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Copyright © 2015 Vedat Sağlam et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e aim of this paper is to analyze a tandem queueing model with two stages. �e arrivals to the �rst stage are Poisson stream and
the service time at this stage is exponential. �ere is no waiting room at �rst stage. �e service time is hyperexponential and no
waiting is allowed at second stage. �e transition probabilities and loss probabilities of this model are obtained. In addition, the
loss probability at second stage is optimized. Performance measures and the variance of the numbers of customers of this tandem
queueing model are found. It is seen that the numbers of customers in �rst stage and second stage are dependent. Finally we have
simulated this queueing model. For di	erent values of parameters, exact values, simulated values, and optimal values of obtained
performance measures of this model are numerically shown in tables and graphs.

1. Introduction

Queueing systems and modeling of these systems have many
uses in production lines, service facilities, telecommunica-
tion, computer sciences, transportation, and so forth. �e
main interest in queueing modeling is that it allows us to
process mathematical analysis. Hence the analysis gives us
the ability to obtain important properties such as measures
of performances of considered models. �ere follows then
optimization of these measures. One of important study
areas in Queueing �eory is the tandem queues. Many
various important studies are done on tandem queues. Niu
gave an upper bound for the stationary expected delay at
second server for a sequence of two queues in tandem
[1]. Some moment results for certain tandem and multiple-
server queues are studied by Wolfson [2]. Ohno and Ichiki
discussed the use of modi�ed policy iteration algorithms to
�nd the optimal control for the service rate for a tandem
queueing system in [3]. Analysis for the steady state of a
two-stage tandem queueing with single server is given by
[4]. Scheduling service time in tandem queues is studied
in [5]. Ziedins showed that, for some simple service time

distributions with support on two points, the throughput
can be calculated exactly and that it is always optimal to
allocate the capacity as uniformly as possible, even when
blocking occurs, in [6]. �e moments in tandem queues are
widely studied in [7]. A study, on control of a single-server
tandem queueing system, is given by [8]. Knessel and Tier
considered a di	usion model for two tandem queues with
general renewal input [9]. Marin and Bulo studied explicit
solutions for queues with hypoexponential service time and
they gave applications to product form analysis in [10]. �e
queues with phase-type distributions are widely investigated
by [11].�roughout maximization for tandem lines is studied
by [12]. Recently, performance analysis of tandem queues
with small bu	ers is studied [13] and a paper on a tandem
queueing model with parallel phases is given by [14] in
which a numerical example is performed. In this paper we
analyze a tandem queueing model in which the second stage
has hyperexponential distribution. �e arrivals to the �rst
stage of the queue are Poisson-distributed and the service
time at this stage has exponential distribution. �ere is no
waiting room at �rst stage of the queue. �e service time
is hyperexponentially distributed and no waiting is allowed
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at second stage of the queue. �e transition probabilities
and loss probabilities of this model are obtained. �e loss
probability at second stage is optimized. �e measures of
performances are obtained.We also show that the numbers of
customers in �rst and second stages are dependent. Further-
more this queueing model is simulated. For di	erent values
of parameters, exact values, simulated values, and optimal
values of obtained performance measures of this model are
numerically shown in tables and graphs. In simulation, it is
seen that the simulation results tend to exact results a�er
10000 iteration steps. �is queueing model is an extended
model of the one studied in [14]. Choosing �1 = �2 = 1/2
and �1 = �2 gives the model given in [14].

2. The Definition of Model

A new tandem queueing discipline is investigated in which
the customers arrive to system with � parameter Poisson
stream. In the �rst stage, there is a single server with
exponential distributed service time having rate�.Nowaiting
is allowed in front of this single server. Hence the �rst
loss occurs. �e service time at second stage is hyperexpo-
nentially distributed. A�er completing service in �rst stage,
the customers proceed to second stage. At second stage,
the customers choose the �rst server or second server with
probabilities �1 and �2 = 1 − �1, respectively. �e service
time parameters of servers at second stage are �1 and �2. A�er
having service at �rst stage if any of two servers in second
stage is busy then the customers leave the system. In this case
second loss occurs.

Now we give a formal mathematical de�nition of this
queueing discipline as below.

Let �1(�), �2(�), and �3(�) be the numbers of cus-
tomers in �rst stage, in the �rst server of second stage, and
in the second server of second stage, respectively, where� = [0,∞) and � ∈ �. We de�ne a 3D Markov chain{�1(�), �2(�), �3(�); �}. And the state space of this chain is

T = {(0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (1, 0, 0) , (1, 1, 0) , (1, 0, 1)} , (1)

where


�1 ,�2 ,�3 (�)= Prob {�1 (�) = �1, �2 (�) = �2, �3 (�) = �3; �} ,
(�1, �2, �3) ∈ T.

(2)

Assuming that the limit distribution exists, we need to �nd
the steady-state probabilities ��1 ,�2 ,�3

lim
�→∞


�1 ,�2 ,�3 (�) = ��1 ,�2 ,�3 ,
lim
(�→∞)


��1 ,�2 ,�3 (�) = 0. (3)

2.1. Di�erence Equations of the 3D Markov Chain. We have
the di	erence equations of this Markov chain as given in

−��000 + �1�010 + �2�001 = 0,
− (� + �2) �001 + �2��100 + ��101 = 0,
− (� + �1) �010 + �1��100 + ��110 = 0,
−��100 + ��000 + �1�110 + �2�101 = 0,

− (� + �1) �110 + ��010 = 0,
− (� + �2) �101 + ��001 = 0.

(4)

3. Transition Probabilities

By solving the equation system above, we have the transition
probabilities as follows:

�000 = (1/�) [�1� (� + �1) / (� + � + �1) + �2� (� + �2) / (� + � + �2)][1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2))] ,
�100 = 1[1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2))] ,
�010 = [�1� (� + �1) /�1 (� + � + �1)][1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2))] ,
�001 = [�2� (� + �2) /�2 (� + � + �2)][1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2))] ,
�101 = [��2�/�2 (� + � + �2)][1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2))] ,
�110 = [�1��/�1 (� + � + �1)][1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2))] .

(5)
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3.1. �e Dependence of Number of Customers at First and
Second Stages. Considering the �rst stage, in �/�/�/�
queue if we take � = 1, then

�0 = �� + � ,
�1 = �� + �

(6)

are obtained in [15]. Where �0 is the probability that the
system is idle and �1 is the probability the system is busy.
Because there is a probability of loss at �rst stage, the cus-
tomers can not arrive to second stage with � rate. �erefore
the transition probabilities at second stage are found with�e�ective = (�/(� + �))� rate. �en,

�00 = 11 + �1 (��/�1 (� + �)) + �2 (��/�2 (� + �)) ,

�10 = �1 (��/�1 (� + �))
1 + �1 (��/�1 (� + �)) + �2 (��/�2 (� + �)) ,

�01 = �2 (��/�2 (� + �))
1 + �1 (��/�1 (� + �)) + �2 (��/�2 (� + �)) .

(7)

In this manner, for example, since �100 ̸= �1 ⋅ �00, the
transition probability is written as

��1 ,�2 ,�3 ̸= ��1 ⋅ ��2 ,�3 . (8)

As a result, the numbers of customers at �rst and second
stages are dependent on each other.

3.2. Loss Probabilities. �ere are two loss probabilities in this
model. Now we go on by calculating these probabilities:

(a) Let 
(1)� denote the loss probability at �rst stage.�en,


(1)� = �100 + �101 + �110 = 1 + ��2�/�2 (� + � + �2) + �1��/�1 (� + � + �1)[1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2))] = �� + � . (9)

It is easy to see that this probability depends on � and� parameters only. Hence the loss probability at �rst stage is
independent of the parameters �1 and �2 of second stage.

(b) Let 
(2)� denote the loss probability at second stage.
�is probability is showed as follows.

To be loss at second stage, the second stage must be busy
under condition that the �rst stage is busy. Considering this,
the following events are de�ned:�1 is the event that �rst stage is busy.�2 is the event that second stage is busy.

Consider


(2)� = 
 (�2 | �1) = 
 (�2 ∩ �1)
 (�1) = �101 + �110�1 , (10)

where �1 = �100 + �101 + �110.
�e following theorem on optimization of 
(2)� is given.

�eorem 1. Fixing �1 = �2 = 1/2 and �1 + �2 = � (c is

constant), the minimum 
(2)� is obtained when �1 = �2 = �/2.
Proof. 
(2)� is rewritten as follows:


(2)�
= �1��/�1 (� + � + �1) + ��2�/�2 (� + � + �2)1 + �1��/�1 (� + � + �1) + ��2�/�2 (� + � + �2) .

(11)

Taking �1 = �2 = 1/2 in (11), 
(2)� is written as below:


(2)�
= 11 + 2/ (��/�1 (� + � + �1) + ��/�2 (� + � + �2)) .

(12)

To simplify, we write

Σ = ��
�1 (� + � + �1) + ��

�2 (� + � + �2) . (13)

To make 
(2)� minimum, Σmust be minimum:

Σ
= ��[ (� + �) (�1 + �2) + (�1 + �2)2 − 2�1�2

(�1�2)2 + �1�2 (� + �) + (� + �) �1�2 (�1 + �2)] . (14)

Equation (13) is written under condition�1+�2 = � as follows:

Σ = ��[ (� + �) � + �2 − 2�1�2
(�1�2)2 + �1�2 (� + �) (� + 1)] . (14)�

�e values which make (14)� minimum are �1 = �2 = �/2.
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�erefore the probability 
(2)� has its minimum value
when the �1�2 product is maximum, that is, when �1 = �2 =�/2 :

min
�1=�2=1/2
	1=	2=
/2


(2)� = 11 + � (� + � + �/2) /2�� .
(15)

4. Measures of Performances

4.1. �e Mean Number of Customers in the System. If we
denote the number of customers in the system by�, then we
calculate the mean number of customers as follows:

� (�) = ∑
�1
∑
�2
∑
�3

(�1 + �2 + �3) ��1 ,�2 ,�3 = �001 + �010 + �100 + 2 (�110 + �101)

= [1 + �1� (� + �1) /�1 (� + � + �1) + �2� (� + �2) /�2 (� + � + �2) + 2��2�/�2 (� + � + �2) + 2�1��/�1 (� + � + �1)1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2)) ] .
(16)

4.2. �e Variance of Customers Number in the System. Con-
sider

Var (�) = � (�2) − [� (�)]2 ,
� (�2) = ∑

�1
∑
�2
∑
�3

(�1 + �2 + �3)2 ��1 ,�2 ,�3 = �001 + �010 + �100 + 4 (�110 + �101)

= [1 + �1� (� + �1) /�1 (� + � + �1) + �2� (� + �2) /�2 (� + � + �2) + 4��2�/�2 (� + � + �2) + 4�1��/�1 (� + � + �1)1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2)) ] ,
Var (�)

= [1 + �1� (� + �1) /�1 (� + � + �1) + �2� (� + �2) /�2 (� + � + �2) + 4��2�/�2 (� + � + �2) + 4�1��/�1 (� + � + �1)1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2)) ]
− [1 + �1� (� + �1) /�1 (� + � + �1) + �2� (� + �2) /�2 (� + � + �2) + 2��2�/�2 (� + � + �2) + 2�1��/�1 (� + � + �1)1 + �/� + �1�/�1 + �2�/�2 − � (�1/ (� + � + �1) + �2/ (� + � + �2)) ] .

(17)

4.3. Mean Waiting Time in the System. Let " be the waiting
time in the system. Using total expectation in [16], we have

� (") = 
 (#) � (" | #) + 
 (#)� (" | #) , (18)

where # is the event of the loss at �rst stage. So,


 (#) = 1 − 
 (#) (19)

and the conditional expectations are written as

�( "#) = 1� ,
� ( "

#) = 1� + �1�1 +
�2�2 .

(20)

It follows then that


 (#) = 
(2)� . (21)

Now the mean waiting time of a customer in the system is
calculated as given in

� (") = 1�
+ ( (�1/�1 + �2/�2)1 + �1��/�1 (� + � + �1) + ��2�/�2 (� + � + �2)) .

(22)

5. The Simulation of the Model

In this section we give the simulation of the queueing model
which we analyze. �e mean waiting time in the system
and the loss probabilities are obtained by performing some
number of iterations * = 1000, 5000, 10000, 20000 and the
simulation results are given together with exact values in
tables. Furthermore, it is seen that the simulation results tend
to exact values.

�e exact and simulation values of 
(2)� in Tables 1, 2, 3,

and 4 are given in Figure 1. Also the exact values of 
(2)� are
the initial values of this �gure.
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Table 1: For � = 0.34, � = 0.70, �1 = 0.40, �2 = 0.60, �1 = 0.30, and �2 = 0.50.
Iterations number

Simulation result Exact result
(1)� 
(2)� �(") 
(1)� 
(2)� �(")
1000 0.317000 0.304539 3.188647 0.326923 0.296899 3.209761

5000 0.321400 0.303566 3.196287 0.326923 0.296899 3.209761

10000 0.320800 0.302709 3.196279 0.326923 0.296899 3.209761

20000 0.329000 0.293592 3.230218 0.326923 0.296899 3.209761

Table 2: For � = 0.34, � = 0.70, �1 = 0.60, �2 = 0.40, �1 = 0.30, and �2 = 0.50.
Number of iterations

Simulation result Exact result
(1)� 
(2)� �(") 
(1)� 
(2)� �(")
1000 0.327000 0.329866 3.290284 0.326923 0.323804 3.321921

5000 0.329200 0.333930 3.316146 0.326923 0.323804 3.321921

10000 0.327900 0.323613 3.331552 0.326923 0.323804 3.321921

20000 0.332700 0.323842 3.310026 0.326923 0.323804 3.321921

Table 3: For � = 0.34, � = 0.70, �1 = �2 = 0.50, �1 = 0.30, and �2 = 0.50.
Number of iterations

Simulation result Exact result
(1)� 
(2)� �(") 
(1)� 
(2)� �(")
1000 0.334000 0.318318 3.291144 0.326923 0.310614 3.266935

5000 0.324600 0.307373 3.281803 0.326923 0.310614 3.266935

10000 0.333100 0.315190 3.258010 0.326923 0.310614 3.266935

20000 0.325450 0.308354 3.270625 0.326923 0.310614 3.266935

Table 4: For � = 0.34, � = 0.70, �1 = �2 = 0.50, �1 = 0.40, and �2 = 0.40.
Number of iterations

Simulation result Exact result
(1)� 
(2)� �(") 
(1)� 
(2)� �(")
1000 0.312000 0.289244 3.148811 0.326923 0.292383 3.197613

5000 0.332600 0.301468 3.241776 0.326923 0.292383 3.197613

10000 0.329800 0.298717 3.171507 0.326923 0.292383 3.197613

20000 0.323800 0.293848 3.169682 0.326923 0.292383 3.197613

In this �gure, we see that as the number of iterations

increases, the simulation values of 
(2)� converge to its exact

values. Furthermore under condition �1 = �2, 
(2)� has its
minimum value when �1 = �2 and it seen in Figure 1, as is
shown in Table 4.

6. Conclusions

A two-stage tandem queueing model is analyzed. �e tran-
sition probabilities and loss probabilities are given and a
theorem is given for the minimization of the loss probability
at second stage. �is queueing model is simulated for 1000,
5000, 10000, and 20000 iteration steps. �e obtained simula-
tion results are compared to exact results and it is shown in
Tables 1, 2, 3, and 4 and Figure 1 that the simulation results
are close to exacts results. Exact values and simulation results
given in Tables 3 and 4 numerically satisfy �eorem 1. �ese
results are also shown in Figure 1.

For further studies on this queueing model, this model
can be extended by adding some servers, increasing

0.28

0.29

0.3

0.31

0.32

0.33

0.34

5000 10000 15000 20000
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Table 2

Table 3

Table 4
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Figure 1: �e exact and simulation values of 
(2)� .

the capacities of the servers, and letting queues in front of
the servers.



6 Mathematical Problems in Engineering

Conflict of Interests

�eauthors declare that there is no con�ict of interests related
to this paper.

References

[1] S. C. Niu, “Bounds for the expected delays in some tandem
queues,” Journal of Applied Probability, vol. 17, no. 3, pp. 831–838,
1980.

[2] B. Wolfson, “Some moment results for certain tandem and
multiple-server queues,” Journal of Applied Probability, vol. 21,
no. 4, pp. 901–910, 1984.

[3] K. Ohno and K. Ichiki, “Computing optimal policies for
controlled tandem queueing systems,”Operations Research, vol.
35, no. 1, pp. 121–126, 1987.

[4] T. Katayama, “A cyclic service tandem queueing model with
parallel queues in the �rst stage,” Communications in Statistics.
Stochastic Models, vol. 4, no. 3, pp. 421–443, 1988.

[5] P. K. Johri and M. N. Katehakis, “Scheduling service in tandem
queues attended by a single server,” Stochastic Analysis and
Applications, vol. 6, no. 3, pp. 279–288, 1988.

[6] I. Ziedins, “Tandem queues with correlated service times and
�nite capacity,”Mathematics of Operations Research, vol. 18, no.
4, pp. 901–915, 1993.

[7] A. S. Wolf and K. Sigman, “Moments in tandem queues,”
Operations Research, vol. 46, no. 3, pp. 378–380, 1998.

[8] I. Duenyas, D. Gupta, and T. L. Olsen, “Control of a single-
server tandem queueing system with setups,” Operations
Research, vol. 46, no. 2, pp. 218–230, 1998.

[9] C. Knessl andC. Tier, “Adi	usionmodel for two tandemqueues
with general renewal input,” Communications in Statistics.
Stochastic Models, vol. 15, no. 2, pp. 299–343, 1999.

[10] A. Marin and S. R. Bulo, “Explict solutions for queues with
hypo-exponential service time and applications to product-
form analysis,” in Proceedings of the 5th International ICST
Conference on Performance EvaluationMethodologies and Tools,
pp. 166–175, Paris, France, 2011.

[11] W. J. Stewart, Probability, Markov Chains, Queues, and Simula-
tion, Princeton University Press, Princeton, NJ, USA, 2009.

[12] S. Andradóttir and H. Ayhan, “�roughput maximization for
tandem lines with two stations and �exible servers,” Operations
Research, vol. 53, no. 3, pp. 516–531, 2005.

[13] M. V. Vuuren and I. J. B. F. Adan, “Performance analysis of
tandem queues with small bu	ers,” IIE Transactions, vol. 41, no.
10, pp. 882–892, 2009.
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