
Citation: De Wispelaere, K.;

Freson, K. The Analysis of the

Human Megakaryocyte and Platelet

Coding Transcriptome in Healthy

and Diseased Subjects. Int. J. Mol. Sci.

2022, 23, 7647. https://doi.org/

10.3390/ijms23147647

Academic Editor: Alexandre Kauskot

Received: 31 May 2022

Accepted: 8 July 2022

Published: 11 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

The Analysis of the Human Megakaryocyte and Platelet Coding
Transcriptome in Healthy and Diseased Subjects
Koenraad De Wispelaere and Kathleen Freson *

Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven,
3000 Leuven, Belgium; koen.dewispelaere@kuleuven.be
* Correspondence: kathleen.freson@kuleuven.be

Abstract: Platelets are generated and released into the bloodstream from their precursor cells,
megakaryocytes that reside in the bone marrow. Though platelets have no nucleus or DNA, they
contain a full transcriptome that, during platelet formation, is transported from the megakaryocyte
to the platelet. It has been described that transcripts in platelets can be translated into proteins that
influence platelet response. The platelet transcriptome is highly dynamic and has been extensively
studied using microarrays and, more recently, RNA sequencing (RNA-seq) in relation to diverse
conditions (inflammation, obesity, cancer, pathogens and others). In this review, we focus on bulk
and single-cell RNA-seq studies that have aimed to characterize the coding transcriptome of healthy
megakaryocytes and platelets in humans. It has been noted that bulk RNA-seq has limitations when
studying in vitro-generated megakaryocyte cultures that are highly heterogeneous, while single-cell
RNA-seq has not yet been applied to platelets due to their very limited RNA content. Next, we
illustrate how these methods can be applied in the field of inherited platelet disorders for gene dis-
covery and for unraveling novel disease mechanisms using RNA from platelets and megakaryocytes
and rare disease bioinformatics. Next, future perspectives are discussed on how this field of coding
transcriptomics can be integrated with other next-generation technologies to decipher unexplained
inherited platelet disorders in a multiomics approach.

Keywords: platelets; megakaryocytes; transcriptomics; rare disease bioinformatics; inherited platelet
disorders; single-cell RNA sequencing; bulk RNA sequencing; megakaryopoiesis; thrombopoiesis

1. Introduction to Megakaryopoiesis and Platelet Formation with a Focus on RNA

Megakaryocytes (MKs) are large polyploidic blood cells that originate in the bone
marrow and, in their mature state, release platelets into the blood circulation. MKs
differentiate from hematopoietic stem cells (HSCs) located in the bone marrow. The
classical differentiation model for megakaryopoiesis states that HSCs divide asymmet-
rically into multipotent progenitor cells, which lose their self-renewal capacity and
multipotency over time. This leads to bipotent megakaryocytic/erythroid progenitor
(MEP) cells, which, as the name suggests, can differentiate into MKs or erythrocytes.
In the former case, they differentiate into unipotent MK progenitor cells and then MK
precursor cells [1,2]. Immature MKs can measure up to 30 µm with a high nucleus-to-
cytoplasm ratio, while, in a mature state, they can measure up to 160 µm in extremis.
During maturation, MKs also become polyploid through endomitosis by repeated DNA
replication without cell division and can contain up to 128N chromosomes, with the
majority of MKs having 16N. The large amount of DNA in each cell contributes to a
high concentration of RNA at the moment that platelets are formed by pinching off
cytoplasmic protrusions, called proplatelets. During this process, proplatelets receive
RNA and proteins from their parent MK cells (Figure 1) [3,4].
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Figure 1. (A) Stages in megakaryopoiesis and thrombopoiesis; (B) RNA metabolism in maturing
megakaryocytes and transfer to platelets during thrombopoiesis; (C) different cell markers associated
with stages in MK and platelet differentiation (adapted from Davizon-Castillo et al. [5]).

Most studies use in vitro-cultured MKs because of the low yield and difficulty of
extracting bone marrow-derived MKs. In vitro MKs can be procured by differentiating
induced pluripotent stem cells (iPSCs) through sequential cytokine cocktails (directed
differentiation) [6–9] or through overexpression of key transcription factors (forward pro-
gramming) [10,11]. The most widely used method for in vitro MK production starts from
CD34+ HSCs after adding cytokines [12]. Nakamura et al. [13] generated a stable im-
mortalized MK cell line (imMKCL) from iPSCs. Although it is well known that MKs are
the precursor cells of platelets [14], the exact mechanism of differentiation has long been
disputed. The most notable theories are the ‘explosive fragmentation theory’, which hypoth-
esizes that MKs release mature platelets by cell apoptosis [15], and the ‘proplatelet theory’,
which suggests that MKs form numerous long-branching cytoplasmic protrusions, called
proplatelets, with a volume several hundred times that of platelets. These proplatelets
then detach, remodel and fragmentate into individual platelets, mainly by the shear stress
in the bloodstream [16–20]. The advent of intravital microscopy and observations of the
bone marrow in real time have set the consensus quite firmly onto the ‘proplatelet theory’,
complemented by the confirmation that mature MKs extend their protrusions through the
sinusoid vessel barrier when releasing proplatelets. The proplatelets are rapidly swept
away by the blood circulation and remodeled further downstream in the circulation before
becoming bona fide platelets [18,21–24]. Though the ‘explosive fragmentation theory’ is
unlikely to occur during homeostasis, it could happen under pathological conditions, such
as during the release of large amounts of platelets in response to inflammatory stimuli such
as IL-1a [25].

Platelets are the second most prevalent cell in the blood and play a pivotal role in
cardiovascular diseases by maintaining a balance between hemostasis and blood clot
formation. Platelets are small (2–4 µm in diameter), anuclear cells that circulate in the blood
for 7–10 days in humans, after which they are eliminated in the spleen and liver [26]. In
1947, the presence of RNA in platelets was first reported using a chemical method [27]. The
discovery that active protein synthesis in platelets is not dependent on transcription but
enabled through mRNA transferred through MKs was first reported by Warshaw et al. [28].
Platelets do exhibit a complex and dynamic transcriptome that is inherited from MKs. This
transcriptome includes messenger RNA, ribosomal RNA, transfer RNA and regulatory
RNAs such as miRNA [29–31]. miRNAs regulate RNA stability and protein translation by
binding near complementary sequences in the 3′ UTR of transcripts, and they are highly
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abundant in platelets and MKs. Their functions as biomarkers and functional modifiers in
platelets and MKs have been reported and reviewed by others [32–39]. Our review focuses
on mRNA transcriptomes.

Platelets have on average 2.2 fg of RNA present in total, but this amount is 20–40-fold
higher in young platelets and decreases with time [40]. Platelets do also exhibit de novo
protein synthesis, and the transcriptome dynamically changes in response to inflammatory
signals, invading pathogens, cancer or other stressors [4]. In nucleated cells, mRNA has
a median lifespan of 7.6–9 h, varying considerably between transcripts [41,42]. Platelet
mRNA has a higher stability for reasons not yet completely understood, despite the fact
that all typical stability and decay-mediating RNA-binding proteins are present [43–45].
It has also been observed that the average length and thermodynamic stability of the
untranslated regions of transcripts in platelets are significantly greater than in other cell
types [46]. Alternative splicing, in which introns can be (partially) retained and exons can
be (partially) removed, strongly diversifies the transcriptome, and this is a process that is
proven to be active in platelets [47–52]. A higher level of unspliced pre-mRNA, coming
from the MKs, in younger platelets and the presence of the spliceosome suggest that this
mechanism might serve as a gatekeeper for pre-mRNA processing and protein translation
in platelet function [47,53–56].

Here, we review bulk and single-cell RNA-seq studies that have used MKs and
platelets to understand their differentiation processes and their function in normal and
pathological conditions. Unlike microarrays, RNA-seq does not require transcript-specific
probes and can therefore detect novel, rare and unknown transcripts, non-coding tran-
scripts, alternative splicing, gene fusions, single nucleotide variants and indels.

2. Bulk Transcriptomics of Healthy Megakaryocytes

The study of healthy MKs enables the identification of genetic pathways regulating
MK differentiation and thrombopoiesis. Given the dynamic nature of MK cultures, first
being differentiated from HSCs and later producing platelets themselves, cell sorting is
often used to isolate specific MK subpopulations representing different differentiation
stages before applying bulk RNA-seq. Different cell-specific markers have been identified,
such as CD41 or CD61, markers associated with early MK and erythroid progenitors,
and CD42, a glycoprotein expressed during the later stage of MK differentiation [57,58]
(different cell markers are shown in Figure 1). For mature MKs, a large sorting nozzle and
low pressure are important for maintaining cell viability [59].

The BLUEPRINT (https://www.blueprint-epigenome.eu/, accessed on 5 June 2022)
consortium has used bulk RNA-seq extensively in a broad effort to dissect the molecu-
lar traits that govern blood cell differentiation in general, thus also including megakary-
opoiesis [60]. Cecchetti et al. [61] used bulk RNA-seq on CD34+-derived MKs after selection
with CD61+ immunomagnetic beads and leukocyte-depleted platelets to study mRNA for
matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). They found that MKs
differentially express mRNAs for MMPs and TIMPs, and only a subset of these are trans-
ferred to platelets. Human iPSC-derived MKs [62], CD34+ HSC-derived MKs [63] and
imMKCL [64,65] have all been used for bulk RNA-seq studies, while similar studies have
not yet been performed for primary MKs because of their low yield and the difficulty
extracting them from the bone marrow. A comparison between the different types of
in vitro MKs using RNA-seq datasets has not been reported. Regarding data analysis,
many different bulk RNA-seq pipelines exist and have been reviewed elsewhere [66–69].

3. Bulk Transcriptomics of Healthy Platelets

A critical step for platelet RNA-seq is the sample purity of platelets after their
isolation from peripheral blood. A leukocyte depletion step is critical to exclude contam-
ination by leukocytes and their derived vesicles. Therefore, magnetic antibody-coupled
beads are mostly used for leukocyte (CD45+) depletion, and afterwards, the purity of the
platelet population for RNA-seq should be confirmed by flow cytometry using platelet-
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and leukocyte-specific markers [57]. RNA sequencing of healthy platelets provides
a sequence-level view of their transcriptome and is useful for understanding platelet
function, as well as megakaryopoiesis, since the transcriptome of platelets is shaped by
genetics and environmental signals from MKs. The human platelet transcriptome has
been characterized by bulk RNA-seq as diverse, containing many coding and non-coding
transcripts. Londin et al. [70] reported an average of ~9000 unique protein-coding tran-
scripts and ~800 miRNAs. These two types only accounted for half of all reads, which
points to the presence of large amounts of other non-coding RNA. Despite the anucleate
nature of platelets, non-coding transcripts include abundant miRNAs, retrotransposons,
and long and short intronic transcripts [29,71]. Mitochondrially expressed genes also
comprise a substantial fraction of the platelet transcriptome, and high transcript lev-
els are present for protein-coding genes related to cytoskeleton function, chemokine
signaling, cell adhesion, aggregation and receptor interaction between cells [72]. In a
large-scale platelet RNA-seq study of 204 healthy individuals, high expression of B2M,
PPBP, TMSB4X, ACTB, FTL, CLU, PF4, F13A1, GNAS, SPARC, PTMA, TAGLN2, OAZ1
and OST4 was observed, with substantial consistency between individuals. Additionally,
platelets in males have higher CSF3R expression, and in older individuals, KSR1 is up-
regulated [73]. Another large-scale platelet RNA-seq study in 290 healthy subjects was
performed to evaluate gene expression in platelets and iPSC-derived MKs from the same
subjects, showing a high overlap of 91.3% between these transcriptomes [62]. The platelet
transcriptome correlates strongly between individuals but associates weakly with the
platelet proteome [70]. Platelets have been proven to inherit an active spliceosome from
their parent MKs, diversifying the transcriptome and proteome [49,54]. Splicing has
also been proven, using RNA-seq, to be induced by platelet activation. This modulates
protein expression and forms a crucial part of the platelet activation cascade [30]. Inter-
estingly, in the absence of disease, platelet gene expression and splicing are remarkably
stable within individuals over time, as observed in a 4-year-long longitudinal RNA-seq
study [74]. As with MKs, platelet populations can be subdivided using flow cytometry.
Flow cytometry can separate platelets into their smallest and largest 10% subpopulations,
providing transcriptomic proof of different functionalities between platelets, with large
platelets having transcriptomes more linked to hemostasis and wound healing and the
smallest being more associated with vascular cell function [75]. Hille et al. [76] sorted
platelets based on age, which they analyzed for ultrastructural, functional and transcrip-
tional differences. This revealed structural and molecular differences between younger,
reticulated platelets and older, non-reticulated platelets, explaining the hyperreactivity
of the former class. RNA-seq demonstrated the upregulation of transcripts allocated to
shape change, aggregation and degranulation in younger platelets.

4. Single-Cell Transcriptomics of Healthy Megakaryocytes

For single-cell RNA sequencing (scRNA-seq) methods, the RNA content of each
cell receives a unique barcode enabling cell-wise demultiplexing after sequencing. First,
microwells were used to isolate single cells in plate-based assays such as smart-seq [77,78].
Newer techniques then transpired through the implementation of technologies such as
integrated fluidic circuits (Fluidigm C1 platform). After 2015, this technique was largely
overtaken by the advent of droplet microfluidics, in which each single cell is encapsulated
into a droplet containing a bead with bead-unique barcodes. Examples of this technique
are Hydrop [79] and the Chromium platform from 10X Genomics. Lastly, there are also
techniques based on the principle of combinatorial indexing for barcode attachment [80–82].
A more thorough review and benchmarking of the many existing scRNA-seq methods
have been reported by others [83,84]. These four types of scRNA-seq assays have all
been used for studying MKs and their precursors in humans. Different dedicated data
analysis pipelines for scRNA-seq data exist and have also been reviewed elsewhere [85–88].
For analyzing human MKs, plate-based methods (mainly smart-seq2) have often been
used [89–91]. Sun et al. [91] raised the concern that droplet microfluidic techniques might
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be unsuitable for scRNA-seq of large, rare and fragile polyploidic MKs, and therefore,
they used the plate-based smart-seq2 protocol. The theoretical upper limit cell diameter
for 10X Chromium, for example, is 65 µm (width of the capillaries), with an advised
maximum of 30 µm. In this case, plate-based or combinatorial indexing methods form
a good alternative. Other studies [92–95] have, however, successfully constructed high-
quality MK libraries using 10X Chromium. Table 1 compares the advantages of the two
most frequently used scRNA-seq methods, plate-based and droplet-based. The number
of single-cell transcriptomic studies focusing on megakaryopoiesis and MKs is rapidly
increasing but is still limited. These studies are summarized in Table 2 and are briefly
discussed below.

Table 1. Comparison between the two most frequently used scRNA-seq methods.

Plate-Based Droplet-Based

Higher sensitivity Higher cell throughput
Better for large and fragile cells Lower labor intensity

Cheaper setup cost Cheaper cost per cell

In MKs and their precursors, scRNA-seq has been proven useful for studying their
dynamic transcriptome throughout their various developmental trajectories [89–91,94,96].
Polyploidization during maturation, for example, is associated with a shift from transcripts
associated with platelet degranulation, coagulation, hemostasis, wound healing and vesicle-
mediated transport towards transcripts associated with translational initiation, elongation
and termination, protein localization and cellular protein complex disassembly [89]. The
heterogeneity within a single type of MK cell or their precursors, as seen in many scRNA-seq
studies [90–92,97], would be missed by bulk RNA-seq methods. Notably, a subset of HSCs
has often been described that is biased towards the myeloid lineage and is transcriptionally
primed to directly differentiate into MK progenitor cells [58,89,91,92,95,97,98]. Half of all
MKs are thought to differentiate through this mechanism, which might also play a role in the
rapid replenishment of platelets in response to acute demands in pathological conditions,
such as in the wake of a myocardial infarction [89] or in myelofibrosis [95,97]. THBS1 has
been identified as an early marker for this CD14+ MK-biased HSC subpopulation [92]. In
Sun et al. [91], three MK subpopulations were reported with distinct transcriptomes linked
to the inflammatory response, HSC niche interactions and platelet generation. scRNA-seq
has also driven transcriptomic research into primary MK cells [89,94], for which extensive
sample purification is needed, most often through flow cytometry [90,99]. The study of
Lu et al. [90] identified key genes involved in MEP fate determination and demonstrated
that differential modulation of cell cycle speed dictates MEP differentiation into either
erythrocytes or megakaryocytes using scRNA-seq.

Although scRNA-seq analysis has been carried out on MK differentiation in vivo [89–91]
and in vitro from iPSCs or CD34+ HSCs [94], the transcriptomic difference between different
types of in vitro and in vivo MKs is largely unknown. Recently, the first single-cell study on
this subject [94] assessed the transcriptomic differences between megakaryopoiesis in vivo
and in vitro through iPSC forward programming. Cells from the latter type were compared
to primary hematopoietic stem and progenitor cells from the bone marrow, and they found
that the in vitro cells did not pass through states resembling primary HSCs or MPP cells.
In a further stage of differentiation, the cell cultures did, however, go through an MK
progenitor stage, with a very similar transcriptional signature to their in vivo counterparts.
Additional research should be carried out to decipher transcriptional differences between
in vivo and different types of in vitro-cultured MKs to confirm the utility of the latter for
studying defects in megakaryopoiesis.
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Table 2. scRNA-seq research in megakaryocytes and precursors in humans.

Reference Cell Type(S) Summary of Results Technology

Choudry et al. (2021) [73] MKs and HSCs

MKs in lower ploidy states highly express platelet-specific genes. As
polyploidization increases and the cell prepares for thrombopoiesis,
gene expression is redirected towards transcriptional programs
involved in translation and posttranslational processing. Two MK-
biased HSC subpopulations were also observed and shown to originate
from the BM. Finally, BM MKs from patients with recent myocardial
infarction showed a specific gene expression signature that supports the
modulation of MK differentiation in this thrombotic state.

G&T-seq

Estevez et al. (2021) [98] HSCs

The effect of germline monoallelic mutations in RUNX1, found in
patients suffering from familial platelet disorder with a predisposition
to myeloid malignancy, was studied by inserting the patient mutations
into iPSC-derived hematopoietic progenitor cells (iHSCs) and
performing scRNA-seq. There was found to be a marked deficiency of
MK-biased iHSCs in mutated cultures, and gene sets that were
upregulated included response to stress, regulation of signal
transduction and immune signaling-related gene sets. An increased
sensitivity to transforming growth factor β1 and an increase in the stress
pathway through upregulation of c-jun N-terminal kinase-2
phosphorylation were observed.

10X Chromium

Lawrence et al. (2022) [94] In vitro differentiating cells from
iPSCs and HSCs up to MKs

Analysis of iPSC-derived MK differentiation and transcriptomic
comparison with primary hematopoietic stem and progenitor cells. The
in vitro cells do not pass through states resembling HSCs or MPPs as
seen in vivo, but the further differentiated MK progenitor cells do
exhibit a very similar transcriptome to their in vivo counterparts. A
surface marker panel is described for MK progenitors, allowing for
selection from culture and for insights into this intermediary state.

10X Chromium and smart-seq

Liu et al. (2021) [90] MKs

Cellular heterogeneity within MKs was mapped, and an MK
subpopulation with high enrichment of immune-associated genes was
identified. The immune signature could be traced back to the progenitor
stage, and two surface markers, CD148 and CD48, were identified. This
type of MK can respond rapidly to immune stimuli both in vitro and
in vivo, exhibiting high expression of immune receptors and mediators,
which might act as immune-surveillance cells.

Smart-seq
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Table 2. Cont.

Reference Cell Type(S) Summary of Results Technology

Lu et al. (2018) [96] MEPs, common myeloid progenitors,
and MK and erythroid progenitors

MEPs have a distinct gene expression signature that represents a
continuous transition state from common myeloid progenitor cells to
MK and erythroid progenitor cells.

Fluidigm C1

Psaila et al. (2017) [95] CD34+ peripheral blood cells

Myelofibrosis causes an increased number of immature/low ploidy
MKs with an altered transcriptome. Patient HSPCs have increased
expression of MK-associated genes, including VWF and ITGA2B. Patient
CD34+ progenitor cells showed increased expression of PF4 and TGFβ.

10X Chromium

Psaila et al. (2020) [97] HSPCs

MK-biased hematopoiesis in myelofibrosis was observed, with
heterogeneous MKp showing a highly expressed fibrosis signature and
an aberrant metabolic and inflammatory signature. Targeting the
aberrant expression of surface G6B may selectively ablate the
myelofibrosis HSPC clone.

10X Chromium

Riemondy et al. (2019) [93] Lymphocytes and MK mixture The introduction of a method for resampling cell-type-wise, cell-wise or
sample-wise from an existing complex scRNA library. 10X Chromium

Sun et al. (2021) [91] Human and mouse MKs

Three distinct MK subpopulations were observed to possess gene
signatures related to platelet generation, HSC niche interaction or
inflammatory response. The first type of MK was mostly found near
blood vessels, and the second was near HSCs. The third type,
containing a gene signature related to the inflammatory response, was
lower in ploidy, consisted of 5% of MKs and was capable of engulfing
and digesting bacteria and stimulating T cells in vitro.

Smart-seq

Wang et al. (2021) [92] Human MKs

A comprehensive single-cell transcriptomic landscape of human MKs
was constructed where MKs show cellular heterogeneity with distinct
metabolic and cell cycle signatures. CD14+ MKs with immune
characteristics were generated along a distinct trajectory, and THBS1
was identified as an early marker for MK-biased endothelial cells from
human embryonic stem cells.

10X Chromium
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5. Single-Cell Transcriptomics of Healthy Platelets

Single-cell RNA-seq has not yet been used for platelets because of their extremely
low RNA content (~2.2 fg/platelet). The leading edge of scRNA-seq assays might enable
this in the future, with single-cell libraries currently being created from cDNA contents
of 1–2 ng/cell by the much-used commercial 10X Chromium platform. Alternatively, the
Smart-seq v4 Ultra Low Input RNA kit has been validated to an RNA concentration of
2 pg of total RNA per cell by the manufacturer. An scRNA-seq protocol called ultra-low
RNA sequencing (ulRNAseq) was optimized for RNA concentrations as low as 0.5 pg per
cell [100]. scRNA-seq of platelets would lead to novel insights into platelet heterogeneity,
which has been proven to exist using proteomic and transcriptomic techniques other than
scRNA-seq, such as platelet contraction cytometry, immunohistochemistry, epifluorescence
microscopy or microarrays, and is reviewed in [101].

6. Platelet and Megakaryocyte Transcriptome to Decipher Inherited Platelet Disorders

Changes in the MK and platelet transcriptome have been studied in diverse patho-
logical conditions, as recently reviewed by Davizon-Castillo et al. [5], who focused on the
changed transcriptomes under acquired conditions such as sepsis, myocardial infarction
and viral infection and during cancer, sickle cell disease and lupus erythematosus. In this
review, we focus on monogenic conditions as the cause of changes in the MK and platelet
transcriptome, as RNA-seq studies were also performed for inherited platelet disorders
(IPDs). IPDs are an extremely heterogeneous group of diseases, affecting both platelet
formation and their function. Patients with a defect in platelet formation present with
abnormally low platelet counts, named thrombocytopenia. The clinical phenotypes of IPD
patients cover a wide spectrum, ranging from mucocutaneous bleeding diathesis (epistaxis,
gum bleeding, purpura and menorrhagia) to multisystemic disorders and malignancies.
Consequently, the impacts of these disorders also range from almost negligible to life
threatening [102–104]. MK and platelet transcriptomics can be used to assist gene discovery
processes of unexplained IPDs and to provide novel insights into the disease mechanism of
known IPDs. Examples of both are discussed below.

The first RNA-seq-enabled discovery for an IPD was the identification of NBEAL2
variants as the cause of gray platelet syndrome using platelet RNA-seq [105]. Abnor-
mal reads were detected, showing intron retention in NBEAL2 for platelets from a gray
platelet syndrome patient due to a splice variant. A more recent bulk RNA study for
gray platelet syndrome reported widespread differences in platelet, neutrophil, monocyte
and CD4 lymphocyte transcriptomes between patients and controls, but loss of function
of NBEAL2 does not seem to affect the transcriptional output of α-granule-associated
genes in platelets [106]. Variants in ETV6, a transcription factor that plays a central role
in hematopoiesis and malignant transformation, have been implicated in thrombocytope-
nia [107]. Platelet RNA-seq for ETV6-deficient patients showed decreased expression of
platelet-specific transcripts, including reduced levels of several cytoskeletal transcripts.
Heremans et al. [108] performed bulk RNA-seq of CD34+ HSC-derived MKs from Roifman
syndrome patients with genetic variants in RNU4ATAC, which regulates minor intron
splicing. Significant minor intron retention was detected in the patient transcriptomes for
354 MK genes, including many linked to the thrombocytopenia phenotype of platelets.
Lentiviral-transduced CD34+ HSCs were generated for wild-type SRC and E527K-SRC
and differentiated into MKs before applying bulk RNA-seq [63]. The E527K SRC variant
causes thrombocytopenia, and MK transcriptomes for this variant showed 852 significant
differentially expressed genes, with interferon I signaling as the most interesting pathway
after confirmation with MK proteomics. The effect of germline monoallelic variants in
RUNX1, found in patients suffering from familial platelet disorder with a predisposition to
myeloid malignancy, was studied by inserting the patient variants into iPSC-derived HSCs
and performing scRNA-seq [98]. There was found to be a marked deficiency of MK-biased
HSCs in mutated cultures, and gene sets that were upregulated included the response to
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stress, regulation of signal transduction, and immune signaling-related gene sets, among
others. In Lentaigne et al. [57], variants in the transcription factor IKZF5 were found to be
causal for thrombocytopenia. Comparison of platelet, monocyte, neutrophil and CD4+ T
cell bulk RNA-seq data from patients and controls showed 1194 differentially expressed
genes in platelets, while only 4 genes were differentially expressed in each of the other cell
types. The pathways downregulated in platelets involved platelet function, hemostasis
and membrane- and vesicle-mediated transport.

The challenge ahead will be to now use platelet and MK RNA-seq datasets to dis-
cover new IPD genes, as, to date, most transcriptome studies have only endeavored to
decipher defective platelets or MKs for known IPDs. Instead of using RNA-seq data for
gene expression and pathway analyses, additional information can be retrieved, such as
differences in splicing and monoallelic expression. More recently, the advent of specialized
data analysis methods has been directed at finding and statistically assessing outliers in
transcriptomic data, and this has stimulated progress in the field of transcriptomics in
rare disease research. Outlier detection tools for gene expression (e.g., OUTRIDER) [109],
aberrant splicing (e.g., FRASER) [110] and monoallelic expression have been developed,
which are all combined in the DROP pipeline [111]. In these methods, confounding factors
are corrected by using the machine learning method of a denoising autoencoder. Its future
application is discussed in the final section.

7. Conclusions and Future Perspectives

It would be very interesting to compare the transcriptomes of platelets, primary MKs
and in vitro-generated MKs from single donors using a similar RNA-seq technique. Ideally,
since MK populations are very heterogeneous at different differentiation stages, sc-RNA-
seq would be best, but this method is still not able to generate transcriptomes for platelets
due to their low RNA content. As these methods improve, it is expected that this will
become possible in the future. Such a comparative gene expression experiment would
improve our current understanding of MK differentiation, thrombopoiesis and platelet
function under healthy conditions. It will not be possible to generate such datasets for most
patients with IPDs, as primary MKs are typically not available.

Another challenge is the interpretation and functional validation of RNA-seq results.
Most studies focus on the detection of differentially expressed genes and pathways. How-
ever, it remains very difficult to understand the biological relevance of these changes. One
can focus on a subset of the most significant up- or downregulated genes and validate these
changes using qRT-PCR or immunoblot analysis, but this is of course a biased approach.
It is also possible to validate a pathway using functional MK or platelet studies that have
been designed to study the pathway of interest. The main issue remains that most studies
are biased by highly expressed genes, while genes with weak expression but still important
functions in MKs and platelets are typically missed. Better analytical approaches and larger
datasets are needed. At least some of the challenges of associating IPDs with rare variants,
in both coding and non-coding regions of the genome, can be overcome by the integration
of multiple layers of information from different assay types. These different assays can be
performed simultaneously in single cells by techniques such as G&T-seq [112] (gDNA and
transcriptome), 10X Multiome or SHARE-seq [113] (transcriptome and chromatin acces-
sibility) or TEA-seq [114] (transcriptome, chromatin accessibility and cell surface epitope
detection). This multiomics approach is increasingly being used in the field of cardiovascu-
lar disease [115], although not yet at the single-cell level. By using chromatin accessibility
and histone modification data specific for MKs combined with WGS data, the deletion of an
important regulatory element near HDAC6/GATA1 was detected as the cause of thrombocy-
topenia and autism [116]. It was also hypothesized that a combination of platelet RNA-seq
and WGS data would be of use to identify which variants in regulatory elements could be
causal for an IPD [117]. Combining platelet RNA-seq and WGS data from individuals has
led to important new discoveries in the study of platelet disorders [57,63,105–108], but its
application in rare disease bioinformatics, as mentioned above, promises important novel
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discoveries in rare types of IPDs. Changes in gene expression and aberrant splicing events
detected in the platelet transcriptome can be explained by variants in both coding and
non-coding parts of the genome (Figure 2A,B). To further causally link aberrant splicing
to variants, a deep learning model such as SpliceAI [118] can be used to estimate the
probabilities of mutations causing aberrant splicing (Figure 2B). This 32-layer deep neural
network estimates the probability of splicing events as a consequence of mutations in both
coding and non-coding parts of the genome based on the change in sequence. Finally, the
effect of heterozygous variants found in the WGS data could also be assessed by checking
for monoallelic expression (Figure 2C). In a study by Murdock et al. [119], 115 undiagnosed
patients with suspected Mendelian conditions underwent sequencing by RNA-seq and
WES or WGS using whole blood and skin fibroblasts. The transcriptome-directed approach
resulted in an additional diagnostic rate of 12% across the entire cohort directly due to the
addition of RNA-seq data, solving 17% of cases that could not be diagnosed using only
WES/WGS. This highlights the possible utility of combining these two datasets in the study
of IPDs. However, platelet transcriptome data have not yet been generated in a diagnostic
setting for IPDs.

Figure 2. Schematic of information gained by combining RNA-seq data and Whole Genome Se-
quencing (WGS) data. (A) RNA-seq gene expression outliers offer insight into the transcriptomic
effect of coding and non-coding patient mutations in WGS data. (B) The probability of a change in
DNA sequence causing alternative splicing can be predicted by deep learning. Predictions made for
patient mutations seen in WGS data can be verified through splicing outlier detection in RNA-seq
data. (C) The effect of heterogeneous patient mutations from WGS data is also dependent on monoal-
lelic expression, in which one of the two alleles is (partially) unused. This can be quantified using
RNA-seq data.
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Zhang, X.; et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 13. [CrossRef]

67. Corchete, L.A.; Rojas, E.A.; Alonso-López, D.; de las Rivas, J.; Gutiérrez, N.C.; Burguillo, F.J. Systematic comparison and
assessment of RNA-seq procedures for gene expression quantitative analysis. Sci. Rep. 2020, 10, 19737. [CrossRef] [PubMed]

68. Geraci, F.; Saha, I.; Bianchini, M. Editorial: RNA-Seq Analysis: Methods, Applications and Challenges. Front. Genet. 2020, 11, 220.
[CrossRef] [PubMed]

69. Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [CrossRef]
70. Londin, E.R.; Hatzimichael, E.; Loher, P.; Edelstein, L.; Shaw, C.; Delgrosso, K.; Fortina, P.; Bray, P.F.; E McKenzie, S.; Rigoutsos, I.

The human platelet: Strong transcriptome correlations among individuals associate weakly with the platelet proteome. Biol. Direct
2014, 9, 3. [CrossRef]

71. Londin, E.R.; Hatzimichael, E.; Loher, P.; Zhao, Y.; Jing, Y.; Chen, H.; Edelstein, L.C.; Nagalla, S.; Delgrosso, K.; Ertel, A.; et al.
Beyond mRNAs and Mirnas: Unraveling the Full-Spectrum of the Normal Human Platelet Transcriptome through Next-
Generation Sequencing. Blood 2012, 120, 3298. [CrossRef]

72. Kissopoulou, A.; Jonasson, J.; Lindahl, T.L.; Osman, A. Next generation sequencing analysis of human platelet PolyA+ mRNAs
and rRNA-depleted total RNA. PLoS ONE 2013, 8, e81809. [CrossRef] [PubMed]
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