
Mon. Not. R. Astron. Soc. 339, 887–896 (2003)

The analysis of isochrone fitting methods for red giant branch
photometry, and tip red giant branch distance determination

C. M. Frayn� and G. F. Gilmore
Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA

Accepted 2002 November 1. Received 2002 October 23; in original form 2002 September 18

ABSTRACT
We consider the procedure of isochrone fitting and its application to the study of red giant
branch (RGB) photometry in old stellar populations. This is extended to consider the problems
introduced by the inclusion of lower-magnitude regions of the colour–magnitude diagram.
We refer especially to our previous paper, where the details of our isochrone interpolation and
fitting code are explained. We address the systematic errors inherent in the process of isochrone
fitting, and we investigate the extent to which simple stellar populations can be recovered from
noisy photometric data. We investigate the effects caused by inaccurate distance estimates,
isochrone model variation and photometric errors. We present results from two studies of
approximately coeval stellar populations, those of the Milky Way globular cluster system, and
the Ursa Minor dwarf spheroidal galaxy. In addition, we introduce a new method for estimating
distances using photometry of the tip of the RGB, which is significantly more robust than the
standard edge-detection filter.

Key words: methods: data analysis – stars: distances – Hertzsprung–Russell (HR) diagram –
stars: Population II – galaxies: distances and redshifts – galaxies: haloes.

1 I N T RO D U C T I O N

In our first paper (Frayn & Gilmore 2002, henceforth FG1), we in-
troduced isochrone-fitting methods to analyse photometric data on
red giant branch (RGB) populations in the haloes of nearby galaxies.
Best-fitting metallicity distributions were obtained by generating a
probability matrix mapping each star in a theoretical or experimen-
tal colour–magnitude diagram (CMD) on to an occupation proba-
bility for each isochrone in the input model set. Isochrone weighting
coefficients were then optimized to produce a profile which maxi-
mized the likelihood of producing the observed CMD under a set
of constraints. Most importantly, we considered only a high-age
coeval distribution, thus largely overcoming the problems of the
age–metallicity degeneracy. We refer the reader to FG1 for more
details.

In FG1, we treated many sources of error in an attempt to gain the
most accurate metallicity distribution possible. However, it is clear
that the technique of isochrone fitting is extremely problematic,
and many effects need careful consideration if incorrect or overly
optimistic conclusions are to be avoided.

In this paper, we re-examine the most important sources of sys-
tematic error, and we investigate the effects that errors have on the
conclusions we can draw from RGB studies. We also consider the ef-
fects of including deeper photometry down to the horizontal branch
(HB) or main-sequence turn-off (MSTO) regions, and we compare
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the results gained from analysis of the entire CMD to those gained
from considering the RGB only.

In order of importance, we investigate the primary causes of error
that we have discovered, concentrating on the methods outlined in
FG1. We identify the errors inherent in those, and indeed any similar
methods, in a quantitative manner. As an appendix, we consider the
uncertainties inherent in the isochrones themselves.

We also present a new method for obtaining distance estimates
from RGB photometry, which yields more accurate results than a
traditional edge detection implementation for the majority of cases;
this is robust even to severe photometric errors.

2 L I M I TAT I O N S D U E TO
T H E A NA LY S I S M E T H O D

In this section, we deal with the problems caused by the fundamental
assumptions that we have to put into our population analysis, and
we investigate the degree to which we can resolve these problems
using different methods.

2.1 Age–metallicity degeneracy

This is the main problem that must be faced in the analysis of RGB
stellar populations. As is well known, and reviewed in FG1, the
effects of increasing metal abundance on stellar isochrones are re-
markably similar to those of increasing age. In fact, with the absence
of any other diagnostic methods, it becomes impossible to separate
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the two effects in some parts of the CMD. This effect is particularly
bad in the RGB, which has no sharp features to help distinguish
between the contrasting effects.

We avoid this problem by assuming a high age, and then reducing
the data as if they were coeval. This method is justified when dealing
with primarily old populations where the effects of age on the RGB
become significantly lessened (see FG1). However, metallicity still
has noticeable effects, and therefore we can obtain a rough metal
abundance distribution without having to worry too much about the
age spread.

Here we test this hypothesis, investigating the degree to which the
coeval assumption in old RGB populations holds true. We analyse
synthetic CMDs generated by our own code, using the coeval fitting
routines outlined in FG1. First of all, we consider the pristine CMD,
that is without any photometric or Poisson errors added into the data
set. We then reduce it with only a tiny photometric error, essentially
recovering the degree to which the theoretical isochrones overlap.
This tells us something fundamental about the actual limits to which
we can trust isochrone fitting, regardless of the data quality. Fig. 1
shows the results of this test.

The expectation is that we can only ever hope to achieve this
quality of data reduction at best on a true data set, simply because of
the photometric errors involved. However, when attempting to re-
cover a very narrow distribution we may appear to manage slightly
better. This is simply because, once accurate errors are considered,
our maximum likelihood method will attempt to narrow the metal-
licity distributions it finds if there are insufficient data to suggest
a substantial spread. In the absence of any prior information to the
contrary, it is safe to assume that the stellar populations are rela-
tively simple. In general, stars do not vary smoothly in metallicity
as a function of mass, which would be the effect caused by an in-
correct age assumption.

If we repeat the above experiment, but this time including the
full Poisson errors in both the creation of the CMD and its analysis,
and if we also incorporate fixed photometric errors, in this case we
used 3 per cent, then the reduction proceeds rather more smoothly.
The code has insufficient evidence to suggest that the populations
are anything other than delta-function in metallicity, and assumes
that the remainder of the spread is due to photometric and Poisson
errors. Hence the resulting metallicity distribution is significantly
better.
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Figure 1. A single delta-function RGB population at a metallicity of
Z = 0.006 and age 10 Gyr. This was then reduced assuming incorrect ages
between 6 and 14 Gyr, i.e. ±40 per cent. Although the error is noticeable, it
is not drastic, even at a large age error. Note the shortened x-axis scale.
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Figure 2. A single delta-function population at a metallicity of Z = 0.006
and age 10 Gyr. The photometry was complete to beneath the MSTO.
This was then reduced assuming incorrect ages between 6 and 14 Gyr, i.e.
±40 per cent. We introduced accurate photometric and Poisson errors into
the artificial data sets, and used the same values for our data analysis. Using
accurate photometric errors helps in retrieving a more accurate guess to an
input metallicity distribution.

These results are shown in Fig. 2. In this case we consider pho-
tometry complete to the MSTO to demonstrate that even problems
fitting the HB are lessened once proper errors are considered. This
is an important result – HB contamination causes problems even
when dealing primarily with RGB photometry, if the completeness
limit is deeper than the top few magnitudes of the RGB.

Because of this inherent problem with our methods, we will en-
counter problems with populations which are not truly of one unique
metallicity, but instead have some inherent spread in metallicity
which should be recovered. Often this spread is reduced due to the
likelihood optimization methods employed. However, the perpen-
dicular distance method (see FG1) seems to recover input metallicity
spread far more efficiently than a Gaussian method. In addition, un-
derestimating the errors helps recover the spread, albeit at a slight
penalty in removing experimental noise.

2.1.1 Introducing age errors

Next we tested the reduction of populations generated at differing
ages, with an assumed age of 10 Gyr. These results are shown in
Fig. 3. Once again, the general form of the population is recovered,
although this recovery is obviously worse in the case of the younger
populations.

In all the cases investigated, the error becomes much greater
when we venture to lower ages rather than high ages. The dif-
ference between populations of 10 and 14 Gyr is not too great,
but the difference in shape between 10 and 6 Gyr, although the
same � age, is far greater. At 6 Gyr, the isochrones include the ef-
fect of intermediate-age asymptotic giant branch (AGB) stars, and
the change in isochrone slope becomes greater per unit age inter-
val. Isochrone evolution is a roughly logarithmic process, and most
isochrone sets are logarithmically spaced in age to account for this.

2.2 Distance degeneracy

One further degeneracy problem must be considered in order to
understand fully the errors inherent in such a technique; that is, the
principle of metallicity–distance degeneracies.
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Figure 3. A set of delta-function RGB populations at a metallicity of Z =
0.006, but ages varying between 6 and 14 Gyr. All were reduced under the
assumed age of 10 Gyr. Errors are less severe for older populations.

So far we have considered populations located at an accurately-
known location. We have considered that the distance modulus of
the target population is known precisely. In fact, this is rarely the
case. For distant targets, the distance might be unknown by a large
percentage. At the Virgo cluster, the best guess distances to tar-
get galaxies are known only to around the ±0.2 mag level (e.g.
Ferrarese et al. 1996) from Cepheid variable methods. It is impor-
tant to measure the extent of the problems caused by assuming an
incorrect distance modulus for a target population.

In order to test this, we have generated an artificial CMD as
described in our previous paper. We have generated a single delta-
function population at the distance of 16 Mpc, consisting of 10 000
stars. We then reduced this population using our numerical tech-
niques assuming the true distance modulus of +31 mag, and then
overestimating and underestimating this value by 0.1 and 0.2 mag.
We considered only the RGB for analysis, as before, using the
48 RGB stars thus obtained.

Fig. 4 shows the results of this test. An error of just ±0.2 mag
in the estimated distance modulus can actually cause appreciable
problems with the recovered metallicity spread. However, we can
account for this problem in our analysis of the recovered metal
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Figure 4. A single delta-function population at a metallicity of Z = 0.008.
This was then reduced assuming slight errors in the distance modulus varying
between −0.2 and +0.2.
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Figure 5. A single delta-function population at a metallicity of Z = 0.004
and age 10 Gyr which has been reddened by varying amounts, and then
reduced assuming no reddening whatsoever. Reddening causes an overesti-
mate of the true central metallicity value and a spread in the distribution. The
five plots represent no reddening, and then for V-band extinction of between
0.1 and 0.4 mag. The effect on V – I colours was taken from Mathis (1990).

abundance distributions. Several methods can be used to estimate
distances to nearby galaxies, including Cepheid variable studies,
and tip-red giant branch (TRGB) photometry.

A distance overestimate of +0.2 mag equates to an underestimate
of the true metallicity by approximately 20 per cent. Underestimat-
ing the distance by the same amount equates to an overestimate of
the true metallicity by 25 per cent. Both error directions also cause
a spread in the recovered metallicity distribution. Even a 25 per cent
error in the recovered metal abundance is not an enormous problem
when considering the difference between an early low-metallicity
population and a late high-metallicity population whose metal abun-
dances might well vary by a factor of 3 or more.

2.3 Reddening effects

Interstellar reddening affects the accuracy to which we can under-
stand any stellar population. In the optical regime, dust causes a
wavelength-dependent absorption feature which decreases apparent
luminosities more strongly in the blue end of the spectrum than in
the red. Hence, the V and I luminosities are reduced, but to differing
amounts, therefore also altering the V – I colours correspondingly.

To test the actual effect of reddening on a simple stellar popula-
tion, we have run a series of simulations. We applied varying levels
of reddening to a simple stellar population, and ran this through
our code assuming no reddening whatsoever. The results are shown
in Fig. 5. We assume the extinction model proposed by Mathis
(1990).

Reddening causes two effects. First, it dims the stars in each opti-
cal filter, simulating effects similar to a distance increase. Secondly,
it shifts the colours of the stars redward, thereby mimicking a slight
metallicity increase.

3 T R G B D I S TA N C E E S T I M AT I O N

We have shown that the assumed distance for a stellar population
can indeed cause several problems if it is significantly different to
the true value. It makes sense therefore to use our RGB photometry
in order to estimate a good fit to the distance modulus using the
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TRGB distance estimation technique, outlined by Salaris & Cassisi
(1997) amongst others.

This method relies on the fact that the total bolometric magnitude
of the tip of the RGB appears to be approximately constant, regard-
less of age and metallicity, for stable old populations. The absolute
I magnitude of the tip is also approximately constant, at a value of
� −4.05 mag, varying by no more than 0.1 mag for −2.2 < [Fe/H]
< −0.7, according to Da Costa & Armandroff (1990).

We can use this method therefore to check the assumed distance
modulus and to verify that a sensible value has been used. To do
this, we require an edge fitting method which will allow us to detect
the apparent I magnitude of the TRGB from our data.

There is some discrepancy in the literature about the true position
of the ‘edge’ in this situation. Many people follow the method of
Sakai, Madore & Freedman (1996, henceforth S96), who use a dis-
crete Sobel edge detection filter to find the assumed tip. We remain
sceptical about this particular method as it is easily swamped by
experimental Poisson statistics, especially in the low-number count
regime.

We tentatively adopt the Sobel edge-detection method in order to
test the method. Taking the given distance modulus as a first guess,
we generated a binned histogram between ±1 mag of this value
using an adaptive binning technique which ensures that the number
counts in each bin remain above a certain low threshold.

An example of the theory behind this method is illustrated in
Fig. 6. Here we have generated a large artificial population using
the methods outlined in FG1, with a simple age and metallicity
profile and no photometric errors. We present a binned I-magnitude
luminosity function for 1 mag either side of the expected RGB tip.
An ‘edge’ is clearly seen.

Here we use the value of I TRGB = −4.05 (Da Costa & Armandroff
1990). Values close to this seem to be preferred by most studies; see,
for example, Salaris, Cassisi & Weiss (2002). Most authors seem to
derive values slightly brighter than I TRGB = −4.0, although there is
a spread of around 0.2 mag in the literature. We acknowledge that
Girardi et al. (2000) predict I TRGB � −3.95 from the theoretical
isochrone models used in this paper, which agrees slightly better
with the position of the edge determined in Fig. 6. Further work in
this paper considers only relative displacement so inaccuracies in
this value are not important.

In more realistic stellar populations, there are two additional
spreads in the I-luminosity function. One is the intrinsic spread due
to the fact that not all of the stars are of the same metallicity, age
and mass, in general. However, there is also an extra spread caused
by measurement errors which makes this edge-detection method
extremely difficult to apply. Even without measurement errors, we
would not expect such a distinct edge as that seen in Fig. 6 in most
populations, simply because they are not coeval. We consider an
alternative: to calibrate the TRGB distances using an appropriate
Gaussian cut-off, and then search for the mean. This is much less
susceptible to experimental errors and gives an obvious target to
identify.

First, we bin the data as above. Then we fit a Gaussian cut-off to
the luminosity function of the form

� = A exp

(−(m I − b)2

2c2

)
+ d for m I > b

� = A + d otherwise
(1)

and solve for the best-fitting values for the four parameters. A
gives a scaling value, b gives an I-magnitude shift, c gives a
scalelength for the TRGB tail, and d gives a constant background
offset.
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Figure 6. An I-magnitude luminosity function for a coeval artificial pop-
ulation at an age of 10 Gyr with a central metallicity of one third solar and
an 8 per cent Gaussian spread. No errors of any kind have been added to
the data set, showing far more clearly the location of the TRGB edge. Here,
displacement is measured in magnitudes from the theoretical value, uncor-
rected for metallicity, of I = −4.05 (Da Costa & Armandroff 1990). In the
second figure we present the results of a Sobel filter applied to this TRGB
luminosity function. A clear edge is detected at a deviation of 0.06 mag
beneath the mean experimental value.

Once these four parameters have been found, then we require
the I magnitude of the maximal gradient in the luminosity func-
tion, or alternatively, the point where the second derivative is zero.
Analytically, this is at the value I = c + b, which can then be cal-
culated from the fit parameters. This gives us a good estimate for
the TRGB magnitude, which can be compared with the value taken
from calibration on nearby globular clusters with well-known dis-
tances. Clearly, we could choose any such point on the Gaussian
curve and calibrate our relation with comparison to theoretical data
sets, but this seems the easiest to define.

In order to compare the two contrasting methods, a set of
16 large CMDs was produced using our code. Each of these was then
analysed using both the traditional Sobel edge-detection method,
and also by fitting a Gaussian cut-off of the form shown above in
equation (1). For each data set we used exactly the same initial con-
ditions: i.e. a single population with an age of 10 ± 0.2 Gyr and a
metallicity of Z = 0.006 ± 0.0005. A Salpeter initial mass function
(IMF) was used, and the Girardi isochrone set. Realistic photometric
errors of 6 per cent were added.

In each set, the initial TRGB detection was approximately 1200
stars within 1 mag of the expected TRGB luminosity in I. Next,
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Figure 7. Error (I true − I detected) on the RGB tip determination using a
Sobel filter method like that proposed by S96. The population is a simple
stellar cluster at 10 ± 0.2 Gyr and Z = 0.006 ± 0.0005. IMF is Salpeter,
and photometric errors of 6 per cent were added. 16 test populations were
used. Positive values represent an overestimate of the TRGB magnitude.
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Figure 8. Error (I true − I detected) on the RGB tip determination using a
Gaussian fitting method as described in Section 3, for the same population
described in Fig. 7. Errors are much smaller in general, except for the occa-
sional large discrepancy caused by a bad fit – a feature that is very easy to
test for and avoid. Positive values represent an overestimate of the TRGB
magnitude.

half of the stars were removed at random in three steps, thereby
creating three further data sets with 600, 300 and 150 stars within 1
mag of the TRGB in each, respectively. The same statistical process
was repeated on each data set. Then we repeated the TRGB detec-
tion with each data set after reduction. The results are plotted in
Figs 7 and 8 for the edge-detection and Gaussian cut-off methods,
respectively.

What is clear is that the scatter on the values for a Sobel edge
fit is smaller for the initial data set, with approximately 1200 stars
within 1 mag of the TRGB. However, as soon as the number of
detections reduces significantly beneath 1000, the Gaussian method
produces more reliable results. The one caveat is that, by the nature
of the method, the Gaussian technique occasionally produces wildly
inaccurate results. This is always easy to detect as the fit χ -squared
value will be very poor, and the values for the parameters A, b, c
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Figure 9. The TRGB luminosity function for the UMi dSph, showing a
binned histogram for the 121 stars within 1 mag of the theoretical TRGB.
Clearly low-number statistics would make any distance determination using
a discrete Sobel filter completely meaningless. Fitting a Gaussian to the
results however, as described in this work, gives a distance estimate different
from the theoretical value (Mateo 1998) by just 0.04 mag.

and d will lie outside realistic ranges. For the Sobel method, it is
impossible to tell a posteriori which results are inaccurate.

Removing those results with clearly poor fits, the average statisti-
cal deviation from the true TRGB edge value was calculated in each
case of 1200, 600, 300 and 150 stars within 1 mag of the TRGB.
We measured absolute displacement from the mean location of the
edge obtained from the largest populations, thus automatically cal-
ibrating the Gaussian method and avoiding any problems with the
precise magnitude of the TRGB edge used for the Sobel method.
For the Sobel filter method, the values were σ = 0.02, 0.25, 0.31 and
0.40 mag, respectively. This means that, even with 150 stars within
1 mag of the TRGB, the expected error on the TRGB detection is
0.4 mag, and could well be much worse.

For the Gaussian method, these values were σ = 0.05, 0.06, 0.06
and 0.14 mag – an improvement of a factor of almost 3 on the worst
case.

For most data sets, we do not expect a substantial number of
stars near the TRGB magnitude. Certainly we expect numbers in
the low hundreds at best. An example is given in Fig. 9, showing
the TRGB luminosity function for stars in the Ursa Minor (UMi)
data set analysed in Section 5. Clearly, any edge detection on data
with such low-number statistics will be largely random. However,
by fitting the TRGB with our Gaussian model, as described in this
section, we obtain a distance estimate which is only different from
the theoretical value of (m − M) = 19.11 (Mateo 1998) by +0.04
mag. We note that the theoretical value was based on studies of
variable stars, so this acts as an independent justification for our
techniques.

3.1 Varying photometric errors

In order to test this method further, we created a set of data sets
identical to those above, but with varying photometric errors be-
tween 0 and 10 per cent. These data sets were reduced using the
Sobel filter method and the Gaussian method. The population was
created so that approximately 500 stars were found within 1 mag of
the TRGB in each data set, which is more than could be obtained for
most observational data sets. The performance of the Sobel method
in this test is therefore slightly better than might be expected in
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Figure 10. Testing the new Gaussian method for estimating the TRGB
magnitude in simulated stellar populations. Varying photometric errors have
been used. Population details remain the same as those in Fig. 7. Clearly the
Gaussian method remains superior at all levels of photometric error.

general. Four populations were created for each photometric error
value, and the standard deviation in the errors from the true TRGB
location was calculated for each method. The results are shown in
Fig. 10.

As the results clearly show, the Gaussian method remains prefer-
able over the Sobel filter method at all photometric error levels. It
is hardly affected at all by the introduction of severe photometric
errors, as we would expect.

3.2 Conclusions

We therefore suggest a new method for estimating TRGB distances
in average- to poorly-populated CMDs by fitting the above proposed
Gaussian cut-off (formula 1) to the TRGB luminosity function and
solving for a fixed point on the curve, such as the zero of the second
differential at I = c + b. We propose that this method is robust to
numerical errors, and allows an accurate determination of the TRGB
distance especially for populations with a poorly-defined RGB tip.

For larger data sets, that is if there are at least 1000 stars within
1 mag of the TRGB, the standard edge-detection method seems
more robust, although we instead suggest the adoption of the tech-
nique outlined by Cioni et al. (2000) using the second derivative of
the luminosity function. They report that this method works more
reliably than the traditional Sobel filter method, although obviously
it will still suffer from the above described numerical errors with
smaller data sets.

We now present an application of the current work to real as-
tronomical data sets in order to demonstrate its effectiveness and
accuracy. We present two different data sets in order to test the
robustness of our code in different situations.

4 M I L K Y WAY G L O BU L A R C L U S T E R S

We obtained a set of 20 CMDs from the publicly available archive
of Rosenberg et al. (2000) and tested our code on all of them. One
of the most important effects we noticed was the inability for our
code to fit very metal-poor populations, due to isochrone limits. This
permits us only to obtain an upper limit on the true metallicity.

The reason why we obtain only a limit on the metallicity is sim-
ply because we do not have any isochrones beneath Z = 0.0004.
We run into problems with the weighting profiles as soon as we get
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Figure 11. The minimum metallicity we can accurately detect is approxi-
mately Z = 0.0006, due to the limits of the weighting scheme we employ. At
higher metallicity (rightmost peak) we detect the peak accurately. When the
metallicity becomes very low (leftmost peak) then every metallicity value
lower than our lowest-metallicity isochrone is added together into the lowest-
metallicity weighting value. The dotted line shows the true shape, and the
solid line shows the recovered profile. Because of this effect, it becomes
impossible to detect peaks accurately if the true mean falls within the first
three or four isochrone metallicity values.

near this limit, as the following diagrams show (see Fig. 11), due
to the fact that all the weighting for metallicities lower than Z =
0.0004 is added to the Z = 0.0004 isochrone, as this is the near-
est to the correct value. It is impossible to obtain a true value for
metallicities lower than about Z = 0.0006 because of this shortfall.
The exact value depends, of course, on the metallicity interpolation
granularity in the isochrone set. As a limit, after some testing, we de-
termined that the lowest metallicity peak we could accurately detect
was approximately that of the fourth most metal-poor isochrone.

Of course, in reality, values of Z < 0 are not possible, so there
is actually a fundamental limit to which we can obtain metallicity
peaks by this method, regardless of isochrone spread. At these levels
we are running into clear problems with our initial assumption that
most star-formation events produce stars with a roughly Gaussian
metallicity distribution.
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Figure 12. Comparing our metallicity fits to Milky Way globular clusters
with the literature values of Harris (1996). Error bars are 0.15 dex, calculated
as the sum of the estimated uncertainties due to distance and age examined
above.
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Of all those data sets we managed to fit, after reddening correction
and the inclusion of the best literature values for the age and distance
modulus to each cluster, all but three were within 0.3 dex of the value
of Harris (1996) for the central metallicity. Some of the variation
in our results from the accepted values may well be due to the
inaccuracies in converting metallicity abundances into [Fe/H]. The
three badly-fitting clusters were NGC 5927, NGC 104 (47Tuc) and
NGC 6205 (see Fig. 12).

We also calculated the errors between the retrieved metallicity
estimates given the two assumed ages, 10 and 13 Gyr. We found
that the estimated absolute value of the discrepancy was [Fe/H] �
0.085 ± 0.020 dex for our sample.

5 U R S A M I N O R DWA R F
S P H E RO I DA L G A L A X Y

The UMi dwarf spheroidal galaxy is a satellite galaxy to the Milky
Way, located at approximately 66 kpc from the Sun (Mateo 1998,
henceforth M98). It is known to be a relatively simple stellar popula-
tion, containing mainly old stars, and possessing a narrow abundance
distribution. M98 suggests a single, large star formation between 10
and 14 Gyr ago, which produced all the stars within the galaxy. UMi
has since remained untouched by outside influence, except for the
inevitable tidal disruption caused by the Milky Way’s gravitational
potential.

As such, UMi is an interesting and instructive target with which
to test our code, knowing that we do not expect a purely co-
eval stellar population, but that the contamination from young
stars is low to negligible. It provides a suitable branch from the
simplistic, coeval globular clusters to the more complicated, spa-
tially and chronologically extended dwarf members of the local
group.

5.1 The data

We took our data from the photometry of Kleyna et al. (1998) who
present a Johnson–Cousins V , I mosaic survey of the entire central
region of the UMi dwarf spheroidal to V � 22, taken using the F. L.
Whipple Observatory (FLWO) 1.2-m telescope. These data consist
of 27 fields, imaged twice in each of V and I for 300 s per exposure.
Full details of the preliminary data reduction can be found in Kleyna
et al. (1998).

We obtained the full photometry data set for all objects detected in
the 27 fields, together with an estimate of the stellarity of each source
as calculated by the SEXTRACTOR programme (Bertin & Arnouts
1996). Non-stellar objects were removed by imposing a selection
criterion of stellarity > 0.7. Further cuts were made in both ab-
solute I magnitude and V – I colour in order to remove as large
a fraction of contaminant foreground stars as possible. Stars with
I < 19.0 were removed, together with all stars outside the range
0.75 < V – I < 1.6. This left the RGB stars, together with a
significant amount of contaminants surrounding them. This would
therefore prove an excellent test of the ability of our FITCOEVAL

programme to ignore contaminants and pick out principal stellar
components from amongst noise.

Fig. 13 shows the complete CMD for stellar objects in UMi,
together with the imposed cuts which we employed to select only
the RGB population.

After obtaining the RGB population, we then added a reddening
correction using the literature value of E(B – V ) = 0.03 ± 0.02
mag. Following this, we ran our code on these data using the two
spanning isochrones of 10 and 13 Gyr. Each of these were taken

14

16

18

20

22

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

I

V-I

Figure 13. A CMD for the 4370 stellar objects selected from the original
UMi photometry. The solid lines show the cuts in both I magnitude and
V – I colour imposed in order to select only the RGB population
with as little contamination as possible. 1021 stars passed the selection
criteria.
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Figure 14. Full reduction of the UMi data using an assumed distance of
(m − M)V = 19.11, and isochrones of 10 and 13 Gyr.

from a finez set, interpolated to 200 metallicity subdivisions be-
tween Z = 0.0004 and Z = 0.01. The assumed distance was (m −
M)V = 19.11, from M98. The optimum fits calculated are shown in
Fig. 14.

The maximum values for each of these fits were Z = 0.00069
for the 10-Gyr isochrone fit, and Z = 0.00064 for the 13-Gyr
isochrone fit. These correspond to iron abundances of [Fe/H] �
−1.79 and −1.82 respectively. Standard values for UMi place
the iron abundance at roughly [Fe/H] � −2.1; see, for example,
M98.

As calculated earlier, we can estimate an error on this value of
approximately 0.15 dex from the uncertainties in distance and age.
The uncertainty in the reddening is small (0.02 mag). Using the lower
value of E(B–V ) = 0.01 mag alters the derived [Fe/H] value by less
than 0.01 dex in [Fe/H]. Choosing a higher value of E(B – V ) =
0.05 results in a much poorer fit with a significantly lower final
likelihood. It provides a pair of maxima in the resultant metallicity
distribution around Z = 0.00064 and Z = 0.00088, corresponding
to [FeH] = −1.82 and −1.68, respectively.
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6 C O N C L U S I O N

Our code appears reasonably robust to sensible photometric errors,
and is able to recover the central metallicity of a globular cluster stel-
lar population in most (75 per cent) cases. Resolution is restricted
to a lowest metallicity of [Fe/H] � −1.9 due to numerical consid-
erations. At lower metallicity, resolution in [Fe/H] is reduced due
to the logarithmic nature of the iron abundance scale.

Age, reddening and distance errors should not be a great problem
unless they vary by a significant value, where ‘significant’ here
means 2–3 Gyr in age, 0.1 mag in V-extinction or 0.2 mag in distance
modulus.
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A P P E N D I X A : D I F F I C U LT I E S
W I T H I S O C H RO N E S

We briefly summarize some possible sources of systematic error in
an adopted set of isochrones.

In using the process of isochrone fitting, it is important first to in-
vestigate the uncertainties caused by the isochrones themselves. As
theoretical models, they have a considerable number of parameters
whose values can be changed, often causing significant differences
between different isochrone models.

A slight variation in the model definition at some rapid evolu-
tionary stages can give a drastically different isochrone; see, for ex-
ample, the early work done on convective overshooting by Bertelli
et al. (1990). The isochrone set which we have mainly adopted for
use in this study is that by Girardi et al. (2000).

In general, the HB is very poorly understood in the theoretical
models, with little consensus on the true nature of the second pa-
rameter problem, and few groups agreeing well on the predicted
shape. The horizontal branch occupies a relatively compact area of
the CMD, where small errors in photometry can give very large
errors in derived metallicity and hence errors in either the models
or the photometry in this regime. None of the isochrone sets we
have tested could accurately reproduce very blue HBs, such as that
exhibited by the galactic globular cluster NGC 288, amongst others.

Furthermore, if we continue the photometry even deeper then
we approach the MSTO, where problems are caused by blue strag-
gler stars which are obviously not fitted at all well by any existing
isochrone models, being creations of stellar dynamics rather than
isolated stellar evolution. Binary stars can also cause problems, with
theoretical isochrones only representing single stellar systems.

A1 Problems modelling the RGB

The RGB poses many unsolved problems for theoretical modellers,
and is consequently fairly inaccurately represented in most theoret-
ical isochrones. One such important problem is that of mass loss.
RGB stars are highly expanded with only tenuously retained outer
layers. Stars at this stage in their evolution tend to lose a substantial
fraction of their mass through stellar winds.

Fortunately for the purposes of this study, mass loss on the RGB
is only a very minor effect for low-mass stars. Provided it is treated
sensibly, it can almost be neglected. Certainly for stars less than
one solar mass, this will not affect the isochrone models to any
significant degree.

In addition, stellar atmospheres are not understood particularly
well on the RGB, leading to slightly larger colour errors in these
sections of the models. This affects all mass ranges. If we use Kurucz
model atmospheres, then the deviation from accuracy towards the
faint end of the RGB can be significant. There is not a great deal that
can be done to rectify this problem, and the safest assumption seems
to be to reduce the weighting for stars near the tip of the RGB by
introducing slightly larger underlying intrinsic errors in this regime.

Derived values of the TRGB level vary by around 0.2 mag be-
tween individual theoretical studies. This uncertainty is primarily
caused by uncertainties in the RGB modelling schemes used, and
illustrates why isochrone fitting must therefore remain an unreliable
method for obtaining absolute, quantitative values for the internal
parameters of stellar populations to any useful degree of confidence.

Finally, as mentioned in Section A2.2, mixing length theory and
the choice of surface boundary conditions can cause substantial
variation of the RGB model predictions. The reader is referred to
sections 5.6 and 5.7 of the review by Salaris et al. (2002) which
covers these topics in considerable detail.

A2 Tunable parameters

Inherent in the theoretical models used to generate model
isochrones, there are a number of poorly-understood parameters
whose values may be tuned in order to generate the required results.
Often these parameters are altered so that the isochrone fits a certain
realistic CMD, but this is not always the case.

A2.1 Equation of state and opacities

Adopted stellar opacity laws are continually being updated. Cor-
rections from modern opacity calculations are rather smaller than
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could be expected a generation ago, but they are still considerable
under some circumstances. Several studies have been performed
on the effects of varying the opacity and equation of state used in
calculations; see, for example, Yildiz & Kiziloglu (1997).

Rogers & Iglesias (1996) have extended the standard OPAL opac-
ity laws down to lower stellar masses beneath 0.8 M�, therefore
allowing more accurate modelling of RGB stars in truly old, metal
poor stellar populations. The lifespan of an 0.8 M� star is approx-
imately one Hubble time however, so these low-mass stars will not
yet have reached the RGB stage in most cases.

A2.2 Mixing length theory and convective overshooting

Mixing length theory comes from models of convective stars, and
consequently applies strongly to younger, more massive stars with
convective cores. However, it is also used in predicting the behaviour
of the convective envelopes of low-mass stars, to determine the
temperature gradient in superadiabatic regions. Hence, the mixing
length parameter determines the effective temperature of stars with
convective envelopes, such as the RGB stars in which we are pri-
marily interested.

For more massive stars, generally those above 1.6 M�, the free
parameter of the overshooting distance also becomes important.
This was treated in considerable detail by Maeder & Meynet (1991).
They claimed that including convective overshooting in their models
could revise estimated ages of red turn-off stars upwards by a factor
of between 1.5 and 2.7. Estimating the ages from the blue turn-off
gave errors in age determinations of factors between 1.6 and 2.2.

All isochrone models now include these parameters, but the actual
extent to which the convective overshooting model is applied, and
the value for the mixing length, are still very much open to debate,
and can actually cause a substantial difference in the model colours
obtained.

A2.3 α-element ratios

Salaris et al. (1993) examined in detail the degree to which
α-enhanced isochrone models alter the fits obtained to the galactic
globular cluster system. They concluded that evolutionary properties
of stellar models depend significantly on the adopted abundances of
all the α-elements. They also discovered that adopted opacity laws
can have a substantial effect on the shape of an isochrone, especially
at low metallicity and low temperature.

Recently, the Yale–Yonsei group have released a set of theoretical
isochrone tracks with varying α-element ratios (Yi et al. 2001).
Fig. A1 shows the differences between α-element ratios of [α/ Fe] =
0, 0.3, 0.6. The interpolation code was kindly donated by Sukyoung
Yi.

Varying α-enhancement ratios give us yet another degeneracy. In
Fig. A2 it is clear that the variation between the α-element enhance-
ment of [α/Fe] = 0.0 and 0.3 at an age of 10 Gyr and metallicity of
half-solar is approximately the same as that caused by a metallicity
increase of 20 per cent. This gives us another contribution to the
error on our metallicity measurements.

The systematic effects of incorrectly modelled α-element abun-
dances can only have a small differential effect. For example, in
modelling galactic globular clusters, all clusters may exhibit sim-
ilar α-element ratios, and thus any error in assuming an incorrect
α-element ratio for the isochrones will result in a constant shift for
all clusters, retaining exactly the correct ordering if not the precise
metallicity values.
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Figure A1. Here we have plotted isochrones for 10 Gyr with metallicity of
one half solar abundance, varying the α-element ratios to [α/ Fe] = 0.0, 0.3,
0.6. The difference is not enormous, but could cause a shift in the assumed
metallicity for RGB populations.
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Figure A2. Here we have plotted isochrones for 10 Gyr with metallicity
of one half solar abundance, varying the α-element ratios to [α/ Fe] = 0.0,
0.3. In addition, we have overplotted an isochrone for [α/ Fe] = 0.3 and
metallicity 20 per cent higher. The effects of varying metallicity and [α/ Fe]
are very similar.

A2.4 Parameter fine-tuning

With so many parameters, it is usually possible to alter stellar mod-
els in such a way so as to fit an observed population with a reason-
able age and metallicity spread. Many groups (e.g. Bergbusch &
VandenBerg 2001) do exactly this, tuning their isochrones so that
they fit a set of template populations, as well as standard data for
the sun. In this case, comparisons are made with galactic globular
clusters M3 and M92. and the assumption is that these populations
are representative.

In some sense, what we are doing here is using the answer as
a starting block for our models, and then we should not be too
surprised when our models give us back the answer upon which
we based them. However, once we move to different clusters, and
indeed other stellar populations, such as Population II halo stars,
the benefit of this method becomes apparent. Of course, we are
assuming that there is some underlying law, or set of laws, which
unifies all stellar populations given a set of observable parameters.
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Observations show us that this might not necessarily be the case.
It is only an assumption that models tuned to fit globular clusters
should be preferentially more accurate in analysing stellar haloes.

Even after fitting their models to a wide range of Milky Way
globular clusters, Bergbusch & VandenBerg still found that their
models failed to predict the observed luminosities of the red giant
bump by �0.25 mag. No matter how accurately model parameters
are optimized, there is always the danger that we have neglected
some fundamental physics which complicates the situation.

A3 Non-linear isochrone interpolation

When interpolating between isochrones, we are forced to make some
simplifying assumptions. One such assumption is that a linear inter-
polation is sufficiently accurate for our needs. That is, we assume
that, for example, between two isochrones of metallicity Z = 0.01
and Z = 0.011 there might be another nine isochrones all spaced
by 0.0001 in metallicity, Z. However, the assumption that these
interpolated isochrones should lie exactly evenly spaced in colour–
luminosity space is one that might not be valid.

However, when interpolating new isochrones we already have a
great deal of difficulty pairing off the four isochrones spanning our
desired age/metallicity values in both these variables. To improve
on the linear interpolation assumption would require spline-fitting
from previous isochrones, which would then need to be paired off
with the target isochrones in a similar way. This method then rapidly
becomes unfeasible.

The best guess we can make is that the isochrones do not be-
have pathologically and that, in the absence of other information,
isochrones linearly spaced in metallicity should be linearly spaced
in the colour–luminosity variables that we are calculating.

Further interpolation problems lie with the isochrone masses.
Isochrones are parametrized as a series of points approximat-
ing a parametric curve. However, assuming straight-line sections

joining these points can introduce errors in the assumed masses,
and therefore the occupation probabilities for those points. Harris
& Zaritsky (2001) investigated this problem, and discovered two
important facts:

(i) the error is never more than a few hundredths of a solar mass,
and is therefore fairly insignificant in terms of IMF variability;

(ii) the error is negligible for stars brighter than the MSTO, i.e.
all the stars in which we are interested.

Bergbusch & VandenBerg (2001) introduce the concept of an
Akima spline for interpolating accurate colours around the MSTO.
Again, these effects are small, being of the order �T eff � 0.001 T eff,
and are confined to low-luminosity stars.

We therefore neglect these effects entirely.

A.4 Conclusions

Isochrone fitting clearly has its limitations, but once these are ac-
cepted and dealt with as effectively as possible, it becomes a pow-
erful method for analysing stellar populations. However, we must
be aware of the inherent problems and understand that any results
obtained are only useful in a relative sense; the absolute age and
metallicity values are likely to be highly unreliable in some cases.

Most importantly, the uncertainty in isochrones is most appar-
ent in young, high-mass models where more extreme and poorly-
understood physics is operating. Not surprisingly, models of solar-
mass stars are good. For the studies which are considered in this
work, very few stars are above one solar mass. Most populations
are of 10 Gyr or older, at which age the oldest star on the RGB will
have an initial mass of only fractionally above one solar mass for
a solar metal abundance – from isochrones of Girardi et al. (2000).
The worst of these problems can therefore be safely neglected.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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