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SUMMARY
Surveillance data for communicable nosocomial pathogens usually consist of short time series of low-

numbered counts of infected patients. These often show overdispersion and autocorrelation. To date,
almost all analyses of such data have ignored the communicable nature of the organisms and have used
methods appropriate only for independent outcomes. Inferences that depend on such analyses cannot be
considered reliable when patient-to-patient transmission is important.

We propose a new method for analysing these data based on a mechanistic model of the epidemic
process. Since important nosocomial pathogens are often carried asymptomatically with overt infection
developing in only a proportion of patients, the epidemic process is usually only partially observed by
routine surveillance data. We therefore develop a ‘structured’ hidden Markov model where the underlying
Markov chain is generated by a simple transmission model.

We apply both structured and standard (unstructured) hidden Markov models to time series for three
important pathogens. We find that both methods can offer marked improvements over currently used
approaches when nosocomial spread is important. Compared to the standard hidden Markov model,
the new approach is more parsimonious, is more biologically plausible, and allows key epidemiological
parameters to be estimated.

Keywords: Count data; Hidden Markov models; Hospital epidemiology; Interrupted time series; SIS epidemic model;
Time series.

1. INTRODUCTION

Hospital-acquired infections caused by transmissible nosocomial pathogens can severely detriment
patient welfare and place large burdens on health-care resources (Plowmanet al., 1999). They may also
present a headache for the analyst. Data usually consist of short time series of low-numbered counts. Often
these time series display overdispersion and autocorrelation.

Molecular typing shows that for many important nosocomial pathogens, such as methicillin-resistant
Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE), new cases arise through
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patient-to-patient transmission (thought to be largely mediated by contacts from transiently-colonized
health-care workers) rather than by the acquisition of resistance during antibiotic treatment via sponta-
neous mutation. The majority of patients harbouring such organisms carry them asymptomatically, with
overt infections developing in only a proportion of patients. Consequently, the underlying transmission
process is usually only partially observed.

Analyses of such time series data may serve a number of purposes. Often the main interest lies in the
regression problem, for example relating infection incidence to staffing levels or antibiotic usage data.
Other applications include forecasting and the development of alert systems to detect periods or places
where transmission exceeds some threshold (Brownet al., 2002). At a more basic level, the object may be
to estimate important epidemiological parameters from the time series data. This latter application is the
main focus of our paper, though the method we propose has potential applications in the other domains.

To date, most analyses of hospital infection time series data have been rudimentary. For example,
the most common application of formal statistical methods has been in the analysis of interrupted time
series (ITS) studies, the principal tool for evaluating interventions intended to control hospital infections.
A recent systematic review of the use of isolation policies for controlling MRSA found that of 24
ITS studies presenting any statistical analysis, all but one used methods that assumed outcomes to be
independent (Cooperet al., 2003).

The assumption that outcomes are independent is untenable for a communicable disease under
most circumstances, and more appropriate time series models are clearly required. Recently, traditional
autoregressive integrated moving average (ARIMA) time series models have been applied to hospital
infection data (Lopez-Lozanoet al., 2000). However, ARIMA models, which assume continuous
outcomes, will be of limited value when outcome data are in the form of low-numbered counts (Cardinal
et al., 1999). Only when the counts are large is the continuous approximation likely to be justified.

As pointed out by Zeger (1988), with a single time series valid inferences depend on the correct
specification of the time series model. A model based on a mechanistic understanding of the transmission
process would therefore seem a natural choice. However, while appropriate methods for analysing
infectious disease spread in small populations have been developed (Becker, 1989), these are not
applicable to most hospital infections. The rapid turnover of hospitalized patients and the asymptomatic
nature of carriage render methods designed for typical community pathogens inappropriate.

A number of transmission models for hospital pathogens have been suggested (Sébille et al., 1997;
Austin et al., 1999; Cooperet al., 1999; Lipsitchet al., 2000). Recently Pelupessyet al. (2002) proposed
using a simplified version of these for the analysis of transmission data in a hospital ward. However, this
Markov model assumed a sequence of whole-ward surveillance swabs capable of detecting carriage with
certainty. Such data are rarely available in practice.

A number of generic approaches have also been used or suggested for modelling time series of counts.
Cameron and Trivedi (1998, chapter 7) and MacDonald and Zucchini (1997, chapter 1) provide recent
reviews. Following Cox (1981), a distinction is often made between observation-driven models, where
the model for the response at each time point explicitly conditions on responses at earlier times, and
parameter-driven models, where serial dependence arises through a latent (unobserved) process. In the
present context, serial dependence is thought to arise through a largely unobserved transmission process
(since both asymptomatic and symptomatic/infected patients may transmit the organism) and parameter-
driven models would seem the more appropriate. One possible approach that has been applied to infectious
disease data in a regression context is to use estimating equations, treating autocorrelation terms as
nuisance parameters (Zeger, 1988). In contrast, we are particularly interested in making inferences about
the unobserved process generating the autocorrelation. We show how this can be done using a hidden
Markov model to explicitly describe the latent process.

Section 2 of this paper first describes how the usual (unstructured) hidden Markov model can be
used to model a time series of counts of infected patients. We then present the structured hidden Markov
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model in Section 3 where the underlying Markov chain models the unobserved epidemic process and
is constructed using a few standard epidemiological parameters. We then compare the fits of these
hidden Markov models (together with a simple Poisson model) to three time series for major nosocomial
pathogens in Section 4. We consider limitations and possible extensions of the current approach in the
discussion.

2. HIDDEN MARKOV MODELS

We consider a sequence of observations,yt , made at timest = 1, 2, . . . , n, whereyt represents the
observed number of new infections occurring during the interval(t − 1, t], andYt is the corresponding
discrete random variable. At this stage we ignore covariates and assume that denominators remain constant
throughout and can be neglected.

In a hidden Markov model there is an underlying unobserved state of the system that changes in time
according to a Markov process. The distribution of observations at a given time is determined by the
system’s state at that time (MacDonald and Zucchini, 1997).

Let Ct (t = 1 . . . n) represent an irreducible Markov chain on state space 1, . . . , m, where the Markov
chain is defined by the transition matrix� = (γi j ). Then we associate an observation model with each
state. Thus, for example, with a Poisson observation model we have

Pr(Yt = s|Ct = i) = e−λi λs
i /s!. (2.1)

Fitting a hidden Markov model involves both estimating the elements of the transition matrix,γi j =
Pr(Ct = j |Ct−1 = i), for the Markov chain, and the parameters,λi , of the observation model. The naı̈ve
approach to evaluating the likelihood involves summing over all possible sequences of states. This has
complexity O(mn), and will be computationally infeasible for all but the simplest problems. Instead the
likelihood can be rewritten and evaluated far more efficiently. Thus, putting

πt (s) = diag(Pr(Yt = s|Ct = 1), Pr(Yt = s|Ct = 2), . . . , Pr(Yt = s|Ct = m)), (2.2)

the likelihood of the observed data,L, can be written as

L = δπ1(y1)�π2(y2)� . . . �πn(yn)1′ (2.3)

whereδ is the probability distribution ofC1 (MacDonald and Zucchini, 1997). Throughout this paperδ is
taken to be the stationary distribution of the Markov chain. This expression can be evaluated in O(nm2)

time.
By log and logit transforming parameters taking values on the positive real line and the (0,1) interval

respectively maximum likelihood estimation can be accomplished using an algorithm for unconstrained
numerical maximization. An alternative approach is to use an expectation-maximization (EM) algorithm
(Baumet al., 1970; Le Strat and Carrat, 1999; Bureauet al., 2003).

If Ct is stationary (the existence of a unique strictly positive stationary distribution is guaranteed by the
chain’s irreducibility), with the stationary distribution defined by state probabilitiesδi , then for a Poisson
observation model we have

E[Yt ] =
m∑

i=1

δiλi (2.4)

and for a two-state model

var[Yt ] = E[Yt ] + δ1δ2(λ2 − λ1)
2, (2.5)
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showing that providedλ1 �= λ2 the yt will be overdispersed. In general, this model will produce
overdispersion provided that conditional means depend on the state; for most transition matrices there
will also be autocorrelation (MacDonald and Zucchini, 1997).

Advantages of this approach include the flexibility of hidden Markov models, and their ability to cope
with missing observations and unequally spaced time intervals.

Hidden Markov models have previously been used for the study of infectious diseases when
individuals can be in a number of imperfectly observed states (Satten and Longini, 1996; Bureauet al.,
2003; Smith and Vounatsou, 2003). Of more relevance to the current problem is the use of hidden Markov
models in the analysis of infectious disease surveillance data. In this context, Le Strat and Carrat (1999)
proposed that in a two-state hidden Markov model the different states or regimes could correspond to
either ‘epidemic’ or ‘non-epidemic’ periods, though no mechanistic interpretation was attached to the
underlying Markov chain. In the higher-dimension models (which gave much better fits to their influenza-
like illness data) no meaningful interpretations were attached to different states. Applied to hospital
infection data, such non-epidemic periods could perhaps be interpreted as periods whenfade-out of the
pathogen in a given setting had occurred (i.e. when ward-level prevalence has fallen to zero, breaking the
chain of transmission).

3. A STRUCTURED HIDDENMARKOV MODEL

This approach represents a modification of the standard hidden Markov model, motivated by
mechanistic considerations. In this case a continuous time Markov chain is derived from a dynamic
transmission model for the epidemic process in a single hospital ward or unit withN patients. This Markov
chain is constructed in terms of biologically meaningful parameters:β/N gives the rate of transmission
to each susceptible patient per colonized or infected patient;ν, the probability that each patient is already
carrying the organism when admitted to the ward;µ, the rate at which patients are discharged from the
ward. The state of the system,Ct ∈ {0, 1, 2, . . . , N }, is interpreted as the number of infected or colonized
patients on the ward at timet .

Explicitly, if N gives the total patient population, then for a small time increment,h, we use a
continuous time Markov chain with transition probabilities:

Pr[Ct+h = i + 1|Ct = i] =
{

β
N i(N − i)h + ν(N − i)µh + o(h) if i < N

0 if i = N
(3.1)

Pr[Ct+h = i − 1|Ct = i] =
{

(1 − ν)iµh + o(h) if i > 0

0 if i = 0.
(3.2)

The balance of probabilities is given to there being no change of state betweent andt + h. All other
transitions have probability o(h).

The model corresponds to a reparametrization of the stochastic susceptible–infectious–susceptible
(SIS) epidemic model with immigration; see, for example, Bailey (1975, chapter 7). In this model, new
cases arise due to cross-infection at a rate proportional to the product of the number of infected or
colonized hosts,Ct , and the number of susceptible hosts,N − Ct . This is known as the mass action
assumption, and would be true for a homogeneous randomly mixing population. New cases can also arise
due to susceptible patients being discharged (which occurs with rate(N −Ct )µ) and immediately replaced
by patients who are infected or colonized on admission. Decreases in the number of colonized patients
occur only through the discharge of colonized or infected patients. Explicit consideration of the rate of
loss of carriage can be neglected as the duration of carriage for most important nosocomial bacterial
pathogens is long compared to typical lengths of stay. The 1/N term appears in equation (3.1) since for a
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contact-transmitted pathogen we do not expect the total instantaneous transmission rate to increase with
N , unless patient contact rates also increase withN (and this seems unlikely).

If Ph is the tridiagonal matrix of probabilities constructed from the expressions above withi j th
element given by Pr(Ct+h = j |Ct = i), then the generator matrix,G, for the Markov process is given
by

G = lim
h↓0

1

h
(Ph − I ). (3.3)

It can be shown that the matrix�t with elementsγ t
i j = Pr(Ct+a = j |Ca = i), (wherea is arbitrary as

the Markov process is time homogeneous), is given by�t = exp(tG) (Grimmet and Stirzaker, 1992). If
all observations are separated by a time interval,t , the likelihood will be given by equation (2.3), replacing
� with �t . The extension to data with unequal intervals between observations is straightforward.

Effectively, the underlying Markov model is just an alternative parametrization of the model proposed
by Pelupessyet al. (2002). If a sequence of whole-ward surveillance swabs were available and assumed
to be capable of detecting carriage with certainty then the standard Markov model could be used. In our
case, since only infection data are used, the states,Ct , are not observed, and the hidden Markov model is
required.

The state of the system (the number of patients harbouring the organism) then determines the
conditional distribution ofYt (the number of observed infections), where E[Yt |Ct ] should increase with
Ct .

A natural choice, and the one adopted throughout this paper, is to assume a Poisson distribution with
meanλCt , i.e.

Pr[Yt = y|Ct = i] = e−λi (λi)y

y! , (3.4)

whereλ is to be estimated but is the same for all states. Mechanistically, this can be derived if we
consider the prevalence to be approximately constant during the interval over which infection counts are
aggregated, and consider there to be some small chance of an infection developing for each colonized
patient day. Unequal intervals of aggregation can be accommodated by appropriate scaling of the
parameterλ.

This approach has all the advantages of the standard hidden Markov model; in particular, overdisper-
sion and autocorrelation are produced as before. In addition it is more parsimonious, particularly compared
to the higher-dimension hidden Markov models. Thus, we may have a 21-state Markov process (for a 20-
bed ward) with only four parameters. Of these, the hospital discharge rate,µ, can usually be observed with
certainty (as assumed here). It may also be possible to estimate the probability patients are colonized on
admission,ν, from other data sources in many applications. The other major advantage of this approach
is that it is based on a mechanistic understanding of the data generation process and estimated parameters
are of interest in themselves, and often able to provide insight into the population processes underlying
the observed data.

Another difference between this approach and conventional hidden Markov models relates to
identifiability. The standard hidden Markov model is not affected by a permutation of the hidden states,
so for ann-state model there will will ben! equivalent solutions. In the structured model, because the
observation model depends explicitly on the labelling of the states, this will not be the case.

4. MODEL EVALUATION

Data used to evaluate the competing models were taken from the ICARE (Intensive Care Antimicrobial
Resistance Epidemiology) project, a surveillance study of intensive care units (ICUs) at 41 U.S. hospitals
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Fig. 1. Monthly infection data used for initial model assessment.

(Fridkin et al., 1999). Participating centres recorded the monthly counts of non-duplicate clinical isolates
of major nosocomial pathogens. We restricted our attention to time series for three classes of pathogens:
methicillin-resistantStaphylococcus aureus (MRSA); vancomycin-resistant enterococci (VRE); and third
generation cephalosporin-resistant Gram-negative rods (R-GNR). Most of these time series were very
short, had gaps, or reported very low numbers of infections. We considered only those time series with at
least 40 contiguous months of data and an average of at least one case per month for the given pathogen.
To simplify the analysis we also excluded time series showing clear trends (assessed by regressing counts
on time in an autoregressive negative binomial model). Three time series met these criteria, one for each
pathogen. The MRSA data came from a ten-bed ward over 45 months, and the VRE and R-GNR data
from the same 16-bed ward over 42 months. Mean (SD) patient days per month were 257.2 (23.5) and
338.0 (43.4) respectively. These time series are shown in Figure 1 together with their correlograms.

For each of the three time series of counts we fit three different models: a simple Poisson model
(corresponding to the current practice in the hospital infection literature of assuming outcomes to be
independent), a standard (unstructured) hidden Markov model using a Poisson observation model (Poisson
HMM); and the structured hidden Markov model based on the SIS epidemic model (SIS HMM) assuming
amean ICU stay of 8 days.

All analyses were performed usingR 1.5.0, a free open-source statistical package (Ihaka and
Gentleman, 1996). In particular, the structured hidden Markov model was implemented with Fortran and
R routines which built on existing code due to MacDonald and Zucchini (1997) and Lindsey (1999).
Likelihood maximization was accomplished using the Newton-type algorithm implemented inR’s nlm
function (Schnabelet al., 1985). Variance estimates for the fitted parameters were obtained by inverting
the Hessian.

We assessed model fit using two approaches. First, we report the Akaike information criterion (AIC),
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Table 1.AICs and parametric bootstrap results for models fit to the three time
series

Bootstrap results
var/mean mean run length

Data Model df AIC 2.5–97.5% 2.5–97.5%
MRSA (n: 45) Poisson 44 155.70 0.63–1.46 1.18–1.67
var/mean: 2.20 Poisson HMM 41 135.51 1.09–2.63 1.29–3.01
mean run length: 1.73 SIS HMM 42 132.03 1.14–3.11 1.22–3.75

VRE (n: 42) Poisson 41 229.47 0.62–1.46 1.02–1.31
var/mean: 2.20 Poisson HMM 38 212.36 1.39–3.65 1.02–1.36
mean run length: 1.08 SIS HMM 39 210.59 1.24–3.27 1.02–1.36

R-GNR (n: 42) Poisson 41 119.73 0.64–1.55 1.17–1.75
var/mean: 0.90 Poisson HMM 38 123.37 0.77–2.06 1.20–2.80
mean run length: 1.35 SIS HMM 39 122.40 0.75–1.90 1.17–2.00

which we take as minus twice the log likelihood plus twice the number of estimated parameters (Akaike,
1973). Second, we used a parametric bootstrap method, as proposed by Tsay (1992). Following Grunwald
et al. (2000), we used the following diagnostics: the positive/negative ratio, which is used to assess time-
reversibility; the variance to mean ratio, to assess overdispersion; and skewness. We also used a fourth
diagnostic, the mean run length (i.e. the mean length of runs of equal counts). The choice of this statistic
was motivated in part by a consideration of the importance of stochastic fade-out in epidemics in small
populations (Bailey, 1975). For each fitted model we simulated 1000 data-sets of monthly infections from
that model, calculated 2.5th and 97.5th percentiles for each statistic, and compared these with values
observed for the actual time series.

4.1 Results of model evaluation

Table 1 shows AICs and bootstrap results for the models applied to the three time series. For the
unstructured hidden Markov model the dimension,m, of the state space of reported models was chosen
to be the smallest integer to satisfym � 2 and for which no reduction in the AIC was seen for the
corresponding model with dimensionm + 1. For all three time series this criterion was met by a state
space of dimension 2.

From a comparison of the AIC results, a simple Poisson model is clearly inadequate for both the
MRSA and VRE time series. The structured hidden Markov model gives the best fit to the MRSA data.
For the VRE data this model is only slightly better than the standard hidden Markov model. The R-
GNR data are different in that there is no overdispersion; the simple Poisson model appears to provides an
adequate fit to the data. Compared to the Poisson model, no reductions in AIC are seen for other models. It
is worth noting that while MRSA and VRE are known to be highly contagious in hospital settings, the role
of patient-to-patient spread for resistant Gram-negative rods is more ambiguous. While molecular typing
has demonstrated nosocomial transmission in some settings (Almuneefet al., 2001) a number of other
studies where strains have been typed have found little evidence of significant horizontal transmission,
with most infections believed to be caused by endogenous flora (Lafaixet al., 1969; Flynnet al., 1988;
Baqueroet al., 2002).

Note that for such short time series of low-numbered counts, correlograms may be of limited use in
model identification. Thus, while correlograms for R-GNR and MRSA are almost identical (Figure 1)
there is a great difference in the fit of competing models for these two time series. We also found that
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Fig. 2. Examples of simulated data using models fit to the monthly MRSA and VRE data.

simulated data from the structured hidden Markov model (using parameters obtained by fitting to the VRE
and MRSA data) produced qualitatively similar correlograms to those in Figure 1, and rarely produced
autocorrelation coefficients significant at the 5% level.

4.2 Bootstrap results

For both the positive/negative ratio and skewness (results not shown), actual values were found to be
consistent with bootstrap results from all the fitted models (i.e. were within the 2.5–97.5 percentiles).

The bootstrap results for variance/mean and mean run length (shown in Table 1) suggest that the
Poisson model is unlikely to be able to generate data consistent with the MRSA and the VRE time series.
For the R-GNR time series all models were able to generate data consistent with the observed time series.

Figure 2 shows sample simulations from the models fitted to the MRSA and VRE data. The
simulations of the MRSA data illustrate that the hidden Markov models are capable of modelling extended
periods of fade-out, a feature that is apparent in the actual data. Most other models for time series
of counts are not able to capture this behaviour, and in this sense the correspondence of the hidden
states of unstructured Markov chains to epidemic and non-epidemic periods seems to have real value.
However, when applied to the VRE data, simulations from the fitted Poisson hidden Markov models
have an indication of a rather artificial alternation between periods of high and low incidence without an
intermediate level. This is not seen in simulated data from the structured hidden Markov model.

4.3 Estimation using structured hidden Markov models

Table 2 shows estimated parameters for the structured hidden Markov model (SIS HMM) for the three
time series. These suggest similar values for the transmission rate,β, in all three time series. However, the
confidence intervals forβ andν obtained from variance estimates of log and logit transformed parameters
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Table 2.Parameter estimates [95% confidence intervals] for the structured
hidden Markov model applied to the three time series. Units for rates are days−1

β̂ (transmission rate) ν̂ (+ve on admission) λ̂ (infection rate)
MRSA 0.329 [0.233, 0.465] 0.009 [0.002, 0.035] 0.349 [0.209, 0.490]
VRE 0.255 [0.177, 0.368] 0.028 [0.006, 0.128] 0.668 [0.448, 0.888]
R-GNR 0.323 [0.222, 0.470] 0.008 [0.001, 0.073] 0.150 [0.084, 0.216]

can be misleading, as the contour plots of likelihood surfaces in Figure 3 show. For the R-GNR data,
where parameters may be on the bounds of the parameter space, the asymptotic approximation to the
distribution of their estimators will not apply. A better approach might be to derive confidence intervals
using a parametric bootstrap approach.

The contour plot for the R-GNR data also indicates an identifiability problem: the large plateau region
shows that the data are not able to distinguish between a high transmission rate (highβ) with little carriage
on admission (lowν) and the converse. Such collinearity of parameter estimates is common in biologically
plausible models (Brookhartet al., 2002).

One natural question of interest is whether the observed data are consistent with the null hypothesis
that there is no transmission (β = 0). We can test this against the alternative hypothesis,β > 0, using
the likelihood ratio test for nested models. Settingβ = 0 in the structured hidden Markov model gives
a decrease in twice the log-likelihood of 22.90, 11.32, and 1.32 for the VRE, MRSA and R-GNR data
respectively, with correspondingp-values (based on the chi-squared distribution, 1 d.f.) of 0.0000017,
0.00077 and 0.25. We therefore have no evidence to reject the assumption that transmission is not
important for the R-GNR data, but strong evidence for rejecting the null in both the VRE and MRSA
time series. This result is in accord with the earlier finding that the Poisson model provided an adequate
description of the R-GNR data but could not account for the VRE or the MRSA data. Other causes of non-
independence of outcomes for the MRSA and VRE cannot be ruled out, but given that these pathogens
are known to be highly infectious in settings with high antibiotic use, patient-to-patient transmission is
the most economical explanation.

The mass action mixing assumption used in the underlying Markov chain may be questioned. This
assumption can, in fact, be relaxed and the model generalized to other mixing assumptions. For example,
each susceptible patient could be allowed to become colonized at a rate given byβ

N Cκ
t . For κ = 1 this

reverts to the mass action assumption, whileκ = 0 (for Ct > 0) gives a continuous time analogue of
the Greenwood assumption (see, for example, Becker (1989)), where the chance that a susceptible patient
becomes colonized in any small time interval does not change with the prevalence providing that there
is at least one colonized patient. The Greenwood assumption would be appropriate if a single colonized
patient caused saturated exposure amongst other patients. For 0< κ < 1 the model would allow for
a decreasing contribution to the hazard rate for transmission per infectious source with each additional
colonized patient. Values ofκ greater than one would imply synergistic effects amongst the colonized
patients. Though mechanisms for such effects can be conceived, this possibility seems biologically rather
implausible. For the MRSA and VRE data the maximum likelihood estimates forκ were 2.67 and 2.11
respectively, but a likelihood ratio test gave no evidence for rejecting the null hypothesis thatκ = 1
(χ2

1 = 1.61 for the VRE data andχ2
1 = 0.43 for the MRSA data), so we did not include this parameter

in the final models. Furthermore, the Greenwood mixing assumption gave a lower log likelihood than the
mass action model for both the VRE and MRSA time series (the differences in twice the log likelihood
being 1.73 and 11.96 respectively)

Since the structured Markov models have a mechanistic interpretation, the underlying stationary
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Fig. 3. Likelihood profiles for the structured hidden Markov (SIS HMM) model.
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distribution of the Markov chain is of interest in itself and can be interpreted as the equilibrium distribution
of the ward-level prevalence. Stationary distributions for the chains estimated for the MRSA and VRE time
series are shown in figure 4. The distribution for the MRSA data is more skewed to the right due to the
higher transmissibility. The much higher probability of there being zero colonized patients in the MRSA
distribution reflects both the lower introduction rate,ν, and the smaller ward size which makes stochastic
fade-outs more likely and introductions rarer.

5. DISCUSSION

Apart from potentially giving better fits to data, mechanistic models can provide insight into underly-
ing processes and allow investigators to make inferences about key parameters. Such considerations led
us to propose a structured hidden Markov model based on a continuous time epidemic model. The model
showed a good fit to data and was able to capture observed patterns of fade-out. To our knowledge, this
represents the first application of hidden Markov models to the study of epidemic data using a mechanistic
transmission model for the underlying Markov chain.

There are a number of possible non-mechanistic approaches to modelling time series of counts
not presented here. These include Markov regression models (Zeger and Qaqish, 1988), integer valued
autoregressive models (McKenzie, 1985; Al-Osh and Alzaid, 1987), and time varying parameter (or ‘state
space’) models (Harvey and Fernandes, 1989). We found that while some of these approaches clearly
represented major improvements on the simple Poisson model, none showed improved fits to data from
the MRSA and VRE time series compared to the structured hidden Markov model. Moreover, none had
plausible biological interpretations. For the R-GNR data, none performed better than the Poisson model.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/5/2/223/237340 by guest on 20 August 2022



234 B. COOPER ANDM. L IPSITCH

5.1 Limitations

Despite the advantages of the structured hidden Markov model approach, there are some limitations. As is
typical of population dynamic models, collinearity between parameter estimates can lead to identifiability
problems (Brookhartet al., 2002). As a consequence, maximum likelihood estimates can sometimes
correspond to highly implausible regions of the parameter space, and maximization algorithms may fail to
converge. The problem becomes particularly severe when time series are short and data sparse. For time
series with fewer than about 20 to 30 observations such problems may be the norm. The common practice
of aggregating counts into weekly or monthly intervals further diminishes available information.

A further limitation is that while such a model may be appropriate for a single ward or unit, for larger
hospital populations made up of several interacting units its value is not so clear. Moreover, when the state
space becomes large (corresponding to a large number of beds) the algorithm becomes slow and numerical
problems may occur. We found that our implementation worked adequately for a state space of dimension
up to about fifty. Difficulties may also occur if there are large fluctuations in the total population size;
while the observation model could readily cope with such fluctuations by varying denominators, changes
in the dimension of the underlying Markov chain would be harder to accommodate.

More fundamentally, the assumptions of the transmission model may be questioned. In particular, the
mass action assumption of random mixing is problematic. Social or spatial structuring can reduce the
rate new cases occur below that achieved by random mixing as susceptibles close to infectives get ‘used
up’ (i.e. become infected) faster than other susceptibles (Keeling and Grenfell, 2000). For many wards
this may be unimportant: transmission rates and prevalence are generally low; patients are frequently
moved within units, enhancing mixing; patient turnover is often high, again diminishing the importance of
spatial effects; and most transmission is believed to be vector-borne (where health care workers act as the
vector, transferring organisms between patients), also diminishing spatial clustering effects. Within ICUs,
however, the nature of staff–patient contact patterns may be more likely to favour transmission between
adjacent patients, transmission rates and ward-level prevalences are typically higher, and the possibility of
such spatial clustering cannot be excluded. Nonetheless, we did not find evidence for rejecting the mass
action assumption in our data.

A further limitation of the SIS HMM approach is the assumption that all patients are equivalent. In
fact, one may expect variation in patients’ vulnerability to infection. One way to deal with this variability
would be to use a negative binomial observation model. In practice, we found that this did not give an
improved fit to our data (results not shown).

It is also important to note that the structured hidden Markov model presented assumes all
autocorrelation is generated by the epidemic model. In fact, other factors may cause autocorrelation.
For example, staff–patient ratios, antibiotic use, and staff hand hygiene are all likely to affect transmission
rates and may all vary with time. Such covariates, if recorded, can easily be included in the hidden Markov
models, but if not adjusted for could lead to overestimates of the transmission rate.

5.2 Future developments

Although we have restricted our attention to time series of counts from a single hospital unit, many of the
methods considered can be extended to repeated measures data. Other characteristics of some time series
such as trends and seasonality could also be readily accommodated within the hidden Markov framework
(see, for example, Le Strat and Carrat (1999)).

Extensive prior information is often available for important parameters which, nonetheless, may not be
of primary interest. It seems likely that many of the problems with the proposed structured hidden Markov
models might be overcome by adopting a Bayesian formulation. For example, community prevalence
studies and admission screening of patients at high-risk of carrying organisms such as MRSA can provide
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lower and upper bounds for the proportion of patients positive on admission. Similarly, studies where
extensive screening is performed allow estimates of the rate of progression from colonization to infection.
Using such prior information may overcome problems with collinearity and help ensure that only feasible
regions of parameter space are explored. This approach is likely to be particularly valuable when data are
sparse.

Recently, Markov chain Monte Carlo methods have emerged as valuable tools for fitting mechanistic
models of infectious disease when the epidemic process is only partially observed (Auranenet al., 2000;
O’Neill and Roberts, 1999). This approach seems well-suited to hospital epidemiology and can be used
to fit hidden Markov models within a Bayesian framework (Scott, 2002). Such an approach may also
overcome the numerical difficulties when the state space is large, allowing similar models to be applied to
community pathogens.

We conclude that structured hidden Markov models are a promising tool for analysing hospital
infection count data for transmissible pathogens and can represent a marked improvement on current
practice. However, they are not without problems. Many of these may be overcome by working within
a Bayesian framework. Rather than necessarily introducing a subjective element into the analysis, this
would allow relevant external information to be used, allowing better estimates of those parameters which
are of primary interest.
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