memory space and
execution time. This is due to the fact that in dynamic
analysis, the traces are extracted online during the course of
application running on the system, whereas online detection
is not necessary in static analysis [11]. The static analysis
methods, however, require an intensive analysis of feature
selection methods and processing algorithms for malware
detection, as we explain in more detail below.

Android applications run by employing functions
provided by the operating system. For this, applications
need various permissions that should be granted by the
mobile device user. Those requests for permissions are
usually asked to the user during the course of installation of
an application. The list of permissions that may be asked to
the user by Android application is provided by [12]. The
permissions that are used in the present study are presented
in Section V.

The permissions specify affordances of an application in
the operating system. Therefore permissions have the
potential to allow malicious access of user data by the
application. In addition, the analysis of malicious software
through the investigation of the permissions is a static
analysis, because the application does not run but the
permissions are analyzed. In the present study, we use
permissions for the backbone of data input to our static
analysis.

Two major important aspects of permission-based
analysis of malicious software are feature selection
methods and classification algorithms. In general, feature
selection methods are used for reducing the dimension size
of a dataset. For this, some of the features (attributes) which
are not useful in the analysis are removed from the data set.
The remaining features are selected by taking into account
the representational power of all the features in the dataset.

An efficient feature selection method introduces
performance gains in data analysis. Therefore, it is usually
conceived as a necessary step for preparing a dataset with a
manageable size for the analysis (in terms of the availability
of computational resources). Choosing an appropriate
feature selection method among alternatives is, however, a
challenge. It is not only influenced by the characteristics of
the dataset but it also interacts with the selected algorithm
for data classification. In the present study, we selected a set

of feature selection methods and classification algorithms,
as presented in Table 1 below.

TABLE 1. Feature selection methods and classification algorithms
for data analysis.

Feature Selection Methods Classification Algorithms

• Gain Ratio Attribute
Evaluator

• ReliefF Attribute Evaluator
• Cfs Subset Evaluator
• Consistency Subset

Evaluator

• Bayesian Classification
• Classification and Regression

Tree (CART)
• J48 Decision Tree
• Random Forest
• Sequential Minimal

Optimization (SMO)

The rest of the paper is organized as follows. The next
section presents the related work. Section III gives
information about the dataset used in the analysis. In Section
IV, we introduce the methodology used in the analysis.
Section V discusses the issues about the implementation of
the methodology for data analysis. In Section VI, we discuss
the results and the general findings obtained from the
analysis. Finally, Section VII presents conclusions and
further research agenda.

II. RELATED WORK
Previous research employed various classification

algorithms for the classification of malicious Android
applications by static analysis. For instance, [13] performed
a permission-based analysis of the applications at Google’s
Play Market by extracting the permission set from the
relevant AndroidManifest.xml files, as stated in the previous
section. Utilizing the Information Gain feature selection
method to reduce the size of the feature set, and applying the
J48 Decision Tree, Classification and Regression Tree
(CART) and Random Forest classification algorithms onto
the reduced data set, performances were compared in terms
of true positive, false positive, precision and recall rates.
According to their results, J48 and Random Forest
outperform CART by showing higher precision rates and
lower false positive rates. In another study, the behavior of
selected Android applications were characterized by a
feature-based learning framework which included API calls
as features combined with permissions. The analysis
employed SVM, J48 and Bagging classification algorithms.
The results revealed that the combination of API calls with
the requests for permissions increases the efficiency of
malware detection [14]. In another study [15], frequent
combinations of request for permissions, intents, broadcast
receivers and native code were added to the feature set. The
analysis was performed by employing Random Forest
classification and by using Android Malware Genome
Project public data, as well as a set of benign applications
obtained from third party markets. The results revealed that
the method outperformed conventional anti-malware tools,
even for novel malware software. Another study [16] using
the Malware Genome Project data classified Android
applications with Bayesian classifier based on static code
analysis. API calls, Linux system commands and
permissions were extracted as features by reverse
engineering the .apk files. Mutual Information (MI)

maximization technique was used to select features
considering classes of applications (as malicious or benign).
Results reported better detection rates than then popular
signature-based antivirus software on the same set of
malware samples. In [30], a method was presented by
analyzing the information only within manifest files with
J48 Decision Tree algorithm to detect Android malware.

As introduced in Section I, malware detection methods
do not only include static analysis but also include dynamic
analysis. Among many others, one approach, called
Crowdroid, employed crowd-sourcing for obtaining
application execution traces. The analysis applied a
behavioral framework to distinguish Trojan horses from
benign applications which had the same name and the same
version but a different dynamic behavior. By uploading the
crowd-sourcing application to Google’s Play Market and
feeding the algorithm by non-personal (but behavior-related)
data obtained from the users, an efficient malware detection
method was developed. The algorithms was based on the
system calls that built feature vectors for k-means
classification [10]. Another host-based behavioral analysis
framework is called Andromaly, which continuously
monitors features and events obtained from the mobile
device. Andromaly then applies various classification
algorithms, including k-means, logistic regression,
histogram, decision tree, Bayesian networks and Naïve
Bayes after feature selection (Chi-square, Fisher Score and
Information Gain as feature selection algorithms) [17].

In the present study, we focus on static analysis methods
by extending the previous studies, in particular, by
introducing a broad variety feature selection methods and
classification algorithms. Three types of classification
algorithms, namely Bayesian, Decision Tree and Support
Vector Machines (SVM) are used for a performance
comparison. Moreover, two types of feature selection
methods, which are attribute-based and subset-based, were
evaluated with their performance contribution to the
classification algorithms. To the best of our knowledge,
some of those feature selection methods (namely
Consistency Subset Evaluator and ReliefF Attribute
Evaluator) have not been used previously for the purpose of
malware detection in mobile applications. In the following
section, we describe the data set before introducing the
feature selection methods and the classification algorithms.

III. DATA
The dataset, which was used in the analysis, was

provided by COMODO Security Solutions, Inc., a private
security company [18]. A branch of COMODO Security
Solutions, Inc. is located at the Middle East Technical
University (METU) campus, Turkey. The dataset includes
3,784 android applications, 2,338 of which are benign and
1,446 of which are malware applications. The label as
‘benign’ or ‘malware’ was provided in the dataset, as
specified by the company. This label was used for
supervised learning in the feature selection and
classification analyses, as described in the following section.

IV. METHODOLOGY
As introduced in Section II, feature selection allows

removing some features from the dataset which are already
redundant or irrelevant for the analysis. The resulting
dataset usually leads to a reduced processing duration and
higher accuracy compared to the raw dataset. In the present
study, four feature selection methods and five classification
algorithms were examined by investigating the accuracy of
classification prediction of the applications into ‘benign’ or
‘malware’ (Table 1). Weka (Waikato Environment for
Knowledge Analysis) software tool was employed for
implementing the feature selection methods and the
classification algorithms [19]. The evaluation of the feature
selection methods and the classification algorithms were
performed by using the following measures.

• Overall Accuracy (ACC)
• True Positive (TP) Rate
• False Positive (FP) Rate
• Precision

Android applications (i.e., .apk files) include all the data
required for the installation of an Android application on the
mobile device, including the requests for permission. For
example, android.permission.CALL_PHONE allows an
application to initiate a phone call without going through the
Dialer user interface for the user to confirm the call being
placed. Similarly, android.permission. INTERNET allows
applications to open network sockets. The set of all the
permissions and their functions in Android applications can
be seen in [12]. The features that are used in the present
study are presented in the following section. The focus of
our analysis is to examine whether there exists a relationship
between the requests for permission (as processed by
features) and the classification of the application as benign
or malicious.

Android applications are developed in Java
programming language. The installation package is a
compressed (ZIP) bundle of the files including the manifest
file (AndroidManifest.xml) and classes.dex. The components
of an Android application, such as the activities, services,
broadcast receivers, and content providers that the
application is composed of are described in the manifest file
[20]. The manifest file specifies the permissions the
application must have to access the protected parts of the
API and to interact with the applications’ components and
other applications. Therefore the permissions specified in
the manifest file should be granted by the user during the
course of installation. Below we present the features that are
employed to identify permissions in the present study.

A. Features
Features are the attributes used for defining the

permission characteristics of an application. Each feature
(e.g., android.permission.CALL_PHONE) corresponds to a
permission specified by the application. A feature set can be
specified as a feature vector, which includes all the
permissions that are requested from the user. In the present
study, we also added version code and version name to the

feature set, which are included in the manifest file. This
resulted in a feature set which was composed of 182 data
points. Below is an example of a feature vector (for a single
application), which includes binary values for the 182
features. We included the version code and the version name
without conversion (cf. the first two data points in the
vector).
(3,1.2,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,
1,1,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,0,0,0,1,1,0,0,0,1,0,1,0,
1,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,
1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,0,1,
0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0)

Figure 1: A sample feature vector.

In the following section, we present the feature extraction
process.

B. Feature Extraction
In order to reach the permission data of an application,

the apk file must be extracted from the .apk extended file
and then the AndroidManifest.xml file must be read. We
employed the APKTOOL [21] to extract the apk file into the
Android Manifest file and the Smali file. Then, the
permissions defined in the Android manifest file were
examined to extract which type of permissions were
required to run the application. Figure 2 depicts the process
of apk file extraction

Figure 2: APK File Extraction

C. Feature Selection
Feature selection is performed to reduce the dataset size

by removing the features (attributes) which are not
beneficial to be used in the analysis. The features are
selected according to their representation capability of all
the dataset. Efficient feature selection methods introduce
performance gains by reducing the dataset size and the time
spent in classification analysis. Feature selection methods
can be divided into two approaches, called attribute-based
feature selection methods and subset-based feature selection
methods. Attribute-based feature selection methods evaluate
each feature separately, independent of other features. It is
mainly based on class features. Dependencies among the
features are ignored, but the relation to the class feature is
taken into account. On the other hand, in subset-based
feature selection methods, feature subsets are constructed
randomly and the subset that best represents the whole
features is selected. Dependencies among the features are
taken into account. In the present study, we employed the
following attribute-based and subset-based feature selection
methods.

Gain Ratio Attribute Evaluator: This feature selection
method evaluates the worth of an attribute by measuring the
gain ratio with respect to the class. It requires a class feature
to evaluate features. The benign/malware characteristic is
used for the class feature in this method. Also, the number
of features has to be specified in this selection method. In
the present study, 25 and 50 features were assumed to be
sufficient for the representation of 182 features. Hence, the
number of features was separately reduced to 25 and 50
features by applying this method, as specified by the
following formulation.

 GainR(Class, Attribute)
 = (H(Class) – H(Class | Attribute)) / H(Attribute)

ReliefF Attribute Evaluator: This method evaluates the
worth of an attribute by repeatedly sampling an instance and
by considering the value of the given attribute for the
nearest instance of the same and different class. It can
operate on both discrete and continuous class data [22]. The
method also requires a class feature and a specified number
of features. In the present study, benign/malware status was
used as a class feature, and 25 and 50 features were assumed
to be satisfactory for representing the whole feature set.

Cfs Subset Evaluator: This method evaluates the worth
of a subset of attributes by considering the individual
predictive ability of each feature along with the degree of
redundancy between them. Subsets of features that are
highly correlated with the class, while having low
intercorrelation, are preferred [23]. It does not require a
class feature because it selects the subset randomly by using
a specified number of features. In the present study, 25 and
50 features were assumed to be satisfactory for the purpose
of the analysis.

Consistency Subset Evaluator: This method evaluates
the worth of a subset of attributes by the level of consistency
in the class values when the training instances are projected
onto the subset of attributes. Consistency of any subset can
never be lower than that of the full set of attributes [24]. It
does not require a specified number of features. The method
determines the optimum number of features and it returns
the optimum feature subset in the result.

The four feature selection methods described above were
separately run on the dataset, which included 3,784 android
applications with different feature sets.

D. Classification
Classification algorithms were run on the datasets, which

were obtained after feature selection. In the present study,
we employed the following classification algorithms.

Bayesian Classification: This algorithm is based on so-
called Bayes classifier, which employs estimator classes. In
the present study, numeric estimator precision values were
selected based on the analysis of training data. [28].

Classification and Regression Tree (CART): This algorithm
implements minimal cost-complexity pruning [25].

J48 Decision Tree Algorithm: This algorithms generates
either a pruned or an unpruned C4.5 decision tree [26].

Smali
File

APK
File

AndroidManifest.xml
File

Permissions

APK
Tool

Random Forests (RF): The idea behind this classification
algorithm is to construct a forest of random trees [27].

Sequential Minimal Optimization (SMO): This algorithm
presented by John Platt implements training of a support
vector classifier [31].

V. IMPLEMENTATION
The data set consisted of 3,784 apk installation packages

for the Android applications. We developed C# scripts for
bunch extraction of the installation packages to avoid
manual extraction. After the extraction of the installation
packages, we separated the AndroidManifest.xml files to
identify the permission requests for each package. The
permissions are written by standard keywords in Manifest
files. For instance, the lines below exemplify the permission
request of the application to make a phone call.

 <uses-permissionandroid:name
 = android.permission.CALL_PHONE />

Another example is below, which asks for permission
for internet usage.

 <uses-permissionandroid:name
 = android.permission.INTERNET/>

Similar standard statements are used for each permission
type in the Manifest files. Therefore, an Android application
should involve each and every permission statement within
the Manifest file. Accordingly, we searched for those
statements in all the Manifest files in the dataset of
application packages. If the searched permission statement
was found in a manifest file, the corresponding binary
feature vector value (in the relevant column) was updated
for the relevant application (in the relevant row). This
process resulted in a data matrix, which consisted of 3,784
Android applications, represented by the rows, and
permissions represented by the columns. This data matrix
was then used as input for the analysis.

The selected feature selection methods were employed
to identify their performance, as well as their compatibility
with the classification algorithms. The Gain Ratio Attribute
Evaluator, the ReliefF Attribute Evaluator, and the Cfs
Subset Evaluator feature selection methods require
predefined number of features as input for further
processing. In the present study, we used 25 features and 50
features, and we used more than one feature selection
implementation for Gain Ratio Attribute Evaluator, ReliefF
Attribute Evaluator and Cfs Subset Evaluator by assuming
that 25 features might not have been enough to represent the
whole feature set and 50 features might have included
redundant features. Furthermore, the Consistency Subset
Evaluator feature selection method does not require a
predefined number of features. Instead, the method
determines the optimum number of features itself and after
implementation, it returns the best feature set. Consequently,
seven different feature selection methods were implemented
in feature selection method step to reduce the total of 182
features to an optimum number of features.

The results of the application of the seven feature
selection implementations revealed a total of 97 features,
which were identified as important in representing the whole
feature set. Among the 97 features, one of them
(WRITE_APN_SETTING) was identified as important in
representing the whole feature set by all four feature
selection methods, whereas 34 of them were identified as
important in representing the whole feature set by at least
three of four feature selection methods. The selected
features are presented in Table 2 below.

TABLE 2. Selected features by the feature selection methods
Permission Name Permission Name
WRITE_APN_SETTINGS* RECEIVE_WAP_PUSH
ACCESS_WIFI_STATE WAKE_LOCK
CHANGE_WIFI_STATE WRITE_EXTERNAL_STORAGE
DELETE_PACKAGES WRITE_SETTINGS
MOUNT_UNMOUNT_FILESYSTEMS WRITE_HISTORY_BOOKMARKS
READ_PHONE_STATE ACCESS_FINE_LOCATION
READ_SMS BAIDU_LOCATION_SERVICE
RECEIVE_BOOT_COMPLETED CLEAR_APP_CACHE
RECEIVE_SMS GET_TASKS
RESTART_PACKAGES INTERNET
SEND_SMS READ_EXTERNAL_STORAGE
SYSTEM_ALERT_WINDOW ACCESS_FIND_LOCATION
INSTALL_SHORTCUT DEVICE_POWER
CALL_PRIVILEGED GET_ACCOUNTS
CHANGE_NETWORK_STATE INTERNAL_SYSTEM_WINDOW
INSTALL_PACKAGES PROCESS_OUTGOING_CALLS
READ_LOGS WRITE_SMS
*Only “WRITE_APN_SETTINGS WRITE_APN_SETTINGS” feature was
selected by 4, the remaining ones were selected by 3 feature selection
algorithms.

For the next step after feature selection, we formed

seven datasets with different number of features and feature
contents. The number of android applications was the same
in each dataset with 3,784 applications. The only difference
between the datasets was related to feature dimension. The
datasets were used as input to the classification step of the
analysis, as described below.

Five classification algorithms (Bayesian Classification,
Classification and Regression Tree CART, J48 Decision
Tree, Random Forests RF and Sequential Minimal
Optimization SMO) were run on the seven datasets obtained
in the feature selection step. This resulted in a total of 35
classification iterations. We employed the default settings as
specified by the Weka data mining and classfication
software tool.

To improve the validity of the training and testing, we
employed k-fold cross validation to divide the training and
the test data in the datasets, as suggested by the previous
research [29]. The steps below are followed for the cross-
validation process.

• Step 1: Divide the data randomly into k folds
(subsets) of equal size.

• Step 2: Train the model on k 1 folds, use one fold
for testing.

• Step 3: Repeat this process k times so that all the
folds are used for testing.

• Step 4: Compute the average performance on the k
test sets.

This cross validation process effectively uses all the data
for both training and testing. In the present study we
assumed k = 5. The following section presents the results of
the classification process and for each dataset as formed by
the feature selection methods.

VI. IMPLEMENTATION RESULTS AND EVALUATION
The evaluation of the classification algorithm

implementations were performed in terms of the following
evaluation measures: Overall Accuracy, True Positive Rate,
False Positive Rate, and Precision. These measures are
derived from four basic measures that are described below.

True Positive (TP): This measure specifies the number of
correctly identified benign applications.

False Positive (FP): This measure specifies the number of
incorrectly identified malware applications. In other words,
a false positive classification identifies an originally
malicious application incorrectly as a benign application.

True Negative (TN): This measure specifies the number of
correctly identified malware applications.

False Negative (FN): This measure specifies the number of
incorrectly identified benign applications. In other words, a
false negative classification identifies an originally benign
application incorrectly as a malicious application.

Table 3 presents four basic classification measures in terms
of the relationship between malicious and benign status of
the application.

TABLE 3. The summary of four basic measures for evaluation.
Prediction

Malicious Benign

Reality
Malicious TRUE

NEGATIVE
FALSE

POSITIVE

Benign FALSE
NEGATIVE

TRUE
POSITIVE

The derived evaluation measures are described in terms of
the basic measures, as presented below:

Overall Accuracy: The ratio of correctly identified
applications. In other words, it shows the ratio of correctly
classified instances.

 Overall Accuracy = (TP + TN) / (TP + TN + FP + FN)

True Positive Rate: The ratio of correctly identified benign
applications. True Positive Rate is also called Recall.

TPR = TP / (TP + FN)

False Positive Rate: The ratio of incorrectly identified
malicious applications.

FPR = FP / (TN + FP)

Precision: It is the ratio of retrieved instances that are
relevant. It is also called positive predictive value.

Precision = TP / (TP + FP)

Precision reflects the fraction of correctly classified
instances within all classified instances. Precision is a
different measure than the accuracy of classification. In the
following section, we present the performance evaluation of
the selected feature selection methods.

A. The Performance Evaluation of Feature Selection
Methods
As presented in the previous section, the number of

features in the three feature selection methods were
specified as 25 and 50. The fourth feature selection method,
namely Consistency Subset Evaluator, determines optimum
number of feature itself. For this reason, it wasn’t possible
to use 25 and 50 features for the Consistency Subset
Evaluator. The feature selection methods applied in the
present study produced different prediction output values
depending on the classification algorithm used (Table 4).
For instance, the Bayesian classification algorithm returned
the best results for all evaluation parameters (TPR, FPR, and
precision) when it was used with the Cfs Subset Evaluator
(25) feature selection method with 25 features. On the other
hand, the J48 Decision Tree algorithm revealed the best
accuracy when it was used with the dataset formed by the
Gain Ratio Attribute Evaluator (50) and the dataset formed
by the Cfs Subset Evaluator (25) feature selection methods.
The Random Forest (RF) classification algorithm returned
the best result with the Cfs Subset Evaluator (25) feature
selection method in terms of prediction accuracy. The
Classification and Regression Tree (CART) algorithm
returned close prediction results with J48 Decision Tree for
all of the selected feature selection methods. In addition, it
complied best with the Gain Ratio Attribute Evaluator (50)
and the Cfs Subset Evaluator (25) feature selection methods
as the CART algorithm did. Finally, the Sequential Minimal
Optimization (SMO) SVM algorithm revealed the best
performance for all evaluation parameters when it was used
with the ReliefF Attribute Evaluator (50) feature selection
method.

The Consistency Subset Evaluator feature selection
method determined the optimum number of features as 36
features. The Consistency Subset Evaluator method
exhibited the weakest performance in all classification
algorithms with the lowest overall accuracy and the lowest
true positive rate. Following the Consistency Subset
Evaluator that, the second weakest feature selection method
was the ReliefF Attribute Evaluator.

An overall evaluation of the results obtained by the
classification algorithms shows that the Cfs Subset
Evaluator (25) and the Gain Ratio Attribute Evaluator (50)
gave a good performance in three classification algorithms.
Another significant outcome of the analysis is that the Cfs
Subset Evaluator (25) showed a better performance than the
Cfs Subset Evaluator (50). In other words, 25 features which
were selected for the Cfs Subset Evaluator better
represented the whole feature set.

TABLE 4. The results of the analysis.

B. The Performance Evaluation of Classification
Algorithms
The Random Forest classification algorithm exhibited

the best performance almost in all feature selection methods,
except for the ReliefF Attribute Evaluator (25), for which
the SMO classification algorithm returned better accuracy,
and the Gain Ratio Attribute Evaluator (25), for which the
J48 Decision Tree classification algorithm returned better
accuracy. Moreover, the J48 Decision Tree algorithm was
the second best because it showed the best results for one
(Gain Ratio Attribute Evaluator (25)) and the second best
results for two feature selection methods (Gain Ratio
Attribute Evaluator (25) and Cfs Subset Evaluator (25)).
The SMO classification algorithm returned the second best
results for two feature selection methods, therefore it can be
evaluated as being worse when it is compared to the J48
Decision Tree algorithm. The Bayesian classification
algorithm pointed out the weakest performance nearly for all
feature selection methods, except for the Consistency Subset
Evaluator (36).

The results obtained by the evaluation of the
classification algorithms suggest that the Random Forest
and the J48 Decision Tree classification algorithms might be

preferred for the task of permission-based Android malware
detection. On the other hand, the results suggest that the
Bayesian algorithm should be avoided in permission based
classification analysis of Android applications.

C. The Compatibility of Feature Selection Methods and
Classification Algorithms
Bayesian classification showed a relatively high

performance (the overall accuracy of 89.32%.) with the Cfs
Subset Evaluator with 25 features. The J48 Decision Tree
algorithm returned high accuracy when it was with Gain
Ratio Attribute Evaluator with 50 features and Cfs Subset
Evaluator with 25 features, with 93.90% overall accuracy in
both cases. The Random Forest showed the best
performance with the Cfs Subset evaluator with 25 features
and Gain Ratio attribute evaluator with 50 features, with
94.90% and 94.50% overall accuracies respectively. This
finding shows that 25 features and 50 features exhibited
close accuracy. These were the highest overall accuracy
values obtained in the analysis. The Classification and
Regression Tree (CART) algorithm displayed the best
performance with the Cfs Subset Evaluator with 25 features
and Gain Ratio Attribute Evaluator with 50 features.
Finally, the Sequential Minimal Optimization (SMO)
revealed the best compatibility with the ReliefF Attribute
Evaluator with both 25 and 50 features.

VII. CONCLUSION
In the present study, we performed a permission-based

analysis of malware classification for Android applications
in two major steps. In the first step, we applied a set of
feature selection methods (Gain Ratio Attribute Evaluator,
ReliefF Attribute Evaluator, Cfs Subset Evaluator and
Consistency Subset Evaluator) to reduce the size of the
feature dimension of the dataset, which originally had 182
features. We then used the reduced datasets as input sets to
five classification algorithms (J48 Decision Tree, Bayesian
Classification, Random Forest, Classification and
Regression Tree and SMO). The performance of the
algorithms was evaluated by means of a set of measures, in
particular by Overall Accuracy, True Positive Rate, False
Positive Rate and Precision measures.

The findings revealed that the Cfs Subset Evaluator
feature selection method gave a good performance when it
was used with 25 features. Moreover, increasing the number
of features to 50 did not improve accuracy. As for the
classification algorithms, the results suggested that the
permission based classification analysis of Android
applications can be more accurately performed with
Random Forest and J48 Decision Tree classification but not
with the Bayesian algorithm. The prediction results of the
classification algorithms revealed that the permission based
Android malware detection model can be performed more
accurately by using the Random Forest algorithm.
Furthermore, the Random Forest and J48 Decision Tree
work best with the Gain Ratio Attribute Evaluator with 50
features and with the Cfs Subset Evaluator with 25 features,

Feature
Selection
Method

Classification
Algorithm

Overall
Accuracy
(ACC)

TP
Rate

FP
Rate Precision

Cfs Subset
(25)

Bayesian 89.32% 0.893 0.120 0.893
CART 93.58% 0.936 0.073 0.936
J48 93.87% 0.939 0.072 0.939
Random Forest 94.90% 0.949 0.060 0.949
SMO 91.62% 0.916 0.082 0.918

Cfs Subset
(50)

Bayesian 88.35% 0.883 0.139 0.883
CART 89.98% 0.900 0.097 0.903
J48 90.51% 0.905 0.078 0.913
Random Forest 92.79% 0.928 0.078 0.928
SMO 92.68% 0.927 0.082 0.927

Consistency
Subset

Bayesian 72.89% 0.729 0.367 0.727
CART 74.05% 0.740 0.373 0.749
J48 73.39% 0.734 0.384 0.744
Random Forest 74.21% 0.742 0.369 0.750
SMO 72.78% 0.728 0.399 0.742

Gain Ratio
Attribute
(25)

Bayesian 87.66% 0.877 0.150 0.876
CART 91.99% 0.920 0.081 0.921
J48 92.23% 0.922 0.078 0.924
Random Forest 92.15% 0.922 0.081 0.922
SMO 91.15% 0.911 0.085 0.914

Gain Ratio
Attribute
(50)

Bayesian 87.95% 0.879 0.146 0.879
CART 93.60% 0.936 0.071 0.936
J48 93.90% 0.939 0.069 0.939
Random Forest 94.50% 0.945 0.062 0.945
SMO 92.60% 0.926 0.081 0.926

ReliefF
Attribute
(25)

Bayesian 87.18% 0.872 0.155 0.871
CART 89.59% 0.896 0.103 0.899
J48 90.35% 0.904 0.085 0.909
Random Forest 91.91% 0.919 0.094 0.919
SMO 92.34% 0.923 0.088 0.923

ReliefF
Attribute
(50)

Bayesian 87.84% 0.878 0.144 0.878
CART 89.69% 0.897 0.100 0.900
J48 91.15% 0.911 0.081 0.915
Random Forest 93.42% 0.934 0.072 0.934
SMO 93.18% 0.932 0.077 0.932

whereas Bayesian returned poor performance independent
of the feature selection method.

We expect that the results of the current study might
provide the basis for future research in malware detection.
Our future research will address a finer-grained analysis of
the effect of dataset size in terms of the number of data
points (i.e., the number of Android applications). We predict
that an optimum dataset size can be determined depending
on the selected feature selection method and the
classification algorithm. In addition, the future research
should address other static features existing in an apk files to
conduct static analysis of Android malware, including but
not limited to specific API calls though the requirements of
higher resources for the analysis. Finally, the future research
may focus on clustering analysis to identify emergent
clusters in the dataset.

Acknowledgment
This study has been conducted by CyDeS Cyber Defense

and Security Laboratory of METU-COMODO, launched as
a joint venture between the Middle East Technical
University (METU) Informatics Institute and COMODO
CyDeS Laboratory of COMODO Security Solutions Inc.
We thank the reviewers of the IEEE Symposium Series on
Computational Intelligence for their valuable comments and
suggestions.

VIII. REFERENCES

[1] P. Felt, M. Finifter, E. Chin, S. Hanna and D. Wagner, «A Survey of
Mobile Malware in the Wild,» In SPSM '11 Proceedings of the 1st ACM
workshop on Security and privacy in smartphones and mobile devices, p.
3-14, 2011, Chicago, Illinois.

[2] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez and J. Blasco,
«DENDROID: A text mining approach to analyzing and classifying
code,» Expert Systems with Applications , 41(4/1), pp. 1104-1117, 2014

[3] Rapid7 Corporate Headquarters, «Mobile Security Guide: Protect Your
Organization From Mobile Malware,» Rapid7 Corporate Headquarters,
Boston, 2013.

[4] Symantec, «Securing the Mobile App Market: How Code Signing Can
Bolster Security for Mobile Applications,» Symantec, 2012.

[5] Statista-The Statistics Portal, 2014. Available:
http://www.statista.com/statistics/281106/number-of-android-app-
downloads-from-google-play/.

[6] Symantec, «A Window Into Mobile Device Security: Examining the
security approaches employed in Apple’s iOS,» Symantec, 2011.

[7] Teufl, P., Kraxberger, S., Orthacker, C., Lackner, G., Gissing, M.,
Marsalek, A., Leibetseder, J., and Prevenhueber, O. (2012). «Android
Market Analysis With Activation Patterns,» In Security and Privacy in
Mobile Information and Communication Systems (pp. 1-12). Springer
Berlin Heidelberg.

[8] Amamra, A., Talhi, C., and Robert, J. (2012, October). «Smartphone
malware detection: From a survey towards taxonomy, » In Malicious
and Unwanted Software (MALWARE), 2012 7th International
Conference on (pp. 79-86). IEEE.

[9] Tchakounté, F., & Dayang, P., «System Calls Analysis of Malwares on
Android, » International Journal of Science and Technology, 2(9), pp.
669-674, 2013.

[10] Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011, October).
«Crowdroid: behavior-based malware detection system for android, » In
Proceedings of the 1st ACM workshop on Security and privacy in

smartphones and mobile devices (pp. 15-26). ACM.
[11] Shabtai, A., Fledel, Y., & Elovici, Y. (2010, December). «Automated

Static Code Analysis For Classifying Android Applications Using
Machine Learning. » In Computational Intelligence and Security (CIS),
2010 International Conference on (pp. 329-333). IEEE.

[12] «Developers,» Available:
http://developer.android.com/reference/android/Manifest.permission.html
.

[13] Aung, Z., & Zaw, W. (2013). «Permission-based Android malware
detection. » International Journal Of Scientific & Technology Research,
2(3), pp. 228-234.

[14] Peiravian, N., & Zhu, X. (2013, November). «Machine Learning for
Android Malware Detection Using Permission and API Calls, » In Tools
with Artificial Intelligence (ICTAI), 2013 IEEE 25th International
Conference on (pp. 300-305). IEEE.

[15] Glodek, W., & Harang, R. (2013, November). «Rapid Permissions-Based
Detection and Analysis of Mobile Malware Using Random Decision
Forests, » In Military Communications Conference, MILCOM 2013-
2013 IEEE (pp. 980-985). IEEE.

[16] Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013, March).
«A new android malware detection approach using bayesian
classification, » In Advanced Information Networking and Applications
(AINA), 2013 IEEE 27th International Conference on (pp. 121-128).
IEEE.

[17] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2012). «
“Andromaly”: a behavioral malware detection framework for android
devices, » Journal of Intelligent Information Systems, 38(1), 161-190.

[18] “COMODO Security Solutions, Inc. Web Site,” URL
https://tr.comodo.com/

[19] “Weka 3: Data Mining Software in Java,”
http://www.cs.waikato.ac.nz/ml/weka/

[20] “App Manifest,”
http://developer.android.com/guide/topics/manifest/manifest-intro.html

[21] “android-apktool, A tool for reverse engineering Android apk files” URL
http://code.google.com/p/android-apktool

[22] Kononenko, I. (1994, January). «Estimating attributes: analysis and
extensions of RELIEF, » In Machine Learning: ECML-94 (pp. 171-182).
Springer Berlin Heidelberg.

[23] Hall, M. A. (1999). «Correlation-based feature selection for machine
learning, » (Doctoral dissertation, The University of Waikato).

[24] Liu, H., & Setiono, R. (1996, July). «A probabilistic approach to feature
selection-a filter solution, » In ICML (Vol. 96, pp. 319-327).

[25] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J.
Stone (1984). «Classification and Regression Trees, » Wadsworth
International Group, Belmont, California.

[26] Quinlan, J.R., (1993). «C4.5: Programs for Machine Learning, »
Morgan Kaufmann Publishers, San Mateo, CA.

[27] Breiman, L., (2001). « Random Forests, » Machine Learning. 45(1):5-
32.

[28] John, G. H., & Langley, P. (1995, August). « Estimating continuous
distributions in Bayesian classifiers, » In Proceedings of the Eleventh
conference on Uncertainty in artificial intelligence (pp. 338-345).
Morgan Kaufmann Publishers Inc.

[29] F. Keller, “Lecture Notes Evaluation,”

[30] R. Sato, D. Chiba and S. Goto, «Detecting Android Malware by

Analyzing Manifest Files,» Proceedings of the Asia-Pacific Advanced
Network 2013 v. 36, p. 23-31., 2013.

[31] J. Platt, «Fast Training of Support Vector Machines using Sequential

Minimal Optimization,» Advances in Kernel Methods – Support
Vector Learning, 1998.

