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THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS

JAMES H. BRAMBLE AND JOSEPH E. PASCIAK

Abstract. The purpose of this paper is to provide a general technique for
defining and analyzing smoothing operators for use in multigrid algorithms.
The smoothing operators considered are based on subspace decomposition and
include point, line, and block versions of Jacobi and Gauss-Seidel iteration as
well as generalizations. We shall show that these smoothers will be effective
in multigrid algorithms provided that the subspace decomposition satisfies two
simple conditions. In many applications, these conditions are trivial to verify.

1. Introduction

In recent years, multigrid methods have been used extensively as tools for
obtaining approximations to the solutions of partial differential equations (see
the references in [10, 11, 12]). In conjunction, there has been intensive research
into the theoretical understanding of these methods (cf. [1, 2, 3, 4, 6, 9, 11, 12,
13, 14, 18] and others). Many of the above papers present various analyses
of multigrid methods which are often based on certain assumptions concerning
the smoothing process. These assumptions are sometimes verified for specific
examples. It is the purpose of this paper to present a general approach for
developing smoothing operators and show that they work in multigrid methods
provided that a few simple hypotheses are satisfied in the construction. For
other estimates concerning smoothing operators in multigrid procedures, we
refer the reader to [16] and the extended bibliography included there.

The smoothers for a given space are defined to be either the additive or multi-
plicative iterative scheme associated with a decomposition of the space (see (3.2)
and Algorithm 3.1). Different smoothers result from distinct decompositions.
Depending on the choice of subspaces in this decomposition, the technique can
be used to generate many of the popular smoothing schemes used in multigrid
iteration. For example, it can be used to generate point, line, and block Jacobi
smoothing as well as point, line, and block Gauss-Seidel smoothing.

The construction of iterative schemes based on subspace decomposition is not
a new idea. In fact, this technique has been used extensively for the construc-

Received October 8, 1990; revised July 1, 1991.
1991 Mathematics Subject Classification. Primary 65N30; Secondary 65F10.
This manuscript has been authored under contract number DE-AC02-76CH00016 with the U.S.

Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of this contribution, or allow others to do
so, for U.S. Government purposes. This work was also supported in part under the National
Science Foundation Grant No. DMS84-05352 and by the U.S. Army Research Office through the
Mathematical Sciences Institute, Cornell University.

© 1992 American Mathematical Society
0025-5718/92 $1.00+ $.25 per page

467

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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tion of preconditioners using overlapping domain decomposition (also known
as Schwarz domain decomposition methods) [8, 20]. The hypotheses on the sub-
space decomposition required in this paper for multigrid smoothers are easier
to satisfy than those required for the construction of effective preconditioners.
Thus, the subspace decomposition used in most smoothing procedures will not
give rise to a good preconditioner. We illustrate this in the following discussion.

Let Jfk be a finite-dimensional space with inner product (•, -)k and consider
the problem of computing the solution u £ Jtk of

Aku = f,
for given / e dfk . Here, Ak is a symmetric and positive definite operator on
Jfk . The additive and multiplicative versions of the smoothers are defined in
terms of a decomposition

/
j[k = Y-^k-

;=1

The basic hypothesis which is used to show that the resulting smoother is effec-
tive in a multigrid iteration is that there exists a constant en such that every
v e Jfk can be decomposed into v = J2 v¡ with v¡ £ Jfkl satisfying

/
(1.1) ]T(t>¿ ' v')k - C°(W ' ü)*-

i=l

The corresponding hypothesis which is used to show that the smoother is an
effective preconditioner for Ak is that there exists a constant Co such that
every v £ J?k can be decomposed into v = Yl vi with vi £ ^k satisfying

(1.2) Y(-AkV^Vi^<co(Av,v)k.
7=1

In finite element discretization of second-order elliptic partial differential equa-
tions, for functions in Jlfk , (-, -)k is often equivalent to the L2 inner product
on the domain of consideration. In contrast, (Ak-, -)k is usually equivalent to
the norm on the Sobolev space of order one. Condition (1.1) is often trivial
to verify for many subspace decompositions. Most subspace decompositions
which are used as multigrid smoothers (and satisfy (1.1) with bounded Co)
satisfy (1.2) only with a constant Co which grows large as the mesh parame-
ter becomes small. Thus, the multigrid smoother would not be effective as a
stand-alone iterative method.

The outline of the remainder of this paper is as follows. Section 2 describes
the basic multigrid algorithm in an abstract setting and gives some of the con-
ditions on the smoothers which are commonly assumed in various multigrid
analyses. The general smoothing procedures based on subspace decomposition
are described and analyzed in §3. In §4, we give theorems providing estimates
for multigrid algorithms using these smoothers. Computer implementation of
the smoothers is discussed in §5. In particular, it is shown that the commonly
used multigrid smoothers can be generated by this technique with appropriate
selection of the subspace decompositions. Finally, in §6, we discuss the finite
element multigrid application.
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the analysis of smoothers for multigrid algorithms 469

2. The multigrid algorithms

In this section, we describe a symmetric multigrid cycling algorithm. For
convenience, this algorithm is developed in an abstract Hubert space setting
and uses general smoothing operators. We then state two conditions involving
these smoothing operators which are assumed for various analyses of multigrid.

We start by describing the general multigrid algorithm in an abstract setting.
We assume that we are given a sequence of finite-dimensional inner product
spaces

The inner product on Jfk will be denoted by (•, -)k . In addition, we assume
that symmetric positive definite operators Ak : Jfk >-» Jfk for k=X, ... , j and
"interpolation" operators Ik : J(k_x ^> J(k are given. The multigrid algorithm
gives rise to iterative procedures for the solution of the problem on Jf¡, i.e.,
given f £J£; find u£JK¡ satisfying

(2.1) AjU = f

The final ingredient needed to define the general multigrid algorithm is a
sequence of linear (smoothing) operators Rk: J[k >-> Jfk , for k = 2, ... , j.
We shall always take Rx = Axx. The point of this paper is to present a general
approach for the definition of these operators as well as a unified analysis for
showing that these operators are effective in multigrid procedures. We set

R(D =i Rk      if / is odd,
k      \ Rk       if / is even.

Here, and throughout this manuscript, t will denote adjoint with respect to the
inner product (•, -)k .

We next define a general multigrid process for iteratively computing the so-
lution of (2.1). This process is defined in the following algorithm in terms of
a mathematical induction involving the subspace level. On each subspace Jfk ,
the multigrid iterative procedure can be viewed as a process which acts on both
a function Fk £ J[k and an "approximation" Wk to the solution of

(2.2) AkUk = Fk

and  produces  an  improved  approximation  in   Jik   to   Ck   (denoted by
Mgk(Wk,Fk)).

Algorithm 2.1. For k = X, define Mgx(Wx, Fx) = AX~XFX, i.e., solve (2.2) ex-
actly. For k > X, Mgk(Wk, Fk) is defined in terms of Mg£_,(-, •) as follows:

(1) Set Xo = Wk and Q° = 0 £ J!k_x.
(2) Define X1', for / = 1, ... , m(k) by

(2.3) X1 = X'-1 + R[i+m(k))(Fk - AkXl-x).

(3) Set YmW = XmW + IkQP , where Q! for / = 1, ... , p is given by

(2.4) Q! = Mg^iß'-1, Pl_x(Fk - AkXm)).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Here, Pk_ x is defined by

(2.5) (P¡_xv, 4>)k-x = (v , Ik<t>)k   foraXX(t>£j?k_x.

(4) For i = m(k) + X, ... , 2m(k) define Yl by

Yl = r-' + R(ki+m(k))(Fk - AkYl-x).

(5) Set Mgk(Wk,Fk) = Y2mW.

The above algorithm is more general than those often described [2, 4, 12],
in that it allows the use of general symmetric and nonsymmetric smoothers.
Note that we have placed very few restrictions on the definition of the linear
operators Ak, Ik, and Rk at this time.

The above multigrid procedure can be used to solve (2.1) by the following
iteration,
(2.6) ul = Mëj(ul-x,f),

for initial iterate u° and / = 1,2,... . Let el = u- ul. Then it is possible to
show that

e' = Eje'~x
holds for a linear error reduction operator Ej :J£j^>^¡. Accordingly, we can
define a preconditioner B¡ associated with the multigrid process by

Bj = (I-Ej)Aj]    or   Ej = I-BjAj.
Consequently, (2.6) is nothing more than the preconditioned linear iterative
scheme
(2.7) ul = u'~x + Bj(f - AjUl~x).

Alternatively, the linear operator B¡  can be directly defined by the following
algorithm.
Algorithm 2.2. Set Bx = A\~x . Assume that Bk_x has been defined and define
Bk g for g £ Jfk as follows:

(1) Set x° = 0 and q° = 0.
(2) Define xl for / = 1, ... , m(k) by

(2.8) xl = x'-1 + Rki+m{k))(g - Akx¡-X).

(3) Define ym(k) = xm{-k) + Ikqp , where q' for i = X, ... , p is defined by

(2.9) ql = q¡-x + Bk_x [P°_x(g - Akxm™) - A^q^].

(4) Define y' for i = m(k) + X, ... , 2m(k) by
(2.10) yi^y'-1+B!¿+mík))(g-Atyi-í).

(5) Set Bkg = y2m^ .

In the above algorithm, we alternate between Rk and R'k in Step 2. In Step
4, we use the adjoints of the Step 2 smoothings applied in the reverse order. This
results in a symmetric operator B¡. This form of the multigrid algorithm has
been suggested in [5]. Nonsymmetric multigrid procedures which, for example,
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do not include the smoothing of Step 4 have also been analyzed [4, 11, 12],
etc. The hypotheses required on the smoothing operators are exactly the same
as those used in the symmetric case.

There are two standard conditions concerning the smoothing operators which
are often assumed as hypotheses in the analysis of multigrid algorithms. To
describe these, we first define Kk = I - RkAk and note that Kk = I - R'kAk .
Here, and throughout this paper, * will denote adjoint with respect to the inner
product (Ak-, -)k.

(C.l) There is a constant Cr which does not depend on k such that the
smoothing procedure satisfies

llwll2
(2.11) iLJ*. <CR(Rku,u)k   foraXXu£j?k.

Xk
Here, Rk is either (/ - Kk*Kk)Akx  or (/ - KkKk*)Akx, Xk is the
largest eigenvalue of Ak , and \\-\\2k denotes the norm corresponding to
the inner product (•, -)k .

(C.2) Let  Tk = RkAk.   There is a constant 6 < 2 not depending on k
satisfying

(2.12) (AkTkv , Tkv)k < 6(AkTkv , v)k.

The point of the present paper is to define general smoothing procedures and
prove estimates of the form of (2.11) and (2.12) under simple hypotheses.

We shall state some convergence estimates from [5, 7], and [9] for Algorithm
2.2 in a later section. The following remarks show that the above two conditions
are used in other multigrid theories as well.
Remark 2.1. Let Rk,w correspond to the Richardson smoothing iteration de-
fined by Rk,a) = a>XkxI and Kk m = (I - Rk¡wAk) be the corresponding re-
ducer. Inequality (2.11) in the case of Rk = (I - Kk*Kk)Akx can be rewritten
as
(2.13) (AkKku,Kku)k<(AkKkj(0u,u)k   for all u£ -Jfk,
with 03= X/Cr. This means that the smoothing process applied to any u£jfk
converges as fast as Richardson's method for some we(0, 1). A hypothesis
of the form of the above inequality was essentially used in [5, 14] and [15]. The
Richardson method is perhaps the most natural smoothing procedure.
Remark 2.2. The following condition on the smoothing operator is used by
Bank et al. (see [12, (4.6)]): There is a positive constant c satisfying

(2.14) M!d^k<c(Ak(I-Kk*Kk)u,u)k   foraXXu£jfk.
Xk

Note that for the appropriate definition of Rk , (2.11) can be rewritten as
■y

(2.15) MlÇk < cR(Ak(I - KkKk*)v, v)k   for alive,**.

We shall show that (2.15) implies (2.14). Indeed, taking v = Kku in (2.15)
gives

UkK^k <CR(Ak(I-Kk)Kku,u)k
&k
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where Kk = Kk*Kk . Note that the spectrum of Kk is in [0,1), and hence

(Ak(I-Kk)Kku, u)k < (Ak(I-Kk)u, u)k = (Ak(I - Kk*Kk)u, u)k.

Combining the above two estimates proves (2.14).

3. General smoothing procedures in multigrid algorithms
In this section, we shall define smoothing operators in terms of subspace

decompositions. These procedures are related to overlapping domain decom-
position and the classical Schwarz method and are generalizations of Jacobi
and Gauss-Seidel iteration procedures. In this section, we shall show that the
hypotheses (2.11) and (2.12) will follow from scaling, when appropriate, and
an easily verified function decomposition inequality. Explicit examples provid-
ing such decompositions in the case of finite element multigrid applications are
given in a later section.

The technique which we shall study for developing smoothers involves the
use of a variant of overlapping domain decomposition. These methods are also
referred to as "Schwarz overlapping" methods. We shall develop a smoother for
the problem on Jfk . One starts with a decomposition of the space,

(3.1) J?k = YJ?k-
;=1

This sum may or may not be a direct sum.
Given the decomposition (3.1), there are two types of smoothers which can

be defined. The first will be called the additive smoother and is defined by

(3-2) Rk = yYAlXA-
j=i

Here, AkJ: J?kl i-> Jfkl is defined by

(A, tv, X)k = (¿kV, X)k   for all x € ¿*¿

and Q'k : ̂ k t-> Jfkl is the projection onto J£k with respect to the inner product
(•, -)k . In addition, y is a positive scaling factor which will be chosen later. We
note that Rk is a symmetric operator with respect to the inner product (•, -)k .
Implementation issues involving the above smoother will be discussed in a later
section.

To analyze the additive algorithm, we shall use a limited interaction hypoth-
esis. To describe this property, we first introduce the projection Plk : Jtk >-> Jfkl
defined by

(AkP[v , x)k = {Akv , X)k   for all x e Jtkl.
We then define

k .       Í0    ifP'kPJ?=0,
y X     otherwise,

and set
/

«o = maxYKim-
m=l

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



the analysis of smoothers for MULTIGRID ALGORITHMS 473

In our applications, «o remains small, even when / becomes large. Note that
the matrix {/cim} is symmetric.

We shall use the following two conditions:
(1) The subspaces satisfy a limited interaction property, i.e.,

(3.3) n0<cx,
with c\ independent of k .

(2) There exists a positive constant c0 not depending on k such that for
each u £ J[k, there is a decomposition u = Yi,i=x u' with w, e Jikl
satisfying

/
(3-4) £ll"«H*<ßoll"llfc-

i=i
In applications, the above conditions are often trivial to verify. Moreover,

under these hypotheses, we can prove the following theorem.
Theorem 3.1. Let Rk be defined by (3.2) and assume that (3.3) and (3.4) are
satisfied. Let 6 £ (0, 2) and set y = 6/cx. Then (2.12) holds, and (2.11) holds
with CR = coCx/[6(2-6)].

Before proving the theorem, we prove the following lemma [8].
Lemma 3.1. Let «o be defined as above and «,, v¡ e J?¿ for i = X, ... , I.
Then

I   ' Y ' '(3-5) Y  \(AkUi,Vm)k\\    <nlY^Akui'u-)kY^Vm^Vm^-
\i,m=l J i=l m=l

Proof. We note that

(  Y   K4fc"i»v*)*l)    = (  ¿2   Kim\(AkUi, vm)k\j
\,m=\ ' \,m=l '

I I
< Y   K'm(AUi,Ui)k   Y   Kim(AkVm,Vm)k

i,m=l i ,m=l
I I

< nlY(AkUi, Ui)kY(AkVm,Vm)k-
1=1 m=l

This completes the proof of the lemma.
Proof of Theorem 3.1. We first show that

(3.6) ^rk<c0y~x(RkU,u)k   foraXXu£jfk.
Xk

Let u = £/=i Ui be the decomposition of (3.4). Then
/ / / x x'2 / / \ x'2

\\< - S>, Qiu)k < [Y n»iiiï 1   ( ¿2 \\Qiu\\l)
(i       v/2

<Cu/2ii"iu(Eiio¿MiiU  •
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Hence,
/

(3-7) \\u\\2k<c0Y\\QkU\\l
1=1

Now, it is immediate from the definitions that the largest eigenvalue of the
operator Ak , is bounded by Xk . Consequently,

/ /
(3.8) Y HßHß ̂  A* D^'.oifc"' ")* = hy~x(Rku, u)k.

1=1 1=1

Combining (3.7) and (3.8) proves (3.6).
We will show that the spectral radius of Tk = RkAk is less than or equal to

8 provided that we take y = 6/cx . Let us temporarily assume this. Note, that
Rk is a symmetric operator in the (•, -)k inner product. By (3.6), it is also
positive definite, and hence its square root is well defined. We then have for
u £ J?k,

(Rku, u)k = ((2Rk - RkAkRk)u, u)k

(3-9) = ((2/ - R]¡2AkR]¡2)R]¡2u, Rxk/2u)k
>(2-d)(Rku,u)k.

The theorem follows combining (3.6) and (3.9), once we provide the desired
estimate for the spectral radius of RkAk .

Let v¡ = P'ku. By the definition of Rk and the identity QkAk = Ak,P'k ,

(AkRkAku ,u)k = y Y(Akvi. vùk = 7 [Ak Y v>' ' u)
i=i V    ¿=1       I k

(3.10) x 1/2
<y(UkY^>zZvn J   {{Äku,u)k)x'2.

Applying Lemma 3.1 proves the desired bound, i.e.,

(3.11) (AkRkAku,u)k<6(Aku,u)k.

This completes the proof of the theorem.

Remark 3.X. The overlapping domain decomposition techniques (e.g. (3.2)) can
be used directly to develop preconditioners for the operator Ak (see [8]). How-
ever, in this case the subspaces must be chosen in a much more restricted way.
To prove that the additive preconditioner (3.2) provides a good preconditioner,
one replaces (3.4) by the existence of a decomposition satisfying

/
(3.12) Y(Aku''ui)k<C0(Aku,u)k.

i=i
As we shall see from later examples, it is much easier to construct subspaces
satisfying (3.4). In general, the subspaces used for developing smoothers will
not satisfy (3.12).
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Remark 3.2. An obvious alternative to hypothesis (3.3) in the case of Theorem
3.1 is the assumption that

/
(3.13) Y(AkPku> Pku)k < cx(Aku, u)k   foraXXu£J?k.

¡=i
With such an assumption, (3.11) follows immediately from the first equality of
(3.10) and provides a simpler proof. However, the limited interaction condition
was introduced because it is also used for the analysis of the mulitplicative
algorithms to be subsequently described.
Remark 3.3. When developing preconditioners (instead of smoothers), it is of-
ten important to include a "coarse" subspace J?k which interacts with all of
the other subspaces, i.e., Kok ̂  0 for all k . This is not necessary in the case of
smoothers. However, it would still be possible to analyze the resulting algorithm
using the above arguments and those presented in [8].

We define the multiplicative smoother based on the above subspace decom-
position of J?k in the following algorithm.

Algorithm 3.1. Let f £Jik. We define Rkf ' £jfk as follows:
(1) Set v0 = 0.
(2) Define v¡ for i = 1,... , I by

(3.14) v, = Vi-x+A^Qtif-AkVi-x).
(3) Set Rkf = v,.

It immediately follows from the identity Ak jPk = Q'kAk that

(3.15) Kk = (I-P'k).-.(I-Px).
That is, the error propagator associated with the smoother defined by Algo-
rithm 3.1 is a product of orthogonal projections onto the complements of the
subspaces. The next theorem provides an estimate for (2.11) and (2.12) with
this definition of Rk .
Theorem 3.2. Let Rk be defined by Algorithm 3.1 and assume that (3.3) and
(3.4) hold. Then (2.11) holds with
(3.16) CR = (2c0(X+c2)).

In addition, (2.12) holds with 8 = 2cx/(cx + X).
Proof. The proof of this theorem uses techniques of [8]. First, we define the
operator
(3.17) El = (I-P'k)(I-P'k-x)---(I-Px)
for i = X, ■■■ , I. For convenience, we let Er, = I and note that E, = Kk .

We will prove inequality (2.11) for Rk = (I - Kk*Kk)Akx by proving the
equivalent inequality (2.13). Note that E* is obtained by reversing the order
of the factors in (3.17). With this observation, it is possible to use the same
proof for the case of Rk = (I - KkKk*)Akx.

We shall first derive some identities involving the above operators. We clearly
have for i = 1,...,/,
(3.18) Ei-x-Ei = PlkEi-x,
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from which it follows that
i

K nm »,
jm— 1-(3.19) I-E, = YPkEn

m=l

It is obvious from (3.18) that for v £ J?k ,

(3.20) (AkEj-xV, E¡-xv)k - (AkE¡v, E¡v)k = (AkPlkE^xv , PÍE^xv)k.
Summing (3.20) gives that

(3.21) (Akv, v)k - (AkE¡v , E,v)k = Y(AkHEi-iv > Ei-iv)k-
i=i

We note that (2.13) can be rewritten as

(3.22) coXkx \\Akv\\l < (Akv , v)k - (AkE,v , E,v)k.
But, by (3.7),

/
\\Akv\\2 icoYWQL^vWl

i=i
/ /

= CoY(Ak,iPÍv,AkyiPlv)k < c0XkY(AkPÍv, P'kv)k.
i=i i=i

Hence, (3.22) will follow if we can show that
/ /

(3.23) Y^Pkv. %v)k < 2(1 + c\) Y(AkPLEi-iV, Ei-xv)k.
i=i i=i

It is shown in [8] that (3.23) holds under assumption (3.3) (cf. inequality (2.23)
of [8]).

We include the proof of (3.23) for completeness. By (3.19),
i-i

(3.24) (AkPlv,v)k = (AkPlkv, Ei-xV^ + Y^kPkV , PfEm-ivh-
m=l

Summing gives
/ / /   ¡-i

YWk» - p&k = Y^pkv. HEt-iv)k+Y E^*p*ü - pkEm-iv)k.
¡=1 ¡=1 1=1 m=l

Thus, by the arithmetic-geometric mean inequality and Lemma 3.1,
/ \2       ( ' '

Y(AkP¿v , P'kv)k I   < 2   Y(A«Pkv . P'kv)k Y(AkPkEi-iV , £,_!»)*
i=i

Y  \(AkPív,PirEm.xv)k\j  }

1=1 ' ví=l 1=1

+

i ,m=l
I I

< 2(1 + n2) Y(AkPkV > Pfrh Y(AkpkEi-iV , Et-xV)k.
i=i i=i

This completes the proof of (3.23).
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Finally, we provide the estimate for 8 . Note that for u £ Jfk , by Lemma
3.1,

/
(AkTku, Tku)k = (Ak(I-E¡)u, (I-E,)u)k =  Y (AkpkE¡-Xu, P^Em-Xu)k

i, m=l
/

< n0Y(AkPkEi-iu> Et-iu)k-
1=1

Applying (3.21) gives

(3 25) (AkpkU, Tku)k < n0[(Aku, u)k - (AkE¡u, E¡u)k]
= n0[2(AkTku, u)k - (AkTku, Tku)k].

This shows that (2.12) holds for 8 < 2«o/("o + 1) and hence completes the
proof of the theorem.

Remark 3.4. We note that Theorem 3.1 provides the estimate Cr = cqCx for
(2.11) when 8 = X and the smoother is defined by (3.2). In contrast, Theorem
3.2 provides the estimate Cr = 2co(X + c2) when Algorithm 3.1 is used. This
suggests that the additive version may work better in practice. As far as we
know, this is not the case. In all of the examples which we have considered, nu-
merical evidence suggests that the multiplicative smoother always works slightly
better than the additive smoother using the same subspaces.

4. Convergence estimates for multigrid algorithms

In this section, we apply the results of the theorems of the previous section
to get convergence for multigrid Algorithm 2.2. We make no attempt to survey
all possible applications but, instead, provide the theorems to illustrate the type
of convergence results available utilizing the estimates on the smoothing oper-
ators provided by Theorems 3.1 and 3.2. Modifying a proof given in [9], we
also provide a "no-regularity" convergence estimate in the case of the product
smoothing operator defined by Algorithm 3.1.

As observed earlier, the multigrid process gives rise to the iterative reduction
matrix / - BjAj, where Bj is given by Algorithm 2.2. Thus, bounds for the
iterative convergence rate of either (2.6) or (2.7) follow from norm estimates
for the operator / - BjAj. Alternatively, one can use the operator B¡ directly
in a preconditioned iteration for the solution of (2.1). Since B¡ is symmetric in
the inner product (•, •), (cf. [5]), bounds for preconditioned iterative schemes
follow from estimates for the condition number K(BjAj), which is defined to
be the ratio of the largest eigenvalue of BjAj to the smallest.

We start by illustrating the convergence and preconditioning results for Algo-
rithm 2.2 under the following regularity and approximation hypothesis: There
exists a fixed number a £ (0, 1] and a positive constant Ca which does not
depend on Ak such that for k = 2, ... , j

(4.1)   \(Ak(I-IkPk_x)u,u)k\<C2l^Ç^)   (Aku,u)[-a   for all ueJtk.
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Here Pk_x : Jfk h-> Jfk_x is defined by Pk-Xv = w, where w is the unique
function in J0rk-X satisfying

(Ak_xw , <f>)k_x = (Akv, Ik(j))k   for all cp £ Jtk_x.

The following two theorems are a consequence of Theorems 3.1 and 3.2 and
the results in [5]. The first gives estimates for the reduction operator I-BjAj in
the norm ||| • ||| ¡■■ = ((A¡-, -)j)x/2. The second gives estimates for the condition
number K(BjAj).

Theorem 4.1. Let Rk be defined by either (3.2) or Algorithm 3.1 and assume
that (4.1), (3.3), and (3.4) hold. Furthermore, assume that

(AkIkv,Ikv)k < (Ak_xv,v)k_x   for all v £Jtk_x.

Let Bj be defined by Algorithm 2.2 with p = X and m(k) = m for all k. Then

(4.2) \\\(I-BjAj)v\\\j<S\\\v\\\j   forallveJtj,
where

Maj(x-<*)la + ma'

If, instead, m(k) satisfies
(4.3) ß0m(k) < m(k - X) < ßxm(k)

(ßo and ßx are constants which are greater than one and independent of k),
then (4.2) holds with

. _        Ma
Ma + m(jy

The constant Ma above is independent of j.

Theorem 4.2. Let Rk be defined by either (3.2) or Algorithm 3.1 and assume
that (4.1), (3.3), and (3.4) hold. Let B¡ be defined by Algorithm 2.2 with p = 1
and {m(k)} satisfying (4.3). Then K(B¡Aj) < nx/r¡o, where i/o and nx are
given by

m(j)a

m     Ma + m(JY
and

Ma + m(j)a
m m(j)«      '

i.e., the system BjAj is well conditioned independently of j.

Multigrid is often applied to sequences of operators approximating the so-
lution of an elliptic partial differential equation. In this case, the validity of
(4.1) is inherently related to the regularity properties of solutions of this par-
tial differential equation. Alternative hypotheses which avoid these regularity
assumptions have been used to provide multigrid results (see [7, 8, 9]). These
are as follows:

( 1 ) The subspaces JKX, ... ,Jfj are nested and the operators are inherited,
i.e., ¿#k-i Q-^k and

(4.4) (Akv, v)k = (AjV , v)j   for all v £ Jfk.
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(2) There exists a sequence of linear operators Qk : Jfj■ *-> Jük for k =
X, ... , j, with Qj = I satisfying the following properties. There are
constants Ci and C2 not depending on k for which

(45, \\(Qk - Qk-X)u\\2k < CxXkx A(u, u)   fork = 2,...,j,
A(QkU, QkU) < C2A(u, u)        for k= 1, ... , j - X.

The inequalities in (4.5) hold for all u£jf¡. Inequalities of the form
of (4.5) can be verified without the use of elliptic regularity estimates
(see [7]).

The hypotheses required for the smoother in the case of the "regularity-free"
estimates are less stringent. Loosely, the smoother Rk need only "smooth" on
a subspace of Jfk containing the image of Qk-Qk-i ■ To this end, let Jfk be a
subspace of Jfk which contains the range of the operator Qk - Qk_x. Assume
that we are given a decomposition

(4.6) *k = Y*k
i=i

satisfying assumptions (3.3) and (3.4) (with Jfk replacing Jfk ). Let Rk: J£k h->
J[k be defined by either (3.2) (with y = X/cx ) or Algorithm 3.1 using these
spaces. In addition, set Rk = RkPk'- -^k •-* -^k > where P£ denotes the (•, -)k
orthogonal projection onto Jtk . Note that Theorems 3.1 and 3.2 provide esti-
mates for a constant Cr satisfying

Il  II2 ~
(4.7) Ä- < CR(Rku, u)k   for all u £ Jfk.

Xk

Here,

(4.8) Rk = Rk + R'k-RkÄkRk,

where Ak : ^k >-> ̂k is defined by

(Akv , <j>)k = (Akv , d))k   for all 4> £ J?k.

The following theorem provides estimates for the rate of convergence of the
multigrid algorithm with this Rk under the above assumptions. The proof in
the case of (3.2) follows directly from results in [9] and Theorem 3.1. The proof
of the theorem in the case of Algorithm 3.1 is a modification to that given in
[9]. A somewhat more restricted result in the case of nonsymmetric Rk (also
based on [9]) was given in [19].

Theorem 4.3. Assume that (4.4) and (4.5) hold. Let Rk be defined as above and
assume that (3.3) and (3.4) hold with Jfk replacing Jfk . Let B¡ be defined by
either Algorithm 2.2 or the nonsymmetric smoothing (with corresponding operator
denoted by B") version (see [9]). Then (4.2) holds with S = S2, where

(4.9) ''-«-cTT-T)
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and C = [(X + Cx2l2)(2cx)xl2 + (CRCX)XI2]2. The constant CR satisfies (4.1) and is
provided by either Theorem 3.1 or Theorem 3.2. In the case of the nonsymmetric
smoothing version,

(4.10) lll(/-£;^;)w||l;<<*/IIMII;   forallv£jfj.
Proof. For the purpose of this proof, we shall let A(-, •) = (Aj-, •)_,-. We need
only prove the result in the case of nonsymmetric Rk . Moreover, we shall prove
the result for p = X. The results for higher p follow from arguments given in
[9]-

First of all, it was observed in [9] that under the above assumptions,

(I-BjAj) = (ï-B]AJr(I-BJAJ),

where B" denotes the multigrid operator which involves smoothing only before
correction. Set

K
{m(k)) = f (K*kKk)m^/2 if m(k) is even,

' 1 (K*kKk)(m^-xy2K*   if m(k) is odd.k

It was also observed in [9] that for Tk = (I - (Kkm(k)))*)Pk ,

(4.11) (I-B«Ajy = (I-TJ)(I-Tj^x).-.(I-Tx).

We use a product analysis similar to that used in Theorem 3.2 and also Theorem
1 of [9]. To this end, we set Eq = I and

Ek = (I- Tk)(I -Tk_x)---(I-Tx) = (I- Tk)Ek_x.

As in the proof of Theorem 3.2 (compare with (3.21)),

A(u, u) - A(EjU, EjU) = Y, [A(Ek-iu> Ek_xu) - A(Eku, Eku)]
fe=i

= YA^2I~T^E^-^U' TkEk-iu).
k=l

Note that / - BJAj = E*, and hence inequalities (4.2) and (4.10) will follow
if we can show that

A(u, ") < C(j - X)[A(u, u) - A(EjU, EjU)]

= C(j-X)YA((2I-Tk)Ek_xu,TkEk_xu).
k=i

Proceeding as in [9], we use the fact that Q¡ = I and write

i
u = Y^Qk - Qk-i)u + QlU.

k=1
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Thus,
j

A(u,u) = YA(U> (Qk - Qk-i)u) + A(u, Qxu)
k=1

(4.14) = YA(Ek_xu, (Qk - Qk_x)u) + A(u, Qxu)
k=2

j
+ YA((i-Ek-i)u,(Qk-Qk-i)u).

k=2

For the the first sum on the right-hand side of (4.14), we see that
j j

YA(Ek-lU, (Qk - Qk-i)u) = YA(pkEk-iu', (Qk-Qk-i)u)
k=2 k=1

j
= Y(PkAkpkEk-iU, (Qk - Qk-x)u)k

k=2

< Y \\PkAkPkEk-lU\\k\\(Qk - ßk-l)«ll*.
k=2

Applying (4.5) gives

YA(Ek-iU,(Qk-Qk-i)u)<(Cx)xl2Axl2(u,u)Y^'\pUkpkEk-iu\\k.
k=2 k=1

For Rk defined by (4.8), Theorem 3.2 gives
j

YA(Ek-i"AQk-Qk-i)u)
k=2

( j \ 1/2
< (CRCx(j- X))x/2Ax/2(u, u) rY(RkP£AkPkEk_xu, P»AkPkEk_xu)\     .

It is easy to check that for v £ Jfk ,

(4 15) Rkv = Rkv + R'kv - R'kAkRkv
= Rkv + R'kv - R'kAkRkv = (I- Kk*Kk)Akxv.

The last equality in (4.15) defines an extension of Rk to Jfk . This extension,
which we shall still denote by Rk , is symmetric with respect to (•, -)k. More-
over, jR£ is defined by cycling through Algorithm 3.1 in reverse order, and hence
its image is contained in Jfk . Thus, it follows that RkPk = Rk , and hence

YA(Ek-iU, (Qk - Qk-X)u) < (CrCx(j - X))xl2Axl2(u, u)
k=2

• [YA{(I-Kk*Kk)PkEk_xu,PkEk_xu)
\k=2 t
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Let w = PkEk_xu. The spectrum of Kk*Kk is in [0, 1], and hence

<A((I-Kkm(k))(Kkm{k))Y)w,w)

= A((2I - Tk)w , Tkw) = A((2I - Tk)Ek_xU, TkEk_xú).

A((I - Kk*Kk)w , w) < A((I - Kkm{k))(Kkm(k))Y)w , w)

Thus,

YA(Ek-iU, (Qk - Qk-i)u) < (CRCx(j-X))xl2Axl2(u, u)

(4-16)^ (j ,1/2

• \YA i(2I~ Tk)Ek-iU, Tk Ek_x u)\

For the remaining terms in (4.14), we have

i

(4.17) k=2       ._1
YA((I-Ek-i)u,(Qk-Qk-X)u) + A(u,Qxu)

j-\
= YA^Ek~Ek-l)U' QkU)+A((I-Ej_x)u, u).

k=2

But, Ek_x - Ek = TkEk_x > and it follows that

7-1

I - Ej-l = Y PkEk-l-
k=l

From this and (4.17),

j
YA((T-Ek-i)u,(Qk-Qk-i)u) + A(u,Qxu)
k=2

7-1
(4.18) =YA(TkEk-iU,(I-Qk)u) + A(Txu,u)

k=2
n-i x'/2

< (j - X)X'2(X + C2l/2) ¡YA(TkEk_xu, TkEk_xu)\     Ax'2(u, u).

We shall show that

(4.19) A(Tkw , Tkw) < 2cxA((2I - Tk)w , Tkw).

If m(k) is even, then this is evidently true, since cx > X and Tk is symmetric
in A(-, •) with spectrum in [0,1]. For m(k) odd, set Kk = (KkK*k)WV-x)l2.
Then Kk is symmetric in A(-, •) with spectrum in [0,1] and Tk =
(I - KkKk)Pk . Clearly, it suffices to prove (4.19) for w £ Jfk . Now

A(Tkw , Tkw) = A((I - KkKk)w , (I - KkKk)w)

<2 A((I - Kk)w , (I - Kk)w) + A((I - Kk)Kkw , (I - Kk)Kkw)
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By Theorem 3.2,

A((I - Kk)w , (I - Kk)w) < -^jA((I - Kk)w , w).
cx + i

This can be rewritten (see (3.25)) as
A((I-Kk)w,(I-Kk)w)<cx[A(w,w)-A(Kkw,Kkw)].

Using the symmetry of Kk and the fact that its spectrum is in [0, 1] gives

A((I - Kk)Kkw, (I - Kk)Kkw) < A(Kkw, Kkw) - A(KkKkw , KkKkw).
Combining the above and noting that cx > X gives

A(Tkw , Tkw) < 2cx [A(w, w) - A(KkKkw , KkKkw)}
= 2cxA((2I - Tk)w, Tkw),

i.e., (4.19) holds.
Combining (4.14), (4.16), (4.18), and (4.19) gives

A(u, u) < C(j-X) \YA((2I-Tk)Ek_xu, TkEk_xu)\ ,

for C = [(1 + C2/2)(2cx)x'2 + (CrCx)1/2]2 . This completes the proof of the
theorem.
Remark 4.1. The requirement that inequality (4.7) need only hold on Jfk is
important in local refinement applications. These are discussed in more detail
in [9]. However, to apply Theorems 3.1 and 3.2, one need only provide a
decomposition of the subspace JSk . The resulting smoothing operator Rk only
involves computation in the subdomain where the new nodes are being added.

5. Implementation of the smoothing procedure
In this section, we consider implementation of the smoothing procedures de-

scribed in §3. We shall see that the additive schemes correspond to generaliza-
tions of block Jacobi iteration. The product schemes correspond to generaliza-
tions of block Gauss-Seidel iteration. The observations that, e.g., Gauss-Seidel
iteration is a product scheme of the form of Algorithm 3.1 are not new (cf., for
example, [17]). We include this section only to stress the point that the results
provided earlier apply to the smoothers commonly used in multigrid algorithms.

We first consider computer implementation of the parts of Algorithm 2.2
which are relevant to the smoothing procedures. Assume that a decomposition
of J!k of the form of (3.1) is given which satisfies (3.3) and (3.4). Moreover,
assume that there is a basis {</>[} for Jfk such that each Jfkl has a basis
consisting of a subset of {4>lk} • Let M denote the stiffness matrix associated
with this basis, i.e., Mim = (Ak<f>lk, (¡>k)k ■ In implementation, one seldom is
required to solve (2.1) but rather the equivalent matrix equation

MU = F,
where U is related to the solution of (2.1) by u = J2¡ Ujcp'j and F is a known
vector of coefficients (F¡ = (f, <f>'j)j). Consequently, in the multigrid imple-
mentation, we are required to compute the action of Rk on a function g £ Jfk
which is represented by the inner product vector G¡ = (g, <j>'k)k .
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We first consider the case of the additive smoothing operator defined by (3.2).
Let S¡ denote the indices of {<pk} which correspond to the basis functions of
JKkl. We note that the vector W representing the function w' = AkxjQ}kg
satisfies the equation

MiWi = Gi,

if /, m £ S,:,
if / t¿ m and either I £ S¡ or m £ S¿,
if / = m and / £ S¡

and
f Gm   if m £ S¡,

m ~ \ 0      otherwise.

We now consider the case when all of the subspaces are disjoint. Then, we
may partition the basis elements into groups corresponding to the subspaces.
Under this ordering, the vector W = {W¡} representing the function w =
YlAkl¡Q'kS satisfies the equation

MaW = G,

where Ma is the block diagonal part of the matrix M. In the case when each
subspace has one degree of freedom associated with a given basis function, then
W is given by

Wi = (Ak<pik,cbik)kxGl,

i.e., the smoother corresponds to the Jacobi method applied to the diagonally
scaled stiffness matrix.

We next consider the case of the multiplicative smoother. Again, we look at
the case when all of the subspaces are disjoint and the basis elements are ordered
into groups accordingly. The matrix M has a block structure corresponding to
this ordering with blocks denoted by M'•m , i, m = X, ... , I. As usual, we
write

M = L + D + U,
where L, D, and U are respectively, block lower diagonal, block diagonal,
and block upper diagonal. Let F' be the vector of data corresponding to these
blocks, i.e., F' = ((f, (l>kmi)k, ... ,(f, <¡>km2)k)', where mx and m2 denote the
first and last basis element corresponding to the subspace Jfkl. Let the vectors
Vi be the vectors of coefficients representing the functions v¡ appearing in
Algorithm 3.1. These are partitioned in a similar manner. We first note that
the z'th step in (3.14) only changes the /th component. Thus, the /th component
of V¡ is defined by the equation

Mi.tVt = F, - YMi.mVPx = pi - YM'-'»vim - J2M'^Vom-
m<i m<i m>i

This can be rewritten as

where

Mim

(L + D)Vi = -UV0 + F,
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and corresponds to block Gauss-Seidel iteration applied to the stiffness matrix
M.

6. Typical finite element applications

In this section, we discuss developing smoothers using the techniques of §3
for finite element multigrid applied to a second-order elliptic boundary value
problem. First, we consider the case when the subspace is defined in terms of
a quasi-uniform triangulation which approximates the original domain. This
often leads to spaces {^k} which are not nested. The case of mesh refinement
is discussed next. We will see that it is easy to apply the techniques presented
earlier to develop smoothers which only require computation where new nodes
are being added and give rise to effective multigrid algorithms.

We shall consider the problem of approximating the solution U of

LU = F   inCl,
(6-1) U = 0    ondQ.
Here Q is a domain (not necessarily polygonal) in «-dimensional Euclidean
space and L is given by

with {a¡j} uniformly positive definite and bounded on fl. The form A cor-
responding to the above operator is given by

(6.2) A{VtW)=YjaaiJWiWjdx.

This form is defined for all v and w in the Sobolev space Hx (Q.) (the space of
distributions in L2(Q) with square-integrable first derivatives). Clearly, U £
Hr] (Q) is the solution of

A(U,8) = (F,8)   for all 8 £ H¿(íi),

where //¿(Q) is the subspace of HX(Q.) of functions which vanish in the ap-
propriate sense on dQ. and (•, •) denotes the L2 inner product on £2.

We will first discuss the case of quasi-uniform triangulation. We assume
that il has been approximately triangulated with a sequence of quasi-uniform
triangulations £2fc = (J, xk of size hk for k = X, ... , j, where the quasi-
uniformity constants are independent of k. We define J?k to be the set of
piecewise linear functions (with respect to the triangulation U¿ Tjt ) which vanish
on dÇlk . If Q is polygonal, then it is possible to take Clk = Û and construct
triangulations which are nested.

We next define the inner product (•, ')k. We do not have complete freedom
here, since we must choose an inner product so that either (4.1) or (4.5) are
satisfied, depending on the application. Let {y'k} be the collection of nodes
corresponding to the triangulation for Jfk . It suffices to take

(6.3) (u,v)k = hlYu(yik)v(yik).
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Note that the quasi-uniformity of the triangulations implies that the norm ||-||fc
is equivalent to the L2(Q) norm on the subspace JKk. The operators Ak,
k = X, ... , j, are then defined by

(6.4) (Akv, <j))k = A(v , 4>)   for all <j> £ J?k.

Finally, the operators Ik are defined by nodal interpolation, i.e., Ikw is defined
to be the unique function in Jfk which equals w at the nodes of Jik .

Let {<j>'k}fj!x denote the usual nodal basis associated with the subspace Jfk .
Partition the integers {1,2,... , Nk} into sets Sx, S2,... , S¡ and define J^l
to be the span of the basis functions with indices in S¡. The discussion in the
previous section shows that implementation of (3.2) and Algorithm 3.1 reduce
to block Jacobi and block Gauss-Seidel iteration on the stiffness matrices. These
subspaces provide a direct sum decomposition of the space Jik and hence, the
decomposition u = Ylui with u¡ £ Jfk is uniquely defined. In addition, since
the matrix with entries A/im = (<f>'k, <f>k)k is diagonal,

¿INI? = INIfc,i=i
i.e., (3.4) holds with c0 = 1 •

The constant Ci appearing in (3.3) is related to the geometry of the subspaces.
For /' = 1, 2, ... , /, let Cl'k denote the union of the supports of the basis
functions defining JfJ . Note that /c,m is nonzero only if Q[ n Çlk ^ 0 . Let
Xk be the number of subdomains {Qk} which intersect QJj.. Then we can
take cx in (3.3) to be the maximum of {x'k} for i = X ,2, ... , I. In the
case of point relaxation (i.e., J!k = {c<t>'k} ), cx can be taken to be one plus
the maximum number of triangles which meet at a given vertex. Alternatively,
for line relaxation, the grid consists of a regular rectangular mesh and the ¿th
subspace is defined to be, for example, the span of the basis functions on the
/'th horizontal mesh line. In this case, cx = 3 . Obviously, many other examples
are possible.

We next consider the case when the mesh results from a local refinement.
To illustrate this situation, we consider the case of two spatial dimensions. We
note that for refinement applications, it is only possible to prove (4.1) with a
Ca which grows with powers of the ratio of the diameters of largest to smallest
triangle in the refined mesh. In contrast, estimates of the form (4.5) hold with
constants independent of the mesh parameters. Consequently, we shall only
consider the case of nested spaces and inherited operators.

We start with the definition of the nested refined grids. These grids are
defined in terms of a given sequence of nested subdomains

&j Çfl/-i ç ••• çi20 = Œ.
We assume that we are given a coarse triangulation of £2 = (jm x™ . This coarse
triangulation provides the first grid {x™} . Given that a grid {rk_x} has been
defined, the grid {x^} is defined by refining those triangles of {t™_]} which
are in £lk . This refinement is done, for example, by breaking each triangle of
the mesh {xk'_.} in Çlk into four triangles by connecting the midpoints of the
edges. We assume dQk aligns with the mesh {rk_x} .
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r, s, t : Slave Nodes

Figure 6.1
A mesh transition region

The space J[k is defined to be the set of continuous functions on Q which
are piecewise linear with respect to the grid {xk} and vanish on 9Q. We note
that the continuity constraint implies that there are no new degrees of freedom
corresponding to nodes on d£lk (see Figure 6.1). These new nodes on dÇlk
will be called slave nodes since, by continuity, their values are determined by
the values of their neighboring nodes (which were already in the previous grid).
It is easy to see that the space Jfk has a nodal basis consisting of the vertices
of {xk} excluding the slave nodes.

For this application, we shall take (•, -)k to be the L2(Cl) inner product.
The operators {Ak} are defined by (6.4) and the operators Ik are defined to
be the natural injection of J^k-i into JKk .

A sequence of operators Qk , k = X, ... , I, are constructed in [9] satisfying
(4.5). These operators, in addition, satisfy (Qk - Qk^x)v e Jtk for all v £ J?)■,
where

(6.5) JKk = {q)£j[k\supp <j> ç Qfc}.
Now, to apply Theorem 4.3, we need only provide a decomposition of the
subspace Jtk . Note that J?k is a finite element space corresponding to a quasi-
uniform triangulation of Qk . Accordingly, the constructions given above can
be used. Note that this leads to smoothing algorithms which only require com-
putation involving the nodes of Qk and not on all of the nodes of the space
Jfk.

Bibliography

1. R. E. Bank and C. C. Douglas, Sharp estimates for multigrid rates of convergence with general
smoothing and acceleration, SIAM J. Numer. Anal. 22 (1985), 617-633.

2. R. E. Bank and T. Dupont, An optimal order process for solving finite element equations,
Math. Comp. 36 (1981), 35-51.

3. D. Braess and W. Hackbusch, A new convergence proof for the multigrid method including
the V-cycle, SIAM J. Numer. Anal. 20 (1983), 967-975.

4. J. H. Bramble and J. E. Pasciak, New convergence estimates for multigrid algorithms, Math.
Comp. 49(1987), 311-329.

5. J. H. Bramble, J. E. Pasciak, and J. Xu, The analysis of multigrid algorithms with nonnested
spaces or noninherited Quadratic forms. Math. Coitid. 56 (19911. 1-34.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



488 J. H. BRAMBLE AND J. E. PASCIAK

6. -, The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic prob-
lems, Math. Comp. 51 (1988), 389-414.

7. _, Parallel multilevel preconditioners, Math. Comp. 55 (1990), 1-22.
8. J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu, Convergence estimates for product iterative

methods with applications to domain decomposition, Math. Comp. 56 (1991), 1-21.
9. _, Convergence estimates for multigrid algorithms without regularity assumptions, Math.

Comp. 56 (1991), 23-45.
10. A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31

(1977), 333-390.
11. W. Hackbusch, Multi-grid methods and applications, Springer-Verlag, New York, 1985.
12. J. Mandel, S. McCormick, and R. Bank, Variational multigrid theory, Multigrid Methods

(S. McCormick, ed.), SIAM, Philadelphia, PA, 1987, pp. 131-178.
13. J. Mandel, S. F. McCormick, and J. Ruge, An algebraic theory for multigrid methods for

variational problems, (Preprint).
14. S. F. McCormick, Multigrid methods for variational problems: General theory for the V-cycle,

SIAM J. Numer. Anal. 22 (1985), 634-643.
15. _, Multigrid methods for variational problems: Further results, SIAM J. Numer. Anal.

21 (1984), 255-263.
16. S. McCormick (Ed.), Multigrid methods, SIAM, Philadelphia, PA, 1987.
17. S. F. McCormick and J. Ruge, Unigrid for multigrid simulation, Math. Comp. 41 (1983),

43-62.
18. R. Verfüth, A multilevel algorithm for mixed problems, SIAM J. Numer. Anal. 21 (1984),

264-284.
19. J. Wang, Convergence analysis without regularity assumptions for multigrid algorithms based

on SOR smoothing, (preprint).
20. O. Widlund, Optimal iterative refinement methods, Technical Report No. 391, Courant

Institute of Mathematical Sciences, 1988.

Department of Mathematics, Cornell University, Ithaca, New York 14853
E-mail address: bramble@mssun7.msi.cornell.edu

Department of Applied Science, Brookhaven National Laboratory, Upton, New York
11973

E-mail address : pasciak@bnl.gov

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


