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1 Introduction and review

The last few years have seen a remarkable resurgence of interest in an old approach to Con-

formal Field Theory (CFT), the conformal bootstrap [1, 2], with a great deal of progress

leading to new results of phenomenological [3–9] and theoretical [10–15] import. Most of

these new works use numerical methods to constrain the spectrum and OPE coefficients
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of general CFTs. In a parallel series of developments, there has been significant progress

understanding effective field theory in AdS and its interpretation in CFT [10, 13, 16–19].

This has led to a general bottom-up classification of which CFTs have dual [20–22] de-

scriptions as effective field theories in AdS, providing an understanding of AdS locality

on all length scales greater than the inverse energy cutoff in the bulk. In fact, these two

developments are closely related, as the seminal paper [10] and subsequent work begin by

applying the bootstrap to the 1/N expansion of CFT correlators. This approach has been

fruitful, especially when interpreted in Mellin space [19, 23–28], but it is an essentially

perturbative approach analogous [29] to the use of dispersion relations for the study of

perturbative scattering amplitudes.

In light of recent progress, one naturally wonders if an analytic approach to the boot-

strap could yield interesting new exact results. In fact, in [14] bounds on operator product

expansion (OPE) coefficients for large dimension operators have already been obtained.

We will obtain a different sort of bound on both OPE coefficients and operator dimensions

in the limit of large angular momentum, basically providing a non-perturbative bootstrap

proof of some results that Alday and Maldacena [30] have also discussed.1

Specifically, we will study a general scalar primary operator φ of dimension ∆φ in a

CFT in d > 2 dimensions. We will prove that for each non-negative integer n there must

exist an infinite tower of operators Oτ,ℓ with twist τ → 2∆φ + 2n appearing in the OPE

of φ with itself. This means that at large ℓ, and we can define an ‘anomalous dimension’

γ(n, ℓ) which vanishes as ℓ→ ∞. If there exists one such operator at each n and ℓ, we will

argue that at large ℓ the anomalous dimensions should roughly approach

γ(n, ℓ) ≈ γn
ℓτm

, (1.1)

where τm is the twist of the minimal twist operator appearing in the OPE of φ with itself.

Related predictions can be made about the OPE coefficients. Finally, we will show that the

OPE coefficients of other operators appearing in the OPE of φ with itself at large ℓ must

be bounded, so that they fall off even faster as ℓ → ∞. Similar results also hold for the

OPE of pairs of operators φ1 and φ2, although for simplicity we will leave the discussion

of this generalization to appendix C.

Our arguments fail for CFTs in two dimensions, and in fact we will see that the

c = 1/2 minimal model provides an explicit counter-example. Two dimensional CFTs are

distinguished because there is no gap between the twist of the identity operator and the

twist of other operators, such as conserved currents and the energy-momentum tensor.

Our results can be interpreted as a proof that all CFTs in d > 2 dimensions have cor-

relators that are dual to local AdS physics on superhorizon scales. That is, CFT processes

that are dual to bulk interactions will effectively shut off as the bulk impact parameter is

taken to be much greater than the AdS length. This can also be viewed as a strong form

of the cluster decomposition principle in the bulk. Since the early days of AdS/CFT it

1The authors of [30] explicitly discuss minimal twist double-trace operators in a large N gauge theory;

however their elegant argument can be applied in a more general context, beyond perturbation theory and

for general twists. We thank J. Maldacena for discussions of this point.
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has been argued that this notion of “coarse locality” [10] could be due to a decoupling of

modes of very different wavelengths, but it has been challenging to make this qualitative

holographic RG intuition precise. The bootstrap offers a precise and general method for

addressing coarse locality.

For the remainder of this section we will give a quick review of the CFT bootstrap.

Then in section 2 we delve into the argument, first giving an illustrative example from

mean field theory (a Gaussian CFT, with all correlators fixed by 2-pt functions, e.g. a free

field theory in AdS). We give the complete argument in sections 2.2 and 2.4, with some

more specific results and examples that follow from further assumptions in section 2.3. We

provide more detail on how two dimensional CFTs escape our conclusions in section 2.5.

In section 3 we connect our results to superhorizon locality in AdS, and we conclude with

a brief discussion in section 4. In appendix A we collect some results on relevant approxi-

mations of the conformal blocks in four and general dimensions. In appendix B we give a

more formal and rigorous version of the argument in section 2. In appendix C we explain

how our results generalize to terms occurring in the OPE of distinct operators φ1 and φ2.

In appendix D we connect our results with perturbative gravity computations in AdS.

Note added. After this work was completed we learned of the related work of Komargod-

ski and Zhiboedov [31]; they obtain very similar results using somewhat different methods.

1.1 Lightning bootstrap review

In CFTs, the bootstrap equation follows from the constraints of conformal invariance and

crossing symmetry applied to the operator product expansion, which says that a product

of local operators is equivalent to a sum

φ(x)φ(0) =
∑

O
cOfO(x, ∂)O(0). (1.2)

Conformal invariance relates the OPE coefficients of all operators in the same irreducible

conformal multiplet, and this allows one to reduce the sum above to a sum over different

irreducible multiplets, or “conformal blocks”. When this expansion is performed inside of

a four-point function, the contribution of each block is just a constant “conformal block

coefficient” PO ∝ c2O for the entire multiplet times a function of the xi’s whose functional

form depends only on the spin ℓO and dimension ∆O of the lowest-weight (i.e. “primary”)

operator of the multiplet:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

(x212x
2
34)

∆φ

∑

O
POgτO,ℓO(u, v), (1.3)

where xij = xi − xj , the twist of O is τO ≡ ∆O − ℓO, and

u =

(

x212x
2
34

x224x
2
13

)

, v =

(

x214x
2
23

x224x
2
13

)

, (1.4)

are the conformally invariant cross-ratios. The functions gτO,ℓO(u, v) are also usually re-

ferred to as conformal blocks or conformal partial waves [32–35], and they are crucial

elementary ingredients in the bootstrap program.
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In the above, we took the OPE of φ(x1)φ(x2) and φ(x3)φ(x4) inside the four-point

function, but one can also take the OPE between different pairs of operators, and the

result should be the same. For example, swapping 2 ↔ 3 gives the bootstrap equation

1

(x212x
2
34)

∆φ

∑

O
POgτO,ℓO(u, v) =

1

(x214x
2
23)

∆φ

∑

O
POgτO,ℓO(v, u). (1.5)

(Meanwhile, swapping 1 ↔ 2 or 3 ↔ 4 gives the constraint that only even spin operators

can appear in the OPE. Other permutations give no new constraints.) Much of the power

of this constraint follows from the fact that by unitarity, the conformal block coefficients

PO must all be non-negative in each of these channels, because the PO can be taken to be

the squares of real OPE coefficients.

2 The bootstrap and large ℓ operators

Although some of the arguments below are technical, the idea behind them is very sim-

ple. By way of analogy, consider the s-channel partial wave decomposition of a tree-level

scattering amplitude with poles in both the s and t channels. The center of mass energy is

simply
√
s, so the s-channel poles will appear explicitly in the partial wave decomposition.

However, the t-channel poles will not be manifest. They will arise from the infinite sum

over angular momenta, because the large angular momentum region encodes long-distance

effects. Crossing symmetry will impose constraints between the s-wave and t-wave de-

compositions, relating the large ℓ behavior in one channel with the pole structure of the

other channel.

We will be studying an analogous phenomenon in the conformal block (sometimes

called conformal partial wave) decompositions of CFT correlation functions. The metaphor

between scattering amplitudes and CFT correlation functions is very direct when the CFT

correlators are expressed in Mellin space, but in what follows we will stick to position space.

In position space CFT correlators, the poles of the scattering amplitude are analogous to

specific power-laws in conformal cross-ratios, with the smallest power-laws corresponding

to the leading poles.

2.1 An elementary illustration from mean field theory

Let us begin by considering what naively appears to be a paradox. Consider the 4-point

correlation function in a CFT with only Gaussian or ‘mean field theory’ (MFT) type

correlators. These mean field theories are the dual of free field theories in AdS. We will

study the 4-pt correlator of a dimension ∆φ scalar operator φ in such a theory. By definition,

in mean field theory the 4-pt correlator is given as a sum over the 2-pt function contractions:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

(x212x
2
34)

∆φ
+

1

(x213x
2
24)

∆φ
+

1

(x214x
2
23)

∆φ
,

=
1

(x213x
2
24)

∆φ

(

u−∆φ + 1 + v−∆φ
)

. (2.1)

Since this is the 4-pt correlator of a unitary CFT, it has a conformal block decomposi-

tion in every channel with positive conformal block coefficients. The operators appearing in
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the conformal block decomposition are just the identity operator 1 and the “double-trace”

operators On,ℓ of the schematic form

On,ℓ ∼ φ(∂2)n∂µ1 . . . ∂µℓ
φ, (2.2)

with known [29] conformal block coefficients P2∆φ+2n,ℓ and twists τn,ℓ = 2∆φ + 2n. Fac-

toring out an overall (x213x
2
24)

−∆φ , the conformal block decomposition in the 14 → 23

channel reads

u−∆φ + 1 + v−∆φ = v−∆φ + v−∆φ

∑

n,ℓ

P2∆φ+2n,ℓ g2∆φ+2n,ℓ(v, u), (2.3)

where the v−∆φ on the r.h.s. is the contribution from the identity operator. If we look at

the behavior of the conformal blocks g2∆φ+2n,ℓ(v, u), we notice a simple problem with this

equation: it is known that the conformal blocks g2∆φ+2n,ℓ(v, u) in the sum on the r.h.s.

each have at most a log u divergence at small u, but the l.h.s. has a u−∆φ divergence. Thus

the l.h.s. cannot be reproduced by any finite number of terms in the sum. To be a bit more

precise, the conformal blocks have a series expansion around u = 0 with only non-negative

integer powers of u and at most a single logarithm appearing, so in particular we can write2

v−∆φg2∆φ+2n,ℓ(v, u) = f0(v) + uf1(v) + u2f2(v) + . . .

+ log(u)
(

f̃0(v) + uf̃1(v) + u2f̃2(v) + . . .
)

. (2.4)

But this means that if the sum on the right-hand side of equation (2.3) converges uniformly,

it cannot reproduce the left-hand side, which includes the negative power term u−∆φ and

does not include any logarithms.

The simple resolution of this ‘paradox’ is that the sum over conformal blocks does

not converge uniformly near u = 0. In fact, the sum does converge on an open set with

positive real u, but when Re[
√
u] < 0 the sum diverges. So we must define the sum over

conformal blocks for general u as the analytic continuation of the sum in the convergent

region. Crucially, the analytic continuation of the sum contains the power-law u−∆φ that

is not exhibited by any of the individual terms in the sum.

Let us see how this works in a bit more detail, so that in particular, we can see that

the sum over twists τ = 2∆φ + 2n at fixed ℓ converges in a neighborhood of u = 0, but

the sum over angular momentum diverges for u < 0. For the purpose of understanding

convergence, we need only study the conformal blocks when τ or ℓ are very large. In the

very large τ limit with |u|, |v| < 1 the blocks are always suppressed by u
τ
2 or v

τ
2 . The

conformal block coefficients are bounded at large τ [14]. This means that for small |u| and
|v|, the sum over τ will converge. In fact, once we know that the sum converges for some

particular u0, v0 we see that for u < u0 and v < v0, the convergence at large τ becomes

exponentially faster.

2See for example equation (2.32) in [32]. The sum over powers of (1− v) can be performed explicitly to

find a hypergeometric function, whose singularities at v ∼ 1 are known.
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Now consider the ℓ dependence. At large ℓ and fixed τ , we establish in appendix A

that the crossed-channel blocks in the |u| ≪ |v| ≪ 1 limit behave as

gτ,ℓ(v, u) ≈
ℓ
1
2 2τ+2ℓ

√
π

v
τ
2K0

(

2ℓ
√
u
) ℓ

√
u≫1≈ 2τ+2ℓ−1v

τ
2
e−2ℓ

√
u

4
√
u

, (2.5)

where K0 is a modified Bessel function. Notice that for Re[
√
u] > 0 there is an exponential

suppression at very large ℓ, but for Re[
√
u] < 0 there is an exponential growth. Note also

that at small v the lowest twist terms (n = 0) will dominate.

Now, the mean field theory conformal block coefficients in any dimension d are [29]

P2∆φ+2n,ℓ =

[

1 + (−1)ℓ
]

(∆φ − d
2 + 1)2n(∆φ)

2
n+ℓ

ℓ!n!(ℓ+ d
2)n(2∆φ + n− d+ 1)n(2∆φ + 2n+ℓ−1)ℓ(2∆φ + n+ ℓ− d

2)n
, (2.6)

where the Pochhammer symbol (a)b ≡ Γ(a+ b)/Γ(a). In particular, for n = 0 and at large

even ℓ we can approximate

P2∆φ,ℓ
ℓ≫1≈ q∆φ

√
π

22∆φ+2ℓ
ℓ2∆φ− 3

2 , (2.7)

where q∆φ
is an ℓ-independent prefactor.3 Thus the sum in eq. (2.3) at large ℓ and |u| ≪

|v| ≪ 1 takes the form

v−∆φ

∑

n, large ℓ

P2∆φ+2n,ℓ g2∆φ+2n,ℓ(v, u) ≈ q∆φ

∞
∑

large even ℓ

ℓ2∆φ−1K0

(

2ℓ
√
u
)

. (2.8)

This sum converges at large ℓ for positive real
√
u, and so we will define it by analytic

continuation elsewhere in the complex u plane. As can be easily seen by approximating

the sum with an integral, the result reproduces the u−∆φ power-law term on the left-

hand side of equation (2.3), as desired. Thus we have seen that general power-laws in u are

reproduced by conditionally convergent large ℓ sums in the conformal block decomposition,

with a power-law dependence on ℓ producing a related power of u as u→ 0.

2.2 Existence of twist 2∆φ + 2n+ γ(n, ℓ) operators at large ℓ

In section 2.1 we saw how in MFT the sum over large ℓ conformal blocks in the crossed

14 → 23 channel controls the leading power-law behavior in u in the standard 12 → 34

channel. Now we will use the bootstrap equation (1.5) to turn this observation into a

powerful and general method for learning about the spectrum and the conformal block

coefficients Pτ,ℓ at large ℓ in any CFT.

Separating out the identity operator, the bootstrap equation reads

1 +
∑

τ,ℓ

Pτ,ℓ u
τ
2 fτ,ℓ(u, v) =

(u

v

)∆φ

(

1 +
∑

τ,ℓ

Pτ,ℓ v
τ
2 fτ,ℓ(v, u)

)

, (2.9)

3Explicitly, q∆φ
=

(

8
Γ(∆φ)2

)

.
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where we have written the conformal blocks as gτ,ℓ(u, v) = u
τ
2 fτ,ℓ(u, v) to emphasize their

leading behavior at small u and v. We will work in d > 2 so that the unitarity bound

on twists

τ ≥
{

d−2
2 (ℓ = 0),

d− 2 (ℓ ≥ 1),
(2.10)

strictly separates the identity operator from all other operators.

The arguments in this section will follow from an elementary point:

• In the small-u limit, the sum on the right-hand side of equation (2.9) must correctly

reproduce the identity contribution on the left-hand side.

We will show that this implies the existence of towers of operators with increasing spin

whose twists approach 2∆φ + 2n, for each integer n ≥ 0. Together with the results in

appendix A and the more rigorous arguments in appendix B, we will provide a rigorous

proof of this claim. In subsequent sections, we will consider subleading corrections to the

small-u limit of eq. (2.9) coming from operators of minimal non-zero twist.

For the remainder of this section we will use the approximate relation

1 ≈
(u

v

)∆φ∑

τ,ℓ

Pτ,ℓ gτ,ℓ(v, u), (u→ 0), (2.11)

valid up to strictly sub-leading corrections in the limit u → 0.4 As we saw in section 2.1,

no finite collection of spins on the right-hand side of (2.11) can give rise to the left-hand

side. This is true even including an infinite sum over large τ . To understand how these

terms are reproduced, we must study the large ℓ region of the sum on the right-hand side

of equation (2.11). For this purpose we need a formula for the conformal blocks, gτ,ℓ(v, u),

at |u| ≪ 1 and large ℓ.

We show in appendix A that the blocks can be approximated in this limit by

gτ,ℓ(v, u) ≈ k2ℓ(1− z)vτ/2F (d)(τ, v) (|u| ≪ 1 and ℓ≫ 1), (2.12)

kβ(x) ≡ xβ/22F1(β/2, β/2, β, x), (2.13)

where z is defined by u = zz̄, v = (1 − z)(1 − z̄), and the function F (d)(τ, v) is positive

and analytic near v = 0.5 The exact expression for F (d) will not be important for our

discussion. Note that z → 0 at fixed z̄ is equivalent to u→ 0 at fixed v.

A key feature of eq. (2.12) is that the ℓ, z dependence of gτ,ℓ factorizes from the τ, v

dependence in the limit z → 0, ℓ → ∞. Thus, we expect operators with large spin

4The sum over conformal blocks on the left-hand side of the crossing relation is necessarily a subleading

correction at small u. The reason for this is that we take v to a small but fixed value when we take the small

u limit, so the conformal blocks factorize at large spin as shown in eq. (2.5) (with v and u interchanged).

The sum over spins on the left-hand side therefore manifestly cannot produce additional singularities in u.

The sum over twists is regulated by the u
τ
2
−∆φ factor.

5For example, F (2)(τ, v) is given by eq. (A.8). In appendix A, we give recursion relations which allow

one to generate F (d) in any even d. In odd d, one must resort to solving a differential equation.
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to be crucial for reproducing the correct z-dependence on the left-hand side of eq. (2.11).

However, a particular pattern of twists should also be necessary for reproducing the correct

v-dependence in eq. (2.11). What is this pattern?

To study this question, it is useful to introduce a conformal block “density” in

twist space,

Du,v(σ) ≡
(u

v

)∆φ∑

τ,ℓ

Pτ,ℓδ(τ − σ)gτ,ℓ(v, u). (2.14)

By integratingDu,v(σ) against various functions f(σ), we can study the contributions to the

crossing equation from operators with different twists. One should think of it as a tool for

studying the spectrum of operators in twist-space. Since the conformal blocks are positive

in the region 0 < z, z̄ < 1, and the coefficients Pτ,ℓ are positive, Du,v is positive as well.

The full conformal block expansion comes from integrating Du,v(σ) against the con-

stant function 1. Thus, the crossing eq. (2.11) in the small u limit reads6

1 = lim
u→0

∫ ∞

d−2
dσDu,v(σ) =

∫ ∞

d−2
dσ lim

u→0
Du,v(σ). (2.15)

As we discussed above, the u → 0 limit on the r.h.s. is dominated by the sum over

large ℓ, so we are free to substitute the asymptotic form of the blocks eq. (2.12) into the

definition of Du,v and maintain the same u→ 0 (equivalently z → 0) limit,

lim
u→0

Du,v(σ) =

(

lim
z→0

z∆φ

∑

τ,ℓ

Pτ,ℓk2ℓ(1− z)δ(τ − σ)

)

v
σ
2
−∆φ(1− v)∆φF (d)(σ, v),(2.16)

where we have used z̄ = 1 − v + O(z). Note that after this substitution, the τ and v-

dependence factors out into an overall function v
σ
2
−∆φ(1− v)∆φF (d)(σ, v), while the u and

ℓ dependence is encapsulated in a particular weighted sum of OPE coefficients,

ρ(σ) ≡ lim
z→0

z∆φ

∑

τ,ℓ

Pτ,ℓk2ℓ(1− z)δ(τ − σ). (2.17)

By crossing symmetry eq. (2.15), the density ρ(σ) satisfies

1 = (1− v)∆φ

∫ ∞

d−2
dσρ(σ)v

σ
2
−∆φF (d)(σ, v). (2.18)

We claim that the only way to solve this relation with positive ρ(σ) is if ρ is given by its

value in mean field theory, namely a sum of delta functions at even integer-spaced twist:

ρ(σ) =
∑

n=0,1,...

PMFT
2∆φ+2nδ(σ − (2∆φ + 2n)). (2.19)

6We justify switching the limit and integration in appendix B. Roughly, it follows from the fact that the

integral of Du,v(σ) over regions with large σ falls exponentially with σ.
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where the mean field theory coefficients were given as a function of n and ℓ in equation (2.6).

Expanding these coefficients at large ℓ and performing the sum in eq. (2.17) gives7

PMFT
2∆φ+2n =

1

22∆φ+2n

(

∆φ − d
2 + 1

)2

n

n!(2∆φ + n− d+ 1)n
. (2.20)

Let us give a brief argument for why this is the case. Note that the function F (d)(σ, v)

is analytic and positive near v = 0, so the small v behavior of the above integral comes

from the term v
σ
2
−∆φ . Since the right-hand side is independent of v, and the density ρ(σ)

is nonnegative, we see that ρ(σ) must be zero for σ < 2∆φ and also have a contribution

proportional to δ(σ − 2∆φ).

The necessity of the other terms δ(σ − (2∆φ + 2n)) now follows from the fact that

the l.h.s. is independent of v, while the first term δ(σ − 2∆φ) contributes a power series

in v about v = 0, namely F (d)(2∆φ, v). Terms with n > 0 are needed to cancel successive

powers of v from this first term. To see the necessity of this result most clearly, it is helpful

to subtract the contribution of δ(σ − 2∆φ) from both sides of eq. (2.18):

O(v) = (1− v)∆φ

∫ ∞

d−2
dσρ′(σ)v

σ
2
−∆φF (d)(σ, v) (2.21)

where ρ′(σ) = ρ(σ)− PMFT
2∆φ

δ(σ − 2∆φ). We are left with an O(v) term on the l.h.s. which

must now be matched by a δ(σ−(2∆φ+2)) term in ρ′. Repeating this algorithm iteratively,

one can fix ρ(σ) to be given by its value in MFT.8

The result eq. (2.19) has several consequences. Firstly, it implies the existence of a

tower of operators with increasing spin whose twists approach τ = 2∆φ + 2n, for each

n ≥ 0. To see this, let us integrate eq. (2.19) over a bump function hǫ(σ) with some width

ǫ around σ = 2∆φ + 2n. Using the definition in eq. (2.17), we obtain9

lim
z→0

z∆φ

∑

τ,ℓ

Pτ,ℓhǫ(τ)k2ℓ(1− z) = PMFT
2∆φ+2n. (2.22)

The limit vanishes termwise on the l.h.s. , so a finite result can only come from the sum

over an infinite number of terms. Thus, for any ǫ, there are an infinite number of operators

with twist τ = 2∆φ + 2n+O(ǫ).

We can also be more precise about the contribution of these operators to the conformal

block expansion at large ℓ. The sum above can be written as an integral over the OPE

coefficient density in ℓ, for operators with twist near 2∆φ + 2n

∑

τ∼2∆φ+2n,ℓ

Pτ,ℓk2ℓ(1− z) =

∫ ∞

0
dℓfn(ℓ)k2ℓ(1− z), (2.23)

7To perform this computation explicitly, we use the fact that the sum is dominated by the region of

fixed zℓ2, so that one may use the approximation of eq. (A.21).
8We also note that one might reproduce this conclusion directly by doing a projection of the l.h.s. and

r.h.s. onto specific high-spin conformal blocks using the method of “conglomerating” [29].
9We justify interchanging the limit and integration in appendix B.
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where we define an OPE coefficient density

fn(ℓ) ≡
∑

τ∼2∆φ+2n,ℓ′

Pτ,ℓ′δ(ℓ− ℓ′). (2.24)

For simplicity, we no longer show the bump function hǫ(τ) explicitly, but indicate its

presence by writing τ ∼ 2∆φ + 2n.

One intuitively expects that the OPE coefficient density fn(ℓ) must be constrained at

large ℓ in order to reproduce the identity operator in the crossed channel. In mean field

theory fn(ℓ) has a power-law behavior, and so we expect that, in an averaged sense, fn(ℓ)

must be similar in any CFT. This motivates introducing an integrated density

Fn(L) ≡
∫ L

0
dℓ

Γ(2ℓ)

Γ(ℓ)2
fn(ℓ). (2.25)

In appendix B.3 we prove both upper and lower bounds

AUL
2∆φ > Fn(L) > AL

L2∆φ

log(L)
(2.26)

for some coefficients AU and AL in the limit of very large L. We expect that the lower bound

can be improved to eliminate the logarithm and make a prediction Fn(L) = AnL
2∆φ .10 We

calculate in appendix B.3 that such a prediction would necessarily fix An to be

lim
L→∞

L−2∆φFn(L) =
PMFT
2∆φ+2n

∆φΓ(∆φ)2
. (2.27)

In summary, we have shown that in any CFT we must have operators accumulating at

twists 2∆φ +2n at large ℓ. In simple cases where these accumulation points are populated

by a single operator at each ℓ, as in all perturbative theories, we can obtain specific rela-

tions for sums over the anomalous dimensions γ(n, ℓ) and the conformal block coefficients

δP2∆φ+2n,ℓ. We will explore these relations in the next subsection. In appendix C we

briefly explain how these results generalize when we have distinct operators φ1 and φ2, so

that there must exist operators accumulating at twist ∆1 +∆2 + 2n as ℓ→ ∞.

2.2.1 Relation to numerical results and the 3d Ising model

In [8], the authors used numerical boostrap methods to constrain the dimensions of oper-

ators appearing in the OPE of a scalar φ with itself in 3d CFTs. They found numerical

evidence that the minimum twist τℓ at each spin ℓ in the φ× φ OPE satisfies

τℓ ≤ 2∆φ. (2.28)

(More precisely, they compute a series of numerical bounds on τℓ, which appear to approach

the presumably optimal bound eq. (2.28), at least for ℓ = 2, 4, 6.) Here, we note that

10In the case where the functions kβ(1− z) are replaced by their exponential approximation eq. (A.19),

the Hardy-Littlewood Tauberian theorem says that the upper and lower bound at large L are the same,

and it fixes their coefficient. It seems likely to us that an analogous theorem could be proven for the case

at hand.
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eq. (2.28) follows from our results, together with Nachtmann’s theorem [36]. We have seen,

among other things, that there exist operators in the φ×φ OPE with twist arbitrarily close

to 2∆φ and arbitrarily high spin ℓ. Nachtmann’s theorem states that τℓ is an increasing

function of ℓ for ℓ > 0, which implies eq. (2.28) for all ℓ > 0.

The 3d Ising Model is a particularly interesting example in light of this result. The

theory contains a scalar σ with dimension ∆σ ≈ 0.518. Thus, the minimum twist operators

at each ℓ have twist less than ≈ 1.036, which is very close to the unitarity bound. One

might interpret these operators for ℓ ≥ 4 as approximately conserved higher-spin currents.

It would be interesting to understand what the existence of these approximate currents

implies for structure of the theory.

2.3 Properties of isolated towers of operators

So far, we have made no assumptions about the precise spectrum of operators that ac-

cumulate at the special values τ ∼ 2∆φ + 2n. However, it is interesting to consider the

case where an accumulation point 2∆φ + 2n is approached by a single tower of operators

O2∆φ+2n,ℓ with ℓ = 0, 2, . . . , which are separated by a twist gap from other operators in the

spectrum at sufficiently large spin. This occurs in every example we are aware of, includ-

ing all theories with a perturbative expansion parameter such as 1/N (see appendix D) or

the ’t Hooft coupling in e.g. N = 4 SYM, and we will also discuss some non-perturbative

examples at the end of this subsection. It would be very interesting to identify any CFTs

without operators with twists near 2∆φ + 2n for every sufficiently large value of ℓ.

With this additional assumption, we will be able to characterize subleading corrections

to the bootstrap equation, eq. (1.5), in the small u limit. On the left-hand side, these

corrections come from the operators Om with minimal nonzero twist. Thus, we have the

approximate relation

1 +
2
∑

ℓm=0

Pmu
τm
2 fτm,ℓm(0, v) ≈

∑

τ,ℓ

Pτ,ℓ v
τ
2
−∆φu∆φfτ,ℓ(v, u), (2.29)

which is valid up to subleading corrections in u in the limit u→ 0. We have assumed that

ℓm ≤ 2 because higher spin operators either have twist greater than that of the energy-

momentum tensor or, as argued in [37, 38], they are part of an infinite number of higher-spin

currents that couple as if they were formed from free fields.11 Dolan and Osborn [34] have

given a formula in general d appropriate for the conformal blocks corresponding to Om

exchange on the left-hand side, where we have expanded at small u. This is

fτm,ℓm(0, v) = (1− v)ℓm2F1

(τm
2

+ ℓm,
τm
2

+ ℓm, τm + 2ℓm, 1− v
)

. (2.30)

It will be important that this hypergeometric function can be expanded in a power series

at small v with terms of the form vk(ak + bk log v). The logarithms will be related to the

‘anomalous dimensions’ that emerge at large ℓ.

11Strictly speaking, the arguments in [37, 38] assumed d = 3 and studied correlators of currents, but it is

likely that they can be extended to d ≥ 3. In any case, one can view ℓm ≤ 2 as an assumption.
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Now we expect there to be a finite separation between the lowest twist τm and the other

twists in the theory. To prove this, we consider two cases separately, that of τm < d−2 and

that of τm ≥ d− 2. In the former case, Om must be a scalar operator due to the unitarity

bound (2.10). We will assume that there are a finite number of scalar operators with

dimension below any given value,12 which immediately implies that the twist of Om must

have a finite separation from the other twists in the theory. To have a non-vanishing 4-pt

correlator φ must be uncharged, so in the absence of lower twist scalars we have τm = d−2,

because the energy-momentum tensor will appear in the φ(x)φ(0) OPE. We can then apply

the Nachtmann theorem, which says that minimal twists must be non-decreasing functions

of ℓ, to conclude that τm is separated from the other twists in the theory. Note that,

crucially, unless φ is a free scalar field we have τm
2 −∆φ < 0, so the sub-leading powers of

u grow as u→ 0. Taken together, these comments imply that there is a limit u→ 0 where

the exchange of the identity operator plus a finite number of Om dominates the left-hand

side of equation (2.9).

Assuming the existence of an operator with twist approaching 2∆φ+2n for each ℓ, we

would like to constrain the deviation of their conformal block coefficients δP2∆φ+2n,ℓ from

MFT and their anomalous dimensions γ(n, ℓ) ≡ ∆On,ℓ
− 2∆φ − 2n − ℓ. This is possible

because the Om contribute a dominant sub-leading contribution at small u, with a known

v-dependence that can be expanded in a power series with integer powers at small v. The

fact that we have only integer powers vn and vn log v multiplying u
τm
2 on the left-hand

side of equation (2.29) means that the right-hand side can reproduce these terms only with

the conformal blocks we just discovered above, namely those with twists approaching the

accumulation points τ(n, ℓ) = 2∆φ + 2n+ γ(n, ℓ) so that v
τ(n,ℓ)

2
−∆φ is an integer power in

the ℓ→ ∞ limit.

In fact, expanding eq. (2.30) for the Om conformal blocks at small v gives

fτm,ℓm(v) =
Γ(τm + 2ℓm)(1− v)ℓm

Γ2
(

τm
2 + ℓm

)

∞
∑

n=0

(

(

τm
2 + ℓm

)

n

n!

)2

×vn
[

2
(

ψ(n+ 1)− ψ
(τm

2
+ ℓm

))

− log v
]

, (2.31)

where ψ(x) = Γ′(x)/Γ(x) is the Digamma function, and (a)b = Γ(a + b)/Γ(a) is the

Pochhammer symbol. The details of this formula are not especially important, except in-

sofar as it makes explicit the connection between the coefficients of vn and vn log v in the

series expansion. We will now see that the vn terms must come from δP2∆φ+2n,ℓ while the

vn log v terms are a consequence of γ(n, ℓ). This means that the ‘anomalous dimension’ and

the correction to the conformal block coefficients must be related at large ℓ. These quan-

tities were seen to be related [10] to all orders in perturbation theory [29] in the presence

of a 1/N expansion, so our result extends this relation to a non-perturbative context.

The vn log v terms in equation (2.31) can only be reproduced by expanding v
τ
2
−∆φ in

γ(n, ℓ) in the large ℓ conformal blocks. For simplicity let us consider the situation where

12This assumption would follow, for instance, from the assumption that the CFT has a well-defined

partition function at non-zero temperature, or that the four-point function of the energy-momentum tensor

is finite.
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there is only one operator accumulating near 2∆φ + 2n for each ℓ, and that the conformal

block coefficients approach PMFT
2∆φ+2n,ℓ. In this case we can write the r.h.s. of the crossing

relation as

∑

ℓ

PMFT
2∆φ+2n,ℓ

[

γ(n, ℓ)

2
log v

]

ℓ
1
2 4ℓ√
π
z∆φK0(2ℓ

√
z)vn(1− v)∆φF (d)(2∆φ + 2n, v), (2.32)

where we have used a Bessel function approximation to k2ℓ(1 − z) discussed in ap-

pendix A.1.4.13 In order for the sum to produce an overall factor of u
τm
2 ∼ z

τm
2 , we

must have power law behavior in γ(n, ℓ) at very large ℓ,

γ(n, ℓ) =
γn
ℓτm

, (2.33)

with a coefficient γn related to the OPE coefficient Pm of the leading twist operator Om in

equation (2.29). In large N theories, the coefficients γn are suppressed by powers of 1/N

as discussed in [30]. However, we stress that all we need in order to expand v
γ(n,ℓ)

2 in log v

in the large ℓ sum is the property that it is power law suppressed as ℓ→ ∞, which is true

even if the coefficients γn are O(1) or larger.

The integer powers of v in equation (2.31) must then be reproduced by

∑

ℓ

PMFT
2∆φ+2n,ℓ

[

δP2∆φ+2n,ℓ +
1

2
γ(n, ℓ)

d

dn

]

vn
ℓ
1
2 4ℓ√
π
z∆φK0(2ℓ

√
z)(1−v)∆φF (d)(2∆φ + 2n, v),

(2.34)

where the γ(n, ℓ) d
dn piece comes from expanding the τ dependence of the conformal block in

small γ(n, ℓ). Again requiring that we correctly produce the overall u
τm
2 ∼ z

τm
2 behavior,

we must have

δP2∆φ+2n,ℓ =
cn
ℓτm

(2.35)

to leading order in 1/ℓ in the large ℓ limit, with a coefficient cn related to γn.

As an example, it is particularly simple to do this matching explicitly for the leading

twist tower with n = 0. In this case, matching the log v and v0 terms gives the relations

γ0 = −Pm
2Γ(∆φ)

2Γ(τm + 2ℓm)

Γ
(

∆φ − τm
2

)2
Γ
(

τm
2 + ℓm

)2 , c0 =
[

ψ
(τm

2
+ ℓm

)

+ γ + log 2
]

γ0, (2.36)

where γ is the Euler-Mascheroni constant. It is important to note the relative sign be-

tween γ0 and Pm (which is strictly positive), since this is required in order to satisfy the

Nachtmann theorem asymptotically at large ℓ. It is then straightforward to continue this

matching to higher orders in v.

13Strictly speaking, the Bessel function approximation breaks down for ℓ ≫ 1/
√
z, so we are here implicitly

using the fact that the sum including the MFT coefficients is dominated by the region of fixed ℓ2z, where

the approximation is valid. If the reader is concerned about this, one can instead write these sums using

the hypergeometric function k2ℓ(1 − z). However, we find the Bessel function formulae to be useful for

explicitly doing computations using the integral approximations to these sums.
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2.3.1 Implications for SCFTs in 4d

In [7, 12] the crossing relation was examined for a chiral primary operator Φ of dimension

∆φ in an N = 1 SCFT, and it was observed that in the OPE of Φ(x)Φ(0) there exists an

infinite tower of operators with spin ℓ and dimension exactly 2∆Φ + ℓ. Supersymmetry

and unitarity protect the dimensions of these operators, and further require a gap in twist

before non-protected operators can appear. Thus, these operators form an isolated tower

with vanishing anomalous dimensions. This immediately implies that the correlator in the

Φ†Φ → ΦΦ† channel must satisfy

〈Φ†(x1)Φ(x2)Φ(x3)Φ
†(x4)〉 =

1

(x212x
2
34)

∆φ

(

1 + u1 (0 log v + c+ . . .) + . . .
)

(2.37)

where the . . . denote higher order terms in u and v, and the power u1 comes from the U(1)R
current multiplet (containing the stress tensor), which has τ

2 = 1. The point is that the

term u1 log v must be absent, because it could only arise from the anomalous dimensions

of operators with twist 2∆φ + γ(ℓ) in the ΦΦ → Φ†Φ† channel, but we know that due to

supersymmetry, γ(ℓ) = 0 exactly. The explicit results of [12] show that the superconformal

block relevant for the Φ†Φ → ΦΦ† channel is14

Gτ=2,ℓm(u, v) = (−1)ℓm
[

g2,ℓm(u, v)−
(

ℓm + 1

4ℓm + 6

)

g2,ℓm+1(u, v)

]

(2.38)

in terms of the usual 4d blocks given in equation (A.10). Taking ℓm = 1 for the U(1)R
current, one can easily verify that the u log v term cancels in this linear combination of

conformal blocks in the limit of small u and v.15 In the case where there are non-R

currents in the φ × φ† OPE, these currents would also appear in multiplets that contain

scalar components with τ
2 = 1. Consequently, the cancellation also has to occur for ℓm = 0,

as one can easily verify in the blocks themselves.16 This provides a non-trivial consistency

check of our results and those of [12].

We can proceed to consider the OPE coefficients of the twist 2∆φ tower, which were

bounded as a function of ∆φ in [7]. Our results predict that these should approach the

mean field theory conformal block coefficients at a rate ℓ−2, and this rate of convergence

could easily be matched to bounds from the numerical bootstrap in the future.

14Our normalization for the blocks removes a factor of
(

− 1
2

)ℓ
compared to that used in [12].

15Note that if instead one considers the s-channel expansion of the correlator 〈Φ†ΦΦ†Φ〉 then there is no

longer a relative sign between the even and odd spins in the superconformal block [12], so a u1 log v term is

present. However, the conformal block expansion in the s-channel cannot be immediately compared to the

ΦΦ → Φ†Φ† channel because passing between these two different OPE limits requires changing the radial

ordering of operators, which introduces phases ∼ (−1)ℓ from crossing branch cuts.
16More generally, there exist theories with an infinite number of higher-spin currents, and the anomalous

dimensions of the n = 0 operators should be protected in such cases as well. Additionally, while twists

greater than 2 would not be the minimal twist and therefore not obviously constrained by our results, the

presence of u
τ
2 v0 log v terms would at the very least impose non-trivial constraints that would have to be

satisfied to be consistent with vanishing anomalous dimensions in the cross-channel. In any case, any fears

of a possible contradiction are readily allayed: it is easy to verify that in fact the u
τm
2 v0 log v terms in the

Gτm,ℓm super-conformal blocks cancel for any ℓm and any τm.
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2.4 Bounding contributions from operators with general twists

Finally, let us show that as ℓ→ ∞, the contribution from accumulation points τa other than

2∆φ + 2n is strictly bounded. An analogous generalization for distinct operators follows

from observations in appendix C. The idea of the argument is very simple — specific

power-law behaviors in ℓ for the conformal block coefficients Pτ,ℓ result in related power-

law contributions at small u. Since we explicitly know the leading and sub-leading behavior

as u → 0, we can obtain a bound on the conformal block coefficients using the crossing

symmetry relation, eq. (2.29). The remainder of this subsection formalizes these claims.

Consider all terms on the right-hand side of (2.29) at large ℓ with |τ − (2∆φ+2n)| > ǫ

for some ǫ > 0 small but fixed. This bound separates out the contributions we studied in

the previous subsections. Furthermore, let us consider only operators with twists τ < τ∗
for some arbitrary choice of τ∗. The reason for imposing this bound on τ is that we wish to

constrain the CFT spectrum and the conformal block coefficients at large ℓ, and by this we

mean large ℓ with fixed τ . In the analogy with scattering, we are studying the scattering

amplitude at large impact parameter and fixed center of mass energy.

Let us define a quantity that is the partial sum of the right-hand side of (2.29) keeping

only operators with τ < τ∗, ℓ > ℓ∗ ≫ 1/
√
z, and |τ − (2∆φ + 2n)| > ǫ:

r.h.s. (τ∗, ℓ∗) ≡
∑

τ<τ∗,ℓ>ℓ∗
τ 6=2∆φ+2n±O(ǫ)

Pτ,ℓ v
τ
2
−∆φu∆φfτ,ℓ(v, u). (2.39)

Then we can approximate

r.h.s. (τ∗, ℓ∗)
ℓ∗≫1/

√
z

≈ z∆φ

∑

τ<τ∗,ℓ>ℓ∗

Pτ,ℓk2ℓ(1− z)
[

v
τ
2
−∆φ(1− v)∆φF (d)(τ, v)

]

. (2.40)

The idea will be to combine together all the various values of τ for each ℓ. Since the

conformal block coefficients satisfy Pτ,ℓ > 0 by unitarity, a weighted sum of them will also

be positive. Furthermore, if we can bound their weighted sum then we can bound each

individual term. For all physical τ ≤ τ∗ the function v
τ
2
−∆φ(1 − v)∆φF (τ, d, v) will be

bounded from above by some B(τ∗, d, v), so we can write an inequality

r.h.s. (τ∗, ℓ∗) < B(τ∗, d, v)z
∆φ

∑

τ<τ∗,ℓ>ℓ∗

Pτ,ℓk2ℓ(1− z). (2.41)

For each value of ℓ, there can be only a finite number of operators with τ < τ∗. This means

that we can define a new quantity that includes the contributions of all these operators at

fixed ℓ:

Qτ∗,ℓ ≡
∑

τ<τ∗

Pτ,ℓ. (2.42)

Now we have the bound

r.h.s. (τ∗, ℓ∗) < B(τ∗, d, v)z
∆φ

∑

ℓ>ℓ∗

Qτ∗,ℓk2ℓ(1− z). (2.43)
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Again, the lower-bound ℓ∗ can be taken arbitrarily large since only the infinite sum over ℓ

produces additional u−1 singularities; operators that do not belong to an infinite tower of

spins are irrelevant.

Now, for the purposes of this argument we can also approximate the ℓ > ℓ∗ sum by

an integral. In order to avoid producing non-integer powers of v on the l.h.s. of (2.29), we

must then have that

lim
z→0

[

z∆φ− τm
2

∫ ∞

ℓ∗

dℓQτ∗,ℓk2ℓ(1− z)

]

= 0. (2.44)

If we use the K0 approximation of eq. (A.21), then performing a change of variables to

y = ℓ
√
z immediately shows that since Qτ∗,ℓ > 0, we expect to have an asymptotic bound

Qτ∗,ℓ < 4−ℓℓ2∆φ− 3
2
−τm in the large ℓ limit, at least in an averaged sense when we smear

over a large number of ℓ. More precisely, we can use the arguments in appendix B.3 to

show that
∫ L

ℓ∗

dℓ
Γ(2ℓ)

Γ(ℓ)2
Qτ∗,ℓ < AL2∆φ−τm (2.45)

for some positive constant A at very large L. This provides a general smeared bound for

every sequence of Pτ,ℓ as ℓ → ∞. Note, however, that our method cannot strictly exclude

examples where large but extremely rare conformal block coefficients occasionally appear

at large ℓ.

2.5 Failure in two dimensions

In the previous sections, we had to restrict to d > 2 dimensions in order to have a gap

between the twist of the identity operator and τm. It is illuminating to see how the absence

of such a gap in d = 2 theories explicitly leads to violations of our conclusions in specific

examples. We will focus here on the simplest of such examples, the c = 1
2 minimal (i.e.

d = 2 Ising) model (see e.g. [39] for a review). This theory contains three Virasoro primary

operators, all scalars: 1, σ, and ǫ, of dimensions 0, 18 , and 1 respectively, as well as all

their Virasoro descendants. Consider the operator σ; the σ × σ OPE in this case can be

summarized succinctly as

[σ][σ] = [1] + [ǫ], (2.46)

where [O] denotes the full Virasoro conformal block associated with an operator. Now,

since ǫ and 1 both have integer dimensions, and the Virasoro operators just raise the

dimension by integers, this means that every operator that appears in the σ conformal

block decomposition has integer twist, violating our conclusion in d > 2 that there must

be operators with twist τ = 2∆σ +2n = 1
4 +2n. To see what has gone wrong, examine the

bootstrap equation in this theory at |u| ≪ |v| ≪ 1:

u−
1
8 +

∑

ℓ

P0,ℓu
− 1

8 f0,ℓ(u, v) =
∑

τ,ℓ

Pτ,ℓv
τ
2
− 1

8 fτ,ℓ(v, u) + subleading in 1/u. (2.47)

In this case there is no gap between the twist of the identity operator and τm. Furthermore,

our assumption from the analysis of [37, 38] that there is no non-trivial infinite tower of
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conserved higher-spin currents with τ(ℓ) = d−2 for ℓ > 2 is also violated. Far from having

an isolated dominant contribution from the identity operator at small u followed by a finite

number of isolated contributions from twist τm operators (followed by everything else), we

immediately have an infinite tower of contributions all at τ = 0. Now we see why there

are no operators in this theory with twist τ = 2∆σ: the existence of this low-twist tower

means that the identity operator can be (and is) cancelled by contributions on the same

side of the crossing relation. In fact, in this case, the τ = 0 tower contributes not only the

same u−∆σ singularity, but it also contributes a v−∆σ coefficient, for a total of (uv)−∆σ .

The resulting singularity in the cross-channel can be seen explicitly in the exact four-point

function, which contains a leading singularity at small u and v of the form

Gσ(z, z̄) ∼ 1

(uv)∆σ
, (2.48)

as opposed to the usual u−∆σ . It is interesting to note that the constraints from the

Virasoro algebra that make many d = 2 CFTs solvable also directly cause them to differ

quite drastically in their behavior at large spin from essentially all other CFTs.

3 AdS interpretation

To the uninitiated, results concerning the CFT spectrum and conformal block coefficients

may appear rather technical. However as recent work has shown [16, 40, 41], both anoma-

lous dimensions and OPE or conformal block coefficients have a very simple interpretation

as amplitudes for scattering processes in AdS space. This follows from the fact that in

global AdS, time translations are generated by the dilatation operator D of the dual CFT,

so anomalous dimensions in the CFT represent energy shifts of bulk states due to inter-

actions. By the Born approximation, these are related to scattering amplitudes in the

perturbative regime [16]. A thorough investigation of this connection in the context of

gravitational scattering in AdS at large impact parameter was performed in [42, 43], and

in appendix D we explicitly compare our results to theirs in the region of overlap.

To understand the connection to AdS, consider any scalar primary operator φ with

dimension ∆φ, which creates a state |φ〉 = φ|0〉 when acting on the vacuum of the CFT.

If we were working at large N and φ was single-trace, then we could interpret |φ〉 as a

single-particle state in AdS. Furthermore, we could interpret the operators Oτ,ℓ appearing

in the OPE

φ(x)φ(0) =
∑

τ,ℓ

cτ,ℓfτ,ℓ(x, ∂)Oτ,ℓ(0) (3.1)

of φ with itself as 2-particle states whose anomalous dimensions were due to bulk interac-

tions. The operators Oτ,ℓ at large ℓ correspond to states with large angular momentum in

AdS, so that the two particles are orbiting a common center with a large angular momen-

tum. This obviously implies that at large ℓ the pair of particles will become well-separated,

although due to the warped AdS geometry, their separation or impact parameter b is

b ≈ RAdS log

(

ℓ

∆φ

)

(3.2)

at large ℓ. So we need to study very large ℓ to create a large separation in AdS units.
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In the absence of large N , we certainly cannot interpret the state |φ〉 as a bulk particle,

but we can still view it as some de-localized blob in AdS. Without large N we would also

expect to lose the interpretation of operators in the φ(x)φ(0) OPE as 2-particle states.

The results of the previous sections show that on the contrary, at large ℓ there are always

operators Oτ,ℓ in the OPE that we can interpret as creating ‘2-blob’ states, where the blobs

are orbiting each other at large separation in AdS. The fact that we must always have

infinite towers of operators in the OPE with twist τ = 2∆φ + 2n+ γ(n, ℓ) and γ(n, ℓ) → 0

as ℓ → ∞ shows that at large ℓ, the interactions between these orbiting AdS blobs are

shutting off. In particular, let us assume that there is exactly one operator at each n and ℓ

and that the γ(n, ℓ) → 0 smoothly. In this case we obtain a specific power-law dependence

on ℓ that can be written as

γ(n, ℓ) =
γn
ℓτm

∝ γn exp

[

−τm
b

RAdS

]

, (3.3)

so the interactions between the blobs are shutting off exponentially at large, superhorizon

distances in AdS. This is the sense in which our results prove superhorizon locality in the

putative AdS dual of any d > 2 CFT.

To emphasize the generality of this result, and the fact that φ really create ‘blobs’,

note that we can even apply our results to the scalar primary operators φ that create large

black holes in AdS theories dual to CFTs with large N and large ’t Hooft coupling. In

that case, our results show that if the AdS black holes orbit each other with sufficiently

large angular momentum, then their interactions become negligible. It should be noted

that since these black hole states/operators couple to the energy momentum tensor with

OPE coefficients proportional to their dimension, they will not decouple until very large ℓ.

4 Discussion

The recent revival of the conformal bootstrap has led to a great deal of progress, but

perhaps the best is yet to come. Thus far much of the work on the bootstrap has been

numerical and has focused on questions of phenomenological interest, so further studies of

superconformal theories [12], AdS/CFT setups [10], and even quantum gravity [41] may

yield important results. Our results in this paper followed from a seemingly elementary

consideration of how singularities in one channel of the conformal block expansion can be

reproduced in the crossed channel, yet they have powerful implications for general CFTs.

We have shown that the OPE of a scalar operator φ with itself has a universal lead-

ing behavior in the limit of large ℓ with fixed twist. In particular, there always exist

operators that we could call [φφ]n,ℓ at very large ℓ which have twist 2∆φ + 2n + γ(n, ℓ),

with γ(n, ℓ) → 0 as ℓ → ∞. This is directly analogous to the structure of ‘double-trace’

operators in large N theories, but it holds in any CFT. Furthermore, we saw that with

reasonable assumptions, we could make specific predictions for the fall-off of γ(n, ℓ) and

of the related OPE coefficients. We proved that all other contributions to the OPE must

be sub-dominant at large ℓ. Our bootstrap methods apply in a simple way only to the

OPE of scalar operators, but it seems very likely that equivalent results also hold for the
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OPE of higher-spin operators. Perhaps in the future the results of [44, 45] could be used

to prove these statements. Another interesting extension would involve studying further

sub-leading corrections to the bootstrap as u→ 0; analyzing these corrections could lead to

a more general proof of the Nachtmann theorem that does not rely on conformal symmetry

breaking in the IR.

CFTs with dual AdS descriptions that are local at distances much smaller than the

bulk curvature scale must have special features [10, 19]. However, we have seen that in a

certain technically precise sense, all d > 2 CFTs can be viewed as dual to AdS theories

that are local at superhorizon distances. The question of superhorizon AdS locality has

often been discussed in the context of the holographic RG [46–53], although the general

success of this interesting approach has not been manifest. It would be interesting if our

results could be related to or shed light on the holographic RG.

Our arguments fail for CFTs in two dimensions. In fact as we discussed in section 2.5,

minimal models provide an immediate counter-example, as they have scalar operators of

dimension ∆φ without corresponding operators of twist ≈ 2∆φ+2n at large ℓ. The reason

is that in two dimensions, there is no separation between the dimension of the identity op-

erator and the twists of conserved currents and the energy-momentum tensor. One might

try to interpret this in AdS as the statement that there is no clear separation between free

propagation and interactions, perhaps due to the fact that gravitational interactions pro-

duce a deficit angle in three dimensions; it would be interesting to explore this issue further.

One inspiration for our approach was the structure of conformal blocks in Mellin

space [23, 24, 29, 41, 54], where the blocks imitate the momentum-space partial waves

of scattering amplitudes more transparently. The leading behavior at small u in position

space translates into the presence of a leading pole in the Mellin amplitude which must

be reproduced by an infinite sum over angular momenta in the crossed channel. Through

further work it should be possible to use our results to shed light on the convergence prop-

erties of the CFT bootstrap in Mellin space. Our results seem to suggest that the sum of

conformal blocks in Mellin space will only converge away from the region where the Mellin

amplitude has poles. A more precise version of this observation could be useful for further

work using the CFT bootstrap, both analytically and numerically.
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A Properties of conformal blocks

Our arguments rely on a few key properties of crossed-channel conformal blocks in the

small-u (equivalently small-z) limit at asymptotically large values of ℓ and τ . In this

appendix we will establish these properties in general space-time dimensions. We also

establish some useful results that hold for general kinematics, including the positivity of

the coefficients in the series expansion of the conformal blocks.

A.1 Factorization at large ℓ and small u

First, we would like to establish that in the large-ℓ and small-u limits, the τ - and ℓ-

dependence of the crossed-channel blocks factorizes. More precisely, for the blocks in d

dimensions, we would like to show that

g
(d)
τ,ℓ (v, u)

ℓ≫1
u≪1
= k2ℓ(1− z)vτ/2F (d)(τ, v)× (1 +O(1/

√
ℓ,
√
z)), (A.1)

where

kβ(x) ≡ xβ/22F1 (β/2, β/2, β, x) , (A.2)

and F (d)(τ, v) is an analytic function that is regular and positive at v = 0. In these

expressions we are using the identifications u = zz̄ and v = (1 − z)(1 − z̄). The error

term may depend arbitrarily on τ and v, but must have the indicated dependence on ℓ and

z ∼ u
1−v .

A.1.1 Factorization in 2 and 4 dimensions

Let us start by establishing this factorization in d = 2. In this case the crossed channel

blocks take the form

g
(2)
τ,ℓ (v, u) = k2ℓ+τ (1− z)kτ (1− z̄) + k2ℓ+τ (1− z̄)kτ (1− z), (A.3)

Since we will be in the regime with (1− z̄) < 1, the second term is exponentially suppressed

at large ℓ and we can ignore it.

Now, the hypergeometric function k2ℓ+τ (1− z) has the integral representation

k2ℓ+τ (1− z) =
Γ(2ℓ+ τ)

Γ(ℓ+ τ/2)2

∫ 1

0

dt

t(1−t)

(

(1− z)t(1− t)

1− t(1− z)

)τ/2((1− z)t(1− t)

1− t(1− z)

)ℓ

, (A.4)

where we have factored the integrand into a τ -dependent piece and an ℓ-dependent piece.

When ℓ is large, the integrand is sharply peaked near the value t∗ = 1−
√
z

1−z , with a width

that goes like 1/
√
ℓ. Meanwhile, the τ -dependent part of the integrand varies slowly over

the peak, and thus contributes its value at t∗ (up to small corrections)
(

(1− z)t(1− t)

1− t(1− z)

)τ

∼ 1 +O
(√

z, 1/
√
ℓ
)

. (A.5)

Plugging this in, and using Stirling’s approximation for the Γ-functions, we find

k2ℓ+τ (1− z) = 2τk2ℓ(1− z)×
(

1 +O
(√

z, 1/
√
ℓ
))

. (A.6)
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In the small z limit, we have 1− z̄ = v +O(z), so that

g
(2)
τ,ℓ (v, u) = k2ℓ(1− z)2τkτ (v)×

(

1 +O
(√

z, 1/
√
ℓ
))

. (A.7)

This verifies eq. (A.1) in 2d with

F (2)(τ, v) ≡ 2τ 2F1

(τ

2
,
τ

2
, τ, v

)

. (A.8)

It is straightforward to repeat these steps in d = 4. In this case, the crossed-channel

blocks are given by

g
(4)
τ,ℓ (v, u) =

(1− z)(1− z̄)

z̄ − z
(k2ℓ+τ (1− z)kτ−2(1− z̄)− k2ℓ+τ (1− z̄)kτ−2(1− z)). (A.9)

Again, one can neglect the second term in the large ℓ limit, and accounting for the pre-factor

one straightforwardly finds

g
(4)
τ,ℓ (v, u) = k2ℓ(1− z)

2τv

1− v
kτ−2(v)×

(

1 +O
(

1/
√
ℓ,
√
z
))

. (A.10)

This verifies eq. (A.1) in 4d with

F (4)(τ, v) ≡ 2τ

1− v
2F1

(τ

2
− 1,

τ

2
− 1, τ − 2, v

)

. (A.11)

A.1.2 Extension to even dimensions via a recursion relation for F (d)(τ, v)

One can easily extend this to all other even d using a recursion relation relating the con-

formal blocks in d dimensions to those in (d+2) dimensions. Concretely, the blocks satisfy

the relation [33]
(

z−z̄
zz̄

)2

g
(d+2)
∆,ℓ (u, v) = g

(d)
∆−2,ℓ+2(u, v)− 4

(ℓ− 2)(d+ ℓ− 1)

(d+ 2ℓ− 2)(d+ 2ℓ)
g
(d)
∆−2,ℓ(u, v) (A.12)

−4
(d−∆− 1)(d−∆)

(d− 2∆)(d− 2∆ + 2)

[

(∆ + ℓ)2

16(∆ + ℓ− 1)(∆ + ℓ+ 1)
g
(d)
∆,ℓ+2(u, v)

− (d+ ℓ− 2)(d+ ℓ− 1)(d+ ℓ−∆)2

4(d+ 2ℓ− 2)(d+ 2ℓ)(d+ ℓ−∆− 1)(d+ ℓ−∆+ 1)
g
(d)
∆,ℓ(u, v)

]

.

In the large ℓ but fixed τ = ∆− ℓ limit, this recursion relation simplifies to
(

z − z̄

zz̄

)2

g
(d+2)
τ,ℓ (u, v) ≈ g

(d)
τ−4,ℓ+2 − g

(d)
τ−2,ℓ(u, v)−

1

16
g
(d)
τ−2,ℓ+2(u, v) (A.13)

+
(d− τ)2

16(d− τ − 1)(d− τ + 1)
g
(d)
τ,ℓ (u, v).

Inserting the factorized form eq. (A.1) and using the property k2(ℓ+2)(1−z) ≈ 24k2ℓ(1−z),
one finds that the function F (d)(τ, v) should satisfy the recursion relation

(1− v)2F (d+2)(τ, v) ≈ 16F (d)(τ − 4, v)− 2vF (d)(τ − 2, v) (A.14)

+
(d− τ)2

16(d− τ − 1)(d− τ + 1)
v2F (d)(τ, v).

This makes it trivial to generate the function F (d)(τ, v) for any even d. Moreover one

can verify that this relation holds between the functions F (2)(τ, v) and F (4)(τ, v) ob-

tained above.
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A.1.3 Extension to odd dimensions

Finding the function F (d)(τ, v) in odd d is less straightforward, but it is easy to see that the

factorization property should continue to hold. One approach is to note that the conformal

blocks are determined as the solutions to the Casimir equation [32–35]

Dg(d)τ,ℓ (v, u) =
1

2
C

(d)
τ,ℓ g

(d)
τ,ℓ (v, u) (A.15)

where D is the conformal Casimir as a differential operator

D = (1− v − u)∂uu∂u + v∂v(2v∂v − d)− (1 + v − u)(v∂v + u∂u)
2 (A.16)

and C
(d)
τ,ℓ = 2ℓ(ℓ + τ − 1) + τ(τ − d). One can immediately see that the d-dependence

enters the Casimir at O(1/ℓ2) at large ℓ, so the dominant dependence is in a part of the

differential operator which depends only on v. Furthermore, it is also clear that we can

define the blocks by integrating this differential equation, because from [34] we have that

in the small v limit

g
(d)
τ,ℓ (v, u) = v

τ
2 (1− u)ℓ2F1

(τ

2
+ ℓ,

τ

2
+ ℓ, τ + 2ℓ, 1− u

)

+O(v) (A.17)

This gives a boundary condition as v → 0 for any value of u, so to obtain the conformal

blocks at any v we need only integrate equation (A.15) a small distance, over which the

O
(

u, 1ℓ
)

errors cannot accumulate. Since the equation (A.15) is satisfied by the ansatz in

equation (A.1) to leading order, the factorized ansatz suffices in all d.

A.1.4 Further approximations for the function k2ℓ(1− z)

The function k2ℓ(1−z) = (1−z)ℓ2F1(ℓ, ℓ, 2ℓ, 1−z) can be approximated further depending

on the relative size of ℓ and z. In the extreme asymptotic regime ℓ ≫ 1/
√
z one can use

the saddle point approximation

(

Γ(ℓ)2

Γ(2ℓ)

)

2F1(ℓ, ℓ, 2ℓ, 1− z) =

∫ 1

0

dt

t(1− t)

(

t(1− t)

1− t(1− z)

)ℓ

=

∫ 1

0

dt

t(1− t)
e
ℓ ln

(

t(1−t)
1−t(1−z)

)

≈ 1

t(1− t)

√

√

√

√

2π

−ℓ d2

dt2
ln
(

t(1−t)
1−t(1−z)

)e
ℓ ln

(

t(1−t)
1−t(1−z)

)
∣

∣

∣

∣

t= 1−
√
z

1−z

≈
√

π

ℓ

1
4
√
z(1 +

√
z)2ℓ−1

(

1 +O

(

1

ℓ
√
z

))

. (A.18)

The corrections can be easily obtained by expanding to the next order. This approximation

is best when we take ℓ→ ∞ at a fixed value of z. In the extreme limit where
√
z ≪ 1 but

ℓ
√
z ≫ 1, one sees an exponential decay

(

Γ(ℓ)2

Γ(2ℓ)

)

2F1(ℓ, ℓ, 2ℓ, 1− z) ≈
√

π

ℓ

e−2ℓ
√
z

4
√
z

(

1 +O

(√
z,

1

ℓ
√
z

))

. (A.19)
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Alternatively, we could consider the regime where we take ℓ → ∞ holding y ≡ zℓ2

fixed. In this case, we can approximate

(

Γ(ℓ)2

Γ(2ℓ)

)

F (ℓ, ℓ, 2ℓ, 1− z) =

∫ 1

0

dt

t(1− t)

(

t(1− t)

1− t(1− x)

)ℓ

ℓ≫1≈
∫ 1

0

tℓ−1

1− t
e
− ty

(1−t)ℓ
+O( 1

(1−t)2ℓ3
)
. (A.20)

The higher order terms in the exponent can be neglected at large ℓ with y . O(1) held

fixed. If we define a new variable s ≡ t
1−t , we can rewrite the integral as

(

Γ(ℓ)2

Γ(2ℓ)

)

F
(

ℓ, ℓ, 2ℓ, 1− y

ℓ2

)

≈
∫ ∞

0

ds

s
e−

sy
ℓ
−ℓ 1

s

= 2K0(2
√
y) +O

(

1

ℓ

)

, (A.21)

where K0 is a modified Bessel function of the second kind. We stress that this approxima-

tion breaks down when y = zℓ2 ≫ 1 (though it does correctly reproduce the exponential

decay in eq. (A.19)), but provides a good description of the regime with y . O(1).

A.2 Positivity of coefficients and exponential falloff at large τ

In this section we will prove that in general d, the coefficients in the power series expansion

of the conformal blocks

gτ,ℓ(z, z̄) =

∞
∑

m,n≥0

amnz
τ/2+mz̄τ/2+n (A.22)

satisfy

amn > 0 (A.23)

for all m,n, where we recall that u = zz̄ and v = (1− z)(1− z̄). One can verify the claim

directly in the case of d = 2, 4, 6 where explicit formulas are known. Similar positivity

results are fairly well-known [14] when the conformal blocks are expanded with z = z̄, but

as far as we are aware this more general result has not been discussed previously.

This result will be useful because it implies that for real z and z̄, if we take z̄ → z̄/λ

with λ > 1 then we must have

gτ,ℓ(z, z̄/λ) < λ−
τ
2 gτ,ℓ(z, z̄). (A.24)

This allows us to conclude that contributions from infinite sums over large τ are exponen-

tially small for appropriate choices of kinematics, because for 0 < z, z̄ < 1 we know that

the conformal block expansion converges [14].

The proof is simple, and uses the clever choice of coordinates in [14], where we set

x3 = eiβ , x4 = −eiβ , while x1 = reiα and x2 = −reiα with α, β, r all real and 0 ≤ r < 1.

In these coordinates we have ρ ≡ rei(α−β) given in terms of z by

ρ(z) =
z

(1 +
√
1− z)2

, (A.25)
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and we can define a quantity ρ̄(z̄) similarly. The formula can be inverted to give z(ρ). A

crucial point is that when we expand ρ(z) in a power series in z, all of the coefficients will

be positive. This implies that if gτ,ℓ(ρ, ρ̄) has a power series expansion in ρ, ρ̄ with positive

coefficients, then the same property holds when it is viewed as a function of z, z̄. Note that

ρL + ρ̄L

2
= rℓ cos(L(α− β)), (A.26)

so we can expand the conformal blocks as

gτ,ℓ(ρ, ρ̄) =
∑

s,L

cs,L(ρρ̄)
τ
2
+s+L

2 cos(L(α− β)). (A.27)

If we can prove that cs,L > 0 then we will have proven that amn > 0. However, we can

immediately see that

∑

s,L

∫ 2π

0
dα cos(mα)

∫ 2π

0
dβ cos(mβ)〈O(eiβ)O(−eiβ)|Oτ+2s,L〉〈Oτ+2s,L|O(reiα)O(−reiα)〉

(A.28)

is the norm of some definite linear combination of descendants of the primary Oτ,ℓ whose

conformal block we are considering. Therefore this norm will be positive. Applying this

norm to the series expansion of the block above, we find

∑

s

cs,L r
τ+2s+L > 0 (A.29)

for every L. One can similarly project onto definite powers of r by smearing O(x1)O(x2)

and O(x3)O(x4) in the radial direction. For example, we can promote x3 → eλ34eiβ and

x4 → −eλ34eiβ , and similarly take x1 = e−λ12eiα and x2 = −e−λ12eiα, so that we have r =

e−λ12−λ34 . Then smearing the conformal block against wavefunctions such as cos(τ12λ12)

and cos(τ34λ34) projects out definite values for s, and we have positivity for the case

τ12 = τ34.

A more concise way of obtaining the same conclusion is to consider the cs,L as the

norms of states on the subspaces of definite dimension and angular momentum on the ρ

circle. In any case, we find that all cs,L > 0, and so we conclude that amn > 0 as claimed.

B ρ(σ) and its crossing equation

In this appendix, we present several details that were suppressed in section 2.2 for the sake

of readability. Specifically, we will give a rigorous definition of the asymptotic density ρ(σ),

and a derivation of its crossing equation.

B.1 Existence of ρ(σ)

Let us define a conformal block “density” in τ -space on the r.h.s. of the crossing relation,

Dv,u(σ) ≡
(u

v

)∆φ∑

τ,ℓ

δ(τ − σ)Pτ,ℓgτ,ℓ(v, u). (B.1)
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One should always think of Dv,u(σ) as being integrated against some function f(σ). More

formally, Dv,u defines a linear functional given by the pairing

Dv,u[f ] ≡
(u

v

)∆φ∑

τ,ℓ

f(τ)Pτ,ℓgτ,ℓ(v, u). (B.2)

Since the conformal block decomposition is absolutely convergent, Dv,u is well-defined on

any bounded function f . Further, since the conformal blocks and coefficients Pτ,ℓ are

positive, Dv,u is positive as well. We will use Dv,u as a tool for slicing up the r.h.s. of the

crossing relation into different contributions at various twists.

Our goal is to characterize the limit limu→0Dv,u in terms of a density in twist-space at

asymptotically large ℓ. To disentangle asymptotic behavior in ℓ from asymptotic behavior

in τ , it’s extremely useful to restrict the twist τ to lie in some finite range, and study the

contribution of only the operators in this range. In terms of the functional Dv,u, this means

we should consider its action on continuous functions with compact support, f ∈ Cc(R
+).17

Note in particular that when f has compact support, then there are only a finite number

of nonzero terms at each ℓ on the r.h.s. of eq. (B.2). This will be important below.

Let us suppose f ∈ Cc(R
+), and consider the limit

lim
u→0

Dv,u[f ] = lim
u→0

(u

v

)∆φ∑

τ,ℓ

f(τ)Pτ,ℓgτ,ℓ(v, u). (B.3)

The limit of each individual term above vanishes, so the limit of the sum is unchanged if we

discard any finite number of terms. Since f has compact support, we may restrict ℓ ≥ L

for any finite L without changing the result,

lim
u→0

Dv,u[f ] = lim
u→0

(u

v

)∆φ ∑

τ≥0,ℓ≥L

f(τ)Pτ,ℓgτ,ℓ(v, u) (B.4)

= lim
z→0

(u

v

)∆φ ∑

τ≥0,ℓ≥L

f(τ)Pτ,ℓk2ℓ(1− z)vτ/2F (d)(τ, v)×
(

1+O
(

1/
√
L,

√
z
))

=

(

lim
z→0

(u

v

)∆φ ∑

τ,ℓ≥0

f(τ)Pτ,ℓk2ℓ(1− z)vτ/2F (d)(τ, v)

)

×
(

1 +O
(

1/
√
L
))

.

In the second line, we have substituted the small-z and large-ℓ form of the crossed-channel

blocks eq. (A.1). In the third line, we have used the fact that the limit still vanishes

termwise after this substitution. The above equation holds for all finite L, so we may drop

the error term to obtain

lim
u→0

Dv,u[f(σ)] = lim
z→0

(u

v

)∆φ ∑

τ,ℓ≥0

f(τ)Pτ,ℓk2ℓ(1− z)vτ/2F (d)(τ, v)

= (1− v)∆φD′
[

vσ/2−∆φF (d)(σ, v)f(σ)
]

, (B.5)

17Of course, the twist is restricted by unitarity to lie above some minimum value depending on the

spacetime dimension. This is unimportant to the present analysis; for convenience, we will allow f to be a

function on all of R+.
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where we have used u ≈ z(1− v) and defined the functional

D′[f ] ≡ lim
z→0

z∆φ

∑

τ,ℓ

Pτ,ℓf(τ)k2ℓ(1− z). (B.6)

D′ is a positive linear functional on Cc(R). By the Reisz Representation Theorem

(RRT), we can write it as the integral of a density in τ -space. Specifically, the theo-

rem states that there exists a unique regular Borel measure, which we denote by ρ(σ)dσ,

such that

D′[f ] =

∫ ∞

0
f(σ)ρ(σ)dσ (B.7)

for all f in Cc(R).
18

In summary, we may formally define a density ρ(σ) by

ρ(σ) = lim
z→0

z∆φ

∑

τ,ℓ

Pτ,ℓδ(τ − σ)k2ℓ(1− z). (B.8)

When integrating ρ(σ) against some function f , one might worry about switching the order

of the limit and the integration. We can interpret the RRT as saying that switching the

limit and integration is justified whenever f has compact support.

B.2 Crossing symmetry for ρ(σ)

Crossing symmetry states that

1 = lim
u→0

Dv,u[1] = (1− v)∆φD′
[

vσ/2−∆φF (d)(σ, v)
]

. (B.9)

We can’t immediately write this in terms of the density ρ(σ) because a priori eq. (B.7) only

holds for functions f with compact support. This is the order of limits and integration

issue mentioned in section 2.2. For example, one might worry that the limit limu→0Dv,u[1]

is dominated by operators with τ ∼ ℓ ∼ 1/u. Then D′[f ] would vanish on functions with

compact support (and ρ(σ) would be identically zero), while eq. (B.9) might still hold.

We can show that this does not happen by using the fact that the blocks die expo-

nentially at large τ . Specifically, let us study the contribution of conformal blocks with

twist less than some large τ∗. Since the function θ(τ∗−σ) has compact support, eqs. (B.5)

and (B.7) imply19

(1− v)∆φ

∫ τ∗

0
vσ/2−∆φF (d)(σ, v)ρ(σ)dσ = lim

u→0
Dv,u[θ(τ∗ − σ)],

= lim
u→0

(u

v

)∆φ ∑

τ≤τ∗

Pτ,ℓgτ,ℓ(v, u). (B.10)

18The density ρ(σ) can be reconstructed by considering the value of D′[f ] on functions with support in

very small neighborhoods. The non-trivial content of this theorem is that positivity and linearity imply

that the density so-constructed is unique, and gives the correct value of the functional on any set with

compact support.
19Strictly speaking, we should use a slightly smoothed θ-function, since θ itself is not continuous. This

subtlety will not be important in the analysis.
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Our goal is to bound the discrepancy between this quantity and the full conformal

block expansion. Let us choose some constant λ satisfying 1 < λ < 1
1−z̄ . Eq. (A.24)

then implies

lim
u→0

(u

v

)∆φ ∑

τ>τ∗

Pτ,ℓgτ,ℓ(v, u) ≤ λ−τ∗ lim
u→0

(u

v

)∆φ ∑

τ>τ∗

Pτ,ℓgτ,ℓ(v, u)|z̄→z̄′ ,

≤ λ−τ∗ lim
u→0

(u

v

)∆φ∑

τ,ℓ

Pτ,ℓgτ,ℓ(v, u)|z̄→z̄′ ,

= λ−τ∗ , (B.11)

where in the second line we’ve used positivity of each term in the conformal block expansion

to enlarge the sum to all operators, and in the last line we’ve used crossing symmetry at

the point (z, z̄′).

Combining eqs. (B.10) and (B.11), we find

1 +O(λ−τ∗) = (1− v)∆φ

∫ τ∗

0
vσ/2−∆φF (d)(σ, v)ρ(σ)dσ, (B.12)

so that we can safely extend the region of integration out to infinity and conclude

1 = (1− v)∆φ

∫ ∞

0
vσ/2−∆φF (d)(σ, v)ρ(σ)dσ. (B.13)

This is eq. (2.18) in the text.

B.3 Bounds on OPE coefficient densities

In this appendix, we will prove a bound on the asymptotic behavior of the integral over

f(ℓ), which is defined in eq. (2.24). Specifically, we will show that given a function L(x)
with the representation

L(x) =

∫ ∞

0
dβf(β)kβ(1− x2) (B.14)

that behaves like x−a at small x, then there exist numbers AL, AU such that the inte-

grated value

F (B) ≡
∫ B

0
dβf̄(β), f̄(β) ≡ Γ(β)

Γ2(β/2)
f(β), (B.15)

is bounded at large B by

AUB
a > F (B) > AL

Ba

log(B)
. (B.16)

We will begin with the upper bound. First, we define

h(β, x) ≡ Γ2(β/2)

Γ(β)
kβ(1− x2), (B.17)
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which is a positive, decreasing function of β at fixed x. Since f̄(β)h(β, x) is non-negative,

we therefore have for any B that

L(x) ≥
∫ B

0
dβf̄(β)h(β, x) ≥ h(B, x)F (B). (B.18)

Fixing λ to a positive real number (its value is not important) and taking x = λ/B, we

therefore find the bound

F (B) ≤ Ba

λah
(

B, λ
B

) (B.19)

at sufficiently large B. Furthermore, as shown in appendix A.1.4, in the limit of large B

with λ fixed, h(B, λ
B ) approaches a finite value independent of B:

lim
B→∞

h

(

B,
λ

B

)

= 2K0(λ), (B.20)

where K0(λ) is a modified Bessel function. Thus, we have proven an upper bound

lim
B→∞

B−aF (B) ≤ 1

λa2K0(λ)
. (B.21)

One can try to improve this bound by maximizing λaK0(λ) as a function of λ, but any

value of λ proves the existence of some AU .

Now, let us turn to proving the lower bound. It will be convenient to define the function

h̃(β, u) by

h̃(β, x) = − ∂

∂β
h(β, x), (B.22)

which is positive since h(β, x) is decreasing as a function of β. Then, we can write

L(x) =

∫ ∞

0
dBF (B)h̃(B, x). (B.23)

The limit limx→0 x
aL(x) is unaffected by adding a fixed lower-bound on the dβ integration,

so we can define the function

L̃(x) ≡
∫ ∞

β0

dBF (B)h̃(B, x), (B.24)

which also approaches x−a at small x. Furthermore, F (B) is an integral over non-negative

terms, so F (B) ≤ F (B′) for B ≤ B′. Thus, we have

L̃(x) =

∫ M

β0

dBF (B)h̃(B, x) +

∫ ∞

M
dBF (B)h̃(B, x),

≤ F (M) (h(β0, x)− h(M,x)) +AU

∫ ∞

M
dBB2ah̃(B, x),

≤ F (M)h(β0, x) +AU

∫ ∞

M
dBB2ah̃(B, x). (B.25)
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Let us take x = λ/M such that 1 < λ < M . The second integral on the right-hand-

side above is just an integral over known functions and by using the large B, large xB

approximation to h̃(B, x), it can be seen to vanish like A2e
−λ at large λ and M for some

A2. Finally, the small x behavior of h(β0, x) is proportional to log(1/x), so we have

h(β0, x) < A3 log(1/x) for some A3, and thus

L̃(λ/M) ≤ F (M)A3 log(M/λ) +AUA2e
−λ. (B.26)

By making λ large, we can make the last term as small as we like, so we have

lim
M→∞

log(M)M−aF (M) >
1

A3λa
, (B.27)

which proves the lower bound.

Finally, note that if we knew that the bounds could be improved such that the upper

and lower bound were the same (F (B) ∼ AMB
a for some constant AM that depended only

on a), then we could calculate AM using the special case f̄(β) ∝ βa−1 to be

F (B) →
∫ B
0 dββa−1

limx→0 xa
∫∞
0 dββa−1h(β, x)

=
1
aB

a

∫∞
0 dλλa−12K0(λ)

=

(

B

2

)a 1
a
2Γ

2(a2 )
. (B.28)

C Generalization to distinct operators φ1 and φ2

For simplicity we have presented the argument in the body of the draft for a single operator

φ. However, our results extend to distinct operators φ1 and φ2, as might be expected from

AdS intuition. Specifically, by studying the correlator

〈φ1(x1)φ1(x2)φ2(x3)φ2(x4)〉 (C.1)

and using the crossing relation in the 12 → 34 and 13 → 24 channels, we can prove that

there must exist an infinite sequence of operators with twists ∆1 + ∆2 + 2n + γ(n, ℓ) at

large ℓ. If we have a unique such operator at each ℓ, we can also show that

γ(n, ℓ) =
γn
ℓτm

and Pn,ℓ =
cn
ℓτm

(C.2)

as we found for the case φ1 = φ2 in the body of the paper, where τm is the minimal non-

vanishing twist appearing in the OPE of φ1 with itself. The main complication compared to

the case of identical operators is that the conformal blocks now depend on 2∆12 = ∆1−∆2,

although not in any way that qualitatively affects the results in the u≪ v < 1 limit. Note

also that in the 12 → 34 channel we cannot assume that the conformal block coefficients

are positive, although this will not be necessary to obtain a proof.

Note that for example in mean field theory we would have the single term

〈φ1(x1)φ1(x2)φ2(x3)φ2(x4)〉 =
1

(x212)
∆1(x234)

∆2
(C.3)

and we can factor this dependence out of all conformal blocks. Then the crossing relation

takes the form

u−
∆1+∆2

2 + u−
∆1+∆2

2

∑

τ,ℓ

P 11,22
τ,ℓ g11,22τ,ℓ (u, v) = v−

∆1+∆2
2

∑

τ,ℓ

P 12,12
τ,ℓ g12,12τ,ℓ (v, u) (C.4)
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where we have labeled the conformal blocks and their coefficients according to the config-

uration of operators. Note that on the left-hand side the blocks g11,22τ,ℓ (u, v) have leading

terms at small u proportional to u
τ
2 , and for d > 2 this is isolated from the identity. In fact,

g11,22τ,ℓ = gτ,ℓ that we used in the case of identical operators [34], as the difference ∆1 6= ∆2

is irrelevant in this channel. On the right-hand side the blocks g12,12τ,ℓ (v, u) again begin as

v
τ
2 at small v [34].

Now we can proceed as in the body of the draft, expanding at small u and keeping only

the identity and the first sub-leading term on the left-hand side. This gives an approximate

crossing relation

u−
∆1+∆2

2 + u
τm−∆1−∆2

2 P 11,22
m fτm,ℓm(u, v) ≈

∑

τ,ℓ

P 12,12
τ,ℓ v

τ−∆1−∆2
2 f12,12τ,ℓ (v, u) (C.5)

where we have separated out the leading u dependence from the blocks to make the behavior

clear. This means that the sub-leading term on the left-hand side has a convergent series

expansion in integer powers vk and vk log v, which we can use as in the case of identical

operators to conclude that on the right-hand side we need contributions from towers of

operators with twist approaching ∆1 +∆2 + 2n.

As we considered in appendix A, the conformal blocks g12,12τ,ℓ can be determined as the

solutions to the generalized Casimir equation [32–35]

Dg(v, u) = 1

2
C

(d)
∆,ℓg(v, u) (C.6)

where D is the conformal Casimir as a differential operator that for ∆12 6= 0 is

D = (1− v − u)∂u(u∂u −∆12) + v∂v(2v∂v − d)

−(1 + v − u)(v∂v + u∂u −∆12)(v∂v + u∂u), (C.7)

and C
(d)
τ,ℓ = 2ℓ(ℓ+ τ − 1) + τ(τ − d) as before. This is sufficient to conclude that

g12,12τ,ℓ (v, u) ≈ k2ℓ(1− z)vτ/2F (d)(τ,∆12, v)× (1 +O(1/
√
ℓ,
√
z)), (C.8)

so we obtain the same leading order behavior at large ℓ as in the case of identical operators,

and F has some convergent series expansion in integer powers of v. This means that the

arguments from the body of the text can now be followed as before with φ1 and φ2, leading

to analogous conclusions.

D Comparison with gravity results

The calculation of anomalous dimensions of double-trace operators starting with a pertur-

bative AdS description is usually simplest for the lowest-spin states [16, 55], and becomes

increasingly more involved for higher spins. However, a significant simplification occurs

in the limit of very large spin, which is described by the Eikonal limit of 2-to-2 scatter-

ing in AdS space, as was worked out in detail in [42, 43]. There, it was shown that the

anomalous dimensions could be calculated by treating one of the two particles in AdS as

– 30 –



J
H
E
P
1
2
(
2
0
1
3
)
0
0
4

a classical “shock wave” that sourced the deformation of the geometry in which the other

particle traveled. The result of their calculations was that in the limit of large spin with τ

fixed and large, the anomalous dimensions due to semi-classical gravitational interactions

behave as

γ(τ, ℓ)
ℓ≫1≈ −25−∆m−jmπ1−

d
2G

Γ(∆m − 1)

Γ
(

∆m − d
2 + 1

)

τ∆m+jm−2

ℓτm
. (D.1)

The gravity case takes ∆m = d, jm = 2, and the coupling G defined in [42, 43] determines

the strength of gravitational interactions, i.e. G ∝ GN . This can then be compared to our

formula (2.36)

γ0 = −Pm
2Γ(∆φ)

2Γ(τm + 2ℓm)

Γ
(

∆φ − τm
2

)2
Γ
(

τm
2 + ℓm

)2 (D.2)

combined with the specific gravity prediction for Pm. Taking the specific values of τm = d−2

and ℓm = 2, this reduces to

γ0 =
∆φ≫1
≈ −Pm∆d−2

φ

2Γ(d+ 2)

Γ2
(

d
2 + 1

) . (D.3)

In d = 4 the OPE coefficient of the stress tensor is Pm =
∆2

φ

360c , and therefore for-

mula (2.36) gives

γ(2∆φ, ℓ) ≈ − 1

6c

∆4
φ

ℓ2
. (D.4)

This is to be compared with (D.1) for the gravity case with τ = 2∆φ and d = 4, which gives

γ(2∆φ, ℓ) ≈ −8G

π

∆4
φ

ℓ2
. (D.5)

The anomaly coefficient c is proportional to 1/GN in AdS gravity theories, so our results

clearly agree parametrically with the perturbative AdS computations, with exact agreement

for c = π
48G .
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