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Abstract
Longitudinal experiments often involve multiple outcomes measured repeatedly within a set of
study participants. While many questions can be answered by modeling the various outcomes
separately, some questions can only be answered in a joint analysis of all of them. In this paper,
we will present a review of the many approaches proposed in the statistical literature. Four main
model families will be presented, discussed and compared. Focus will be on presenting advantages
and disadvantages of the different models rather than on the mathematical or computational
details.
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1 Introduction
In many scientific applications, one often needs to analyze data resulting from experiments
in which outcomes have been measured repeatedly on a set of units, leading to so-called
repeated measurements. Examples are hearing thresholds measured on both ears of a set of
subjects, birthweights of all litter members in a toxicologic animal experiment, or weekly
blood pressure measurements in a group of treated patients. The last example is different
from the first two in the sense that the time dimension puts a strict, and scientifically
relevant, ordering on the obtained measurements within the units. Indeed, the key purpose of
the experiment is to study the evolution of the blood pressure over time, and how that
evolution depends on subject-specific characteristics such as treatment, age, gender, body
mass index, etc. The resulting data are referred to as longitudinal data. Obviously, a correct
statistical analysis of such data should account for the clustered nature of the data, i.e., allow
that measurements within subjects can be correlated, while observations from different
subjects are independent. Therefore, classical (generalized) linear regression models are not
applicable. An additional complication arises from the fact that such data sets are often
highly unbalanced, i.e., the number of available measurements per unit, and the time points
at which the measurements were taken, are often very different across units.

A variety of models has been proposed in the statistical literature, during the last few
decades (see e.g., Diggle1 et al., Verbeke and Molenberghs2, Molenberghs and Verbeke3).
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Attention focused on the analysis of univariate longitudinal data in which a single outcome
is analyzed. In practice, one is often confronted with multiple outcomes, all measured
repeatedly over time, possibly a different number of times and/or at different time points.
Those outcomes may be similar or of disparate types (continuous/discrete), and a variety of
scientific questions may be of interest. In toxicological studies, interest may focus on the
relationship between dose of a toxic agent and several outcomes reflecting possible
deleterious effects of the agent. For example, birth weight, a continuous measure, as well as
some binary indicator of malformation, may be recorded on each fetus in a teratogenicity
study. Another example occurs in HIV studies, where measures of immunological and
virological status, such as CD4 T-cell count and viral RNA copy number (“viral load”), are
collected longitudinally on each participant, and interest may be in studying the relation
between the evolutions of both outcomes. Finally, consider a study seeking to elucidate how
hearing ability changes during aging based on longitudinal measurements of hearing
thresholds at various frequencies, potentially measured separately for the left and right ear,
respectively. Of particular interest might be to evaluate whether or not the rate of loss of
hearing ability is the same at different frequencies.

It should be emphasized that the availability of multivariate longitudinal data does not
necessarily require the construction of a joint model for all outcomes simultaneously. In
some cases, univariate longitudinal models for each outcome separately may answer all
research questions. In other examples, such as the above ones, a joint modeling strategy is
inevitable to answer these questions, because interest is in assessing the relation between
some covariate and all outcomes simultaneous, in studying how the association between the
various outcomes evolves over time, or in investigating the association between the
evolutions of all outcomes.

A number of approaches to joint modeling of multivariate longitudinal data have been
proposed in the statistical literature, the main differences between which are similar to those
existing between the many techniques available for the analysis of univariate longitudinal
data. They originate from different modeling traditions, their construction can be motivated
by different arguments, and they also may differ in a number of formal characteristics, such
as the structure of the data (balanced or unbalanced), the scale of the observed outcomes
(continuous, ordinal, binary), or the way the association between and across outcomes is
modeled (with or without latent variables). Especially the latter aspect is important given
that the use of latent variables allows for more flexible data structures but usually also has
important implications with respect to the interpretation of the various model parameters. To
focus ideas, consider an experiment as the hearing test described by Brant and Fozard4, and
Pearson5 et al., and analyzed by Morrell and Brant6, Fieuws and Verbeke7, and Fieuws,
Verbeke, and Molenberghs8. Hearing threshold sound pressure levels (dB) are determined
longitudinally for 603 male volunteers in the Baltimore Longitudinal Study on Aging
(BLSA, Shock9 et al.), at 11 different frequencies and for the left and the right ear
separately. The number of visits per subject ranges between 1 and 15, over a median follow-
up time of 6.9 years, and visits are unequally spaced. Several scientific questions are of
interest. For example, one may be interested in studying whether the loss of hearing ability
is the same across frequencies or investigating the association between subject-specific
evolutions at different frequencies. These questions require jointly modeling all outcomes.
When modeling such (high-)dimensional longitudinal data, one option is to use one or more
latent variables for the outcome dimension, i.e., to reduce the dimensionality of the
multivariate vector of outcomes. It is then assumed that the observed outcomes are
measuring one or more underlying concepts characterizing “hearing ability.” An alternative
option is to use latent variables for the time dimension, i.e., to assume that the repeated
measurements of a particular outcome (one frequency at either left or right side) are
reflecting a latent evolution for that outcome. Four families of models can be distinguished
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based on whether or not latent variables are assumed for the time dimension and/or for the
outcome dimension. These families will be successively described in the Sections 2 to 5, and
their merits and disadvantages will be discussed.

In Section 2, models for the joint distribution of observed outcomes will be described. They
do not rely on the assumption that latent structures can be used to explain the association
between repeated measurements of a single outcome, nor the association between the
various outcomes measured a particular point in time. Section 3 presents models to jointly
analyze latent evolutions over time. Such models are particularly useful in contexts where
the observations are not taken at fixed time points for all subjects. In balanced contexts,
techniques such as factor analysis or principal components analysis can be used to reduce
the dimensionality of the response vector at each occasion, after which the obtained factors
or principal components are analyzed longitudinally. Obviously, a key disadvantage is that
longitudinal trends are then no longer in terms of the observed outcomes. Longitudinal
trends in latent constructs are studied instead. Examples of such models will be discussed in
Section 4. Finally, in Section 5 ideas from Sections 3 and 4 will be combined into models
for latent evolutions of latent variables. All models imply specific assumptions about (i) the
association between the longitudinal measurements within an outcome, (ii) the association
between the various outcomes taken at the same time point, and (iii) the association between
outcomes at different points in time. The choice for a specific association structure can be
driven by the data, by the research question, or by the chosen estimation procedure. This
will be illustrated in Section 6, in the context of the hearing data introduced before. Because
highly unbalanced data frequently occur in practice, we will be particularly interested in
assessing the suitability of the various methods to handle such data. Finally, some
concluding remarks will be given in Section 7. While some features of the models discussed
here are equally well applicable for the analysis of time series data, we will not include the
literature on multivariate time series in our review. Relevant references in that area can be
found in Molenaar10, and Jorgensen11 et al.

For the remainder of this paper, let Y1, …, Ym denote the m vectors containing the
longitudinal measurements for the m outcomes and let Yk(t), k = 1, …,m denote the
measurement for the kth outcome taken at time point t. Further, let Y (t) denote the vector of
all outcomes measured at time point t. Note that, with unbalanced data, not all outcomes
may be available at all time points implying that the dimension of Y (t) can be less than m.
Finally, let Y be the vector of all measurements in Y1, … , Ym, and interest will be in
specifying a model for the entire vector Y. Whenever possible, ideas will be explained in the
context of m = 2 outcomes Y1 and Y2, but extension to higher dimensions will be
straightforward. Also, in all models discussed in the following sections, dependence on
covariates will be suppressed from notation, and no additional index for subject will be used.

2 Models for evolutions in measured outcomes
A first approach attempts to specify directly the joint density f(y) of Y (see, e.g., Galecki12;
see also Molenberghs and Verbeke3 Section 24.1 for an overview). Such models may or
may not result from formulating models for the various elements in Y by conditioning on
other elements in Y, resulting in marginal and conditional models, respectively. In Section
2.1, an overview will be given of models that do not require any conditioning, while
conditional models will be presented in Section 2.2.

2.1 Marginal models
Specification of a marginal model for Y will require making assumptions about the marginal
association among the longitudinally-measured elements within each of the vectors Yk, but
also must include assumptions on the nature of the association between elements of any two

Verbeke et al. Page 3

Stat Methods Med Res. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vectors Yk and Yk’, k ≠ k’. Especially when the Yk are of different types (e.g., continuous-
discrete) and/or in the case of (highly) unbalanced data, this becomes cumbersome.

When all outcomes are Gaussian a multivariate linear regression model can sometimes be
used. When the data set is fully balanced, the covariance matrix V of Y can have an un-
structured form, but would contain mn(mn + 1)/2 covariance parameters, where n is the
number of time points at which measurements have been taken. To reduce the number of
covariance parameters, a more parsimonious structure is sometimes used, such as a
Kronecker product of the covariance matrix for, respectively, the m outcomes and the n time
points (Galecki12, O’Brien and Fitzmaurice13). Even if unstructured m×m and n×n
covariance matrices are used for the m outcomes and n time points, respectively, an
important reduction in the number of covariance parameters can be obtained, when
compared to the full unstructured mn × mn covariance matrix. Some further structure, such
as a first-order autoregressive covariance for the repeated measurements of each outcome,
can lead to an even more parsimonious covariance model. Note however that the Kronecker
product model implies that the cross-correlations, i.e., correlations between distinct
outcomes at various points in time, are products of the marginal correlations specified for
the m outcomes and the n time points, which may be too restrictive to be realistic. Another
marginal modeling approach for multivariate linear regression models, applicable for
irregularly timed observations, has been proposed by Carey and Rosner14 who assume that
the intra-outcome and inter-outcome correlations over time follow a dampened
autoregressive correlation structure of the form Corr{Yk(s), Yk(t)} = exp{α(|s – t|θk}) and
Corr{Yk(s), Yk’ (t)} = exp{α(|s – t| + 1)θkk’}, respectively. The model implies that the
variances as well as the correlations between the outcomes remain constant over time, which
again may not be realistic in many applications.

Also, when the data are discrete, likelihood-based marginal models can be formulated (see
for example Molenberghs and Verbeke3), but then are very difficult to implement, unlike in
the Gaussian case, unless nm is sufficiently small. In addition, full specification of the
distribution of Y not only requires specification of all first- and second-order moments, but
of all higher-order moments as well. In the case of binary balanced data, 2nm – 1
multinomial probabilities need to be modeled and it is not always clear how sensitive
inferences for the parameters of interest are with respect to misspecification of some of these
multinomial probabilities. Examples of likelihood-based marginal models designed for a
longitudinal context do exist, but only for small nm, see for example, Daskalakis, Laird, and
Murphy15, or Molenberghs and Lesaffre16.

A class of models which is very flexible for jointly analyzing outcomes of mixed types is the
so-called copula model (Sklar17, Nelsen18). For m outcomes Y1, …, Ym with univariate
distribution functions F1(y1), … , Fm(ym), a copula model is defined by an m-dimensional
cumulative distribution function C(u1, … , um) with uniform marginals. The multivariate
distribution function F (y1, … , ym) = C(F1(y1), … , Fm(ym)) then has the prespecified
marginals. From this perspective, a copula can be viewed as an association function and the
model enjoys the benefit of separating the formulation of the marginals from the
specification of the association between the outcomes. For fixed marginals, many different
multivariate models can be obtained from considering different copula functions C(u1, … ,
um). For example, the model of Molenberghs and Lesaffre16 for ordinal outcomes is an
example of the so-called Plackett copula (Plackett19, Mardia20). While the construction of
copulas is mathematically elegant, parameter estimation is often not evident, especially in
high-dimensional situations. Furthermore, application in longitudinal contexts is often not
straightforward due to unbalanced data structures often encountered in practice. To our
knowledge, very limited applications of copulas for the analysis of multivariate longitudinal
outcomes have been reported. One example can be found in Lambert and Vandenhende21
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who jointly analysed three outcomes measured longitudinally at 12 pre-specified fixed time
points.

Specification of the full joint distribution for discrete data can be avoided by using a
generalized estimating equations (GEE) approach. Even when the within-subject
associations are (partially) misspecified, valid inferences can be obtained for the regression
parameters relating the mean to the set of covariates (Liang and Zeger22, Prentice23). To
capture the association, correlations as well as odds ratios can be used. Carey, Zeger and
Diggle24 modeled binary data using odds ratios leading to so-called alternating logistic
regression which combines a marginal logistic model for the mean with a conditional
logistic model for the association parameters. Their method has the advantage of avoiding
the computational burden associated with second order GEE (Zhao and Prentice25) which
combines estimating equations for the mean with estimating equations for odds ratios, but
assumes a parsimonious model for the  pairwise odds ratios, i.e.,  intraoutcome

odds ratios,  inter-outcome odds ratios, and  cross odds ratios. Ways to
specify parsimonious models have been presented by O’Brien and Fitzmaurice13.

Ten Have and Morabia26 constructed a bivariate longitudinal model for binary outcomes by
combining a logit model for each outcome through a log odds ratio model for the association
at a specific point in time. This marginal model addressed the association at each time point.
The longitudinal association was modeled using random effects, using ideas similar to those
we will present in Section 3. A major advantage of this model is that it can easily handle
unbalanced data.

A model for a binary outcome and a continuous outcome, both measured longitudinally, has
been proposed by Rochon27 who combined two GEE models for the two outcomes, using an
autoregressive-type working correlation matrix for the intra- and inter-outcome dependence
over time. Building on earlier work for continuous outcomes (Gray and Brookmeyer28),
Gray and Brookmeyer29 proposed a marginal model for outcomes of different types, in a
context where interest is in inference for a treatment effect. They assumed that the treatment
group and the control group follow the same time trajectory, but at a different rate. The
association was treated as nuisance and modeled using measures of association which
depend on the type of outcomes to be analyzed (correlations, odds ratios, … ). The
advantage of the approach is that the treatment effect can easily be compared across the
various outcomes, irrespective of the metric of the outcome, and that a common treatment
effect can be estimated.

The main advantage of all these models is that they allow for direct inferences for marginal
characteristics of the outcomes, such as average evolutions and associations. This is also
reflected by the symmetric treatment of the two outcomes, which is in strong contrast to
several of the other approaches which we will discuss next.

2.2 Conditional models
One way to avoid direct specification of a joint distribution for Y is to model a subject’s
measurement on a given outcome at a particular time point, conditional on all other mn – 1
measurements. Geys, Molenberghs, and Ryan30 applied this in a non-longitudinal context
with binary data. In a longitudinal context, it is often considered natural only to condition on
the past, which can be done through so-called transition models. Transition models for
univariate discrete longitudinal data (Diggle1 et al.) consider the time course as a sequence
of states and transition probabilities to be in a specific state at a particular point in time
depends on the state at the previous time point(s) and possibly on a set of covariates, but
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extensions to multivariate longitudinal binary data are possible (see, e.g., Zeng and Cook31,
Liang and Zeger32). These extensions differ in the way the cross associations are modeled.

While conditional models have the advantage of reducing the modeling task to the
specification of a model for each of the outcomes separately, they also have a number of
severe shortcomings, for two longitudinal outcomes, but even more so for larger numbers of
outcomes. To illustrate the major ones, let us consider the situation where interest is in
jointly modeling two outcomes Y1 and Y2, both measured longitudinally. The joint density
can be factorized as

(1)

Specification of a conditional model such as f(y1|y2) requires very careful reflection about
plausible associations between Y1 and Y2, where the latter plays the role of a time-varying
covariate, and different choices can lead to very different, sometimes completely opposite,
results and conclusions (see, e.g., Diggle1 et al., Chapter 12; see also literature on time-
dependent treatment and confounding, e.g., Zhang33 et al.). Another drawback of
conditional models is that they do not directly lead to marginal inferences. Suppose
scientific interest would be in a comparison of the rate of longitudinal change in both
average outcomes. The first factorization in (1) directly allows for inferences about the
marginal evolution of Y2, but the marginal expectation of Y1 requires computation of

which, depending on the actual models, may be far from straightforward. One way to
circumvent this would be to fit both factorizations in (1) but specification of both models in
a compatible way often requires direct specification of the joint density f(y1, y2), thus
involving the problems discussed in Section 2.1. Furthermore, the marginal mean of Y1 is
not, in general, of the same form as the original conditional mean. For example, a logistic
regression model for the conditional mean of Y1 given Y2 does not marginalize to a logistic
regression for the marginal mean of Y1. Hence, marginalization, even when computationally
straightforward or feasible, is not always useful or helpful.

In some situations, the asymmetric treatment of the outcomes is very unappealing. In a
clinical trial, for example, none of the factorizations in (1) will be of interest due to the
conditioning on a post-randomization outcome which may (partially) attenuate the treatment
effect on the other. Finally, with (many) more than two outcomes, many possible
factorizations are possible, all potentially leading to different results. Hence, conditional
models are often not the preferred choice for the analysis of high-dimensional multivariate
longitudinal data.

3 Models for associations between latent evolutions
A very flexible class of models, often used for the analysis of univariate longitudinal data, is
the family of mixed models. They assume that the observations represent realizations of a
latent subject-specific trajectory which can be modeled parsimoniously using a relatively
small number of subject-specific parameters. Since subjects are believed to be randomly
sampled from some population, the subject-specific parameters are assumed to be random as
well, and are therefore referred to as random effects. The association between the repeated
measures is then modeled through the assumption that the random effects are shared by the
observations made for that outcome. Such models have the major advantage that they do not
assume balancedness, allowing for different numbers of observations per subject and/or
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measurements of different subjects taken at different time points. Various mixed model
families, such as linear mixed, generalised linear mixed, and nonlinear mixed models have
been introduced in the statistical literature. See, e.g., Laird and Ware34, Breslow and
Clayton35, Davidian and Giltinan36, Verbeke and Molenberghs2, Molenberghs and
Verbeke3. This class of models is also known under a number of other names, including
multilevel models (Goldstein37), hierarchical linear models (Bryk and Raudenbush38) and
variance components models (Longford39). The choice of the type of mixed model depends
on the type of outcome (continuous, ordinal, categorical) and on the functional form of the
relation between the outcome and the covariates in the model (linear, generalised linear,
nonlinear). Due to the flexibility of the models and the widespread availability of
commercial software to fit them, mixed models have developed into a very popular tool for
analysing longitudinal data in many areas.

The idea of using random effects to account for the correlation between measurements
within a subject can also be exploited to construct joint models for multivariate longitudinal
outcomes. More specifically, it will be assumed that, conditionally on the random vector bk,
Yk follows a distribution with density f(yk|bk), possibly depending on additional population-
specific parameters θk, suppressed from notation. Some models assume all bk to be identical,
leading to so-called shared parameter models. Other models allow the different outcomes Yk
to be modeled with separate but correlated random vectors bk, resulting in so-called random-
effects models. McCulloch40 used the same ideas to jointly model multiple outcomes of
mixed types, although not restricted to the longitudinal context. Both families will be
discussed and compared in the Sections 3.1 and 3.2, respectively. Note that the same two
approaches are sometimes used in the analysis of correlated time-to-event outcomes, leading
to so-called shared frailty models and correlated frailty models (see, e.g., Duchateau and
Janssen41).

3.1 Shared parameter models
Let b denote the vector of random effects shared by all outcomes Yk, i.e., b1 = … = bm = b,
with density f(b), possibly depending on a vector of unknown population parameters. Often,
b is assumed normally distributed, but alternatives are possible (see Chapter 2 in
Fitzmaurice42 et al. for a general discussion). Under the assumption of conditional
independence, i.e., assuming that the outcomes Yk are mutually independent, conditionally
on b, the joint marginal density is given by

(2)

The assumption that all Yk are conditionally independent given b reflects the belief that a
common set b of underlying characteristics of the individual governs both outcome
processes. This assumption, while convenient particularly if the outcomes Yk are of a
different type, can be relaxed in some situations (see, e.g., Fieuws and Verbeke7).

One of the main advantages of shared parameter models is that the outcomes Yk do not have
to be of the same type. Linear mixed models for continuous outcomes can be combined with
logistic mixed models for binary ones and/or Poisson mixed models for counts. Moreover,
the parameters in the joint model have the same interpretation as in each of the univariate
models. Finally, extending the model to more than two outcomes is straightforward, and,
because dimensionality of the integration in (2) does not increase, does not entail any
additional computational burden.
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A key disadvantage of shared parameter models is that they often involve very strong,
sometimes unrealistic, assumptions about the association between the outcomes. As an
example, suppose that the Y1 and Y2 be well-described by random-intercept models given by

(3)

respectively, with b a normally distributed mean-zero random effect common to both models
and with e1(t) and e2(t) mean-zero normally distributed error process, independent of b and

of each other for all t. Furthermore, denote Var{e1(t)} by  and Var{e2(t)} by , constant
for all t. The parameter γ is used to scale the shared random effect b in the model for Y2(t). It
directly follows from model (3) that the marginal cross-correlations between elements from
both outcomes are given by

(4)

implying that the correlation structures of the individual outcomes dictate the association
between pairs of measurements from different outcomes. For example, the model would not
allow that Y1 and Y2 to be independent if repeated measures of Y1 and Y2 are strongly
correlated. Similar restrictions hold in more general models that involve shared random
effect vectors beyond just a scalar random intercept. As we will describe next, these
restrictions can be relaxed by allowing for different but correlated random effects for the
various outcomes.

3.2 Random-effects models
As discussed in Section 3.1, shared parameter models enjoy many desirable properties such
as (1) allowing for different types of outcomes, (2) allowing for (highly) unbalanced data,
and (3) parameter interpretation identical to univariate models. Only, the rigid constraint (4)
often makes them unrealistic to be applicable in practice. This can be solved by allowing for
different random effects bk for the outcomes Yk. The association between the outcomes is
then generated by allowing the random effects themselves to be correlated. Let b = (b1, … ,
bm) be the vector of all random effects and let f(b) denote the assumed density (often
multivariate normal). Under the conditional independence assumption, the joint marginal
density is now given by

(5)

To illustrate that this model implies less strict assumptions about the associations between
the outcomes, let us re-consider the random-intercepts models from (3), but modified to
involve separate random intercepts for both processes, i.e.,

(6)

with similar assumptions as before, and assuming that b1 and b2 jointly follow a bivariate
zero-mean normal distribution. Models (3) and (separate intercepts) assume the same
correlation structures for each of the outcomes separately, but the marginal cross-
correlations between elements from both outcomes are now given by
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showing that correlation between the outcome-specific random effects generates a between-
process association, but also that the restriction imposed by the shared parameter model (3)
is relaxed in the sense that the correlation structures of the individual outcomes no longer
dictate the association between pairs of measurements from different outcomes. For
example, the model would now perfectly allow Y1 and Y2 to be independent even if repeated
measures of Y1 and Y2 would be strongly correlated. Finally, note that the shared-parameter
model (3) can be obtained as a special case of (6) by specifying perfect correlation between
b1 and b2.

Many authors have proposed the use of random-effects models for multivariate repeated
measures data. Reinsel43 already introduced the multivariate linear mixed model for
continuous outcomes, but estimation was restricted to balanced observed data. Beckett,
Tancredi and Wilson44 analyzed 4 continuous outcomes in an observational data study on
elderly people with a total of 8 random effects. An example in a bivariate highly unbalanced
setting with continuous data can be found in Chakraborty45 et al. in the context of HIV data.
Other examples of multivariate linear mixed models can be found in MacCallum46 et al. and
Matsuyama and Ohashi47. Still within the context of linear models, Shah, Laird, and
Schoenfeld48, Sy, Taylor, and Cumberland49, Heitjan and Sharma50, and Fieuws and
Verbeke7 relaxed the conditional independence assumption by allowing the error
components of the m outcomes to be correlated. Examples in the context of multivariate
nonlinear or generalized linear mixed models are far less common. Ribaudo and
Thompson51 compared two treatments for lung-cancer using longitudinal measurements of 6
binary quality-of-life outcome measures QOL, by combining 6 random-intercept logistic
regression models. Agresti52 developed a multivariate extension of the Rasch model for a
non-longitudinal context. An example of the use of random-effects models for multivariate
longitudinal data of a mixed type can be found in, e.g., Fieuws53 et al. who combined linear,
non-linear, and generalized linear mixed models to predict renal graft failure in renal
transplant patients. Another application where such models are widely used is in the joint
analysis of longitudinal pharmacokinetic and pharmacodynamic outcomes (e.g., Davidian
and Giltinan36 Chapter 9). Finally, Blozis54,55 modeled continuous multivariate growth
curve data using non-linear random-effects where fixed effects and random effects entered
the models in a non-linear and a linear way, respectively.

All multivariate random-effects models discussed so far assumed that the vector b of random
effects is multivariate normally distributed. Thum56 replaced this by a multivariate t-
distribution, while Nagin and Land57, Nagin58, and Nagin and Tremblay59 assumed a
multinomial distribution to identify different classes of subjects with respect to their
evolution over time. This class of models is sometimes also referred to as latent-class growth
analysis (Muthén60). Molenberghs61 et al. and Vangeneugden62 et al. extended generalized
linear mixed models with conjugate random effects to simultaneously model longitudinal
association and overdispersion, and Njeru Njagi63 et al. extended this to the multivariate
setting.

Finally, a further extension is obtained if no specific parametric functional form for the
latent process underlying the longitudinally observed outcomes is assumed anymore. The
resulting models borrow ideas from factor analysis to model each outcome vector Yk as Γkbk
+ ek, for some matrix Γk with columns containing basis functions representing aspects of
change which are not fixed a priori. Examples in the multivariate longitudinal context can be
found in, e.g., Stoolmiller64, MacCallum46 et al., Willett and Keiley65, and Ferrer and
McArdle66.

Obviously, (5) still fits within the general framework of mixed models allowing model
fitting and inference to be based on likelihood theory for mixed models, and many models
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can be fitted using commercially available software packages such as the SAS procedures
MIXED for linear models, GLIMMIX for generalized linear models, and NLMIXED for
nonlinear models. We refer to Thiébaut67 et al. for an example in the context of linear mixed
models. While most procedures require random effects to be normally distributed,
appropriate reformulation of the model sometimes allows fitting models with other random-
effects distributions, see, e.g., Liu and Yu68 and Nelson69 et al. for examples with the SAS
procedure NLMIXED. Note that the general idea of joining separate mixed models by
allowing their model-specific random effects to be correlated is applicable irrespective of
the number of outcomes involved. The main disadvantage is that the dimensionality of the
total vector of random effects in the resulting multivariate model for all outcomes grows
with the number of outcome variables, often leading to computational problems in the
evaluation or maximization of the marginal density (5) when the number of outcomes
exceeds two, and/or when some of the outcomes are best described by a generalized linear,
or a non-linear mixed model. For multivariate random-effects models with normal random
effects, Fieuws and Verbeke7 noted that all parameters in the joint model can be estimated
from fitting all bivariate models implied by the multivariate model (see also, e.g.,
Molenberghs and Verbeke3, Chapter 25; Fieuws, Verbeke and Molenberghs8). More
specifically, for all  pairs (Ys, Yt), 1 ≤ s < t ≤ m, the joint model based on

(7)

is fitted using maximum likelihood estimation and estimators for the parameters in the joint
multivariate model (5) are obtained by simply averaging over the results from the 
pairwise model fits. Obviously, the resulting estimators do not maximize the likelihood
corresponding to (5), hence inferences do not follow from standard maximum likelihood
theory. Instead, Fieuws and Verbeke7 have shown that pseudo-likelihood theory can be used
to derive the asymptotic distribution of the so-obtained estimators. We refer to Arnold and
Strauss70, Geys, Molenberghs, and Ryan71, and Molenberghs and Verbeke3 (Chapter 9) for
more details about pseudo-likelihood theory. Replacing the log-likelihood of the original
model by a sum of implied marginal or conditional log-likelihoods is also sometimes
referred to as composite likelihood (Lindsay72). Heagerty and Lele73 and Curriero and
Lele74 applied composite likelihood theory in the context of spatial data, another instance of
high-dimensional correlated data. The main advantage of the pairwise model fitting
approach is that it can be applied irrespective of the number of outcomes involved in the
joint model, and irrespective of the type of mixed models (linear, generalized linear,
nonlinear) that are combined into the joint model, provided that all pairwise models (7) can
be fitted. The method has been illustrated in the analysis of a 22-dimensional vector of
continuous data, a 7-dimensional vector of binary data, and 4-dimensional vector of mixed
outcomes, see Fieuws and Verbeke7 and Fieuws53,75 et al., respectively.

4 Models for evolutions of latent variables
When (many) more than two longitudinally measured outcomes need to be analyzed jointly,
most approaches described earlier are no longer feasible, involve numerical difficulties, or
are based on extremely strong, often unrealistic, assumptions about the association structure
between the various outcomes in the multivariate response vector. Therefore, a number of
methods have been proposed based on dimension reduction. The general idea is to use a
factor-analytic, or principal-component type, analysis to first reduce the dimensionality of
the response vector and to use standard longitudinal models for the analysis of the principal
factors. A typical example for continuous data is the model by Oort76, who uses r latent
factors to reduce the dimensionality of Y(t) at any point t in time:
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(8)

for τ(t) a vector of m intercepts at time t, Λ(t) a m × r matrix of (common) factor loadings,
ξ(t) ~ N[κ(t), Φ(t)] a random r-dimensional vector of scores on the latent variables, and with
e(t) a m-dimensional vector of classical error components, normally distributed with mean
zero and covariance Σ(t), and independent of ξ(t). Combining the information over all time
points yields

(9)

where Y, τ, ξ, and e are stacked vectors and Λ is block-diagonal with blocks Λ(t). Note that
model (9) is over-specified and additional restrictions are needed for model identification. In
our longitudinal context, the interpretation of the latent factors should remain the same,
implying the restrictions that all Λ(t) and all τ(t) are equal for all time points t. The resulting
model is the so-called longitudinal three-mode model (Oort77). The mean evolution over
time of the observed outcomes is reflected by the changes in κ(t). Special cases of the model
imply further restrictions on how the factor scores ξ(t) evolve over time, in a way which is
common to all subjects, but which may vary between outcomes. Examples can be found in
Oort76 and Sivo78, and a more detailed discussion of this class of models can be found in
Fieuws and Verbeke79.

As an alternative to the above factor analytic (FA) approach, a principal component (PC)
type of analysis can be used as well. The main difference is that, the FA model in (9)
contains distributional assumptions with respect to the between-subject variability, while the
different modes are considered fixed in the PC approach. The PC model is therefore more
exploratory. Examples of PC models can be found in Kiers and ten Berge80, Timmerman
and Kiers81,82, and Kiers, ten Berge, and Bro83 which differ primarily in the identifying
restrictions imposed on the models.

In a non-continuous context, Ilk and Daniels84 used one latent variable for m binary
outcomes, but the evolution over time was modeled using a Markov structure for the
observed outcomes, whereas Oort76 and Sivo78 modeled the within-subject dependence over
time on the latent level. Liu and Hedeker85 introduced a model for multivariate longitudinal
ordinal data in a psychometric context. The ordinal outcomes are believed to be discretized
versions of underlying continuous outcomes a joint model for which is obtained using an FA
model with one latent factor.

In (8), the random scores on the latent variables ξ(t) were assumed normally distributed.
Other distributions have been proposed as well. For example, Reboussin and Reboussin86

used a multinomial distribution leading to a so-called latent class model at each time point t,
and the evolution of ξ(t) over time was modeled using a first-order stationary model, hereby
assuming that the current state only depends on the previous one, and this association
remains constant over time. Similarly to constraining the Λ(t) in (8) to be constant over time,
the probability of class membership conditional on the outcome is time-invariant to ensure
that the meaning of the latent variable does not change.

5 Models for latent evolutions of latent variables
In Section 3, latent structures were used for the time-dimension of each longitudinal
outcome. In Section 4, latent variables were used for the outcome-dimension at each time-
point. Both approaches can also be combined, assuming latent trajectories, not for the
observed outcomes but for the few latent variables which summarize the information in the
multivariate outcome vector. Such models are often referred to as second-order latent
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growth models, given that they model change in a latent variable, as opposed to the so-called
first-order latent growth models described in Section 3 which model change in observed
variables. Second-order latent growth models have been introduced by McArdle87 and
Duncan and Duncan88. More recently, the link with models for mean and covariance
structure analysis has been recognized, facilitating parameter estimation (see, e.g., Sayer and
Cumsille89, Hancock, Kuo and Lawrence90, Muthén60). The basic idea is to build upon
model (8) by putting additional structure on the way the vector ξ(t) of factor scores changes
over time. Oort76 assumed a factor analysis model with similar structure as the model (8) for
the original outcome variables, while Roy and Lin91 used a linear mixed model in a context
where only one latent factor was used in (8), the advantage being that covariates can be
incorporated in the model and that model equally well applies for balanced as well as
unbalanced data sets. On the other hand, the model of Oort76 offers more flexibility with
respect to the number of latent variables that can be used in (8), the underlying evolution for
the latent variable, and the assumed association structure, but these advantages come at the
expense of the need for balanced data structures. A more detailed comparison of both
models can be found in Fieuws and Verbeke79. A very extensive and didactically oriented
overview of various linear models for latent constructs is given by Chan92. Extensions
towards non-linear models for latent variables can be found in Blozis93 and Harring94. All
these examples deal with continuous outcomes only. To our knowledge, no extensions have
been formulated which would allow analysis of discrete outcomes or outcomes of mixed
type.

6 Illustration: Modeling loss of hearing ability
In the previous sections, a variety of models for the joint analysis of multivariate
longitudinal data has been presented. To illustrate how to select an appropriate modeling
strategy in the context of a particular application, we re-consider the hearing data example
mentioned in Section 1, and primarily focus on the model choice rather than the results and
the subject-matter insights provided by the statistical analysis. Hearing threshold sound
pressure levels (dB) are determined at eleven different frequencies (125Hz, 250Hz, 500Hz,
750Hz, 1000Hz, 1500Hz, 2000Hz, 3000Hz, 4000Hz, 6000Hz and 8000Hz), for both ears, on
603 male volunteers. The 11 × 2 = 22 outcomes are measured repeatedly over time, with up
to 15 measurements per subject. Because the data set is observational, measurements were
not taken at equidistant time points. A hearing threshold is the lowest signal intensity a
subject can detect at a specific frequency. As such, increasing longitudinal trends are
expected and a number of subject-matter research questions about these trends have been
formulated:

Q1 Does the average rate of change depend on the age at which the subject enters
the study? If so, hearing loss would be different at different ages.

Q2 Is the relation between the average rate of change and age (if any) the same
across frequencies ? If not, this would indicate selective hearing loss, i.e., that
hearing loss is different for different types of sounds.

Q3 Is a longitudinal trend observed for a subject at one particular frequency strongly
associated with the trend for that subject at a different frequency? Very strong
associations are expected for the high frequencies and weaker associations for
the lower ones.

Note that, while question Q1 can be answered by fitting a model for each outcome
separately, addressing the questions Q2 and Q3 requires a joint model for all outcomes. A
number of considerations are to be made when an appropriate analysis technique is to be
selected. These should involve the data structure, the nature of the outcomes, and the
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research questions to be answered. For the hearing data, the following considerations were
made:

C1 All 22 outcomes are continuous. Strictly speaking, this allows for the use of a
marginal model (Section 2.1) based on the multivariate normal distribution.
However, the large number of observations per subject calls for a parsimonious
covariance structure, while the unbalanced nature of the data, with observations
taken at irregularly spaced time points which are even different for all subjects,
seriously reduces the number of realistic covariance structures. Note that this is
already the case when one single outcome is to be analyzed.

C2 All questions Q1-Q3 are in terms of the original hearing thresholds, implying
that they cannot be directly answered by a conditional approach (Section 2.2),
nor by any of the methods based on dimension reduction (Sections 4 or 5).

C3 Questions Q1 and Q2 are with respect to average trends in the population, while
question Q3 is with respect to subject-specific trends. Linear mixed models have
the advantage that fixed effects have population-average interpretations while
random effects provide information about the evolution of individual study
participants. An additional advantage is that a parsimonious but flexible
marginal covariance structure is implied (see C1).

C4 The high dimensionality complicates model building and model checking. The
models discussed in Section 3 have the advantage that model building can be
done for each outcome separately after which the multivariate model is easily
obtained by joining the various univariate models.

C5 If linear mixed models are used for all outcomes, question Q3 can be
reformulated in terms of the association between random (subject-specific)
effects. In order not to assume a priori that random effects show perfect
correlation, shared parameter models (Section 3.1) should be avoided.

Combining all considerations C1-C5, Fieuws and Verbeke7 concluded that a random effects
model (Section 3.2) is optimally suited to answer questions Q1-Q3. Using similar notation
as in (6), they assumed that each outcome Yk, k = 1, … , 22 can be appropriately modeled
using a linear mixed model of the form

(10)

in which t is time expressed in years since entry in the study and Age equals the age of the
subject at the first measurement. The binary time-varying covariate L(t) represents a learning
effect from the first to subsequent visits. Finally, the random vectors (ak, bk)’ contain
subject-specific intercepts and slopes, while ek(t) reflects how the actual observation Yk(t)
for the kth outcome at time point t deviates from the model-based prediction. Model (10) is
the result of a model-building exercise that was conducted for each outcome separately. The
multivariate model for all outcomes (Y1, … , Y22)’ is obtained by assuming all random
effects to jointly follow a 44-dimensional multivariate normal distribution with zero mean
and general 44 × 44-dimensional covariance matrix. Although the resulting model is still a
linear mixed model, the model cannot be fitted using standard software, due to the high
dimensionality of the random effects. Instead, the pairwise model fitting approach
summarized in Section 3.2 was used and the following answers to questions Q1-Q3 were
obtained:

Verbeke et al. Page 13

Stat Methods Med Res. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A1 All parameters βk,5 significantly differ from zero (p < 0.05), except for the
corresponding parameter in the model for the hearing thresholds of 250Hz for
the left ear.

A2 Addressing Q2 can be done for both ears simultaneously, or for each ear
separately if systematic differences between both sides were to be expected.
Separate testing would require testing the null-hypotheses H0 : β1,5 = β2,5 = … =
β11,5 for the right side, and H0 : β12,5 = β13,5 = … = β22,5 for the left side. This
can be done using asymptotic Wald-type tests yielding highly significant results

for the right side (  = 110.9, p < 0.0001), as well as for the left side (  =
90.4, p < 0.0001), with more severe loss of hearing ability at higher frequencies.

A3 The fitted covariance matrix for the random slopes (b1, … , b22)’ indicates that
the hearing loss for the high frequencies is very highly correlated, while this is
far less the case for small frequencies. Furthermore, a principal components
analysis based on the correlation matrix yields two principal components
representing 69.3% and 52.4%, for the left and right ear outcomes respectively.
This provides additional evidence that a shared parameter model (Section 3.1) in
which the same random effects are shared by all outcomes is not realistic for the
data set at hand.

More detailed results of the analyses have been reported in Fieuws and Verbeke7 and
Fieuws, Verbeke and Molenberghs8.

7 Concluding remarks
In most longitudinal experiments, the number of outcomes measured repeatedly in the
participating subjects exceeds one. Often, subject-matter research questions can be answered
by analysing all outcomes separately. However, whenever interest is a comparison of
longitudinal trends between outcomes, or interest is in the association between the outcomes
and how that association evolves over time, joint analysis of all outcomes is required. While
focus has been primarily on the analysis of one longitudinal outcome, extensions towards
multivariate settings have been proposed during the last decade. Recently, Bandyopadhyay,
Ganguli, and Chatterjee95 discussed a number of possible approaches for the joint analysis
of eleven continuous lung function outcomes measured longitudinally on a set of 73 dogs.
The aim of our paper was to give a more general overview of the various models and model
families, not restricted to the context of one particular experiment and/or one particular type
of outcomes, with a discussion of their relative advantages and disadvantages. As discussed
by Verbeke and Davidian96, and Verbeke, Molenberghs, and Rizopoulos97, many of the
ideas presented here can equally well be applied in other contexts such as the joint analysis
of one longitudinally measured outcome and one or more time-to-event outcomes.

The construction of a joint model for multivariate longitudinal data usually involves a trade-
off between increased computational complexity on the one hand and gain in information on
the other hand. As a result, most joint models proposed in the literature are limited to the
joint modeling of a relatively small number of outcomes, although counterexamples exist in
each of the model families discussed. The ultimate choice will depend on the research
questions, the data structure (balanced/unbalanced), the desire to model observed outcomes
rather than latent constructs, the dimension of the problem, the nature of the outcomes, etc.
Research questions may be in terms of (a comparison of ) average trends or in terms of
associations between the (evolutions of) outcomes. Measurements may be taken at fixed
time points for all subjects and all outcomes, or may be taken at arbitrary time points and/or
different time points for different outcomes. In some cases, observations are believed to be
repeated measurements of some underlying latent construct which is the objective of the
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inferences while in other cases interests are primarily in the outcomes themselves. Finally, a
(very) large number of outcomes, or outcomes of mixed distributional types seriously limits
the possible choices for the analysis. Section 6 illustrates how such considerations are
needed in the selection of a model appropriate for a particular data set at hand and for a
particular research question.

A very versatile model is the random-effects model presented in Section 3.2. First, it is not
restricted to balanced settings, which makes the model particularly useful for the analysis of
observational data such as the Baltimore Longitudinal Study on Aging, mentioned in Section
1 and discussed in Section 6. Second, since linear, generalised, and nonlinear mixed models
can be combined, outcomes can be of different types. Third, the model is constructed as a
combination of univariate models, allowing for model building for each outcome separately.
Fourth, the interpretation of the parameters in the model is the same as their interpretation in
their univariate counterparts, which is in strong contrast to, e.g., conditional models. Finally
the structure of the model does not impose any restrictions on the dimensionality of the
multivariate outcome vector. The only potential restriction is a computational one, as the
dimension of the random-effects distribution increases with the number of outcomes. When
all outcomes can be described with linear mixed models, the resulting multivariate model is
again a linear mixed model and the integration in (5) can be solved analytically. Model
fitting can then be performed using software for mean/covariance models in the multivariate
context and the dimension can be relatively large. When some outcomes require a
generalised linear or nonlinear mixed model, integration in (5) cannot be done analytically
anymore and approximation methods are needed, implying severe restrictions on the number
of outcomes that can be incorporated in the outcome vector in order for those
approximations to be sufficiently accurate. The pairwise model fitting approach of Fieuws
and Verbeke7, summarized in Section 3.2, then offers a very convenient solution as long as
none of the pairwise models is too complex to be fitted using the available standard
approximation techniques.

When the association structure is not of any interest, it can be considered a nuisance, and
valid inferences for the fixed effects of interest are often still possible, using GEE-type
techniques. However, when the focus of the analysis includes certain aspects of the
association structure, the construction of the joint model becomes more complex as it
implies making assumptions about the within-outcome, the between-outcome, and the cross-
outcome association, and inferences of interest can be very sensitive with respect to the
assumptions made. In the context of the hearing data example introduced in Section 1,
Fieuws and Verbeke98 illustrated that the association of the evolution of two outcomes and
the evolution of the association between two outcomes are two different aspects of the
association structure and that both highly depend on assumptions made about seemingly
unrelated components in the model.

Often, the choice for a specific type of model is guided by characteristics of the specific
problem such as the structure of the data or the measurement scale of the considered
outcomes. Also, the background of the researcher will influence this choice. We have
shown, however, that various models can severely differ in the assumptions they make and
the research questions they answer. While it seems natural that the model choice should
predominantly be guided by the subject-matter research question(s) to be answered, this is
often hampered by the fact that the various models stem from different research traditions.
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