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Abstract

Though polyploidy is an important aspect of the evolutionary genetics of both plants and animals, 

the development of population genetic theory of polyploids has seriously lagged behind that of 

diploids. This is unfortunate since the analysis of polyploid genetic data—and the interpretation 

of the results—requires even more scrutiny than with diploid data. This is because of several 

polyploidy-specific complications in segregation and genotyping such as tetrasomy, double 

reduction, and missing dosage information. Here, we review the theoretical and statistical aspects 

of the population genetics of polyploids. We discuss several widely used types of inferences, 

including genetic diversity, Hardy–Weinberg equilibrium, population differentiation, genetic 

distance, and detecting population structure. For each, we point out how the statistical approach, 

expected result, and interpretation differ between different ploidy levels. We also discuss for each 

type of inference what biases may arise from the polyploid-specific complications and how these 

biases can be overcome. From our overview, it is clear that the statistical toolbox that is available 

for the analysis of genetic data is flexible and still expanding. Modern sequencing techniques will 

soon be able to overcome some of the current limitations to the analysis of polyploid data, though 

the techniques are lagging behind those available for diploids. Furthermore, the availability of more 

data may aggravate the biases that can arise, and increase the risk of false inferences. Therefore, 

simulations such as we used throughout this review are an important tool to verify the results of 

analyses of polyploid genetic data.

Subject area: phylogeography,population structure     

Keywords:  autopolyploidy, genetic differentiation, genetic diversity, Hardy–Weinberg, population structure, tetrasomy

During their evolution, many plant and animal taxa have gone 

through one or several rounds of genome duplication (Ramsey and 

Schemske 1998). Even the genome of Arabidopsis thaliana, one of 

the smallest genomes among the angiosperms, shows evidence for 

several rounds of whole genome duplication (Bomblies and Madlung 

2014). Polyploidy also plays a direct role in the speciation process: 

an estimated 2–4% of speciation events in �owering plants and 7% 

in ferns are thought to be the result of polyploidization (Otto and 

Whitton 2000). Furthermore, there are many species—especially in 

plants—in which multiple cytotypes are present. These cytotypes may 

show striking geographic distributions (Suda et al. 2007; Kolář et al. 

2017) and may differ in life-history characteristics, such as mating 

system (Meirmans et al. 2006; Husband et al. 2008) and ecological 

preferences (Glennon et al. 2014; Parisod and Broennimann 2016).

At its most basic, evolution is simply a shift in allele frequencies. 

Therefore, the action of evolution depends heavily on the processes 
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that in�uence the distribution of genetic variation within species, 

most importantly genetic drift, breeding system, mode of inherit-

ance, segregation patterns, migration, mutation, and selection. In 

polyploids, these processes work differently, resulting in different 

patterns in the distribution of genetic variation. So when we ana-

lyze such patterns to make inferences about the underlying pro-

cesses, the results of the analysis needs to be interpreted differently 

for polyploids than for diploids. Though the theoretical work on 

the population genetics of polyploids goes back to Haldane (1930), 

there is little literature on the subject relative to what is available for 

diploids: even though there are multiple (sometimes book-length) 

overviews of the subject for diploids (e.g., Nei 1987; Holsinger and 

Weir 2009), a comprehensive overview of the theoretical population 

genetics of polyploids is lacking.

Apart from the theoretical aspects, there are practical problems 

that complicate the analysis of polyploid genetic data (Dufresne 

et al. 2014): the tools and theory that have been developed for dip-

loids do not necessarily work for polyploids; when they do work the 

results may be biased and/or the interpretation of the results may be 

different. Biases in the analysis of polyploid genetic data may arise 

from several processes that are speci�c to the segregation during 

meiosis in polyploids and some practical issues that are only present 

in polyploids. 

First, species may show segregation patterns that are partly dis-

omic and partly polysomic (Ramsey and Schemske 2002; Stift et al. 

2008; Chester et  al. 2012). These segregation patterns may differ 

among chromosomes, or even along chromosomes, for example, 

in ancient allopolyploids that underwent partial re-diploidization 

(Allendorf et  al. 2015; Limborg et  al. 2017). In such “segmental 

allopolyploids” (Stebbins 1947), the estimates of genetic summary 

statistics may be biased, with the size of the bias depending on 

the frequency of tetrasomy (Meirmans and van Tienderen 2013). 

Second, segregation in polyploids can result in the occurrence of 

double reduction, where 2 copies of the same chromatid segment end 

up in the same gamete (Bever and Felber 1992; Ronfort et al. 1998). 

The most important effect of double reduction is that it increases 

the homozygosity at a locus: with double reduction even a tetra-

ploid with a fully heterozygous genotype (ABCD) produces some 

homozygous gametes (AA, BB, CC, DD) next to the 6 expected het-

erozygous gametes. Third, species may show mixed ploidy levels; 

including these in a single data set may give rise to bias since the 

expectations are different for different ploidy levels. Most compli-

cated in this respect are those species where there is ploidy variation 

within a single genome (Allendorf et al. 2015). 

A  practical problem speci�c to genetic analyses of polyploids 

is the dif�culty to obtain the dosage of alleles for otherwise co-

dominant markers, so that different partial heterozygous genotypes 

(e.g., AABC, ABBC, ABCC) cannot be distinguished. A recent review 

(Dufresne et al. 2014) gave an extensive overview of these and other 

issues, how they can be avoided, and which statistical tools are avail-

able. However, they did not go into great depth about how the theo-

retical expectations are different for polyploids nor about the extent 

of the biases that are present because of these polyploidy-speci�c 

complications.

In this article, we review the theoretical consequences of poly-

ploidy on basic population genetic processes, and hence the inter-

pretation of different analyses. Mostly focusing on autopolyploids, 

we will give theoretical expectations for basic diversity parameters 

such as H
S
, F

ST
, and related statistics and discuss how these can 

be estimated for polyploid data. Then, we outline how polyploidy 

affects some other popular types of inferences, such as the detection 

of population structure, principal components analysis, and assign-

ment tests. Throughout, we discuss how those polyploidy-speci�c 

problems affect the results and interpretation of the analysis. Most 

importantly, we show when and how the results of certain analyses 

may be biased when applied to polyploid data, and whether it is pos-

sible to avoid or correct for such a bias.

Genetic Diversity

The Effect of Polyploidy

An autopolyploid population can harbor a larger amount of genetic 

diversity than an equally large diploid population. This is because 

the polyploid population contains a larger total number of chromo-

some copies than the diploid population. A  tetraploid population 

of size N has a total of 4N chromosome copies at an autosomal 

locus, while diploids have 2N copies. Therefore, at a mutation rate 

of µ the number of mutations per generations is twice as high in 

the tetraploid population: 4Nµ versus 2Nµ. Next to the increased 

number of mutations, the larger number of chromosome copies also 

affects the strength of genetic drift, which is reduced in a popula-

tion of polyploids. Under mutation-drift equilibrium, the combina-

tion of both effects results in a higher level of genetic diversity in 

polyploids. The most widely used index for measuring the level of 

genetic diversity is the gene diversity, more commonly referred to as 

the expected heterozygosity (H
S
), which is equal to the probability 

that 2 randomly picked alleles are not identical in state (Nei 1987). 

Under the assumptions that N≫1 and kNµ2≪1, Moody et al. (1993) 

found the following generalization for the equilibrium value of H
S
 

for any ploidy level k:

 
H

kN
kS( ) = −

+
1

1

1 2 µ

 
(1)

The relationship between H
S(k)

 and Nµ is shown in Figure 1a for 3 

different ploidy levels. From this �gure, we can see that the differ-

ence between ploidy levels is expected to be highest for small values 

of Nµ. This means that for markers with low mutation rates the 

level of diversity in a tetraploid population can be up to twice as 

high as that in a similar population of diploids. For markers with 

high mutation rates, diploids will only be slightly less diverse than 

tetraploids. When comparing lower ploidy levels, the differences 

tend to be larger than when comparing higher ploidy levels; the dif-

ference between diploids and tetraploids is larger than the difference 

between tetraploids and octaploids, even though both comparisons 

involve a doubling of the genome. It is also interesting to note that in 

diploid species with sex chromosomes, there can be a substantial dif-

ference between Y/W-chromosomes (k = ½) and autosomes (k = 2), 

even for markers with high mutation rates (Figure 1b).

Estimation and Bias in Diversity Estimates

The higher ploidy level has to be taken into account when estimat-

ing genetic diversity using the expected heterozygosity (H
S
) and the 

observed heterozygosity (H
O
). In diploids, it is common to calculate 

the expected heterozygosity at a locus by taking the complement of 

the expected frequency of homozygotes: H
S
 =1  − p

i
2∑ .  In poly-

ploids with ploidy k, this approach would amount to 1 − p
i
k∑ .  

However, this approach has little use in polyploids as it lumps all 

heterozygotes—both full and partial—into one single class. The 

result would also be of very limited use as an estimator for genetic 

diversity: the same set of allele frequencies would yield a higher 

diversity for tetraploids than for diploids. The solution is to estimate 
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the level of genetic diversity by calculating the expected heterozy-

gosity always as if the species were diploid: H
S
 =1  − p

i
2∑ .  The 

rationale behind this is that the use of H
S
 as an estimator for genetic 

diversity is not tied to heterozygosity per se; the exact same equa-

tion is used in ecology to quantify the species diversity in ecological 

communities (Simpson 1949). For this reason, Nei (1987) preferred 

to refer to this statistic as the “gene diversity” to illustrate its inde-

pendence of the ploidy level. For the estimation of H
S
, it is important 

to include a correction to avoid bias stemming from small sample 

sizes; for diploids usually the method from Nei and Chesser (1983) 

is used; Hardy (2015) gives a generic method that is applicable to 

any ploidy level.

The presence of both full and partial heterozygotes also needs to 

be taken into account when calculating the observed heterozygosity. 

Here, the different heterozygous genotypes should be weighed by 

their degree of heterozygosity; the full heterozygote ABCD should 

have a higher weight than the partial heterozygote AAAB. For this, 

Moody et al. (1993) proposed calculating H
O
 using the concept of 

“gametic heterozygosity.” For a tetraploid, the gametic heterozy-

gosity of a genotype is de�ned as the frequency of heterozygotes 

among randomly sampled diploid gametes formed from the 4 allele 

copies present at a locus. So the fully heterozygous genotype ABCD 

has a gametic heterozygosity of 1 since—in the absence of double 

reduction—all gametes produced by this genotype will be heterozy-

gous. In contrast, genotype AAAB has a gametic heterozygosity of 

0.5 as only half the produced gametes will be heterozygous. The 

other 2 possible genotypes for a tetraploid, AABB and AABC, have 

gametic heterozygosities of 0.67 and 0.83, respectively. The concept 

of calculating gametic heterozygosity by drawing diploid gametes 

can be generalized to other ploidy levels, even though these ploidy 

levels do not actually produce diploid gametes. Even though this is 

not realistic for higher ploidy levels, the bene�t of calculating the 

observed heterozygosity in this way is that it is possible to directly 

compare the observed heterozygosity to the expected heterozygosity 

as de�ned above.

When the dosage information is missing, and only phenotypes 

are available, calculating estimates of genetic diversity becomes more 

dif�cult. For H
S
, the allele frequencies can be used when calculated 

with a proper correction for missing dosage (De Silva et al. 2005). 

This approach is implemented in the programs Polysat (Clark and 

Jasieniuk 2011) and GenoDive (Meirmans and van Tienderen 2004), 

and generally works well to remove the bias incurred from the 
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Figure 1. Theoretical values of the expected heterozygosity H
S
 of a population in mutation-drift equilibrium as a function of Nµ for different ploidy levels (a) or 

for autosomes and sex chromosomes in a species with XY sex determination (b). See the Supplementary Data for the used R-script.

1e-05 1e-04 1e-03 1e-02 1e-01

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Migration rate

H
s

1e-05 1e-04 1e-03 1e-02 1e-01

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Migration rate

H
o

u=0.00001

u=0.0001

u=0.001

true value

missing dosage

dosage corrected

Figure 2. Bias from missing dosage in the estimation of H
S
 and H

O
 for different mutation rates and different migration rates. Data were simulated based on an 

island model of migration with 2 randomly mating tetraploid populations of size 1000. Migration and drift were simulated for 20 000 generations at 200 loci, 

each with a K-allele mutation model with a maximum of 100 alleles. Afterwards, genotypes were drawn for 100 individuals per population and data sets were 

created both with and without dosage information. Statistics were calculated using GenoDive (Meirmans and van Tienderen 2004). For H
S
, missing dosage 

was corrected using the method of DeSilva et al. (2005); for H
O
 the method of Hardy (2015) was used. See the Supplementary Data for the R-script used for the 

simulations.
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missing data (Figure 2a). For H
O
, Hardy (2015) suggested to average 

the values over the different partial heterozygotes that are possible 

for a given phenotype. For example, in a tetraploid the phenotype 

AB would have a gametic heterozygosity of 0.56, which is the aver-

age of the gametic heterozygosities for the genotypes AAAB (0.5), 

AABB (0.67), and ABBB (0.5). Using simulated data, Hardy (2015) 

then showed that the value of H
O
 calculated for phenotypic data 

only has a slightly higher error than when it was calculated for geno-

typic data. This is also shown in Figure 2b, based on simulated data 

from 2 tetraploid populations: without dosage correction (crosses), 

the estimates of H
O
 are much higher than the known true values 

(line); with dosage correction (circles) the values closely match the 

true values. However, since the simulations used here have only a 

limited scope of parameters—only random mating was simulated—

one should always be careful in the interpretation of H
O
 values 

when dosage information is missing and preferably try to quantify 

the extent of any bias and/or error by performing simulations that 

match the study system.

Hardy–Weinberg Equilibrium

Hardy–Weinberg equilibrium (HWE) is the situation in which the 

observed heterozygosity in a population is equal to the expected het-

erozygosity. Testing for HWE is relevant as a test for random mating 

in a population, and also because conformation to HW-expectations 

is an important assumption for many other population genetic anal-

yses (Waples 2015). Quantifying departure from HWE is generally 

done using Wright’s inbreeding coef�cient F
IS
 = (H

S
 − H

O
)/H

S
. This 

same equation can be used for polyploids using the H
O
 and H

S
 val-

ues calculated with the approaches discussed above. For diploids, 

it is well-known that, unless there are differences in allele frequen-

cies between males and females, a single generation of random mat-

ing suf�ces to restore the genotype frequencies in a population to 

Hardy–Weinberg proportions (F
IS
 = 0). In polyploids, the situation 

is less simple. Imagine that a population of autotetraploids is com-

pletely lacking heterozygotes, consisting for 50% of genotype AAAA 

and 50% of genotype BBBB. The gametes produced by this popula-

tion are all either AA or BB. A  single generation of random mat-

ing then leads to a population with genotypes AAAA, AABB, and 

BBBB. Obviously, this population is not in HWE, since genotypes 

AAAB and ABBB are still completely missing. So instead of restoring 

HWE in a single generation, in polyploids random mating leads to a 

decay of the degree of HW disequilibrium. Under full polysomy and 

without double reduction, the value of F
IS
 at generation t is a func-

tion of the value at generation 0 and the ploidy level k:

 
F F

k

k
t

t

IS IS( ) ( )

.
=

−
−







⋅0

0 5 1

1

 
(2)

Figure 3 shows that when starting with a complete lack of heterozy-

gotes, about 6 generations of random mating will bring F
IS
 down to 

a value very close to zero. However, the rate of this decay depends 

on the rate of double reduction and the segregation pattern (Bever 

and Felber 1992). With double reduction, HWE will not be reached 

and the value of F
IS
 will remain higher than zero, even when mating 

is random among individuals. When the segregation is not full poly-

somic, the decay in F
IS
 will be slower than shown in Figure 3; in the 

extreme case of fully disomic inheritance, HWE is reached for the 

homologs but not for the homeologs.

Statistical testing of conformation to HW expectations is dif�-

cult in polyploids because the methods that are most frequently used 

for this in diploids are not available for polyploids. Chi-square and 

log-likelihood tests can often not be used because these tests do not 

work well when some of the expected genotype frequencies are very 

low, which is almost always the case in polyploids especially for the 

homozygous genotypes. Note that this problem of low expected fre-

quencies is also present in diploids when multi-allelic markers such 

as microsatellites are used; using such markers in polyploids indeed 

exacerbates the problem. In diploids, it is common to instead use the 

Markov chain method of Guo and Thompson (1992), implemented 

in the program GenePop (Raymond and Rousset 1995). However, 

no software to perform such tests is available for polyploids. The 

best method to test for HWE in polyploids is to use F
IS
 as a test 

statistic in a Monte Carlo permutation test, constructing new data 

sets by randomly combining alleles into genotypes and recalculating 

F
IS
 for each generated data set. This generates a null distribution of 

F
IS
, which can be used to assess the signi�cance of the original F

IS
 

value. Though HWE tests are a central tenet of population genetics, 

it is surprising that there are only 2 programs that can perform such 

a permutation test for polyploids: SPAGeDi (Hardy and Vekemans 

2002) and GenoDive (Meirmans and van Tienderen 2004).

When dosage information is missing, statistical testing for HWE-

conformation is not possible for polyploids. This is because all 

methods revolve, in some way or another, on information about the 

allele frequencies in the sampled populations. Getting unbiased esti-

mates of the allele frequencies with missing dosage requires either an 

assumption of random mating or setting a �xed rate of sel�ng (De 

Silva et al. 2005), which both make the testing for HWE redundant. 

Even the Monte Carlo permutation test, which is often a depend-

able tool when parametric tests fail, is not applicable here as it is 

not possible to get permuted data sets under the null hypothesis of 

random mating without knowledge of the dosage. Even when dos-

age is known, interpreting the results of HWE tests is dif�cult in 

polyploids as the presence of double reduction at loci may cause 

deviation from HWE expectations even under random mating. As a 

result, the results cannot be used to draw conclusions about either 

mating system or genotyping errors, which are the 2 main reasons 

why researchers perform HWE tests (Waples 2015).

Comparing Ploidy Levels

The genetic diversity in polyploids depends on the number of inde-

pendent evolutionary origins of the polyploids (Soltis and Soltis 1999; 

Beck et  al. 2011) as well as population genetic and demographic 

processes that have led to their current distribution. In species with 

multiple ploidy levels, the cytotypes may show differences in mating 
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Figure 3. The decay in deviation from HWE as measured by F
IS
 as a function 

of the number of generations of random mating, starting from a complete 

lack of heterozygotes. See the Supplementary Data for the used R-script.
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system (Meirmans et al. 2006; Neiman et al. 2014), geographical dis-

tribution (Menken et al. 1995; Mráz et al. 2007a), environmental niche 

(Verduijn et al. 2004; Bretagnolle and Thompson 1996), and demo-

graphic history (Mráz et al. 2007b), which all can impact the amount 

of genetic diversity (Kolář et al. 2017). For example, when there are 

niche differences among cytotypes, the one with the most abundant 

habitat will be expected to have a larger population size and thus a 

higher level of genetic diversity. On the other hand, when there is ongo-

ing gene �ow among cytotypes—in spite of any reproductive barriers 

that may exist between them—any differences in genetic diversity may 

quickly get eroded. Comparing the levels of genetic diversity among the 

cytotypes may therefore reveal some of these processes.

When comparing the genetic diversity of cytotypes, it is possible 

to correct for the expected differences between them given Equation 

1. One way to do this is to calculate, at a locus for a given cytotype, 

the level of diversity that can be predicted given the diversity at the 

same locus in the other cytotype. Say, for example, we want to pre-

dict the level of heterozygosity in a k-ploid (H
S(k)

), relative to the 

diversity (H
S(2)

) of a conspeci�c diploid. When assuming mutation-

drift equilibrium and equal effective population sizes in the 2 cyto-

types, this relationship is:

 
H

k H

k H
kS

S

S

( )

( )

( )( )
=

⋅
+ − ⋅

2

22 2

 
(3)

Luttikhuizen et al. (2007) used this method to compare the genetic 

diversity in diploid and tetraploid Rorippa amphibia. They visual-

ized their results by plotting the genetic diversity in diploids on the 

x axis and the genetic diversity of the same loci in tetraploids on  

the y axis, and added a line for the predicted relationship between 

the two (Figure  4). They concluded that the levels of diversity 

matched very well between the 2 cytotypes. Such a correction may 

be useful for comparing different cytotypes, but also for comparing 

regions in a genome with different ploidy levels. In the latter cases, 

this comparison is actually more straightforward since factors such 

as population size and demographic history are the same for differ-

ent regions within the genome.

In practice, it may be dif�cult to decide whether to interpret 

the results with or without correction for cytotype. The levels of 

genetic diversity in different cytotypes depend on many factors, of 

which the cytotype population size is one and the rate of gene �ow 

among cytotypes another. When this rate is high, the cytotypes 

will share most of their genetic diversity; applying a correction 

will make it seem like the higher ploidy level is less diverse than 

the lower ploidy level.

Mixed ploidy samples exacerbate the problems of both double 

reduction and missing dosage information for the genetic markers; 

and this is particularly the case for analyses of heterozygosity and 

HWE. Double reduction can introduce bias in analyses of mixed 

ploidy levels since the rate of double reduction at a locus can be dif-

ferent in different cytotypes: in diploids, double reduction is not pos-

sible at all, while in polyploids the maximum possible rate increases 

with ploidy. Therefore, the degree of deviation from HWE due to 

double reduction is expected to be stronger for higher ploidy levels, 

making it dif�cult to study differences in breeding system among 

cytotypes. This remains problematic since there are many species 

where a shift in ploidy level coincided with a shift in breeding sys-

tem, for example, asexual reproduction or a breakdown of self-

incompatibility (Dufresne et al. 2014).

Population Differentiation

Measuring Differentiation with F
ST

Estimating the degree of differentiation among populations is a 

key concept in population genetics from which inferences can be 

made about the demography, history, and connectivity of popula-

tions. Traditionally, the degree of divergence is measured using the 

F
ST

-statistic, though many alternatives have been developed (e.g., 

Hedrick 2005; Jost 2008). The value of F
ST

 is determined by vari-

ous factors, most importantly the migration rate (m), the mutation 

rate (µ), and the population size (N). For neutral markers under the 

simplest population differentiation model, the Island Model, there 

is a rather simple relationship between the equilibrium value of F
ST

 

and these 3 parameters (but see Whitlock and McCauley 1999). For 

diploids, this relationship is:

 
F

Nm N
ST =

+ +
1

1 4 4 µ

 
(4)

For polyploids—as usual—the situation is slightly different. 

Because polyploid populations have a higher total number of 

chromosome copies than similarly sized diploid populations, the 

impacts of migration and mutation are different. Like we saw 

above for the level of genetic diversity, there are more mutation 

events in a polyploid population, which cause a decrease in the 

equilibrium value of F
ST

; the size of this decrease depends on the 

mutation rate. The impact of migration is also higher in polyploids 

than in diploids, since a polyploid migrant carries more allele cop-

ies with it than a diploid migrant. In polyploids, migration will 

therefore lead to a better evening out of the allele frequencies than 

in diploids. Furthermore, the force of genetic drift—which is the 

ultimate force leading to population differentiation—is weaker in 

polyploids. These effects on F
ST

 scale with the ploidy level, which 

means that the relationship between F
ST

, migration, mutation, 

effective population size, and the ploidy level can be generalized 

as follows:

Figure  4. Comparison of expected heterozygosity at 8 microsatellite loci in 

diploid and tetraploid Rorippa amphibia. Though the tetraploids generally have a 

higher genetic diversity than the diploids, the difference matches the theoretical 

expectation (gray line) very well. Redrawn from Luttikhuizen et al. (2007).
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F

kNm kN
ST =

+ +
1

1 2 2 µ

 
(5)

This means that under the exact same population model, the expected 

value of F
ST

 is lower in polyploids than in diploids (Figure 5a). This 

complicates comparisons of the levels of F
ST

 between species with 

different ploidy levels, but also between cytotypes within a single 

species. In fact, this also applies to differences in ploidy within a 

genome: autosomes, X, and Y chromosomes all have different expec-

tations for F
ST

. Further examples are genomes with ancient genome 

duplication, such as in the salmonid �shes, where there is residual 

tetrasomy in parts of the genome, but disomy in the rest of the 

genome (Allendorf et al. 2015; Waples et al. 2017).

In the last few years, there has been a discussion about the use-

fulness of F
ST

 for quantifying genetic differentiation (Hedrick 2005; 

Meirmans 2006; Whitlock 2011; Wang 2015). The reason is that the 

maximum value that F
ST

 can attain depends on the level of diversity 

within populations, H
S
, with F

ST(max)
 = 1 − H

S
 (Meirmans and Hedrick 

2011). As a result, when populations have a high value of H
S
—which 

is often the case for highly variable markers such as microsatellites—

the value of F
ST

 will be low, even when there is no gene �ow among 

populations. This effect will be stronger in polyploids because H
S
 

is generally higher in polyploids. However, �nding a low value of 

F
ST

 with highly valuable markers does not necessarily mean that the 

degree of population differentiation has been underestimated. This 

is because the value of F
ST

 does not only depend on the mutation 

rate but also on other parameters, such as the migration rate and the 

effective population size (Meirmans and Hedrick 2011; Wang 2015). 

To overcome these and other shortcomings of F
ST

, several alternative 

statistics have been suggested (Ronfort et al. 1998; Hedrick 2005; 

Jost 2008), whose suitability for polyploid data we discuss below.

Other Differentiation Statistics

The F
ST

 alternative that is most relevant for polyploids is the ρ sta-

tistic. This statistic was developed by Ronfort et al. (1998) especially 

for autotetraploids, but it can be calculated for any ploidy level 

(Supplementary Appendix 1). For diploids, ρ is equivalent to the 

average relatedness of individuals within populations compared to 

the whole (manuals of Fstat & SPAGeDi; Goudet 1995; Hardy and 

Vekemans 2002), when calculated using the approach of Queller and 

Goodnight (1989). The great advantage of ρ is that it is designed to 

be comparable between ploidy levels (Figure 5d) and is also inde-

pendent of the rate of double reduction. When expressed in terms of 

heterozygosities ρ takes the following form:

 
T S

T O

ρ =
−

− ⋅ −
H H

H H k k( ) /1

 
(6)

The equilibrium value of ρ for any ploidy level is given by 

(Supplementary Appendix 2):

 
ρ

µ
=

+ +
1

1 2 2Nm N

 
(7)

Comparison with Equation 5 shows that for a haploid organism, ρ 

is equivalent to the value of F
ST

. For nonhaploids, ρ is higher than 

F
ST

—except when both have a value of either zero or one.
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Figure 5. Theoretical expectations for 4 different estimators of genetic differentiation as a function of the migration rate for different ploidy levels. Expectations 

were calculated following Equations 5, 7, 9, and 11, under an island model of migration with 100 randomly mating populations of size N = 1000. Mutation 

followed an infinite alleles model with µ = 0.001. See the Supplementary Data for the used R-script. Note that in c and d, all lines are overlapping indicating that 

these summary statistics have the same expected value for every ploidy level.
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Two alternative statistics have been suggested to overcome the 

dependence of F
ST

 on H
S
, namely ′FST  (Hedrick 2005) and D (Jost 

2008). In this review, these 2 statistics are represented by their unbi-

ased estimators ′′FST  (Meirmans and Hedrick 2011) and D
est

 (Jost 

2008), but in the literature the names of the statistics and their esti-

mators are used interchangeably. ′′FST  is de�ned as F
ST

 scaled by the 

maximum value it can attain given the observed value of H
S
. This 

should make sure that the statistic always has a value of 1 in cases 

where there is no sharing of alleles among populations. Furthermore, 

Hedrick (2005) stated that this should make ′′FST  better suited than 

F
ST

 for comparisons among species with different population sizes.

′′FST  can be de�ned as a function of the number of populations, 

the within population diversity (H
S
) and the total diversity (H

T
) 

(Meirmans and Hedrick 2011):

 
′′ =

⋅ −( )
⋅ −( ) ⋅ −( )

F
r H H

r H H H
ST

T S

T S S1

 
(8)

Using recurrence equations and the assumptions that N is large and 

µ and m are small, equations for the equilibrium values for H
S
 and 

H
T
 for any ploidy level k can be obtained for the �nite island model 

(Supplementary Appendix 2). These equations can then be used to 

obtain the equilibrium value of ′′FST  (Supplementary Appendix 2):
 

′′ =
+

⋅ +
⋅ + +( )







F

m

r

m

r kN kNm
ST

1

1

1
1 2 2

µ
µ µ

 

(9)

From Figure  5b, we see that ′′FST  is not fully independent of the 

ploidy level, especially at intermediate migration rates the expected 

value decreases with the ploidy level. The dependence on the ploidy 

level also varies with the mutation rate: when the mutation rate is 

high the expected values are very similar for all ploidy levels, while 

for low mutation rates the expected values can differ between ploidy 

levels.

The D
est

-statistic (Jost 2008) was developed based on different 

concepts of genetic diversity and population differentiation than are 

used for the classic F
ST

. Rather than using the expected heterozygo-

sity within and among populations (or a related concept Weir and 

Cockerham 1984), Jost uses the effective number of alleles to quan-

tify diversity. Nevertheless, D
est

 can still be expressed in terms of H
S
 

and H
T
:

 
D

r

r

H H

H
est

T S

S

=
−







−
−





1 1

 
(10)

Substituting the equilibrium values of H
S
 and H

T
 for any ploidy k 

into the equation above gives following the equilibrium value of D
est

 

(Supplementary Appendix 2):

 
D

m r
est =

+
1

1 / ( )µ

 
(11)

This equation is the same as what was obtained by Jost (2008) for 

diploids, showing that the equilibrium value of D
est

 is not only inde-

pendent of the population size (as was noted before), but also of 

the ploidy level (Figure 5c). Despite its ploidy-independence, the use 

of D
est

 is not recommended since the time needed by D
est

 to reach 

its equilibrium value can be very long (Ryman and Leimar 2009; 

Meirmans and Hedrick 2011).

Of the F
ST

 alternatives that we discussed here, ρ should be the sta-

tistic of choice for studies of population structure in polyploids. Not 

only is it independent of ploidy level and double reduction, its close 

relatedness with F
ST

 means that much of the vast literature of F
ST

 is 

also applicable to ρ. Furthermore, ρ has the same rapid approach to 

equilibrium as F
ST

 (Liu S and Meirmans PG, unpublished results). 

For diploids, ρ is also a suitable statistic as it is independent of the 

level of inbreeding and therefore permits easier comparison among 

species that differ in their mating system (when the impact of the 

mating system on differentiation is not of interest). A downside of 

ρ is that, like F
ST

, its value may be underestimated with highly poly-

morphic markers. D
est

 may be useful in such cases, when studying 

polyploids, since its value is also ploidy independent.

Estimation and Bias

There are 2 main methods for estimating F
ST

 and associated statis-

tics: heterozygosity-based estimates (Nei 1987) and ANOVA-based 

estimates (Weir and Cockerham 1984). Both methods can be used 

for polyploids, but again some modi�cations have to be applied 

to allow for the multiple homologous chromosomes within indi-

viduals. Heterozygosity-based estimates can simply be obtained 

using Equations 6, 8, and 10 with the estimates of H
O
, H

S
, and H

T
. 

ANOVA-based estimates of F
ST

 and ρ can be obtained using the 

method from Ronfort et al. (1998), or by adapting the analysis of 

molecular variance framework (AMOVA; Excof�er et  al. 1992; 

Michalakis and Excof�er 1996). The AMOVA can also be used to 

get an estimate of ′′FST ,  by adapting the method of Meirmans (2006) 

for polyploidy. Multiple software packages are available to perform 

these calculations for a large range of different ploidy levels (see 

Table 1 in Dufresne et al. 2014).

As we saw above, missing dosage information leads to an over-

estimation of the genetic diversity within population, which con-

sequently leads to an underestimation of the degree of population 

differentiation. Though this bias is mostly very small, there are some 

important differences between statistics and between the heterozy-

gosity-based and ANOVA-based methods of estimation. Figure  6 

shows the extent of this bias for simulated data of 2 randomly mat-

ing tetraploid populations connected by varying rates of migration, 

and with 3 different mutation rates. For F
ST

 (Figure 6; top row), the 

bias is small, and this bias can completely be corrected for under 

the assumption of HWE when the method of De Silva et al. (2005) 

is used. For ρ (Figure 6; second row), the heterozygosity-based esti-

mates (using Equation 6) are nearly unbiased, but correction gen-

erally leads to a large overestimation and even increases the value 

above the theoretical maximum of 1 (these values are not shown in 

Figure 7 to keep all y-axes on the same scale). These overestimations 

are caused by small errors in the corrected value of H
O
. The ANOVA-

based estimate of ρ has a larger bias, especially for the intermedi-

ate mutation rate, but here the correction does work correctly. ′′FST  

(Figure 6; third row) has a small bias with the heterozygosity-based 

estimator and a very large bias with the ANOVA-based estimator. 

In both cases, the bias can be corrected for under the assumption of 

HWE using the method from De Silva et al. (2005). D
est

 can only be 

calculated using a heterozygosity-based method, but then is nearly 

unbiased. Note that these results do not take sel�ng or double reduc-

tion into account. More extensive simulations are needed to assess 

the degree of bias under such conditions.

For estimating the differentiation statistics, it is important to 

know whether the species has disomic or tetrasomic inheritance; 

unknowingly analyzing disomic data as if it were tetrasomic can 

result in a large bias (Meirmans and van Tienderen 2013). The 

degree of this bias differs between statistics: it is largest for F
ST

 and 

′FST ,  relatively small for D
est

 and completely absent for ρ (Meirmans 

and van Tienderen 2013). For segmental allopolyploids, the degree 
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of the bias depends on the frequency of tetrasomic inheritance result-

ing in the exchange of alleles among homoeologous chromosomes. 

Simulations have shown that in general low rates of tetrasomy are 

suf�cient to even out the allele frequencies between the subgenomes: 

about one exchange event per generation is enough to remove most 

of the bias (Meirmans and van Tienderen 2013). This is analogous to 

the rule-of-thumb of population differentiation, where it is said that 

one migrant per generation suf�ces to prevent divergence of allele 

frequencies among populations (Whitlock and McCauley 1999).

Mixed Ploidy

There is no single summary statistic that is ideal for all analyses of 

population differentiation in data sets with mixed ploidy levels, even 

when the allele dosage is known. This is because there are different 

ways in which to compare data from multiple ploidy levels, and the 

different statistics differ in how suitable they are for different types 

of comparisons. One way in which data from multiple cytotypes 

can be compared is to look at the population differentiation in each 

cytotype separately, and then compare their strength. A second way 

to compare cytotypes is to calculate the degree of differentiation 

between them, which allows making inferences about the degree of 

gene �ow between cytotypes.

For the �rst type of comparison, looking at the population 

differentiation in each cytotype separately, ρ is the most suitable 

statistic since its value is independent of the ploidy level, when 

the population sizes, mutation rates, and migration rates are 

the same in the compared cytotypes. Therefore, ρ allows analy-

sis of whether any of those factors are different in the different 

Figure 6. Bias from missing dosage in the estimation of F
ST

, ρ, ′FST ,  and D
est

 for tetraploid data with different mutation rates and different migration rates. The 

same simulated data were used as for Figure 2. All statistics, except D
est

, were estimated both using the heterozygosity-based framework of Nei (1987) and the 

ANOVA framework of Weir and Cockerham (1984). For the heterozygosity-based estimates, missing dosage information was corrected for using the method 

of DeSilva et al. (2005); in addition, for the estimation of ρ the method of Hardy (2015) was used for H
O
. For the ANOVA-based estimates, missing dosage 

information was corrected for by replacing missing dosage with randomly drawn alleles, based on population allele frequencies as calculated using the same 

method of DeSilva et al. (2005). See the Supplementary Data for the R-script used for the simulations.
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cytotypes. F
ST

 and ′′FST  are not suitable for this type of compari-

son as their values are not ploidy-independent. In species where 

there is ploidy variation among loci within the genome (Allendorf 

et al. 2015), a genome scan for selected loci (Waples et al. 2017) 

should be based on ρ instead of F
ST

, since otherwise the parts of 

the genome with residual tetrasomy may be tagged as outliers 

with lower F
ST

 values.

A closer look at how ρ is calculated shows that this statistic is 

less suited for the second type of comparison, calculating the degree 

of differentiation between cytotypes. To give similar values for differ-

ent ploidy levels for the exact same model of population structure, ρ 

weighs the differentiation by ploidy. This is necessary, because oth-

erwise one gets (for the same population size and migration rate) a 

different value for diploids than for tetraploids. However, the way that 

ρ is calculated has the implicit side effect that for a given set of popu-

lation allele frequencies, ρ will give different values for diploids and 

tetraploids. This is because in diploids these allele frequencies require 

a different population size, mutation rate, and/or migration rate than 

for tetraploids. For calculating the degree of differentiation between 

cytotypes, F
ST

 is the better choice as it always gives a similar value for 

a given set of allele frequencies, regardless of the ploidy level.

In conclusion, ρ is the best choice for comparing the strength of 

the population structure among studies, among species, or among 

cytotypes, provided that the statistic is calculated for each cytotype 

separately (so when there are multiple data sets; one for each cyto-

type). F
ST

 is the best choice for calculating the degree of divergence 

between cytotypes (so when there is a single data sets that combines 

multiple cytotypes). When in doubt about which statistic is best for 

certain usage scenarios, it is advisable to use simulations such as 

presented above.

Detecting Population Structure

Clustering Approaches

An important part of population genetic studies is the detection of 

population structure using a clustering approach. Such a clustering 

analysis can reveal the impact of past events on the current genetic 

structure of populations (Cornille et al. 2016), but also the impact of 

anthropogenic disturbance (van Hengstum et al. 2012), habitat frag-

mentation (van der Meer and Jacquemyn 2015), and hybridization 

(Clark and Jasieniuk 2012). In polyploids, clustering analyses are 

used to study the relationships between different ploidy levels (e.g., 

Kolář et al. 2016) and to test hypotheses concerning multiple origins 

of polyploids. Many different statistical approaches are available 

for detecting population structure, including classical multivari-

ate  analyses (principal components analysis, redundancy analysis, 

K-means), multivariate analyses adapted to genetic data (DAPC 

Jombart et al. 2010; AMOVA-based K-means Meirmans 2012a) and 

model based inferences (Structure Pritchard et al. 2000; InStruct Gao 

et al. 2007; Admixture Alexander et al. 2009). Several of these can 

be applied to polyploids whereas others are restricted to diploids.

Multivariate Analyses

The use of classical multivariate analyses such as PCA or K-means 

clustering is widespread and goes back to the �rst large-scale anal-

yses of population structure (Menozzi et  al. 1978). Such analyses 

are often performed on a set of allele frequencies, either population 

allele frequencies, for analyses at the population level, or individual 

allele frequencies, for analyses at the individual level. The latter can 

be calculated by taking the number of occurrences of an allele in 

an individual and dividing that by the ploidy level. Therefore, these 

frequencies can only take a limited set of values: for diploids, the 

possible values are 0, 0.5, and 1; for tetraploids, these are 0, 0.25, 

0.5, 0.75, and 1. If those individual and population allele frequencies 

can be calculated correctly for polyploids, it is straightforward to 

use them for multivariate analyses in the exact same way as is done 

for diploids. However, there is a problem when the allele frequencies 

cannot be calculated correctly for polyploids, for example, because 

of missing dosage information.

Some multivariate analyses have been specially adapted to 

genetic data. Discriminant analysis of principal components (DAPC; 

Jombart et al. 2010) uses a combination of PCA, K-means clustering 

and discriminant analysis to detect and visualize population struc-

ture. Since it is based on a matrix of within-individual allele frequen-

cies, it can be easily applied to polyploids. AMOVA-based K-means 

clustering (Meirmans 2012a) uses the AMOVA framework to calcu-

late among-cluster sum of squares. Therefore, this analysis results in 

the clustering with the maximum possible F
ST

-value among clusters. 

Since the AMOVA can be extended to polyploid data, the same holds 

for AMOVA-based clustering.
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Figure 7. Spurious clustering arising from dominance and missing dosage information in a principal components analysis of diploid and tetraploid individuals 

drawn from a single population. A set of allele frequencies at 100 SNP loci was generated by drawing random numbers from a uniform distribution. Based on 

these allele frequencies, 100 diploid and 100 tetraploid genotypes were then generated and analyzed with and without dosage information and after conversion 

to dominant AFLP data. See the Supplementary Data for the used R-script.
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In multivariate analyses of mixed ploidy levels, a bias can easily 

arise as a result of missing dosage information. Unfortunately, the 

presence of this bias is often not realized and multivariate analyses 

remain widely used for assessing the genetic relationships between 

cytotypes. To illustrate this, we performed a PCA on a simulated data 

set of SNP genotypes of diploid and tetraploid individuals drawn 

from a single gene pool, so without any differentiation between the 

cytotypes. These individuals were created by �rst drawing a set of 

100 biallelic SNP loci with random allele frequencies. Based on these 

frequencies, 100 diploid and 100 tetraploid individuals were created 

by random sampling of alleles and combining these into genotypes.

When the SNP data was converted to dominant AFLP marker 

data and a PCA was performed on the resulting data set, a clear 

separation was visible between the 2 cytotypes (Figure  7a), even 

though they were drawn from the same gene pool. When the SNP 

data were kept co-dominant, but without dosage information for the 

genotypes, the spurious separation was less strong but still clearly vis-

ible (Figure 7b). For the correct data, codominant SNPs with dosage 

information, there was no spurious clustering (Figure 7c). However, 

it is worth pointing out that there was more spread in the diploid 

data than in the tetraploid data; this is because even though there are 

more genotype classes in tetraploids than in diploids, the tetraploids 

individuals are on average more similar to each other in within-

individual allele frequencies since the most extreme genotypes (the 

homozygotes) are much more frequent in diploids than in tetraploids.

Clearly, one should be cautious about the use of multivariate meth-

ods, especially when used on a data set with multiple ploidy levels. 

Other multivariate methods use a matrix of pairwise differences—

either between individuals or between populations—as their primary 

input; the most important example of this is a principal coordinates 

analysis (PCoA). Here, one also has to be cautious as the suitability 

of the analysis and interpretation of the results depend on the choice 

of distance metric and not all distance metrics are equally suitable for 

polyploid data (see “Resemblance between individuals” section).

Structure

The most widely used clustering analysis is Structure (Pritchard et al. 

2000), which applies population assignments in a Bayesian context. 

The great appeal of Structure is that it performs “soft” instead of 

“hard” clustering; individuals can be partly assigned to several clus-

ters. This makes it ideal for studying the occurrence of admixture 

between populations or, in our case, cytotypes. Structure is well-suited 

for analyzing polyploids (e.g., Anderson et al. 2017), as it can take 

data from any ploidy level. A drawback is that the description in the 

manual of how to input polyploid data is rather cryptic and it is easy 

to end up with incorrectly read data without noticing. Even when the 

dosage of alleles is unknown, the input �le should contain complete 

genotypes instead of marker phenotypes; for this, the unknown allele 

copies can be �lled in ad libitum. When the RECESSIVEALLELES 

�ag in the �le with parameters is set to 1, Structure will discard all 

dosage information in the input �le and then perform the analysis 

correcting for the unknown dosage. Unfortunately, there is no way 

to enter data from species where there is ploidy variation within 

the genome; for such species, we suggest to use only the loci that 

show disomic inheritance, or those that show polysomic inheritance. 

Simulation studies have shown that Structure generally performs well 

in diploids (Evanno et  al. 2005) though there may be some biases 

when there is isolation by distance (Meirmans 2012b) or unbalanced 

sampling (Puechmaille 2016). No simulation studies have been per-

formed as yet to test whether there is any bias in Structure when used 

with polyploids and with mixed ploidy data sets.

Several other clustering algorithms have been developed that are 

based on similar principles as Structure. One such method is imple-

mented in the program InStruct (Gao et al. 2007), which performs 

a simultaneous inference of population structure and the degree of 

inbreeding. InStruct can take either diploid or tetraploid data, but 

has no support for higher ploidy levels or mixed diploid/tetraploid 

data sets. Other methods that are based on similar principles as 

Structure are Admixture (Alexander et al. 2009), FastStructure (Raj 

et al. 2014), and FineStructure (Lawson et al. 2012). These methods 

are all geared toward use with large biallelic SNP data sets and all 

perform much faster than Structure. Unfortunately, these 3 programs 

only work with diploid data and there is no information on how 

they perform when polyploid data is shoehorned to �t this require-

ment. Therefore, we recommend the use of Structure for polyploid 

data sets, even with a large number of loci (though computationally 

demanding) and with the precautions expressed above.

Resemblance between Individuals

Matrices of resemblance between individuals have various uses in 

analyses of genetic data, for example, for analyzing spatial auto-

correlation within populations, for constructing dendrograms that 

indicate the relationship between individuals, or for use in matrix-

based analyses such as principal coordinates analysis. In all these 

cases, the results of the analysis can depend heavily on the choice of 

resemblance metric and therefore a large number of metrics has been 

developed. Two main classes of metrics are widely used in genetics: 

distance metrics and relatedness coef�cients. Distance metrics simply 

try to estimate how different individuals are from each other; relat-

edness coef�cients try to estimate an actual biological property—

the degree of relatedness between individuals (e.g., the relatedness 

between a parent and its offspring is 0.5).

We used some simple simulations to test how 8 resemblance 

metrics perform when calculated for diploid, tetraploid, and mixed 

ploidy data. For this, we selected 4 distance metrics—Euclidean, 

Smouse and Peakall (1999), Chord (Cavalli-Sforza and Edwards 

1967), Bruvo et al. (2004)—and 4 relatedness metrics—Huang et al. 

(2014b), Ritland (1996), Loiselle (1995), Weir (1996). We selected 

only metrics that can be calculated for polyploids based on the full 

genotypes, leaving out any metrics based on allele presence–absence. 

Genetic data were simulated by drawing diploid and tetraploid 

microsatellite genotypes from a single gene pool, both with and 

without information on the dosage of alleles. The software used 

for calculating the resemblance matrices was GenoDive (Meirmans 

and van Tienderen 2004; Euclidean, Smouse and Peakall, Chord), 

Poppr (Kamvar et al. 2014; Bruvo, using the default settings), and 

PolyRelatedness (Huang et al. 2014a; all other metrics). In Figure 8, 

the presence of the 8 metrics can be gauged from the drawn lines. The 

3 vertical dotted lines indicate the mean values for diploid–diploid, 

diploid–tetraploid, and tetraploid–tetraploid comparisons, when 

dosage is known. When these 3 lines are close together, the metric 

yields identical means for diploids, tetraploids, and mixed ploidy. 

The 3 horizontal dotted lines indicate the same, but then without 

any dosage information. Below, the results of these simulations are 

discussed separately for the distance/dissimilarity metrics and for the 

relatedness coef�cients.

Distance/Dissimilarity Metrics

When comparing the 4 distance metrics (Figure  8 top row), it is 

clear that all of them have a bias, even when the dosage is known. 

Notably, this is also the case for the Bruvo distance (Bruvo et  al. 
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2004), which is surprising since this metric was especially developed 

for analyzing microsatellite data from polyploids. Diploid–tetraploid 

and tetraploid–tetraploid comparisons have the same mean Bruvo 

distance, but the mean of diploid–diploid comparisons is notably 

higher. In short, none of the distance metrics should be used to com-

pare ploidy levels, or with mixed ploidy data; use within a single 

ploidy level, whether diploid or polyploid, should not be problem-

atic. However, there is a considerable amount of deviation between 

the results with and without dosage information, which can be seen 

from the spread around the x=y line. This means that one should be 

careful when interpreting the results when dosage is unknown, even 

when these metrics are used within a single ploidy level.

Relatedness Coefficients

In contrast with the distance metrics, the relatedness coef�cients 

(Figure  8 bottom row) do not show a bias with respect to ploidy: 

regardless of the ploidy comparison, they always show an average of 

about zero, which is the expected level given the random sampling 

used to construct these genotypes. The relatedness coef�cients also do 

not show any bias related to ploidy when the dosage information is 

missing, with the exception of the Methods-of-Moment estimator of 

Huang et al. (2014b), even though that was especially developed for 

polyploids. However, all kinship coef�cients are affected by the miss-

ing dosage in the sense that there is still considerable spread around 

the x=y line. This residual variance is smallest for the estimator from 

Ritland (1996), meaning that this estimator is least affected by miss-

ing dosage information. In practice, calculation of the relatedness 

coef�cients relies on the population allele frequencies, so the degree of 

dependence on the dosage information may differ between implemen-

tations, depending on whether the allele frequencies are corrected for 

the missing dosage or not. Furthermore, the simulations used here are 

very simple, and cannot be used to tell whether the resulting relatedness 

coef�cients are actually correct; all that we can conclude is that they 

are unbiased with respect to ploidy, under the simulated conditions.

Other Inferences

Detection of Loci under Selection

The availability of large genetic data sets has made it possible to 

screen population samples for loci that are putatively under selec-

tion. There are 2 main approaches to this: looking for outlier loci 

that show higher or lower F
ST

-values than expected (e.g., Beaumont 

and Nichols 1996), or looking for associations between genetic vari-

ation and environmental variables, while correcting for neutral spa-

tial patterns (e.g., Frichot et  al. 2015). A  lot of different methods 

have been developed for these types of analyses (see Vatsiou et al. 

2015 for an overview), each with its own assumptions and draw-

backs. One drawback that they all have in common is that they only 

work with diploid data; as far as we are aware, none of these meth-

ods allows entry of polyploid data. This is a major lacuna in the tool-

box for polyploid data analysis that prevents polyploidy researchers 

from addressing pressing questions around the impact of polyploidy 

on the ef�cacy of selection.

Assignment Tests

In an assignment test, the putative population of origin is determined 

for individuals of unknown provenance. In the original implemen-

tation of Paetkau et  al. (1995), the genotype of the individual is 

compared to the allele frequencies at a number of populations. For 

every population, the likelihood is calculated that the individual 

comes from that population, assuming HWE within populations. 

The population with the highest likelihood score is then selected as 

the putative source population. This simple likelihood analysis has 

subsequently been appended, among others with a Monte Carlo per-

mutation approach (Rannala and Mountain 1997), and by being 

placed in a Bayesian framework (Cornuet et al. 1999). The use of 

assignment tests mainly lies in forensic types of analysis, that is, the 

identi�cation of material of unknown provenance. Though they are 

also frequently used for measuring migration rates, they are less 

suited for this (Christie et al. 2017).
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When the dosage information is available and there is no dou-

ble reduction, the calculation of the likelihood for an assignment 

test can relatively simply be adjusted for polyploidy. All that is 

needed is the expected frequency of the observed (single-locus) 

genotype given HWE. These expected frequencies are readily 

calculated for polyploids, though they get a bit cumbersome for 

higher ploidy levels. Nevertheless, WhichRun (Banks and Eichert 

2000), the most commonly used and most versatile software for 

assignment tests, only works with diploids. For polyploids, the 

program GenoDive (Meirmans and van Tienderen 2004) can per-

form assignment tests, but only when dosage is known and there is 

no double reduction. However, the software AutoPoly (Field et al. 

2017) can take missing dosage and double reduction into account 

by combining the likelihoods for all possible genotypes for a phe-

notype. A  test with simulated data has shown that this method 

performs well even when there is little differentiation among the 

possible source populations. Another software that can perform 

population assignments is GSI_sim, which was originally devel-

oped for genetic stock identi�cation in �sheries but can be put to 

more general use (Anderson et al. 2008). GSI_sim has the unique 

ability that the ploidy level can be speci�ed independently for each 

locus, and is therefore ideally suited for analyzing species with 

ploidy variation within the genome (see Anderson et al. 2017 for 

an application).

Parentage Analysis

In a parentage analysis, the putative parents of offspring (e.g., in the 

form of seeds, juveniles, larvae, or recruits) is determined based on 

their respective genotypes. Most such analyses rely on the principle 

of exclusion: adults that, at a locus, do not contain any of the alleles 

carried by the offspring are excluded as possible parents. When com-

bined over multiple loci, this approach can be very powerful, with a 

low rate of false positives (Christie et al. 2017). The exclusion prin-

ciple can also be applied to polyploids, but with the consideration 

that each parent must contribute multiple alleles. Since this is more 

restrictive than with diploids, it follows logically that for polyploids 

less loci will be needed for equal discriminatory power. However, 

since polyploidy speci�c complications such as missing dosage and 

double reduction will also affect the performance of such analyses, 

this remains to be formally tested. There are 2 programs that have 

been especially developed to perform parentage analyses in poly-

ploids and both allow for missing dosage information: Orchard 

(Spielmann et  al. 2015), which has a graphical user interface but 

takes only tetraploid data, and Polypatex (Zwart et al. 2016), which 

is implemented as an R-package and can accommodate data from 

any ploidy level.

Analysis of Mating Systems

Many polyploids show a different mating system than their diploid 

relatives; this can be an increased level of self fertilization (Mable 

2004) or even parthenogenetic reproduction (Menken et al. 1995; 

Neiman et al. 2011). In fact, most parthenogenetically reproducing 

plants and animals are polyploid (Dufresne et al. 2014). Genetic data 

can be very insightful for analysing mating systems as it can be used 

for estimating sel�ng rates or for the detection of clonal lineages. In 

diploids, the most straightforward way to test for nonrandom mat-

ing is to perform a test for HWE conformation. As explained above, 

missing allele dosage and double reduction make this dif�cult in 

polyploids. For tetraploids, Ritland developed the software MLTET 

(updated from Ritland 1990) to estimate inbreeding coef�cients and 

sel�ng rates. The program takes data from both population sam-

ples and progeny arrays, but does require complete genotypes and 

the absence of double reduction. Recently, Hardy (2015) developed 

a method—implemented in the software SPAGeDi (Hardy and 

Vekemans 2002)—to estimate the rate of self-fertilization that com-

bines information from multiple loci. This new method was found 

to be robust both when allelic dosage was missing and in the pres-

ence of double reduction. Detection of clonal lineages in population 

samples of any ploidy level can be done by the software GenoDive 

(Meirmans and van Tienderen 2004).

Conclusions

It should be clear from this review that there are still many biases 

and pitfalls when it comes to the analysis of polyploid genetic 

data. On the other hand, the statistical toolbox that is available 

to polyploidy researchers is �exible and still expanding. Modern 

sequencing techniques can work around some of the limitations 

that are outlined above; for example, when the sequencing depth 

is high enough the problem of missing dosage can be solved. The 

new techniques also bring new challenges; many genomic tools for 

assembling, scoring, and quality-checking of sequencing data are 

developed for diploids and adapting them for use with polyploids 

may not be straightforward. It is also important to realize that in 

cases where polyploidy leads to a bias in the analysis, adding more 

loci does not help to resolve the bias, but may even exacerbate it; 

a spurious pattern (e.g., in differentiation between diploids and 

polyploids; Figure 7) may be hardly visible when only a handful 

of loci is used, but become hugely problematic when tens of thou-

sands of loci are available (Meirmans 2015).

In cases where a bias is suspected, simulation of genetic data is 

an indispensible part of the analysis of genetic data. Such simula-

tions do not necessarily need to be very complex to be insightful: 

the simulations in Figure 7 were simply done by drawing random 

numbers and using these as allele frequencies. In other cases, a 

simple Island model of migration suf�ces to obtain a set of genetic 

marker data that can be used to test the performance of different 

summary statistics (Figure 6). We hope that the set of R-scripts that 

we used to produce some of the �gures in this paper may provide 

a starting point for simulating additional scenarios. Unfortunately, 

specialized simulation software such as exists for diploids in great 

number (Hoban et al. 2012) does not yet exist for polyploids. Such 

a polyploid simulation program would ideally incorporate the 

effects of double reduction and variable rates of polysomic inher-

itance. Simulations also provide the backbone for Approximate 

Bayesian Computation (Beaumont et al. 2002), which offers a very 

�exible framework for testing evolutionary scenarios using popula-

tion genetic data and can be adapted for use with polyploid species 

(St Onge et al. 2011). Because of this �exibility, ABC probably is 

the way forward in the analysis of polyploid genetic data sets of 

increasingly large sizes.

Supplementary Material

Supplementary data are available at Journal of Heredity online.
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