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Summary 
By the use of a reciprocity theorem for surface waves, the mathematical 
expression for the spectrum of surface waves from a point source in a 
plane layered solid medium can be factorized into a component involving 
the transmission path and a component involving the source mechanism 
and depth. This second component can be easily constructed from 
expressions for the displacement and stress in a propagating surface wave. 

The factorization has been used to study the effect of source mechanism 
and depth on the magnitude of the surface waves generated from point 
sources. In particular this study shows how holes may appear in the 
surface wave spectra due to the principle that it is impossible to excite 
a mode of oscillation by action at a node; it also throws doubt on the 
applicability of the depth correction terms currently used in the formula 
for M,. 

1. Introduction 
In the course of a programme aimed at computing theoretical seismograms for 

teleseismic body and surface waves, it was noticed that in certain cases the spectrum 
of the Rayleigh waves appeared with a zero at a frequency which varied with depth 
and mechanism of the source and also with the azimuth of the observer. The origin 
of these zeros was tentatively attributed to the physical principle. that one cannot 
excite a mode of oscillation of a system by striking it at a node of displacement. 

In this paper we test this idea and show that it is correct. Zeros appear in Rayleigh 
wave and Love spectra according to the position of zeros of displacement or stress in 
the relevant surface wave. The theory is constructed on the basis of a reciprocity 
theorem for surface waves. 

The elastodynamic reciprocal theorem for a bounded solid was given by G r f i  
(1947) and extended to unbounded media by Wheeler & Sternberg (1968). These 
theorems apply to the total displacement generated in the medium. In the Appendix 
we prove an equivalent theorem, applying to the far field surface wave displacements 
from body forces acting in a half-space whose properties vary with depth only. 

2. Rayleigh waves from a doubl-ouple source 

We substitute into the reciprocal theorem for surface waves (equation (A22)) 
expressions giving the body forces and resulting displacements in two different 
systems of wave generation in a half space. The half space (defined by z 2 0 with 
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208 A. Douglas, J. A. Hudson and V. K. Kembhavi 

respect to cylindrical polar co-ordinates r, 4, z)  has a free upper surface and its elastic 
properties vary with the depth co-ordinate z only. 

The first system is taken to be due to a double couple of magnitude Q(t)  at depth 
h below the origin of co-ordinates; its orientation is defined by unit vectors f, n 
normal to the null planes. So the body force is 

where the x I  are Cartesian co-ordinates with x3 = z and x1 along 4 = 0. 

acting at the surface at a large distance rl from the origin and at azimuth 41: 
The second system is taken to be due to a vertical point force of unit magnitude 

(2.2) fj' = 6j36(x,-r1 c 0 s 4 ~ ) 6 ( x ~ - r ~  sincj1)6(x3)6(t). 

P ( r 1 ,  41 ,0 ,4  = Q(4(4 %+fk n,) --iiJ2w, 41 +It, h, 4 

= 2 W )  E;: (41 + n, h, 0) 

The reciprocal theorem (A22) gives 
a 

ax, 

(2 * 3) 

where the superscript q denotes the surface (in this case Rayleigh) wave and E$ is 
the shear strain related to co-ordinates parallel to f and n, at depth h below the origin, 
in the Rayleigh wave generated by the vertical point force at (rl, 41, 0) and leaving 
the source at azimuth ~ , + I I ;  the bar denotes the Fourier transform in time. 

The waves generated by a vertical point force are independent of azimuth and 
the Rayleigh waves at large distances from any source are approximately plane and 
of a standard form (with horizontal and vertical components #(z, a), uR(z, o) say). 
Hence we may write approximately in the neighbourhood of the origin, 

I 
I 

ulzq(o,+l+ 71, z ,  0) = - CUR(Z, 0) C O S 4 ,  

~ ~ ~ ~ ( 0 ,  41 + II, z, w) = - cuR(z ,  0) sin 4, 
G ~ ~ ~ ( O ,  +1 + 11, z, 0) = cuR(z, 0) 

- 

where C is a constant and uR, uR contain a factor exp k(x, cos4,+x2 sin+,); K is 
the Rayleigh wave number. The strain component 8% becomes 

where 
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Analysis of surface wave spectra 209 

corresponding to radiation as Rayleigh waves from the double-couple source, where 
iiZzq(r, z, w) is the Rayleigh wave radiation from a unit vertical force acting on the 
surface at r = 0. I. N. Gupta (1966) has derived expressions such as (2.6) in a 
similar way (without any reference to the correct reciprocity theorem) but in rather 
less detail in order to calculate radiation patterns. 

The effect on the Rayleigh wave spectrum of the fault mechanism and depth of 
focus is contained entirely in the factor in square brackets on the right-hand side of 
equation (2.6). Even if the transmission path is more complex than in the model 
we have used, so long as the complexities at a given azimuth involve merely a linear 
transformation on the expression for the radiation (i.e. multiplication of the spectrum 
by a transfer function), the effect of source mechanism and depth will still be described 
by the expression in square brackets. Two different sources in the neighbourhood 
of one another may be compared by comparing spectra at given azimuths. 

Equation (2.6) thelefore presents a possible method, by the use of Rayleigh wave 
spectra of checking fault-plane solutions and of fixing depth of focus fairly precisely, 
when the structure of the crust and upper mantle in the neighbourhood of the fault 
is known. Clearly this applies only to faults which are sufficiently small to be regarded 
as point sources. 

Burridge, Lapwood & Knopoff (1964) have shown that the radiation from a 
point source of transverse slip (i.e. double couple) may be written as a linear combina- 
tion of the responses to three basic sources, vertical dip slip, vertical strike slip and 
dip slip on a plane dipping at an angle of 45". Therefore we shall examine these 
cases individually. 

For vertical dip slip, f = (0, 0, l), n = (0, 1,O) and equation (2.6) becomes 

where rR is the shear stress on a horizontal plane in the Rayleigh wave, and p,, is 
the rigidity at the source. 

For a vertical strike slip, f = (I ,  0, 0), n = (0, 1,O) and 

ii,4(r, ( b , O ,  w )  = - Q(w) ii,Zq(r, 0, w) sin 24 [S]. 
For dip slip on a plane inclined at 45" to the horizontal we may take 

f = (0,1/42, -1/42), n = (0,1/42, 1/42) 
and then 

UR(h ,  0) + -(g) 1 ] . (2.9) ii:(r, 4, 0, w) = - Q(w) ii,Zq(r, 0, w) i~ sin' (b [ V R ( O , O )  U R ( O , O )  82 r=h  

In general, if the fault plane is vertical and the motion dip or strike slip, the shape 
of the Rayleigh wave spectrum is the same for all azimuths, but for all other orienta- 
tions, the shape will change with (b as well as the magnitude. 

One of the major characteristics of the spectrum is the zero which may occur 
because the expression in square brackets in equation (2.6) has a zero. The simplest 
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2 1 0  A. Douglas, J. A. Hudson and V. K. Kembhavi 

Table 1 
Standard continental crust with sediment (Kanamori 1 9 6 7 )  

1st layer 3.00krns-' 1.66kms-' 2 . 3 5 g ~ m - ~  2.0km 
2ndlayer 6.1Okms-' 3*50kms-' 2 * 7 O g ~ m - ~  9.0km 
3rd layer 6-40 km s-' 3.68 km s-l 2.90 g cm-3 9.0 km 
4th layer 6.70 km s-' 3.94 km s-' 2.90 g cm-: 18.0 km 
Halfspace 8.15kms-' 4.75kms-' 3.3Ogcm- 

U B P depth 

case to examine is that of vertical strike slip. If the half space is uniform, the dis- 
placement component fl has magnitude given by 

(2.10) 
where 

IuR(z, w)l = K- B Iexp (- K ~ , z )  - ( I  - cR2/2P2) exp (- K V ~  z ) ~ ,  

qo, = (1-cR2/U2)*, Vfi = (1-cR2/f12)* 

CR = O / K ,  B is a constant. 

Therefore #(h, a) has a node at the frequency which satisfies 

= - [log (l -cRz/2f12)l/(qa-qg)* (2.11) 

This has a solution (real and positive w) for all h. Hence, if the source is a vertical 
strike slip, the zero in the Rayleigh wave spectrum gives an exact indication of the 
depth. Fig. 1 shows the amplitude of KuR(h, w) as a function of oh/c,; i.e. as a 
function of depth or of frequency. The elastic parameters used were those of a 
Poisson solid ( A  = p). Considered as a frequency spectrum, this needs to be multi- 
plied by 

IQ(w) 0, o) sin 2#/uR(o, o)l 

to give the total Rayleigh wave spectrum for a vertical strike slip fault. 

t\ 
wh/CR 

FIG. 1. The factors in the Rayleigh wave spectrum involving source mechanism 
and depth for a vertical strikeslip I K U " ~  and a vertical dip-slip 191 fault in a 

half space with h = p. 
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Analysis of surface wave spectra 21 1 

The magnitude of rR is given by 

which has a zero at the surface z = 0 only (see Fig. 1). So there is no zero from this 
cause in the Rayleigh wave spectrum of a vertical dip slip source. 

The expression on the right-hand side of equation (2 -9) for the 45" dip slip gives 
a factor with amplitude 

I CR' (1 + sin' 4) [exp (- ~ q ,  h) - (1 - cR2/2fl') exp (- xqP h)]  - exp (- xq, h) . (2.13) 

Fig. 2 shows this expression as a function of oh/cR for several azimuths. It has 
a zero at values of wh/c, which vary with azimuth. This variation is shown in Fig. 3. 

It is clear from Figs 1 and 2 that the effect of source mechanism on the Rayleigh 
wave spectrum is quite striking. The principle characteristic of the graphs shown is 
the zero corresponding to a node in a certain combination of the displacements in a 
free moving Rayleigh wave. This characteristic is repeated in the corresponding 
expressions calculated for a layered half-space. For certain structures it is found 
that rR(z, o) also has a zero at z > 0. Such spectral ' holes ' are in fact observed 
(see Marshall & Burton 1971, in preparation). 

Fig. 4 shows rR(z, o) and uR(z, o) as functions of z calculated for the structure 
given in Table 1 and at approximately 20-s period. Both curves are similar to those 
corresponding to a uniform half-space except that, in this case, rR has a zero at 
fairly shallow depth. (There are also discontinuities in slope at layer boundaries.) 

t 

0 
I I I I I I I I I 

2.0 5.0 
w h/CR 

F I ~ .  2. The factor in the Rayleigh wave spectrum involving source mechanism 
and depth for a dipslip on a 45" slope (equation (2.13) with A = p) for various 

values of the azimuth 9 (4 = 0 is the direction of strike). 
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Flo. 3. 
9 

The variation of the Rayleigh wave spectral zero, for a dip-slip source with 
45" angle of dip, with azimuth 4. 

t 

r k m  
FIG. 4. The horizontal displacement UR, the divergence of the displacement 
div uR, and the shear stress on a horizontal plane P in a Rayleigh wave, travelling 
in the crust given in Table 1, as functions of depth z. (Period 19-7 seconds.) 
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Analysis of surface wave spectra 213 

Both uR and zR are no longer simply functions of oh/cR but are functions of two 
variables o and h. In the case of a uniform half-space, the period at which the 
zero occurs depends linearly on the soyrce depth. In this case the relationship is 
non-linear and is shown for uR and zR in Fig. 5. 

From the curve corresponding to uR in Fig. 5(a) one can see that, for a vertical 
strike slip fault in a crust of the structure given in Table 1 at a depth of 15 km, measure- 
ment of M, based on the amplitude of 20-s period Rayleigh waves are almost certain 

I I I I I 
16 32 

I I I I I 
20 40 60 80 100 

Period (5) 
r 

FIG. 5. The relationship between depth and period in the zeros of (a) uR(z, w), 
and (b) P ( z ,  w), both calculated for the crust in Tablo 1. 

to give misleading results, as the measurements will be made exactly where the 
spectrum has a hole. The curve for zR indicates that a vertical dip slip fault in such 
a crust at 2-3 km depth will give rise to Rayleigh waves with ano'molously low 
magnitudes in general. 

The effect of source mechanism and depth on the Rayleigh wave spectrum is best 
seen in the graphs of 

as functions of period. Fig. 6 shows such curves for a depth of 2 km. The para- 
meters have been specifically chosen such that zR has a zero. The effect of crustal 
structure can be seen by comparing these with the corresponding curves for a half 
space (Fig. 1). 
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214 A. Douglas. J. A. Hudson and V. K. Kembbavi 

I 
I 
I 

I 40 

FIG. 6. The factors in the Rayleigh wave spectrum involving source mechanism 

and depth as functions of period for a vertical strike slip IGI , vertical 

div uR(h, W) 

2vy0 ,  w) 
fault at a depth of 2 km in the 

crust given in Table 1. 

3. Rayleigh waves from a dilatation source 

If we take the force generating the displacements alq to be a point dilatation of 
magnitude Q’(t)  acting at depth h‘ we get, in place of equation (2.3), 

a 
8% 

i p ( r ,  4,0,0) = Q(0) - iil3q(0,4 + x ,  h’, 0) 

[ (Z)* =*, - iKf l (h l ,  .] 
= Q(o) iiE2q(r, 0, 0) . (3.1) 

OR@,  4 
In a uniform half space 

(3 - 2) 
a 9  a2 - - k u R  = - -Bexp(-q,z). 
az a2 
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Analysis of surface wave speetra 215 

This is of course independent of azimuth and is clearly not zero for any value of z. 
The expression 

a o R  

aZ 
- - i w R  = div uR 

is drawn in Figs 4 and 6 as function of depth and period for the layered structure 
given in Table 1. It is clear that although the divergence is a discontinuous function of 
z (at layer boundaries), dilatation sources give a fairly smooth spectrum. 

We can compare the relative excitation of Rayleigh waves by double couple and 
dilatation sources acting in the same region of the Earth by forming the magnitude 
of the ratio of expressions (2.6) and (3.1): 

In taking this ratio, all complex transmission effects which may be allowed for 
by a linear transfer function have cancelled out. So the expression above may be 
expected to give a good approximation to the value of x R  calculated from data. 

This means that, if the structure in the neighbourhood of the sources is known, 
with data from an explosive source of known yield and depth, the mechanism and 
depth of a nearby fault slip may be found fairly accurately. Alternatively, if the 
mechanism and depth of a fault slip in the area is known, the nature and depth of a 
nearby explosion may be found. (One might investigate the relationship of after- 
shocks to the main shock in a similar way.) This is subject to the proviso, as before, 
that the sources are small enough to be considered as acting at a point. 

If the half space is uniform, we get 

where E = exp [Ich(qtla- q&]. (This expression compares accurately with Haskell 
1963.) 

Fig. 7 shows expression (3.5) evaluated for each type of the three basic faults 
described in Section 2 and for h = h' and h = 1Oh' When the two source depths 
are equal the exponential factor E dominates at high frequencies or large source 
depths (large oh/cR)  and x R  becomes exponentially large. This is because, as the 
depth of source increases, the Rayleigh magnitudes for the faults go down as 
exp (- Khq,.J, but those of the dilatation source as exp (-rchqa). So the absolute 
magnitudes of the Rayleigh waves go down but the relative excitation by the fault 
to that by the dilatation increases. 

The preferential excitation of Rayleigh waves by earthquakes to that by explosions 
is a useful technique for discrimination. Given the depth of source then, it is clear 
that in this case one would look at high frequencies to discriminate between the two 
types of source. 

When the fault is at greater depths than the dilatation, the character of the curves 
changes. In this case the factor exp [~q.(h'-h)] dominates and f becomes expo- 
nentially small at high frequencies. It has a peak around (oh/cR) = 2 to 3 in the 
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216 A. Dough, J. A. Hadson and V. K. Kembhavl 

- 
(b) 

I 
0 I 2 3 4 

w h/CR 

FIO. 7. The ratio xR of Rayleigh wave generation by double couple faults to that 
byadilatationfaultinahalfspacewith h = p(equation(3.5)with Q(o)/Q'(w)  = 2 
for vertical strike-slip and 1 otherwhet) with (a) h = h', and (b) h = 1Oh'. (4 = 60" 

throughout). 
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Analysis of surface wave spectra 217 

examples shown. For a depth of 10 km, this corresponds to a Rayleigh wavelength 
of 20-30 km. So one may expect the discrimination method to work best at these 
wavelengths. However, the method also depends on the relative generation of body 
waves, so this is only a tentative conclusion. 

Since divuR is a fairly smooth function, the major characteristics of the curves 
in Fig. 7 are those of the spectra of the respective fault types. The spectral holes are 
clearly in evidence in the cases of vertical strike slip and of dip slip on a 45" slope. 

4. Love waves from a double-couple source 

If we substitute into the reciprocal theorem A22 

(4.1) I f12 = -d(xl-rl c o ~ ~ ~ ) S ( x , - r ,  sincj1)S(x3)6(r) sin$, 

f i 2  = 6(xl -rl cos &l) S(x2 -rl sin t$l) 6(x3) 6( t )  cos 41 
f 3 2  = 0, 

(i.e. a unit point force at the surface at distance rl and azimuth 41, acting in the 
&direction) we get, instead of equation (2.3), 

where the shear strain 8% is that due to the Love waves emitted by the source (4. I )  
at azimuth 41 + IT. 

Since the Love waves at large distances are approximately plane and of a standard 
form, we may write 

(4.3) I fi12Q(0, +1 + IT, z ,  w) = C' uL(z, w )  sin 41 
t1,24(0, 41+ IT, 2, 0) = - C' u y z ,  w) cos $1 

~~~'(0, 41 + IT, z ,  w )  = 0, 

where C' is a constant and uL contains a factor exp [ k L ( x 1  COS$J~+X, C O S ~ ~ ) ]  ( x L  
is the Love wave number). Substituting into the expression for Ez we obtain 

where 

Hence equation (4.2) becomes 

where we have dropped the superscripts and subscripts 1; Eg3'(r, z, w )  is the Love 
wave displacement at a distance r and azimuth  IT/^ from a unit point force acting 
at the origin in the direction C#J = 0. 
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218 A. Douglas, J. A. Hudson and V. K. Kembhavi 

For a vertical dip slip source, 

where zL is the shear stress on a horizontal plane in the standard Love wave. 
For vertical strike slip 

Finally, for dip slip on a plane with angle of dip 45", 

Fig. 8 shows I C ~  uL(z, o) and ~ ~ ( 2 ,  o) as functions of depth and period for a 

It can be shown (Hudson 1962) that, whatever the variation of elastic properties 
uniform half space with a single uniform layer above (as in Table 2). 

Table 2 
Crust with a single layer on a halfspace 

1st layer 
Half space 

B depth 
3.52 km s-I 38 km 
4-70 km s-' 

Strike slip t'i 
I l l 1  

0 10 20 30 40 0 50 I00 
Depth (kin) Period (s 1 

FIG. 8. The factors in the Love wave spectrum involving source mechanism and 

depth for a vertical strike slip I &u::i) I and a vertical dip slip 

fault in a half space with a single layer above; (a) As functions of depth at 20-s. 
period; and (b) As functions of period at a depth 10 km. 
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Analysis of surface wave spectra 219 

with depth, uL will not go to zero in the fundamental Love wave. So the vertical 
strike slip fault will not have a zero from this cause in its Love wave spectrum. In 
Fig. 8 zL does not have a zero either, but it is conceivable that it might have, if the 
structure of the medium were different. 

Conclusions 
The reciprocity theorem gives a method by which the effects of source mechanism 

and depth on the surface wave spectra of the resulting radiation can be calculated, 
separate from the effect of the transmission path. It also leads to an explanation of 
certain holes appearing in surface wave spectra, to a possible method of checking 
fault plane solutions together with estimates of depth, and to a certain insight into 
the problems of calculating earthquake magnitudes using M,. It is clear that a depth 
correction term of the type used in the formula for M ,  proposed by BAth (1952) is 
inadequate, since the variation of surface wave magnitudes with depth of source is 
more complex than simple exponential-type decay, and depends on source type and 
orientation. 
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Appendix 
Reciprocal theorem for surface waves 

Consider an elastic half space whose properties vary with depth only. A dis- 
placement field u(x, t )  and corresponding stress z(x, t) satisfy the elastodynamic 
equations of motion 
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220 A. Douglas, J. A. Hudson and V. K. Kembhavi 

(where f(x, t) is the body force per unit mass) and the linear stress-strain relations 

n = 1,2, ... x - (ru,)+ - (ad, 
U t ( k ,  0,  z ,  o) = - exp (-iwt) dt dr$ Jo(kr) 28 

> (A31 

etc. (see Hudson 1969a), where r ,  4, z are cylindrical polar co-ordinates such that 
the half space is defined by z 3 0 and u,, u,, u, are the corresponding co-ordinates 
of u, then the vectors uyb 

(A4) Be&, n,z, 0) = (:I and b" = ( U," T,a) 

(A51 

by virtue of equations (Al) and (A21 (a stands for either c or s; U," etc. representing 
components transformed using sin nr$ instead of cos nr$). The square matrices 
N, n depend on 1, p, p,  k only, and 

satisfy a a 
dZ aZ 
- B" = NB"- Z", - b" = nb"-Z" 

(A6) 

where 
m n m 

Z t ( k ,  n , ~ ,  W )  = - - 
wz 8 

exp (-Lot) dt 1 cos nr$ dr$ 1 J,(kr) 
-03 -?. 0 

\ 

P ZyC(k, 0, z ,  o) = - 2w2R' 1 exp (- iwt) dt  1 dr$ 1 Jo(kr) 
- m  -?. 0 

etc. (other components being defined in a similar manner to U,", U," with the extra 
factor p / o z ~ .  
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Analysis of surface wave spectra 22 1 

The first of equations (A5) applied to two vectors B'" and B2Y (y = s or c) corres- 
ponding to two different displacement fields, leads to 

(A8) 
a 1 1 - * ( z )  = u;Yzr'"-u,'"z 2Y+ - u 2YZz'"- - Uz'aZz2Y, 
az 

F ( Z )  = U,l" T,2y-U?Y TI"+ -j U p  p- - UZQ T,'@. 

k2 k2 z 

where 

649) 
1 1 
k k 2  

If the upper surface is stress free in both systems, 9 ( 0 )  = 0. If also the half 
space is uniform for large enough z and the regions of non-zero body force are 
bounded, the displacements for large z correspond to outgoing waves in a uniform 
medium. It can be shown (cf. Hudson 1969b) that this implies that 9 ( z )  = 0 for 
sufficiently large z. 

Integrating equation (A8) over z we get 

in 

1 
k2 

1 
k2 U,2yZr1u+ - UzZYZz'" Ur'"Z,Zy+ - Uz1aZz2Y 

0 0 

Similarly, from the second of equations (A5), 
m W f U42yZ+'u dz = U,'" ZoZy dz. 

0 s 
0 

It follows from the method of Hudson (1969b) that the far field displacements 
the Rayleigh waves generated by either system 1 or 2 are given by 

iilh(r, 4 , z ,  w) = A K  lim [F(k, o) U,"(k, n, z ,  w,] cosn4 

+ lim [F(k, o) UF(k,  n, z, w)]  sin n4 exp (inn/2), (A12) 
k+K I 

j = I, 2, and the bar denotes the Fourier transform in time. 
Similarly 

i i tq (r ,  4, z ,  o) = Ai lim [FUZle]  cosn++lim [FUZ"] sin?@ exp (inx!2). (A13) 
k+K 

F(k, a) is the characteristic function for Rayleigh waves with root k = K corres- 
ponding to the fundamental mode, and 

A = - (m) exp [ - i ~ r f i n / 4 l / F ' ( ~ ,  w);  (A14) 
2A + 

F' = dF/ak and the f sign depends on w 3 0. (The sum over n is finite in most 
applications of this theory so that there are no convergence problems.) 

f {iKii:q(r, 42, z, 0) S1(Z,')+ii,2q(r, 42, 2, w )  S'(Z,')}dz 

From equation (A10) we now get, using (A12) and (A13), 

0 

= J' {iKfi:q(r, &, 2, o) S2(Z:)+ii,1q(r, 4', z ,  o) S2(Z:))dz, (A15) 
0 
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where 
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m 
S'(Z,') = C {Z?(K, n, z, o) cos n 4 , + ~ , " ( ~ ,  n, z, o) sin n4ji> exp (inn/2), 

n = O  

j = 1 , 2 and I represents r or z. (The integral over z is in fact finite since the integrand 
is zero for large enough z, so there is again no problem of convergence.) 

By using the representation 

2ni" J,,(Kr) = exp ( i K r  cos 4) cos n4 d 4 ,  (A 1 6) 
- n  i 

it can be shown that 

x exp [iKr cos (4-4,)]] (A17) 

m x 

0 -n 

and 
a0 n 

x exp [iKr cos (++,)I} 

S'(2,l) = '7 2 A 0  PK 1 rdr I d4{33r, 494 exp [iKr cos (4-4,)1>, (A181 
- n  

j = 1,2. 

The integrands of (A17) and (A18) are in the form of a component of fi multiplied 
by a plane wave with wave number K, moving in a direction making an angle 4,+ A 

with 4 = 0. This is exactly the form of a Rayleigh wave arriving from a source at a 
very large distance r in the opposite direction. 

We may take r$l = &+ A without loss of generality as the orientation of the 
fault systems may be chosen arbitrarily; by substitution of (A17), (A18) into (A15) 
we get 

1 uzq(r, dl + z, z ,  w) .r l(r,  4, z ,  a) d~ = 1 ulq(r, 41, z ,  0) f*(r ,  4, z, o) d ~ ,  (AM) 

where f', f2 represent force systems a large distance apart lying within the regions 
V,, Vz and uiq, uzq represent the Rayleigh waves generated by each respectively; the 
two-body force systems may be thought to be connected by a line from 1 to 2 making 
an angle 4l with the plane r#i = 0. 

The far field displacements in the Love waves generated by either system 1 or 
system 2 are given by 

v1 vz 

- lim [F,(k, o) U,'"(k, n, 2, o] cos ncj exp (ina/2) j = 1,2 (A20) 

where K, is the wave number, FL the characteristic equation of Love waves, and 
AL is the factor corresponding to A. 

k + K L  1 
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Analysis of surface wave spectra 

By applying this relation to equation (All), we get 
m m 

223 

1 ii424(r, 42, z ,  o) ~'(2;) dz = ii42s(r, &, z ,  o) s2(Zg2j dz, 
0 0 s 

where 

m I 

~ ~ ~ ~ ( r , ~ ~ + x , r , w ) . ~ ~ ( r , ~ , z , w ) d V  = I' u 1 q ( r , 4 ~ , z , w ) . ~ 2 ( r , 4 , z , o ) d ~  (A22) 

and this equation now holds for both Rayleigh waves (equation (A19)) and Love 
waves. It is exactly of the form of the Fourier time transform of Graffi's (1947) 
result for the total displacement field. 

)'I v 2  
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