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This article introduces modified semianalytical methods, namely, the Shehu decomposition method and q-homotopy analysis
transform method, a combination of decomposition method, the q-homotopy analysis method, and the Shehu transform
method to provide an approximate method analytical solution to fractional-order Navier-Stokes equations. Navier-Stokes
equations are widely applied as models for spatial effects in biology, ecology, and applied sciences. A good agreement between
the exact and obtained solutions shows the accuracy and efficiency of the present techniques. These results reveal that the
suggested methods are straightforward and effective for engineering sciences models.

1. Introduction

Many investigations have provided unique solutions that
meet the needs of various fields, making fractional differen-
tial equation resolution lucrative mathematical models.
Caputo and Riemann-Liouville derivatives were the most
acceptable method to model the different natural processes
that required noninteger derivatives. However, their limits
led to the search for additional derivatives. Singular kernels
exist in both fractional derivatives of Riemann-Liouville and
Caputo. Furthermore, the constant’s Riemann-Liouville
derivative does not equal zero. To outcome the problem of
the unique kernel, Caputo and Fabrizio [1] suggested without
a singular kernel of the fractional derivative operator.
Through several applications, Caputo Fabrizio has proven
to be an efficient operator [2–5]. By using the Mittag-Leffler
function, the authors suggested an actual new fractional
derivative in [6]. The Atangana-Baleanu Riemann derivative
(Riemann-Liouville sense) is one, whereas the Atangana-
Baleanu Caputo derivative is the other (Caputo sense). The
Atangana-Baleanu Caputo and Riemann derivatives feature
all fractional derivative properties except the semigroup

property, additionally to the fact that the kernel is nonsingu-
lar and nonlocal. However, these new fractional operators
have recently been identified in a newly constructed frac-
tional operator categorization [7–10].

Fluid mechanics, mathematical biology, viscoelasticity,
electrochemistry, life sciences, and physics all use
fractional-order partial differential equations (PDEs) to
explain various nonlinear complex systems [11–14]. For
example, fractional derivatives can be used to describe non-
linear seismic oscillations [15], and fractional derivatives can
be used to overcome the assumption’s weakness in the fluid-
dynamic traffic model [16]. Furthermore, based on actual
results, [17, 18] offer fractional partial differential equations
for the propagation of shallow-water waves and seepage flow
in porous media. In most circumstances, obtaining the right
behavior of fractional differential equations is extremely
difficult. Much work has gone into developing strategies
for calculating the approximate behavior of these kinds
of equations. The fractional model is the most potential
candidate in nanohydrodynamics, where the continuum
assumption fails miserably. The homotopy perturbation
Sumudu transform method [19], homotopy perturbation
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method [20], Adomian decomposition method [21], homo-
topy analysis method [22], fractional reduced differential
transform method [23, 24], and variation iteration method
[25] have all been proposed in recent years for solving
fractional PDEs.

The Navier-Stokes equation, which depicts the viscous
fluid’s flow motion, was developed by Navier in 1822. They
used numerous physical processes as examples of fluid
movements, such as blood flow, ocean currents, liquid flow
in pipelines, and airflow around airplane arms. Due to its
nonlinear character, it can only be solved exactly in a few
circumstances. In these situations, we must consider a sim-
ple flow pattern configuration and make assumptions about
the fluid’s state. The central equation of viscous fluid flow
movement, known as the Navier-Stokes equation, was pub-
lished in 1822 [26]. This equation depicts a few projections,
including sea streams, fluid flow in channels, blood flow, and
wind current around an airship’s wings. There are numerous
methods for solving fractional-order Navier-Stokes equa-
tions in the literature. El-Shahed and Salem published the
first fractional version of the Navier-Stokes equation in
2005 [27]. Kumar et al. [28] used a mixture of homotopy
perturbation method and the Laplace transform to solve a
nonlinear fractional Navier-Stokes problem analytically.
Ragab et al. [29] and Ganji et al. [30] used the homotopy
analysis method to solve the same Navier-Stokes equation.
For the solution of fractional Navier-Stokes equations,
Birajdar [31] and Maitama [32] used the Adomian decom-
position method. Kumar et al. [33] used the Adomian
decomposition method and Laplace transform algorithms
to obtain the analytical answer of the fractional Navier-
Stokes problem. In contrast, Jena et al. [34] used the
Laplace transform and finite Hankel transform algorithm
to solve the same equation. The current paper uses the
homotopy perturbation transform method to provide a
precise or approximate solution to the stated problem.

Hashim et al. were the first to introduce the homotopy
analysis method (HAM) [35, 36]. A continuous mapping is
created in HAM by constructing it from a preliminary calcu-
lation to get close to the right solution of the considered
equation. To make such a continuous mapping, an auxiliary
linear operator is chosen, and the convergence of the series
solution is ensured through an auxiliary parameter. The
effect of higher-order wave dispersion can be investigated
using time-fractional Korteweg-De Vries equations. The
Korteweg-De Vries-Burgers equation describes the waves
on shallow water surfaces. The nonlocal property of the frac-
tional Korteweg-De Vries [37, 38] equation is its strength.

The Adomian decomposition technique [39, 40] is a
well-known systematic technique for solving deterministic
or stochastic operator equations, such as integral equations,
integro-differential equations, ordinary differential equations,
and partial differential equations. In real-world implementa-
tions in engineering and applied sciences, the Adomian
decomposition method is vital for approximation analytic
solutions and numeric simulations. It enables us to solve non-
linear initial value problems and boundary value problems
without relying on nonphysical assumptions such as lineariza-
tion, perturbation, and beliefs, estimating the starting function

or a set of fundamental terms [41, 42]. Furthermore, because
Green’s functions are difficult to determine, the Adomian
decomposition method does not necessitate their use, which
would complicate such analytic calculations in most cases.
The accuracy of the approximate analytical answers obtained
can be verified using direct substitution [43] emphasized the
ADM’s benefits over Picard’s iterated method. More benefits
of the Adomian decomposition method over the variational
iteration approach were highlighted in [44, 45]. Adomian
polynomials, which are tailored to the specific nonlinearity
to solve nonlinear operator equations, are essential ideas.

2. Preliminaries Concepts

Definition 1. The Sumudu transformation is achieved across
the function set [46, 47]

A = v Ið Þ: ∃N , τ1, τ2 > 0,∣v Ið Þ∣<Ne ∣I∣/τið Þ, ifI ∈ −1ð Þi × 0,∞½ Þ
n o

,

ð1Þ

by

S f Ið Þ½ � =G uð Þ =
ð∞
0
f uIð Þe −Ið ÞdI, u ∈ −τ1, τ2ð Þ: ð2Þ

Many researchers have identified and applied this trans-
form to models in various scientific areas and [46, 48]. The
link between Laplace and Sumudu transformations is
demonstrated in the next theorem.

Theorem 2. Let G and F be the Laplace and the Sumudu
transformations of f ðIÞ ∈ A. Then [49],

G uð Þ = F 1/uð Þ
u

: ð3Þ

The Shehu transformation was developed in [50] general-
izes the Laplace and the Sumudu integral transformations;
they have applied it to the analysis of ODEs and PDEs.

Definition 3. The Shehu transformation is achieved over the
set A by the following [50]:

ℍ f Ið Þ½ � =V s, uð Þ =
ð∞
0
e −sI/uð Þ f Ið ÞdI: ð4Þ

It is evident that the Shehu transformation is linear as
the Laplace and Sumudu transforms. The function Mittag-
Leffler EδðIÞ is a straightforward generalized form of the
exponential series. For δ = 1, we get EδðIÞ = eðIÞ. It is
expressed as [51]

Eδ zð Þ = 〠
∞

k=0

zk

Γ δk + 1ð Þ , δ ∈ℂ, Re δð Þ > 0: ð5Þ

Definition 4. Let f ∈H1ða, bÞ, b > a; then, for δ ∈ ð0, 1Þ, the
fractional derivative of Atangana-Baleanu in the sense
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Caputo is define as [6]

ABC
a Dδ

I f Ið Þð Þ = B δð Þ
1 − δ

ðI
a
f ′ xð ÞEδ −δ

I − xð Þδ
1 − δ

 !
dx: ð6Þ

Definition 5. Let f ∈H1ða, bÞ, b > a; then, for δ ∈ ð0, 1Þ, the
fractional derivative of Atangana-Baleanu in the sense
Riemann-Liouville is expressed as [6]

ABR
a Dδ

I f Ið Þð Þ = B δð Þ
1 − δ

d
dI

ðI
a
f xð ÞEδ −δ

I − xð Þδ
1 − δ

 !
dx: ð7Þ

Under the constraints Bð0Þ = Bð1Þ = 1, BðδÞ is a normal-
ising function.

Theorem 6. The Laplace transformation of fractional deriva-
tive Atangana-Baleanu in sense of Caputo is define as [6]

L ABC
0 Dδ

I f Ið Þð Þ
n o

sð Þ = B δð Þ
1 − δ

sδF sð Þ − sδ−1 f 0ð Þ
sδ + δ/1 − δ

, ð8Þ

and the Laplace transformation of the fractional deriva-
tive Atangana-Baleanu in sense of Riemann-Liouville is
define as

L ABC
0 Dδ

I f Ið Þð Þ
n o

sð Þ = B δð Þ
1 − δ

sδF sð Þ
sδ + δ/1 − δ

: ð9Þ

3. Main Solutions

In what follows, we suppose that f ∈H1ða, bÞ, b > a, δ ∈ ð0, 1Þ
and f ðIÞ ∈ A.

Theorem 7. The fractional derivative of Atangana-Baleanu
Sumudu transformation in Caputo sense is define as [8]

S ABC
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δuδ

G uð Þ − f 0ð Þð Þ: ð10Þ

Proof. Applying (8) and (3), we achieve

S ABC
0 Dδ

t f Ið Þð Þ
� �

= 1
u

B δð Þ
1 − δ

1/uð ÞδF 1/uð Þ − 1/uð Þδ−1 f 0ð Þ
1/uð Þδ + δ/1 − δ

 !

= 1
u

� �δ B δð Þ
1 − δ

G uð Þ − f 0ð Þ
1/uð Þδ + δ/1 − δ

:

ð11Þ

Then, we achieve the desired outcome

S ABC
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δuδ

G uð Þ − f 0ð Þð Þ: ð12Þ

Theorem 8. The Sumudu transformation of fractional deriv-
ative Atangana-Baleanu in sense of Riemann-Liouville is

define as [8]

S ABR
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δuδ

G uð Þ: ð13Þ

Proof. Using (9) and (3), we obtain

S ABR
δ Dδ

I f Ið Þð Þ
n o

sð Þ = 1
u
B δð Þ
1 − δ

1/uð ÞδF 1/uð Þ
1/uð Þδ + δ/1 − δ

= 1
u
B δð Þ
1 − δ

1/uð ÞδuG uð Þ
1/uð Þδ + δ/1 − δ

= B δð Þ
1 − δ

G uð Þ
1 + δ/1 − δuδ

:

ð14Þ

Then, we achieve the desired outcome

S ABR
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δuδ

G uð Þ: ð15Þ

The Sumudu and Shehu transformations are demon-
strated in the following theorem.

Theorem 9. Let GðuÞ and Vðs, uÞ be the Shehu and the
Sumudu transformations of f ðIÞ ∈ A. Then [8],

V s, uð Þ = u
s
G

u
s

� �
: ð16Þ

Proof. If f ðIÞ ∈ A, then

V s, uð Þ =
ð∞
0
e −sI/uð Þf Ið ÞdI: ð17Þ

If we set τ = sI/uðI = uτ/sÞ, then the right hand side can
be represent as

V s, uð Þ =
ð∞
0
e −τð Þf u

s τ
� � u

s dτ =
u
s

ð∞
0
e −τð Þf u

s τ
� �

dτ: ð18Þ

The right side integral is obviously Gðu/sÞ, thus obtain-
ing (16). It is obvious that

V s, 1ð Þ = 1
sG

1
s

� �
= F sð Þ, ð19Þ

where FðsÞ is the Laplace transformation of f ðIÞ.

The following significant properties are achieved by
applying the relationship among Sumudu and Shehu trans-
formations (16).

Theorem 10. The Shehu transformation of Ix−1 is [8]

V s, uð Þ = Γ xð Þ u
s

� �x
, x > 0: ð20Þ

3Journal of Function Spaces



Proof. When x > 0, the Sumudu of Ix−1 is define as

G uð Þ = Γ xð Þux−1, ð21Þ

where ΓðxÞ is the Gamma function expressed as

Γ xð Þ =
ð∞
0
Ix−1e−IdI: ð22Þ

Then, by applying (16), we get the achieved solution.

Theorem 11. Let δ, ω ∈ℂ, with Re ðδÞ > 0. Shehu transform
of EδðωIδÞ is given by [8]

H Eδ ωIδ
� �� �

= u
s

1 − ω
u
s

� �δ� �−1

: ð23Þ

Proof. Based on the reference [52], we get

S Eδ ωIδ
� �� �

= 1 − ωuδ
� �−1

, ð24Þ

and then, by applying (16), we get

H Eδ ωIδ
� �� �

= u
s

� �
1 − ω

u
s

� �δ� �−1
: ð25Þ

Theorem 12. Let GðuÞ and Vðs, uÞ be the Shehu and the
Sumudu transformations of f ðIÞ ∈ A. Then, the fractional
derivative of Atangana-Baleanu Shehu transform in sense of
Caputo is define as ℍ

H ABC
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δ u/sð Þδ

V s, uð Þ − u
s
f 0ð Þ

� �
:

ð26Þ

Proof. Applying (10) and the relationship among Shehu and
Sumudu transformations, we achieve

H ABC
0 Dδ

I f Ið Þð Þ
� �

= u
s

B δð Þ
1 − δ + δ u/sð Þδ

G
u
s

� �
− f 0ð Þ

� �

= B δð Þ
1 − δ + δ u/sð Þδ

V s, uð Þ − u
s
f 0ð Þ

� �
:

ð27Þ

Theorem 13. Let GðuÞ and Vðs, uÞ be the Shehu and the
Sumudu transformations of f ðIÞ ∈ A. Then, the fractional
derivative of Atangana-Baleanu Shehu transform in sense of
Riemann-Liouville is define as

H ABR
0 Dδ

I f Ið Þð Þ
� �

= B δð Þ
1 − δ + δ u/sð Þδ

V s, uð Þ − u
s
f 0ð Þ

� �
:

ð28Þ

Proof. Applying (13) and the relationship among Shehu and
Sumudu transformations (16), we achieve

H ABR
0 Dδ

I f Ið Þð Þ
� �

= u
s

B δð Þ
1 − δ + δ u/sð Þδ

G
u
s

� �

= B δð Þ
1 − δ + δ u/sð Þδ

V s, uð Þ:
ð29Þ

4. The Procedure of SDM

In this section, we describe the SDM procedure for fractional
PDEs.

Dδ
Iμ χ,Ið Þ +R1 μ, νð Þ +N 1 μ, νð Þ −P 1 χ,Ið Þ = 0,

Dδ
Iν χ,Ið Þ +R2 μ, νð Þ +N 2 μ, νð Þ −P 2 χ,Ið Þ = 0, 0 < δ ≤ 1,

ð30Þ

with initial condition

μ δ, 0ð Þ = g1 χð Þ, ν δ, 0ð Þ = g2 χð Þ, ð31Þ

where Dδ
I = ∂δ/∂Iδ is the Caputo derivative of

fractional-order δ, R1 and R2 and N 1 and N 2 are linear
and nonlinear terms, respectively, and P 1 and P 2 are source
functions.

Applying the Shehu transform to Equation (30),

S Dδ
Iμ χ,Ið Þ

h i
+ S R1 μ, νð Þ +N 1 μ, νð Þ −P 1 χ,Ið Þ½ � = 0,

S Dδ
Iν χ,Ið Þ

h i
+ S R2 μ, νð Þ +N 2 μ, νð Þ −P 2 χ,Ið Þ½ � = 0:

ð32Þ

Applying the Shehu transformation of differentiation
property, we have

S μ χ,Ið Þ½ � = u
s
μ χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 1 χ,Ið Þ½ �

−
1 − δ + δ u/sð Þδ

B δð Þ S R1 μ, νð Þ +N 1 μ, νð Þf g�,

S ν χ,Ið Þ½ � = u
s
ν χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 2 χ,Ið Þ½ �

−
1 − δ + δ u/sð Þδ

B δð Þ S R2 μ, νð Þ +N 2 μ, νð Þf g�:

ð33Þ
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SDM defines the result of infinite series μðχ,IÞ and
νðχ,IÞ.

μ χ,Ið Þ = 〠
∞

m=0
μm χ,Ið Þ, ν χ,Ið Þ = 〠

∞

m=0
νm χ,Ið Þ: ð34Þ

The nonlinear functions defined by Adomian polyno-
mials N 1 and N 2 are expressed as

N 1 μ, νð Þ = 〠
∞

m=0
Am,N 2 μ, νð Þ = 〠

∞

m=0
Bm: ð35Þ

The Adomian polynomials can be expressed as

Am = 1
m!

∂m

∂λm
N 1 〠

∞

k=0
λkμk, 〠

∞

k=0
λkνk

 !( )" #
λ=0

,

Bm = 1
m!

∂m

∂λm
N 2 〠

∞

k=0
λkμk, 〠

∞

k=0
λkνk

 !( )" #
λ=0

:

ð36Þ

Putting Equations (34) and (36) into (33) gives

S 〠
∞

m=0
μm χ,Ið Þ

" #
= u

s
μ χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 1 χ,Ið Þf g

−
1 − δ + δ u/sð Þδ

B δð Þ

� S R1 〠
∞

m=0
μm, 〠

∞

m=0
νm

 !
+ 〠

∞

m=0
Am

( )
,

S 〠
∞

m=0
νm χ,Ið Þ

" #
= u

s
ν χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 2 χ,Ið Þf g

−
1 − δ + δ u/sð Þδ

B δð Þ

� S R2 〠
∞

m=0
μm, 〠

∞

m=0
νm

 !
+ 〠

∞

m=0
Bm

( )
:

ð37Þ

Using the inverse Shehu transform of Equation (37),

〠
∞

m=0
μm χ,Ið Þ = S−1

u
s
μ χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 1 χ,Ið Þf g
" #

− S−1
1 − δ + δ u/sð Þδ

B δð Þ S R1 〠
∞

m=0
μm, 〠

∞

m=0
νm

 !
+ 〠

∞

m=0
Am

( )" #
,

〠
∞

m=0
νm χ,Ið Þ = S−1

u
s
ν χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 2 χ,Ið Þf g
" #

− S−1
1 − δ + δ u/sð Þδ

B δð Þ S R2 〠
∞

m=0
μm, 〠

∞

m=0
νm

 !
+ 〠

∞

m=0
Bm

( )" #
,

ð38Þ

and we expressed the following terms:

μ0 χ,Ið Þ = S−1
u
s
μ χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 1 χ,Ið Þf g
" #

,

ν0 χ,Ið Þ = S−1
u
s
μ χ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ S P 2 χ,Ið Þf g
" #

,

μ1 χ,Ið Þ = −S−1
1 − δ + δ u/sð Þδ

B δð Þ S R1 μ0, ν0ð Þ +A0f g
" #

,

ν1 χ,Ið Þ = −S−1
1 − δ + δ u/sð Þδ

B δð Þ S R2 μ0, ν0ð Þ +B0f g
" #

:

ð39Þ

The general for m ≥ 1 is given by

μm+1 χ,Ið Þ = −S−1
1 − δ + δ u/sð Þδ

B δð Þ S R1 μm, νmð Þ +Amf g
" #

,

νm+1 χ,Ið Þ = −S−1
1 − δ + δ u/sð Þδ

B δð Þ S R2 μm, νmð Þ +Bmf g
" #

,

ð40Þ

5. Solution of SDM

Example 1. Consider the two dimensional fractional-order
Navier-Stokes equation

Dδ
I μð Þ + μ

∂μ
∂χ

+ μ
∂μ
∂ξ

= ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

" #
+ q,

Dδ
I νð Þ + μ

∂ν
∂χ

+ ν
∂ν
∂ξ

= ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

" #
− q,

ð41Þ

with initial conditions

μ χ, ξ, 0ð Þ = − sin χ + ξð Þ,
ν χ, ξ, 0ð Þ = sin χ + ξð Þ:

(
ð42Þ

Using Shehu transform of Equation (41), we have

S
∂δμ χ, ξ,Ið Þ

∂Iδ

( )
= −S μ

∂μ
∂χ

+ μ
∂μ
∂ξ

− ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

" #
+ q

" #
,

S
∂δν χ, ξ,Ið Þ

∂Iδ

( )
= −S μ

∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

" #
− q

" #
,
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B δð Þ
1 − δ + δ u/sð Þδ

S μ χ, ξ,Ið Þ − u
s
μ χ, ξ, 0ð Þ

n o

= −S μ
∂μ
∂χ

+ μ
∂μ
∂ξ

− ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

" #
+ q

" #
,

B δð Þ
1 − δ + δ u/sð Þδ

S ν χ, ξ,Ið Þ − u
s
ν χ, ξ, 0ð Þ

n o

= −S μ
∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

" #
− q

" #
:

ð43Þ

The above equations can be written as

S μ χ, ξ,Ið Þf g = u
s

μ χ, ξ, 0ð Þf g − 1 − δ + δ u/sð Þδ
B δð Þ

� S μ
∂μ
∂χ

+ μ
∂μ
∂ξ

− ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

" #
+ q

" #
,

S ν χ, ξ,Ið Þf g = u
s

ν χ, ξ, 0ð Þf g − 1 − δ + δ u/sð Þδ
B δð Þ

� S μ
∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

" #
− q

" #
:

ð44Þ

Using inverse Shehu transform, we have

μ χ, ξ,Ið Þ = μ χ, ξ, 0ð Þ − S−1
1 − δ + δ u/sð Þδ

B δð Þ S q½ �
" #

− S−1
1 − δ + δ u/sð Þδ

B δð Þ S μ
∂μ
∂χ

+ μ
∂μ
∂ξ

− ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

 !( )" #
,

ν χ, ξ,Ið Þ = ν χ, ξ, 0ð Þ − S−1
1 − δ + δ u/sð Þδ

B δð Þ S q½ �
" #

− S−1
1 − δ + δ u/sð Þδ

B δð Þ S μ
∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

 !( )" #
:

ð45Þ

Suppose that the unknown functions μðχ, ξ,IÞ and
νðχ, ξ,IÞ infinite series solution are as follows:

μ χ, ξ,Ið Þ = 〠
∞

m=0
μm χ, ξ,Ið Þ,

ν χ, ξ,Ið Þ = 〠
∞

m=0
νm χ, ξ,Ið Þ:

ð46Þ

Note that μμχ =∑m = 0∞Am, νμξ =∑m = 0∞Bm,

μνχ =∑m = 0∞Cm, and ννξ =∑∞
m=0Dm are the Adomian

polynomials, and the nonlinear terms were described. Apply-
ing such terms, Equation (45) can be rewritten in the form

〠
∞

m=0
μm χ, ξ,Ið Þ = μ χ, ξ, 0ð Þ + S−1

1 − δ + δ u/sð Þδ
B δð Þ S qf g

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Am + 〠

∞

m=0
Bm

 !""

+ ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

( )##
,

〠
∞

m=0
νm χ, ξ,Ið Þ = ν χ, ξ, 0ð Þ − S−1

1 − δ + δ u/sð Þδ
B δð Þ S qf g

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Cm + 〠

∞

m=0
Dm

 !""

+ ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

( )##
:

ð47Þ

〠
∞

m=0
μm χ, ξ,Ið Þ = − sin χ + ξð Þ + q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Am + 〠

∞

m=0
Bm

 !" #" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S ρ 〠
∞

m=0

∂2μm
∂χ2 + 〠

∞

m=0

∂2μm
∂ξ2

( )" #" #
,

〠
∞

m=0
νm χ, ξ,Ið Þ = sin χ + ξð Þ − q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Cm + 〠

∞

m=0
Dm

 !" #" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S ρ 〠
∞

m=0

∂2νm
∂χ2 + 〠

∞

m=0

∂2νm
∂ξ2

( )" #" #
:

ð48Þ

According to Equation (36), the Adomian polynomials
can be expressed as

A0 = μ0
∂μ0
∂χ

,A1 = μ0
∂μ1
∂χ

+ μ1
∂μ0
∂χ

,

B0 = ν0
∂μ0
∂χ

,B1 = ν0
∂μ1
∂ξ

+ ν1
∂μ0
∂ξ

,

C0 = μ0
∂ν0
∂χ

,C1 = μ0
∂ν1
∂χ

+ μ1
∂ν0
∂χ

,

D0 = ν0
∂ν0
∂χ

,D1 = ν0
∂ν1
∂χ

+ ν1
∂ν0
∂χ

:

ð49Þ

Thus, we can easy achieve the recursive relationship
Equation (48).
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μ0 χ, ξ,Ið Þ = − sin χ + ξð Þ + q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
, 

ν0 χ, ξ,Ið Þ = sin χ + ξð Þ − q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
:

ð50Þ

For m = 0,

μ1 χ, ξ,Ið Þ = sin χ + ξð Þ 2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
, 

ν1 χ, ξ,Ið Þ = − sin χ + ξð Þ 2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
:

ð51Þ

For m = 1,

μ2 χ, ξ,Ið Þ = − sin χ + ξð Þ 2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
,

ν2 χ, ξ,Ið Þ = sin χ + ξð Þ 2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
:

ð52Þ

For m = 2,

μ3 χ, ξ,Ið Þ = sin χ + ξð Þ 2ρð Þ3
B δð Þð Þ3 1 − δð Þ3 + 3δ 1 − δð Þ2Iδ

Γ δ + 1ð Þ

"

+ δ2 1 − δð ÞI2δ+1

Γ 2δ + 2ð Þ + 2δ2 1 − δð ÞI2δ

Γ 2δ + 1ð Þ + δ3I2δ+1

Γ 2δ + 2ð Þ

#
,

ν3 χ, ξ,Ið Þ = − sin χ + ξð Þ 2ρð Þ3
B δð Þð Þ3

1 − δð Þ3 + 3δ 1 − δð Þ2Iδ

Γ δ + 1ð Þ

"

+ δ2 1 − δð ÞI2δ+1

Γ 2δ + 2ð Þ + 2δ2 1 − δð ÞI2δ

Γ 2δ + 1ð Þ + δ3I2δ+1

Γ 2δ + 2ð Þ

#
⋮

ð53Þ

In the same method, the remaining μm and νmðm ≥ 3Þ
components of the SDM solution can be obtained seam-
lessly. Consequently, we describe the series of alternative
solutions as

μ χ, ξ,Ið Þ = 〠
∞

m=0
μm χ, ξð Þ = μ0 χ, ξð Þ + μ1 χ, ξð Þ

+ μ2 χ, ξð Þ + μ3 χ, ξð Þ+⋯,

ν χ, ξ,Ið Þ = 〠
∞

m=0
νm χ, ξð Þ = ν0 χ, ξð Þ + ν1 χ, ξð Þ

+ ν2 χ, ξð Þ + ν3 χ, ξð Þ+⋯,

μ χ, ξ,Ið Þ = − sin χ + ξð Þ + q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ sin χ + ξð Þ 2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

− sin χ + ξð Þ 2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

+ sin χ + ξð Þ 2ρð Þ3
B δð Þð Þ3 1 − δð Þ3 + 3δ 1 − δð Þ2Iδ

Γ δ + 1ð Þ

"

+ δ2 1 − δð ÞI2δ+1

Γ 2δ + 2ð Þ + 2δ2 1 − δð ÞI2δ

Γ 2δ + 1ð Þ + δ3I2δ+1

Γ 2δ + 2ð Þ

#
−⋯,

ν χ, ξ,Ið Þ = sin χ + ξð Þ − q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

− sin χ + ξð Þ 2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ sin χ + ξð Þ 2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

− sin χ + ξð Þ 2ρð Þ3
B δð Þð Þ3 1 − δð Þ3 + 3δ 1 − δð Þ2Iδ

Γ δ + 1ð Þ

"

+ δ2 1 − δð ÞI2δ+1

Γ 2δ + 2ð Þ + 2δ2 1 − δð ÞI2δ

Γ 2δ + 1ð Þ + δ3I2δ+1

Γ 2δ + 2ð Þ

#
+⋯:

ð54Þ

The exact result of Equation (41) at δ = 1 and q = 0 is
as follows:

μ χ, ξ,Ið Þ = −e−2ρI sin χ + ξð Þ,
ν χ, ξ,Ið Þ = e−2ρI sin χ + ξð Þ:

ð55Þ

Example 2. Consider the two dimensional fractional-order
Navier-Stokes equation

Dδ
I μð Þ + μ

∂μ
∂χ

+ ν
∂μ
∂ξ

= ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

" #
+ q,

Dδ
I νð Þ + μ

∂ν
∂χ

+ ν
∂ν
∂ξ

= ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

" #
− q,

ð56Þ

with the initial conditions

μ χ, ξ, 0ð Þ = −eχ+ξ,

ν χ, ξ, 0ð Þ = eχ+ξ:

 
ð57Þ

Using Shehu transform of Equation (56), we have

S
∂δμ
∂Iδ

( )
= S − μ

∂μ
∂χ

+ ν
∂μ
∂ξ

� �
+ ρ

∂2μ
∂χ2 + ∂2μ

∂ξ2

( )
+ q

" #
,

S
∂δν
∂Iδ

( )
= S − μ

∂ν
∂χ

+ ν
∂ν
∂ξ

� �
+ ρ

∂2ν
∂χ2 + ∂2ν

∂ξ2

( )
− q

" #
,
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B δð Þ
1 − δ + δ u/sð Þδ

S μ χ, ξ,Ið Þ − u
s
μ χ, ξ, 0ð Þ

n o

= S − μ
∂μ
∂χ

+ ν
∂μ
∂ξ

� �
+ ρ

∂2μ
∂χ2 + ∂2μ

∂ξ2

( )
+ q

" #
,

B δð Þ
1 − δ + δ u/sð Þδ

S ν χ, ξ,Ið Þ − u
s
ν χ, ξ, 0ð Þ

n o

= S − μ
∂ν
∂χ

+ ν
∂ν
∂ξ

� �
+ ρ

∂2ν
∂χ2 + ∂2ν

∂ξ2

( )
− q

" #
:

ð58Þ

The above equations can be written as

S μ χ, ξ,Ið Þf g = u
s

μ χ, ξ, 0ð Þf g + 1 − δ + δ u/sð Þδ
B δð Þ

� S − μ
∂μ
∂χ

+ ν
∂μ
∂ξ

� �
+ ρ

∂2μ
∂χ2 + ∂2μ

∂ξ2

( )
+ q

" #
,

S ν χ, ξ,Ið Þf g = u
s

ν χ, ξ, 0ð Þf g = 1 − δ + δ u/sð Þδ
B δð Þ

� S − μ
∂ν
∂χ

+ ν
∂ν
∂ξ

� �
+ ρ

∂2ν
∂χ2 + ∂2ν

∂ξ2

( )
− q

" #
:

ð59Þ

Applying inverse Shehu transformation, we get

μ χ, ξ,Ið Þ = μ χ, ξ, 0ð Þ + S−1
1 − δ + δ u/sð Þδ

B δð Þ S qf g
" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − μ
∂μ
∂χ

+ ν
∂μ
∂ξ

� ��"

+ ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

( )##
,

ν χ, ξ,Ið Þ = ν χ, ξ, 0ð Þ − S−1
1 − δ + δ u/sð Þδ

B δð Þ S qf g
" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − μ
∂ν
∂χ

+ ν
∂ν
∂ξ

� ��"

+ ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

( )##
:

ð60Þ

Suppose that the unknown functions μðχ, ξ,IÞ and
νðχ, ξ,IÞ infinite series result as follows:

μ χ, ξ,Ið Þ = 〠
∞

m=0
μm χ, ξ,Ið Þ,

ν χ, ξ,Ið Þ = 〠
∞

m=0
νm χ, ξ,Ið Þ:

ð61Þ

Note that μμχ =∑m = 0∞Am, νμξ =∑m = 0∞Bm,

μνχ =∑m = 0∞Cm, and ννξ =∑∞
m=0Dm are the Adomian

polynomials, and the nonlinear terms were described.
Applying such terms, Equation (60) can be rewritten in
the form

〠
∞

m=0
μm χ, ξ,Ið Þ = μ χ, ξ, 0ð Þ + S−1

1 − δ + δ u/sð Þδ
B δð Þ S qf g

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Am + 〠

∞

m=0
Bm

 !""

+ ρ
∂2μ
∂χ2 + ∂2μ

∂ξ2

( )##
,

〠
∞

m=0
νm χ, ξ,Ið Þ = ν χ, ξ, 0ð Þ − S−1

1 − δ + δ u/sð Þδ
B δð Þ S qf g

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Cm + 〠

∞

m=0
Dm

 !""

+ ρ
∂2ν
∂χ2 + ∂2ν

∂ξ2

( )##
:

ð62Þ

〠
∞

m=0
μm χ, ξ,Ið Þ = − sin χ + ξð Þ + q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Am + 〠

∞

m=0
Bm

 !" #" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S ρ 〠
∞

m=0

∂2μm
∂χ2 + 〠

∞

m=0

∂2μm
∂ξ2

( )" #" #
,

〠
∞

m=0
νm χ, ξ,Ið Þ = sin χ + ξð Þ − q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S − 〠
∞

m=0
Cm + 〠

∞

m=0
Dm

 !" #" #

+ S−1
1 − δ + δ u/sð Þδ

B δð Þ S ρ 〠
∞

m=0

∂2νm
∂χ2 + 〠

∞

m=0

∂2νm
∂ξ2

( )" #" #
:

ð63Þ
According to Equation (36), the Adomian polynomials

can be expressed as

A0 = μ0
∂μ0
∂χ

,A1 = μ0
∂μ1
∂χ

+ μ1
∂μ0
∂χ

,B0 = ν0
∂μ0
∂β

,B1 = ν0
∂μ1
∂β

+ ν1
∂μ0
∂β

,

C0 = μ0
∂ν0
∂χ

,C1 = μ0
∂ν1
∂χ

+ μ1
∂ν0
∂χ

,D0 = ν0
∂ν0
∂χ

,D1 = ν0
∂ν1
∂χ

+ ν1
∂ν0
∂χ

:

ð64Þ

Thus, we can quickly achieve the recursive relationship
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Equation (63)

μ0 χ, ξ,Ið Þ = −eχ+ξ + q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

ν0 χ, ξ,Ið Þ = eχ+ξ −
q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
:

ð65Þ

For m = 0,

μ1 χ, ξ,Ið Þ = eχ+ξ
2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

ν1 χ, ξ,Ið Þ = −eχ+ξ
2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
:

ð66Þ

For m = 1,

μ2 χ, ξ,Ið Þ = −eχ+ξ
2ρð Þ2
B δð Þð Þ2

1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
,

ν2 χ, ξ,Ið Þ = eχ+ξ
2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
:

ð67Þ

For m = 2,

μ3 χ, ξ,Ið Þ = eχ+ξ
2ρð Þ3I3δ

Γ 3δ + 1ð Þ , ν3 χ, ξ,Ið Þ = −eχ+ξ
2ρð Þ3I3δ

Γ 3δ + 1ð Þ :

⋮
ð68Þ

In same method, the remaining μm and νmðm ≥ 3Þ
components of the SDM solution can be obtained seamlessly.
Consequently, we describe the series of alternative solutions as

μ χ, ξ,Ið Þ = 〠
∞

m=0
μm χ, ξð Þ = μ0 χ, ξð Þ + μ1 χ, ξð Þ + μ2 χ, ξð Þ + μ3 χ, ξð Þ+⋯,

ν χ, ξ,Ið Þ = 〠
∞

m=0
νm χ, ξð Þ = ν0 χ, ξð Þ + ν1 χ, ξð Þ + ν2 χ, ξð Þ + ν3 χ, ξð Þ+⋯,

μ χ, ξ,Ið Þ = −eχ+ξ + q
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ eχ+ξ
2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

− eχ+ξ
2ρð Þ2
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

+ eχ+ξ
2ρð Þ3I3δ

Γ 3δ + 1ð Þ−⋯,

ν χ, ξ,Ið Þ = eχ+ξ −
q

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

− eχ+ξ
2ρ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ eχ+ξ
2ρð Þ2
B δð Þð Þ2

1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

− eχ+ξ
2ρð Þ3I3δ

Γ 3δ + 1ð Þ+⋯:

ð69Þ

The exact result of Equation (56) at δ = 1 and q = 0 is as
follows:

μ χ, ξ,Ið Þ = −eχ+ξ+2ρI,

ν χ, ξ,Ið Þ = eχ+ξ+2ρI:
ð70Þ

6. The Methodology of q-HATM

Consider a nonlinear nonhomogeneous fractional partial
differential equation:

Dδ
Iμ χ, ξ,Ið Þ + Rμ χ, ξ,Ið Þ +Nμ χ, ξ,Ið Þ = f χ, ξ,Ið Þ, n − 1 < δ ≤ n:

ð71Þ

Here, Dδ
Iμ is the Caputo derivative, and R and N are lin-

ear and nonlinear functions, respectively. f ðχ, ξ,IÞ is the
source operator.

Now, using the Shehu transformation on Equation (71),
we get

S μ χ, ξ,Ið Þ½ � − u
s
μ χ, ξ, 0ð Þ + 1 − δ + δ u/sð Þδ

B δð Þ
� S Rμ χ, ξ,Ið Þ½ � + S NL χ, ξ,Ið Þ½ � − S f χ, ξ,Ið Þ½ �f g = 0:

ð72Þ

The nonlinear function is

N ϕ χ, ξ,I ; �qð Þ½ � = S ϕ χ, ξ,I ; �qð Þ½ � − u
s
ϕ χ, ξ,I ; �qð Þ 0+ð Þ

+ 1 − δ + δ u/sð Þδ
B δð Þ S Rϕ χ, ξ,I ; �qð Þ½ �f

+ S Nϕ χ, ξ,I ; �qð Þ½ � − S f χ, ξ,Ið Þ½ �g:
ð73Þ

Here, ϕðχ, ξ,I ; �qÞ is an unknown term, and �q ∈ ½0, 1/4�
is the embedding parameter, n ≥ 1. Construct a homotopy as

1 − n�qð ÞS ϕ χ, ξ,I ; �qð Þ − μ0 χ, ξ,Ið Þ½ �
= ℏqH χ, ξ,Ið ÞN ϕ χ, ξ,I ; �qð Þ½ �, ð74Þ

where μ0 is an initial condition and ℏ ≠ 0 is an auxiliary
parameter. The following solutions hold for = 0, 1/n =
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ϕ χ, ξ,I ; 0ð Þ = μ0 χ, ξ,Ið Þ,

ϕ χ, ξ,I ; 1
n

� �
= μ χ, ξ,Ið Þ:

ð75Þ

Elevating q, ϕ converges from U0 to U . Intensifying ϕ
about q by Taylor’s theorem, we get

ϕ χ, ξ,I ; �qð Þ =U0 + 〠
∞

m=1
μm χ, ξ,Ið Þ�qm, ð76Þ

where

μm = 1
m!

∂mϕ χ, ξ,I ; �qð Þ
∂�qm

����
�q=0

: ð77Þ

By an appropriate selection of auxiliary linear operator,
U0, n, ℏ and H, series (76) converges at �q = 1/n, thereby
providing a result

μ χ, ξ,Ið Þ = μ0 + 〠
∞

m=1
μm χ, ξ,Ið Þ 1

n

� �m

: ð78Þ

Now, differential Equation (74) m times, divide by m!
and taking �q = 0,

S μm χ, ξ,Ið Þ − kmμm−1 χ, ξ,Ið Þ½ �, ð79Þ

where the vector is described as

μ
!

m = μ0 χ, ξ,Ið Þ, μ1 χ, ξ,Ið Þ,⋯, μm χ, ξ,Ið Þf g: ð80Þ

Applying the inverse transform on Equation (80),

μm χ, ξ, Ið Þ = kmμm−1 χ, ξ, Ið Þ + ℏS−1 H χ, ξ, Ið ÞRm μ
!

m−1

� �h i
:

ð81Þ

Here,

Rm μ
!

m−1

� �
= 1

m − 1ð Þ!
∂m−1N ϕ χ, ξ,I ; �qð Þ½ �

∂�qm−1

�����
�q=0

,

kr =
0, r ≤ 1,
n, r > 1:

 
ð82Þ

Lastly, by solving Equation (81), the elements of the q-
HATM result are readily available.

Example 3. Consider the two dimensional fractional-order
Navier-Stokes equation

Dδ
Iμ + μ

∂μ
∂χ

+ ν
∂μ
∂ξ

= ρ0
∂2μ
∂χ2 + ∂2μ

∂ξ2

 !
+ g,

Dδ
Iν + μ

∂ν
∂χ

+ ν
∂ν
∂ξ

= ρ0
∂2ν
∂χ2 + ∂2ν

∂ξ2

 !
− g,

 0 < δ ≤ 1

8>>>>><
>>>>>:

,

ð83Þ

with initial conditions

ν χ, ξ, 0ð Þ = sin χ + ξð Þ,
μ χ, ξ, 0ð Þ = − sin χ + ξð Þ:

ð84Þ

Using the Shehu transformation on Equation (83) and
applying Equation (84), we have

S μ χ, ξ,Ið Þ½ � + u
s
sin χ + ξð Þ + 1 − δ + δ u/sð Þδ

B δð Þ

� S μ
∂μ
∂χ

+ ν
∂μ
∂ξ

− ρ0
∂2μ
∂χ2 + ∂2μ

∂ξ2

 !
− g

( )
= 0,

S ν χ, ξ,Ið Þ½ � − u
s
sin χ + ξð Þ + 1 − δ + δ u/sð Þδ

B δð Þ

� S μ
∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ0
∂2ν
∂χ2 + ∂2ν

∂ξ2

 !
+ g

( )
= 0:

ð85Þ

Define the nonlinear operators

N l ϕ1 χ, ξ,I ; �qð Þ, ϕ2 χ, ξ,I ; �qð Þ½ �

= S ϕ1 χ, ξ,I ; �qð Þ½ � + u
s
sin χ + ξð Þ + 1 − δ + δ u/sð Þδ

B δð Þ
� S ϕ1 χ, ξ,I ; �qð Þ ∂ϕ1 χ, ξ,I ; �qð Þ

∂χ
+ϕ2 χ, ξ,I ; �qð Þ

�

� ∂ϕ1 χ, ξ,I ; �qð Þ
∂ξ

− ρ0
∂2ϕ1 χ, ξ,I ; �qð Þ

∂χ2
∂2ϕ1 χ, ξ,I ; �qð Þ

∂ξ2

 !
− g

)
,

N2 ϕ1 χ, ξ,I ; �qð Þ, ϕ2 χ, ξ,I ; �qð Þ½ � = S ϕ2 χ, ξ,I ; �qð Þ½ �

−
u
s
sin χ + ξð Þ + 1 − δ + δ u/sð Þδ

B δð Þ
� S ϕ1 χ, ξ,I ; �qð Þ ∂ϕ2 χ, ξ,I ; �qð Þ

∂χ

�
+ϕ2 χ, ξ,I ; �qð Þ

� ∂ϕ2 χ, ξ,I ; �qð Þ
∂ξ

− ρ0
∂2ϕ2 χ, ξ,I ; �qð Þ

∂χ2 + ∂2ϕ2 χ, ξ,I ; �qð Þ
∂ξ2

 !
+ g

)
,

ð86Þ
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and the Shehu operators as

S μm χ, ξ,Ið Þ − kmμm−1 χ, ξ,Ið Þ½ � = ℏR1,m μ
!
m−1, ν

!
m−1

h i
,

S νm χ, ξ,Ið Þ − kmνm−1 χ, ξ,Ið Þ½ � = ℏR2,m μ
!

m−1, ν
!

m−1
h i

,

ð87Þ

R1,m μ
!

m−1, ν
!
m−1

h i
= S μm−1 χ, ξ,Ið Þ½ � + 1 − km

n

� �
u
s
sin χ + ξð Þ

+ 1 − δ + δ u/sð Þδ
B δð Þ S 〠

m−1

i=0
μi
∂μm − 1 − i

∂χ

(
+ 〠

m−1

i=0
ν
∂μm−1 − i

∂ξ

− ρ0
∂2μm−1
∂χ2 + ∂2μm−1

∂ξ2

 !
− g

)
,

ð88Þ

R2,m μ
!

m−1, ν
!
m−1

h i
= S νm−1 χ, ξ,Ið Þ½ � − 1 − km

n

� �
u
s
sin χ + ξð Þ

+ 1 − δ + δ u/sð Þδ
B δð Þ S 〠

m−1

i=0
μi
∂νm−1 − i

∂χ

(
+ 〠

m−1

i=0
νi
∂νm−1 − i

∂ξ

− ρ0
∂2νm−1
∂χ2 + ∂2νm−1

∂ξ2

 !
+ g

)
:

ð89Þ
Using the inverse Shehu transformation on Equation

(87), we have

μm χ, ξ, Ið Þ = kmμm−1 + ℏS−1 R1,m μ
!

m−1, ν
!

m−1
h in o

,

νm χ, ξ, Ið Þ = kmνm−1 + ℏS−1 R2,m μ
!
m−1, �νm−1

h in o
:

ð90Þ

Using μ0 and ν0 in Equation (90), we get

μ1 = −
2ρ0ℏ sin χ + ξð Þ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

ν1 =
2ρ0ℏ sin χ + ξð Þ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

μ2 = −
2 n + nð Þρ0ℏ sin χ + ξð ÞIδ

Γ δ + 1½ � −
4ρ20ℏ2 sin χ + ξð Þ

B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
,

ν2 =
2 n + hð Þρ0ℏ sin χ + ξð ÞIδ

Γ δ + 1½ � + 4ρ20ℏ2 sin χ + ξð Þ
B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
,

μ3 = −
2 n + ℏð Þ2ρ0ℏ sin χ + ξð ÞIδ

Γ δ + 1½ � −
8 n + ℏð Þρ20ℏ2 sin χ + ξð Þ

B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

−
8ρ30ℏ3 sin χ + ξð ÞI3δ

Γ 3δ + 1½ � ,

ν3 =
2 n + ℏð Þ2ρ0ℏ sin χ + ξð ÞIδ

Γ δ + 1½ � + 8 n + ℏð Þρ20ℏ2 sin χ + ξð Þ
B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

+ 8ρ30ℏ3 sin χ + ξð ÞI3δ
Γ 3δ + 1½ � ,

ð91Þ

and so forth. The rest of the components are discovered
in the same way. The q-HATM result of Equation (83) is
then determined:

μ χ, ξ,Ið Þ = μ0 + 〠
∞

m=1
μm

1
n

� �m

,

ν χ, ξ,Ið Þ = 20 + 〠
∞

w=1
νm

1
n

� �m

:

ð92Þ

For δ = 1, n = −1, n = 1 and g = 0, solutions ∑N
m=1μmðχ,

ξ,IÞð1/nÞm and ∑N
m=1νmðχ, ξ,IÞð1/nÞm are convergent to

exact solutions as N ⟶∞:

μ χ, ξ,Ið Þ = − sin χ + ξð Þ 1 − 2ρ0I
1! + 2ρ0Ið Þ2

2! −
2ρ0Ið Þ3
3! +⋯

" #

= −e−2ρ0I sin χ + ξð Þ,

ν χ, ξ,Ið Þ = sin χ + ξð Þ 1 − 2ρ0I
1! + 2ρ0Ið Þ2

2! −
2ρ0Ið Þ3
3! +⋯

" #

= e−2ρ0I sin χ + ξð Þ:
ð93Þ

Example 4. In Equation (83), we take

ν χ, ξ, 0ð Þ = eχ+ξ, μ χ, ξ, 0ð Þ = −eχ+ξ: ð94Þ

Using the Shehu transformation on Equation (83) and
applying Equation (94), we have
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S μ½ � + u
s
eχ+ξ + 1 − δ + δ u/sð Þδ

B δð Þ S μ
∂μ
∂χ

+ ν
∂μ
∂ξ

− ρ0
∂2μ
∂χ2 + ∂2μ

∂ξ2

 !
− g

( )
= 0,

S ν½ � − u
s
eχ+ξ + 1 − δ + δ u/sð Þδ

B δð Þ S μ
∂ν
∂χ

+ ν
∂ν
∂ξ

− ρ0
∂2ν
∂χ2 + ∂2ν

∂ξ2

 !
+ g

( )
= 0:

ð95Þ

Define nonlinear operators as

N1 ϕ1, ϕ2½ � = S ϕ1½ � + u
s
eχ+ξ + 1 − δ + δ u/sð Þδ

B δð Þ

� S ϕ1
∂ϕ1
∂χ

+ ϕ2
∂ϕ1
∂ξ

− ρ0
∂2ϕ1
∂χ2 + ∂2ϕ1

∂ξ2

 !
− g

( )
,

N2 ϕ1, ϕ2½ � = S ϕ2½ � − u
s
eχ+ξ + 1 − δ + δ u/sð Þδ

B δð Þ

� S ϕ1
∂ϕ2
∂χ

+ ϕ2
∂ϕ2
∂ξ

− ρ0
∂2ϕ2
∂χ2 + ∂2ϕ2

∂ξ2

 !
+ g

( )
,

ð96Þ

and Shehu operators as

S μm χ, ξ, Ið Þ − kmμm−1 χ, ξ, Ið Þ½ � = ℏR1,m μ
!

m−1, ν
!

m−1
h i

,

S νm χ, ξ, Ið Þ − kmνm−1 χ, ξ, Ið Þ½ � = ℏR2,m μ
!
m−1, ν

!
m−1

h i
,

ð97Þ

where

R1,m μ
!
m−1, ν

!
m−1

h i
= S μm−1½ � + 1 − km

n

� �
eχ+ξ

s
+ 1 − δ + δ u/sð Þδ

B δð Þ

� S 〠
m−1

i=0
μi
∂μm − 1 − i

∂χ
+ 〠

m−1

i=0
νi
∂μm−1 − i

∂ξ
−ρ0

∂2μm−1
∂χ2 + ∂2μm−1

∂ξ2

 !
− g

)
,

(

R2,μ μ
!

m−1, ν
!
m−1

h i
= S νm−1½ � − 1 − km

n

� �
u
s
eχ+ξ + 1 − δ + δ u/sð Þδ

B δð Þ

� S 〠
m−1

i=0
μi
∂νm−1−i
∂χ

+ 〠
m−1

i=0
νi
∂νm−1−i

∂ξ
−ρ0

∂2νm − 1
∂χ2 + ∂2νm − 1

∂ξ2

 !
+ g

)(
:

ð98Þ

By the inverse Shehu transformation on Equation (97),
we get

μm χ, ξ, Ið Þ = kmμm−1 + ℏS−1 R1,m μ
!

m−1, ν
!

m−1
h in o

,

νm χ, ξ, Ið Þ = kmνm−1 + ℏS−1 R2,m μ
!
m−1, ν

!
m−1

h in o
:

ð99Þ

Using μ0 and ν0, we get from Equation (99),

μ1 =
2ρ0ℏeχ+ξIδ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

ν1 = −
2ρ0ℏeχ+ξIδ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
,

μ2 =
2 n + ℏð Þρ0ℏeχ+ξ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
−
4ρ20ℏ2eχ+ξ
B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
, ν2

= −
2 n + ℏð Þρ0ℏeχ+ξ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
+ 4ρ20ℏ2eχ+ξ

B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
, μ3

= 2 n + ℏð Þ2ρ0ℏeχ+ξ
B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #
−
8 n + ℏð Þρ20ℏ2eχ+ξ

B δð Þð Þ2

� 1 − δð Þ2 + 2δ 1 − δð ÞIδ
Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #
+ 8ρ30ℏ3eχ+ξI3δ

Γ 3δ + 1½ � ,

ν3 = −
2 n + ℏð Þ2ρ0ℏeχ+ξ

B δð Þ 1 − δ + δIδ

Γ δ + 1ð Þ

" #

+ 8 n + ℏð Þρ20ℏ2eχ+ξ
B δð Þð Þ2 1 − δð Þ2 + 2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + δ2I2δ

Γ 2δ + 1ð Þ

" #

−
8ρ30ℏ3eχ+ξI3δ
Γ 3δ + 1½ � ,

ð100Þ

and so on. Accordingly, rest of the components are iden-
tified. The q-HATM result of Equation (42) is

μ χ, ξ,Ið Þ = μ0 + 〠
∞

m=1
μm

1
n

� �m

,

ν χ, ξ,Ið Þ = ν0 + 〠
∞

i=1
νm

1
n

� �m

:

ð101Þ

For δ = 1 = n, ℏ = −1 and g = 0, solutions ∑N
m=1μmð1/nÞm

and ∑N
m=1νmð1/nÞm are convergent to exact results as N

⟶∞

μ χ, ξ,Ið Þ = −eχ+ξ 1 + 2ρ0I
1! + 2ρ0Ið Þ2

2! + 2ρ0Ið Þ3
3! +⋯

" #
= −eχ+ξ+2ρ0I,

ν χ, ξ,Ið Þ = eχ+ξ 1 + 2ρ0I
1! + 2ρ0Ið Þ2

2! + 2ρ0Ið Þ3
3! +⋯

" #
= eχ+ξ+2ρ0I:

ð102Þ
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7. Results and Discussion

In this section, we analyze the solution-figures of the problem,
which have been investigated by applying the q-homotopy
analysis transform method and Adomian decomposition
transformmethod in the sense of the Atangana-Baleanu oper-
ator. Figure 1 represents the three-dimensional solution-
figures for variable μ of Example 1 at fractional-order δ = 1,
respectively, Figure 2 shows different fractional order of δ =
0:8 and 0:6, and Figure 3 shows that δ = 0:4. It is observed that
the q-homotopy analysis transform method and Adomian
decomposition transform method solution-figures are identi-
cal and in close contact with each other. In the same way,
Figures 4–6 show the different fractional-order graphs of δ
at ν of Example 1. In similar way, Figure 7 represents the
three-dimensional solution-figures for variable μ of Example
2 at fractional-order δ = 1, respectively, Figure 8 shows differ-
ent fractional-order of δ = 0:8 and 0:6, and Figure 9 shows that
δ = 0:4. In the same way, Figures 4–6 show the different
fractional-order graphs of δ at ν of Example 2. The same
graphs of the suggested methods are attained and confirm
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Figure 1: (a) Actual and (b) SDM/q-HATM result of μðχ, ξ,IÞ at δ = 1.
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Figure 2: The different fractional-order result of μðχ, ξ,IÞ at δ = (a) 0:8 and (b) 0.6 of example.
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Figure 3: Analytical result of μðχ, ξ,IÞ at δ = 0:4 of example.
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the applicability of the present techniques. In Figures 7–9, the
q-homotopy analysis transform method and Adomian
decomposition transform method solutions are plotted in

three dimensional at fractional-order δ = 1, 0:8, 0:6, and 0:4
of Example 2. Similarly Figures 10–12 show the exact and dif-
ferent fractional-order behavior of analytical solutions. The
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Figure 4: (a) Actual and (b) SDM/q-HATM result of νðχ, ξ,IÞ at δ = 1.
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Figure 5: The different fractional-order result of νðχ, ξ,IÞ at δ = (a) 0:8 and (b) 0:6 of example.
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Figure 6: Analytical result of μðχ, ξ,IÞ at δ = 0:4 of example.
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Figure 7: (a) Actual and (b) SDM/q-HATM result of μðχ, ξ,IÞ at δ = 1.
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Figure 8: The different fractional-order result of μðχ, ξ,IÞ at δ = (a) 0:8 and (b) 0:6 of example.
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Figure 9: (a) Actual and (b) SDM/q-HATM result of νðχ, ξ,IÞ at δ = 1.
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convergence phenomenon of the fractional solutions towards
integer-solution is observed. The same accuracy is achieved
by using the present techniques.

8. Conclusion

This article calculates a result of the fractional system of
Navier-Stokes equations determined numerical solution
using the suggested q-homotopy analysis transform method
and Shehu decomposition method. The result is obtained in
quick convergent series. The test samples provided demon-
strate the approach’s strength and efficacy. The proposed
algorithm includes a parameter ℏ that allows us to control
the series solution’s convergence region. As q-homotopy
analysis transform method and Shehu decomposition
method do not necessarily require small perturbation linear-
ization or discretisation, it decreases computations signifi-
cantly. In comparison with other techniques, q-homotopy
analysis transform method and Shehu decomposition
method are competent tools to obtain mathematical result
of system nonlinear fractional partial differential equations.

Data Availability

The numerical data used to support the findings of this
study are included within the article.
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Figure 10: The different fractional-order result of νðχ, ξ,IÞ at δ = (a) 0:8 and (b) 0:6 of example.
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Figure 11: The graph of different approximate solution of Ψðχ, φ, ηÞ at ϒ = (a) 0:8 and (b) 0:6 of example 2.
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Figure 12: Analytical result of νðχ, ξ,IÞ at δ = 0:4 of example.
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