$$
\text { NAS.A CR- } 158,111
$$

A Reproduced Copy

OF

Reproduced for NASA by the
NASA Scientific and Technical Information Facility

LIBMAY BOM
 」 $\quad 49$

Langley research center
LIERARY, NASA
HIMPTON, VIREINIA

(NASA-CR-158111) THE		Allat fSis of eropeilers			N79-168
INCIUCING INTEFACTION		EFFECTS (Pe	nsylvania		
State Jniv.)	38 p HC	A03/EM A01	CSCL 02A		
				G3/07	$\begin{aligned} & \text { unclas } \\ & 14069 \end{aligned}$

Tne Analysis of Propellers Including Interaction Effects*
B. W. NeCormick

Professor and Head
Department of Aerjspace Engineering The Pennsylvanif State University
A. S. Aljabri

Graduate Assistant
Department of Aerospace Engineering The Pennsylvania State Unaversity

S. J. Jumper

Graduate Assisiant
Department of Aerosrace Engineering The Pennsylvania State Unaversity
Z. N. Nartinovic

Graduate Assistant
Department of Aerospace Engincering
The Pennsylvania State University

Thas work was performed under N4SA Grant NSG 1308
N79-16851

ABSTRACT

Analytical and expermental studies have been undertaken on propellers operating in the unsteady flow field produced by interaction effects due to the fuselage, wang, and nacelles. Methods have been developed anc verified experimentally for decermining the velocity field in which a propeller operates as well as its acrodynamic and dynamic response to thas unsteadv environment. Methods are presented for predicting the net thrust of a propeller-wing-body combination as well as the unsteady tnrust and torque actang on the propeller. Sample calculaticns as well as wind iunnel and flight test results are presented whach illustrates tne sensitivity of a propeller to the flow field in whach it is operatang.
B. N. NcCormick

THE AERODYNAMIC AYD DYTAMIC BEHAVIOR of propellers for general avaation alrcraft are of mportance to the operation of tnese alrcraft. A propeller which is poorly matched to its flow field or engine can be anefficient anc subject to excessive vibratory stresses. The study ef propeller aerodynamics and dynamics described here 15 divaded anto three parts. The first part deals with predicting the flow faeld in which the propeller is to operate. Here, a numerical method is described for calculating the velocity vector at any radial and azmuthal location in the propelicr plane as a function of wing-fuselage-nacelle reometry. The second part treats botn the steady and unsteady airloads produced by the propeller blades moving through the spatially varying velocity field. The third, and final section, examines the structural dynamics of the blades and presents methods for predicting their normal modes. In essence this paper is a brief sumary of references 1,2 , and 3. For more details, a study of thesc references is recommended.

PROGRAM FOR PREDICTION OF PROPELLER FLOW FIELD

Potential flow methods, at least for tractor propellers, will accurately predict the velocity ficld in which a propeller operates since the effect of viscosity ahead of a body is usually negligible. However, even with the simplifacations afforded by potential flow, the calculations for a fuselage-wing combination can prove tedious. Therefore, part of this study investigated the accuracy with which one needs to model the complete aircraft georetry in order to obtain a sufficiently precise velocity field at the propeller plane.
l.L:ERICAL MODEL

Following the lead of references (6) and (5) the fuselage surface is divided into a number of smail panels as illustrated in a general sense in figure 1 . Each panel is cevered with a constant distributed source strength per unit area denoted by $\sigma(I)$. The vesocity 2 nduced by the Ith panel on the surface of that ponzl dirceted outward and normal to the panel at the control point will be given by
B. W. McCormick:
lb

$$
\begin{equation*}
v_{i v}=\frac{\sigma(I)}{2} \tag{1}
\end{equation*}
$$

For anv other panel, sav the $J^{\text {th }}$ panel. the total source strength over the panel 15 given by

$$
\begin{equation*}
Q(J)=\sigma(J) S(J) \tag{2}
\end{equation*}
$$

In order to calculate the velocity induced at the $I^{\text {th }}$ panel by $Q(J), Q(J)$ is raken to be a point source located on the $\mathrm{J}^{\text {th }}$ panel control point. Letting $\phi(J)$ denote the velocity potential associated with $Q(J)$ and $\bar{N}(I)$, the unit vector normal to the Ith panel and directed outward, the velocity induced by $Q(J)$ normally outward at the $I^{t h}$ panel will be

$$
\begin{equation*}
v_{N}(I, J)=\operatorname{grad} \phi(J) \cdot \bar{N}(I) \tag{3}
\end{equation*}
$$

If \bar{V} is the free-strean velocity vector and $\overline{\mathrm{V}}_{\mathrm{k}^{\prime}}(\mathrm{I})$ is the wing induced velocity vector at the $I^{\text {th }}$ panel, the components of these vectors normally outward at the $I^{\text {th }}$ panel control point will be

$$
\overline{\mathrm{v}} \cdot \overline{\mathrm{~N}}(\mathrm{I})
$$

and,

$$
\overline{\mathrm{v}}_{\mathrm{w}}(I) \cdot \overline{\mathrm{N}}(\mathrm{I})
$$

The normal velocity must vanish at panel I if it is a solid boundary or must equal the specified through velocity, q, normal across tne parel if it is a relased boundary whach models a region of through flow. Satisfying the appropriate boundary condition on panel I, it follows that

$$
\begin{align*}
& \bar{v} \cdot \bar{N}(I)+\bar{v}_{k}(I) \cdot \bar{N}(I)+\frac{\sigma(I)}{2}+\sum_{J=1}^{N} V_{N}(I, J) \\
& =\left\{\begin{array}{l}
0 \text { (solid boundary) } \\
q \text { (relaxed boundary) }
\end{array}(J \neq I)\right. \tag{4}
\end{align*}
$$

For a point source of strength Q, the velocity potential ia given by,

$$
\begin{equation*}
\phi=-\frac{Q}{4 \pi r} \tag{5}
\end{equation*}
$$

where r is the radial distance from the source.
B. K. McCormick

Writing,

$$
\begin{array}{cl}
\overline{\mathrm{v}}=\overline{\mathrm{i} u}+\bar{j} v+\overline{\mathrm{k}} w \\
\bar{v}_{k}(I)=\overline{\mathrm{i}} u_{k}(I)+\bar{j} v_{k}(I)+\bar{k} w_{w}(I) \\
\overline{\mathrm{N}}(I)=\overline{\mathrm{i}} n_{x}(I)+\bar{k} n_{y}(I)+\bar{k} n_{z}(I)
\end{array}
$$

Equation 4 can be written as,

$$
\begin{align*}
{[u} & \left.\left.+u_{w}(I)\right]_{z}(I)+i v+v_{v}(I)\right] n_{y}(I) \tag{7}\\
& +\left[w+w_{w}(I)\right] n_{z}(I)+\frac{\sigma(I)}{2} \\
& +\frac{1}{4 \pi} \sum_{J=1}^{N} \frac{\sigma(J) S(J)}{R^{3}(I, J)}\{i x(I)-x(J)] n_{x}(I) \\
& +[y(I)-y(J)] n_{y}(I)+[z(I) \\
& \left.-z(J)] n_{z}(I)\right\}=\left\{\begin{array}{l}
0 \text { (solid boundary) } \\
q \text { (relaxed boundary) }
\end{array}\right.
\end{align*}
$$ (JキI)

where,

$$
\begin{aligned}
& R(I, J)=\left\{[x(I)-x(J)]^{2}+[y(I)-y(J)]^{2}\right. \\
&\left.+[z(I)-z(J)]^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

Letting $I=1,2, \ldots, N$, the foreging represents a set of iv simultaneous equations for the unknowns $\sigma(I)$. In order to solve this set of equations, the surface of a given body is divided into N panels that can be either four-sided or triangular. The rask of paneling is a formidable one requiring care in the indexing of the corners. In the case of the non-planar, four-sided panel, the unit normal is obtamed from the vector product of the diagonals. The panel area 15 then taken as the area of the panel projected on a plane perpendicular to this untt vector. Arithmetic averages of the x, y, and z positions of the four corners defane the location of the control point and concentrated source for this type of panel. Control points and concen-
B. W. McCoraick
trated sources are located at the centroid of triangular panelc.

Once the $\sigma(I)$ values are obtained, the velocity field at any point can be determined by cumbining the free strean velocity and local wang induced velocity vectors with the gradient of ϕ obtaired from equations 2 and 5. The toial ϕ, of course, is obtained by summing over the index. I. The complete program which has been developed will nandle both wing-fuselage and wing-fuselage-nacelle con:binations as shown in figure 2. By exploying the relaxed boundary condation in equation 7 on particular panels, it also allows for flow through a panel to represent air intakes or exhausts. The lifting wing is modeled simply by a single horseshoe vortex placed along the quarter-chord line (unswept) and trailing from the $\pi / 4$ spanwise station. This simple mode? is considerably easier to handle computationally compared to vortex lattice models and results in upwash velocities at typical propeller locations that are within a few percent of more exact calculations. As equation 7 indicates, the effect of the vortex on the body is considertd in determining the $\sigma(\mathrm{I})$ values. However, the effect of the fuselage or nacelles on the wing 15 not taken into account.

The final program has been checked against closed-form solutions and the results cospare favorably, at least for simple, nonlifting body shapes. It was then applied to typical fuselage shapes with a certain amount confadence. These results will be described later.

METHOD FOR PREDICTING AERODMAMIC LOADS ON A PROPEILER

A propeller operating at an angle of attack or $2 n$ the presence of a fuselage experiences time-dependent acrodynamic lcads as its blades pass through a spatially varying velocity field. Generally, both the magnitude and direction of the velocity field will be a function of blade position. Thus blade section lift coefficients and resultant velocities vary periodically wist the blade azinuth angle.

In order to predict the unsteary forces on a propeller blade, it is zonvenient to consider first the steady case. A section of a propellir blade as vaewed looking toward
B. W. McCormack
the hul along the blade is pictured in figure 3. The blade section is operating under the influence of three velocity components: the free stream velocity, V; the linear velocity due to rotation, mF ; and the induced velocity, w. The modern trend $2 s$ to calculate the induced velocity w by applying the Brot-Savart relationship to the propeller's helical trailing vortex system. Even here, however, it is usualiy necessary to assume a shape to the wake before numerically antegrating the Biot-Savart equations. A free-wake analysis, where the location of the trailing vortes. system and its induced velocities are mutually dependent, requires a prohibitive amount of computer time.

A propeller application of classical vortex theory incorporating corrections for profile drag, finite section thickness, and finite chord appears to predict propeller thrust and torque in close agreement with experimental measurements over a wide range of propeller geometries. This method, used here, is much simpler to apply by ccmparison to vortex lattice methods. The details can be found in references 1,6 , and 7 and will not be repeated here. However, a few points will be noted.

1. An accurate eapirical correlation of section C_{d} with α and Mach number for Clark-Y, series 16 and NACA 4 -digit airfoil sections is to be found in reference 1.
2. The tangential component of w is related to the tound circulation through Prandtl's tap loss factor F. Reference 1 shows that this closed form approxination to Goldstein's kappa factor glves predicted results very close to those obtained using happa.
3. Normality between w and the resultant velocity is assumed in the propeller plane. This assunption is justified in reference 7.
4. The tap angle of the helical vortex wake necessary to the calculation of F is obraned by iterating on w. Figures 4 and 5 are two typical results of steady propeller performance predictions to be found in reference 1. The agreement shown in fagure 5 between predictions and experimental results is particularly impressive considering the fact that the resultant tip lach number exceeds 1.0 for advance ratios greater than 1.2.
B. K. McCornich

CALCULATION OF UNSTEADY PROPELLER AERJDYNAMIC LOADS

The prediction of unsteady aerodynamic loads builds on the steady case. Generally, under the influense of angle of attack, wing upwash, and body interference, the propeller operates in a velocity field which varies both radially and circumferentially. The approach taken here is to express the axial and tangential velocity components relative to the propeller at a given radius as the sum of harmonics of ψ, the azimuth angle, ψ is defined in figure 6.

- Let $V_{A N}$ and $\dot{V}_{\text {TN }}$ denote the $i^{\text {th }}$ harmonics of the axial and tangential velocity components respectively at a particuiar radius. That is,

$$
\begin{align*}
& V_{A N}=\left[a_{A N} \cos N \psi+b_{A N} \sin N \psi\right] v \tag{8}\\
& V_{T N}=\left[a_{T N} \cos N \psi+b_{T N} \sin N \psi\right] v
\end{align*}
$$

Combining $V_{A N}$ and $V_{T N}$ vectorially, the $N^{\text {th }}$ harmonic or the velocity vector normal to the steady resultant velocity V_{e}, shown in figure 7 , can be written as,

$$
\begin{equation*}
V_{\mathrm{NN}}=V_{\mathrm{AN}} \cos \left(\phi+\alpha_{i}\right)-N_{\mathrm{TN}} \sin \left(\psi+\alpha_{i}\right) \tag{9}
\end{equation*}
$$

Combining equations 8 and 9 gives,

$$
\begin{align*}
v_{N N} / V & =\left[a_{A N} \cos \left(\phi+\alpha_{i}\right)\right. \\
& \left.-a_{T N} \sin \left(\phi+\alpha_{i}\right)\right] \cos N \psi \tag{10}\\
& +\left[b_{A N} \cos \left(\phi+\alpha_{i}\right)-b_{T N} \sin (\phi\right. \\
& \left.\left.+\alpha_{i}\right)\right] \sin N \psi
\end{align*}
$$

By comparison to an airfoil undergoing a pure heaving motion, $V_{N i}$ currespends to the heaving velocity h. The heaving acceleration \ddot{h} ir given by differentiating V with respect to t ime. Sance $\omega=d \downarrow / d t$ it follows that,

$$
\begin{aligned}
\ddot{h} / V= & -N \Delta\left[a_{A V} \cos \left(\zeta+a_{i}\right)\right. \\
& \left.-a_{T i} \sin \left(\zeta+\alpha_{i}\right)\right] \sin N U \\
& +N \nu\left[b_{A V} \cos \left(\zeta+\alpha_{i}\right)\right. \\
& \left.-b_{M i} \sin \left(\phi+\alpha_{i}\right)\right] \cos N \psi
\end{aligned}
$$

B. W. McCormick 6

Knowing \dot{h} and \ddot{h}, one can calculate the unsteady lift on the heaving airfoil from

$$
\begin{equation*}
L=\frac{\pi D c^{2}}{4} h+\pi \rho \operatorname{VcC}(k) \dot{h} \tag{12}
\end{equation*}
$$

The above can be found in reference 8. $C(k)$ is a complex function known as Tneordorsen's function while k is the so-called reduced frequency defined bs,

$$
\begin{equation*}
k=\frac{\omega c}{2 v} \tag{13}
\end{equation*}
$$

Here ω is the irrcular frequency of the harmonic heaving motion which in thas case is equal to the rotational speed of the propeller. The complex function $C(k)$ is frequently seen expressed as,

$$
\begin{equation*}
C(k)=F(k)+i G(k) \tag{14}
\end{equation*}
$$

$C(k)$ is presented in figure 8. Thus,

$$
\begin{equation*}
L / \dot{h}=\pi \rho V c F+i\left[\frac{\pi \rho c^{2}}{4}+\pi \rho V c G\right] \tag{15}
\end{equation*}
$$

This can be written in the dimensionless form,

$$
\begin{equation*}
\frac{L}{\pi \rho V c \dot{h}}=\sqrt{F^{2}+\left(\frac{k}{2}+G\right)^{2}} e^{i \varphi} \tag{16}
\end{equation*}
$$

where:

$$
\phi=\tan ^{-1} \frac{\frac{k}{2}+G}{F}
$$

Thus, equation 16 relates the amplitude and phase of che unsteady section left, L, to the heaving velocity h. ϕ is the angle by which the lift force leads h. Substituting $V_{\text {MN }}$ (equation 10) for \dot{h} thus leads to the amplitude and phase for the sectional unsteady lift on the propeller blade. This lift can be resolved into thrust and torque components and then integrated over the blade length to gave the total unsteady forces and moments acting on the blade.

The computer progran which accomplishes the foregoing is described in reference 1. As input this program requires the axial and
B. W. McCormick

7 tangential velocity components relative to the propeller ayis and in its disk plane. These
are obtained dizectly as output from the program developed in reference 3. These are then Fourler-analyzed by the former program to obtain the $a_{A N}, A_{T N}, b_{A N}$, and $b_{T N}$ coefficients. Generally, the first narmonic is the predominant one. In the results to follow, only the first two harmonics are used although the progran is capable of handiang up to eight.

RESULTS OF UNSTEADY AIRLOAD CALCULATIONS
A propeller an a uniform flow anclaned at an angle to the flow of α experiences only a first harmonic variation in its inflow. In this case, it is easily shown that,

$$
\begin{align*}
& a_{\mathrm{ANN}}=0 \\
& a_{\mathrm{TN}}=0 \tag{b}\\
& \mathrm{~b}_{\mathrm{AN}}=0 \tag{17}\\
& \mathrm{~b}_{\mathrm{TI}}=\sin \alpha \tag{d}\\
& \mathrm{b}_{\mathrm{TN}}=0 \quad \text { for } \mathrm{N}=1 \tag{e}
\end{align*}
$$

(a)
(c)

With this input, and first solving for the steady loads in order to get $\left(\phi+\alpha_{i}\right)$, the results presented in figures 9 and 10 were obtained. It should be noted that $V \cos \alpha$ must be used as the steady inflow velocity for the propeller at an angle of attack.

Figure 9 presents the azimuthal variation of the gradient section of the thrust at the 0.75 station for a 3-bladed propeller at a 4.6° angle of attack. ΔC_{T}, the increment in the thrust coefficient due to the unsteadiness is defined in accordance with standard term2nology as,

$$
\begin{equation*}
\Delta C_{T}=\frac{\Delta T}{\rho n^{2} D^{4}} \tag{18}
\end{equation*}
$$

Three curves are shown on the griph. The expermental curve is tahen from reference 9. The curve labeled "predicted, 2D unsteady" is based on the methods just described. In figure 10 , the gradient of ΔC_{T} with respect to the dimensionless rddius, x, is presented. The quasi-stcady calculations were performed by smply assuming that steady aerodynames
B. V. McCormick 8
could be applied to the instantaneous section velocity diagram. This is tantamount to using a $C(k)$ value of..unity in equation 12 and neglecting the \ddot{h} term in that equation.

The simpler, quasi-steady approach results in predictions which are close to expermental results in amplitude but are shifted somewhat in phase. The unsteady 2D aerodynamic calculations generally have the correct phase but tend to overpredict the amplitudes of the unsteady forces. As show, the amplitude of unsteady thrust is appreciable for this case, being of the order of 25% of the steady loading.

Now consider the case of a propeller operatang on a typical single-engıne, light airplane, in this case, a Pıper Cherokee 180. The Department of Aerospace Enginecring at The Pennsylvania State University owns and operates this particular airplane; hence its choice. To begin, the cowling of the Cherokee was carefully measured using surveying transits in order to define 1 ts contour. Aft of the cowling, 3-view drawings were assuaed to be adequate. Using this fuselage geometry, calculations of the velocity field at the propeller plane were pezformed for two different fuselage angles of attack of 8° and 2°. The higher angle corresponds to an airspeed of approximately $35.8 \mathrm{~m} / \mathrm{s}$ (80 mph) while the lower angle $1 s$ typical of cruising conditions of approximately $55.0 \mathrm{~m} / \mathrm{s}$ (123 mph). Calculated tangential and axial velocity distributions a: the propeller plane are presented in figure 11 for the 2° angle of attack case. Figures 12 and 13 present the first two harmonic afplitudes fur both 2° and 8° as a function of propeller radius. Not unerpectedly, the amplitudc, are seen to increase toward the hub. Also, observe that the axial component of vilocity is rot as dependent on α as the tangential component. The slight asymnctries about ψ values of 0° and 180° show, in figure 11 result from the fact that there components are relative to the propeller plane which is yawed slightly with respect to the fuselage plane of symetry.

The calculation of the axial and tangential velocities in the plane of the propeller depend primarily on the shape of the cowling and angle of attack. The latter results directly in a tangential component and also determines the upwash generated by the wing. The insensativity of the flow field to
B. W. NicCormick

9
the fuselage geome.ry aft of the cowling is shown in figure 14. In one case the complete fuselage is modeled. In the other, the fuselage is cut off behind the cowling and replaced by a smaller afterbody which can be defined using fewer panels. Thas simplification saves computation time and is seer to have almost no effect on the velocity field except near the top where $\psi=0$ and the elimination of the windshield has tne greatest influence. Even here, however, the cnange in the velocity 15 only approxmately 2 ...

Using drawings of the propeller for the Cherokee 180 propelier supplied by the manufacturer and the calculated velocity field, psedictions have been made of the propellers steady and unsteady performance. Figure 15 presents the predicted steady performance of the Sensenich propeller used on the Cherokee 180. Series 16 airfoil sections were assurmed in making these predict zons sance their contours can be closely matched to the special sections developed and used by Sensenich. These results are typical of those to te found in the NACA reports such as reitionce 10. The propeller appears to be well matched to the airplane in the cruise condition where it operates at an advance ratio si 0.75.

Figure 16 illustrates the unsteady results which were obtamnad for the Cherokee 180. Here, the first harmonic of the unsteady thrust gradient for angles of attack of 2° and 8° is presented as a function of the radial position along the blade. Note that the predicted amplitude of the unsteady thrust is nearly constant along the blade. The steady loads, of course, increase toward the tip but this is not so, at least in this example, for the unsteady loads. The unsteady velocity components apparentiy decrease with increasing radius so as to compensate for the increasing resultant velocities due to ω.

PROPELLER BLADE DYNAMICS

The unsteady aerodynamic forces just discussed will excite a dynamic response from the propeller blades. Added to this excitation will be, of course, any unsteady torque impulse from the engine crankshait. In order to predict fataque stresses on the propeller blades, one must in the final analysis treat the complete engine-propeller dvamic system.
B. W. McCormick As an mportant part of the complete analysis,
a study has been undertaken of the structural dynamic behavinr of the propeller as an isolated body. The object of thas study, which has been accomplished, vas to develop a method for predicting the normal modes of vibration for a propeller fur the case where the hub is rigidly clamped. These modes are determined experimentally by propeller manufacturers to assure that none of the lower modes councide with the exciting frequencies from the powerplant. However, the testing is normaliy performed. with the propeller supported $a=$ a free body. It was hoped to model corpled in plane bending-out of plane bending torsion motion. While this goal has proven to be elusive, a computer program has been developed which will predict the normai modes for coupled bending-bending or bending-torsion motion. Sunce propeler blades are very stiff in plane and torsionally the lover modes of the coupled berding-bending and coupled bending-torsion modes have approximately the same frequencies which are determined principally by the relatively soft flapwise (out of piane) bending stiffness. Thus failure to model the coupled bending-bending-torsion motion is not considered to be too serious.

A major accomplishment of this study has been the development of a program to calculate the shear center location for a solid crosssection having an airfoil-like shape. This program, based on a membrane analogy, and soap film tieory, will accept as input discrete points on an airfoil rontour or an analytical definition of the coritour. Some results of this program arp presented in figure 17. Within a given arrfoil family, the positior of the shear center is seen to be nearly constant. However, the chordwise position differs significantly between the NACA 4-digit and series 16 airfoil families. In addirion to the location of the shear center, thas program also calculates the location of the section center of gravity, principal axes and mements of inertia. All of these section properties are required in order to calculare the normal mode shapes and frequencies. These section properties for the Scnsenich propeller model 76E:8-0-61 are presented in figure 18.

The relationships on which the computer program for determining the normal nodes are based are too lengrhy to be presented here. They can be found in reference 3 and depend
B. W. IicCormick:
on the concept of a transmission matrix. The original source for much of this analysis can oc iound in reference 11.

The predi .ions of ratural frequencies have been confirmed by comparison to measurements provided by the manufacturer and by our own testing. The experimentai setup which was used is shown schematically in figure 19. Tne propeller was exciced as a free body by placing it on a soft bed made from two innertubes. In order to cantilever a blade, the hub was clamped in a l'naversal Testang machane. Even though the mass of the nachine is large and the clamping pressure hagt it was necessarv to weagh: the blade opposite tne one being excited $-\therefore$ order to avoid spurious rodes.

Some of the experimental and calculated results for the Sensenich propeller are show in Table l. Generally, the frequencies which were obtained experimentally for the first four symeiric modes of the propeller supported freely confirn those found by the manufacturer. With the hub clamped, the predicted frequencies for the first modes for coupled bending-bending and coupled bending-torsion are nearly equal and close to the frequency measured for the cantilevered 3lade.

The predicted node shapes for the first three modes for the clamped propeller are presented in figure 20. The prodicte. frecuencies for these modes are ε iven in figure 21 as a function of propelier rotational speed. Also includec in this figure are the results supplied by Sensenich for the freelysupported propeller. Centrifugal stiffening as seen to increase the natural freouencies of each rode slightly as the propeller speed ancreases. Superimposed on thas figure are lines representang integer multiples of the torque mpulse from the engine. Since half of the cylinders of a four-cycle, horizontallyopposed engine fare durirg cach revolution, the fundanental zinpulse ircquency for the four cylinder Cnerokee 180 engine in cycles per second, is

$$
\begin{aligned}
& F=\left[\frac{\text { no. of ccilinders }}{2}\right]\left(\frac{r m}{60}\right) \mathrm{Hz} \\
& F=\left[\frac{r p m}{60}\right] H z
\end{aligned}
$$

B. H. McCoraick

Tnis : p е of diagram, where ercatirg frequencies arc stifictrocsed over natural
frequencies is frequently applied to rotating systems other chan propeilers and is known a. a Southwell diagram. In order to avoid excessive vibration, the operational rotational speed of the system, in thas case the propeller rpm, should be selected so that none of the natural frequencies and exciting frequencies are coincident. In the case of the Cherokee 180, the recomendei cruising rpm of 2500 is above both the first ano second modes of either the cantilevered or frecty-supported blade.

SLamaris
A study of the aerodynamies and dvnamics of propellers for general avsation aircrift has resulted in the development of rhree computer progrsms. The analytical bases for tinese programs can be found in references 1 , 2, and 3. In addition, user's manuals are currently beang prepared rogether with program listings in FORTRAi. Driefly these programs

- calculare the velocity field in the propeller plane for a wing-fuselagenacelle conbination,
- predict the steady and unsteady propeller acrodynamic loacis,
- predict the natural mode shapes and frequearies for the propeller up to the first four nodes.
In the future, it is hoped to combine the programs in order to predict the forces exciting arffame vibration. A normal nedes app sach will probably be tried to accomplish this challenging tash. In addition, it is also planzed to obtann additional experimental confarmation of the existing programs.

REFEREVCES

1. A. S. Aljabri, "Prediction of Propeller Periormance and Loading in Uniform and Conuniform Flowfields," M.S. Thesis, The Penns:lvania State University, Sovember 1978.
2. 2. 之. :artinovic, " Stwiy of the Drnamic Schavior of Propeller Blades," M.S. Thesis, The Pennsylvania State Lniversity, Farch 1979.
1. S. J. Juqper, "Computer Prediction of Three-Ditensional fotential Flowfields in whict Arcraft Propellers Operate," M.S. Tuccis, Ine Pannsylvania State lnaversity, : :arch 1979.
B. K. McCermick
2. J. L. Hess and A. M. O. Sinith. "Calculation of Totential Flow About Arbitrary Bodies," Progress in Aeronautical Sciences, Pergamon Press, Vol. 8, 1967.
3. F. A. Woodward, F. A. Dvorak and E. W. Geller, "A Computer Program for ThreeDirensional Lifting Bodies in Subsonic Inviscid Flow," Report USAAMRDL-TR-74-18, April 1974.
4. D. V. Pauling, "The Effects of Uncertainties on Predictang Rotor and Propeller Performance," M.S. Thesis. The Pennsylvania State university, hay 1975.
5. B. K. McCormich, Jr., "Aerodynamics of V/STOL Flight," Academic Press, New Yorh, 1967.
6. R. L. Bisplinghoff, H. Ashley and R. L. Haliman, "Aeroelasticity," AddisonWesley, 1955.
7. W. H. Gray, J. M. Mallissy, Jr. and A. R. Heath, Jr., "A Wind-Tunnel Investigation of the Effects of Thrust-Axis Inclination on Propeller Firsc-Order Vibration," NACA TR 1205, 1954.
8. E. P. Hartman and D. Biermann, "The Aerodynamic Characterıstics of FullScale fropellers Having 2, 3 and 4 Blades of Clark \dot{y} and R.A.F. 6 Airfoil Sections," NACA TR 640.
9. V. R. Nurthy, "Dynamic Characte:istics of Rotor Blades," Journal of Sound and Vibration, 49(4), pp. 483-500, 1976.

Table 1
natuinl frdouencies of a non-rotating semsenich propetiler $\omega(\mathrm{Hz})$

Mode Nunber	Eren Beam Symetric lindes		Cantilever Beam		
			Predi	ed Values	ExperImental Data
	$\begin{aligned} & \text { Sensenich } \\ & \text { Dita } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Experimental } \\ & \text { Data } \end{aligned}$	$\begin{gathered} \text { Coupled } \\ \text { Bending-Bending } \end{gathered}$	$\begin{gathered} \text { Coupled } \\ \text { Bending-Torsional } \end{gathered}$	
1	56.8	58.2	51.7	51.4	50.0
2	170.0	175.0	161.5	168.1	139.0
3	342.9	347.0	$31 ? .7$	372.3	316.0
4	486.6	431.0	384.8	664.0	434.0

FIG. 1 PANELING OF BODY SURFACE

fig. 2 simplified wing-fuselage-nacelie model

FIG. 3 VELOCITY DIAGRAM FOR BIADE SECTION

FIG. 4 COMPARISON OF PREDICTED AND MEASURED PROPELIER Efficiency For different nurber of blades

FIG, 5 COMPARISON OF FREDICTED AND MEASURED POVER COEFFICIENT AT 2000 R.P.M.

FIG. 6 VIEV OF PROPELLER LOOKING IN DIRECTION OF FLIGHT

Fig. $7 \mathrm{~N}^{\text {th }}$ har:onic of inflon velocity for blade section

FIG. 8 THEORIORSEN'S FUNCTION

PROPELLER NACA 10-(3)(08)-03 NACA 16-SERIES SECTION NO OF BLADES $=3$ BLADE ANGLE AT $3 / 4$ STATION $=30^{\circ}$ ACTIVITY FACTOR $=85.2$ PROPELLER ANGLE OF ATTACK $=4.55^{\circ}$ ROTATIONAL SPEED $=1350 \mathrm{RPM}$ ADVANCE RATIO $=1.2$

FIG. 9 Change in blade section thrust coefficient gradient with AZIMWTHAL POSITION OF BLADE AT THE $3 / 4$ RADIAL STATION

FIG. 10 DISTR:BUTION OF AMPLITUDE OF UNSTEADY SECTION THRUST COEFFICIENT GRADIENT

FIG. 11 PREDICTED AZIILTHAL DISTRIBUTID:i OF AXIAL NID TAIGGITTIAL VELOCITIES II THE PROPELLER PLANE OF A PIPER CHEROKEE 180, FUSELAGE ANGLE OF ATTACK $=2.0^{\circ}, C_{L}=.385$

FIG. 12 HAR'DINIC COITEITT OF THE AXIAL VELOCITY DISTRIBUTIOAN IN TKE PROPELLER PLA: E CPEPATIIG IN THE FLOI FIELD OF A DIDER CHEROKEE 180

FIG. 13 HADVDNIC COITENT OF THE TA:GENTIAL VELOCITY DISTRIBUTICA III THE PROpELLER pLave opepathig in the floid field CF A PIPER CHEROKLE 180

FIG. 14 COPPARISON OF AZIMITHAL DISTRIBUTIOIS OF AXIAL VELOCITY IN THE PRCPELIER PLANE OF A PIPER Comeruree 183 predicted usling tho differert BODY GEOXETRY IDDELS AFT OF THE CONLING

PROPELLER SENSENICH 76EM8-0-61 EQUIVALENT NACA 16-SERIES SECTION NO OF BLADES = 2 BLADE ANGLE AT $3 / 4$ STATION $=18.5$ ACTIVITY FACTOR $=94.4$ ROTATIONAL SPEED 2700 RPM

FIG. 15 PREDICTED STEADY STATE PERFORIMIICE OF THE SEISENICH PROPELLER 76E:8-0-61

ROPELLER SENSENICH 76EM8-0-61
EQUIVALENT NACA 16-SERIES SECTION
NO OF BLADES = 2
BLADE ANGLE AT $3 / 4$ STATION $=18.5^{\circ}$
ACTIVITY FACTOR $=94.4$
ROTATIONAL SPEED $=1900$ RPM

FIG. 16 DISTRIBUTION OF ANFLITUDE OF UNSTEADY SECTION THRUST COEFFICIENT gRADIENT FOR THE PROPELLER IN THE FLON FIELD OF THE CHEROKEE 180

FIG. 17 SHEAR CEITER LOCATION FOR HACA 4-DIGIT SERIES versus haca 16 SEfies airfoils
aren homent of inertia of the blade section ABOUT MAUOR PRINCIPAL CENTROIDAL AXIS,
$I_{1} \times 10^{-8}\left(11^{4}\right)$
blade angle relative to the chord line, B (DEG)

DISTANCE BETWEEN MASS and elastic axis possitive WHEN MASS LIES AHEAD OF THE SHEAR CENTER,
$\mathrm{E} \times 10^{-3}(\mathrm{M})$

area moment of inertia of the blade section ABOUT MINOR PRINCIPAL CENTROIDAL AXIS,
mass per unit length,
M ($K G / M$)

FIG. 19 SCHEMATIC OF TEST SETUP FOR DETERIIINING fropeller blade iatural freouericies

fRACTIONAL RADIUS, \bar{X}
FIG, 20 PREDICTED IODE SHAPES OF COUPLEE FLAPNISE EEFIDING AND CHORDNISE BERDING VIBRATIONS FOR A CLAFPED SENSEHICH PROPELLER

fig. 21 propeller natural frequercies and engine exciting frequencies AS A FUNCTIO:d OF PROPELLER SPEED

End of Document

