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SEVERAL 

I n  [15] we int roduced a not ion of spectrum for a commut ing  tuple of operators on a 

Banach space. The main objective of this paper  is to develop a corresponding analyt ic  

functional  calculus. 

I f  X is a Banach  space and a =  (al, ..., a~) a commut ing  tuple of operators on X, 

then associated with a is a certain chain complex (the Koszul  complex). I f  this chain 

complex is exact  then  we say ~ is non-singular. The spectrum, Sp (~, X ) ,  of a on X is 

defined to be the  set of zEC n such tha t  the tuple z - c o =  (z 1 - a  1 .. . . .  z~-a~)  is singular (cf. 

[15], w 1). The set Sp (~, X), defined in this manner,  is compact  and non-empty  and has 

several other  properties t ha t  cause it to  deserve the name spectrum (cf. [15], w 3). 

Classically, one would define the spectrum of ~ in terms of some commuta t ive  Banaeh 

algebra of operators containing al, ..., a~. If  A is such an algebra, then ~ is non-singular 

relative to A if the equation 

alb  1 + ... +anb~ = id 

has a solution for b 1 . . . . .  b~EA.  A point  zEC" is in the spectrum of ~ relative to A (SpA (~)) 

if z - - ~  is singular relative to A. 

One disadvantage of the classical not ion of joint spectrum is t ha t  it depends intrinsi- 

cally on the  algebra A and it is not  clear t ha t  there is an op t imum choice for A. Fur ther-  

more, it m a y  be very  difficult to  decide whether  or no t  equat ion (1) has a solution in a 

given situation; hence, SpA (ct) m a y  be very  difficult to  compute.  

The spectrum, Sp (~, X), tha t  we have chosen does not  involve questions of solvabili ty 
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of an operator equation like (1). I t  is based on a notion of non-singularity which is a direct 

generalization to several operators of the idea of a single operator being both injective and 

surjective. Furthermore,  if A is any commuta t ive  Banach algebra containing a 1 ... . .  an, 

then Sp (~, X) c SpA (~). There are examples where this containment is proper regardless 

of how A is chosen (cf. [15], w 4). 

Of course, the functional calculus is the main reason behind any interest tha t  exists 

in a notion of spectrum. I f  A is a commutat ive Banach algebra, a 1 ... . .  an CA, and 9v{(SpA (~)) 

denotes the algebra of functions analytic in a neighborhood of SpA (~), then there is a homo- 

morphism / ~ / ( ~ )  of ~(SpA (~)) into A such tha t  l (~ )= id  and z(oO=ai for i = 1  .... .  n. 

This very deep and useful result was proved by Shilov [14] for finitely generated algebras 

and by  Arens-Calderon [4], Arens [3], and Waelbrock [16] for general algebras. Adaptations 

of the Cauchy-Weil integral formula provide the basis for [14] and [3]. 

Our main' purpose here is to prove tha t  a version of the Shilov-Arens-Calderon 

Theorem remains valid for tuples of operators with the spectrum chosen as Sp (~, X). 

Since Sp (~, X) is generally smaller than spectra defined in other ways, we obtain a richer 

functional calculus. The theorem is as follows: there is a homomorphism /~ / (~z )  of 

9~(Sp (~, X)) into (~)", the algebra of all operators on X that  commute with all operators 

commuting with each ai, such tha t  1(~) = id  and z~(~) =a~. (Theorem 4.3 and Corollary 4.4.) 

As in [3], we shall obtain the map/ -+ / (~)  via an abstract  form of the Cauchy-Weil 

integral. However, the version of the Cauchy-Weil integral we use here, and the methods 

we use to obtain it, appear to be quite new and possibly of independent interest. In  fact, 

a second major  objective of this paper is to give a detailed development of a quite general 

form of the Cauchy-Weil integral. We pause to outline some of the features of this develop- 

ment.  

Let  X be a Banach space, U a domain in (~n, and a = (a x ..... an) a commuting tuple of 

analytic operator valued functions on U with values in the space L ( X )  of bounded hnear 

operators on X. I f  the tuple ~(z)=(al(z ) .. . . .  an(z)) is non-singular for zE U ~ K ,  where K 

is some compact subset of U, then in w 3 we define a continuous linear map 

l~ f~R,(z)l(z) A dzl A ... A dzn (2) 

from the space of analytic X-valued functions on U to X. This map satisfies several trans- 

formation laws which justify calling it a Cauchy-Weil integral. Furthermore, the expres- 

sion .[v R~c~/(z ) A dz 1 A ... A dzn depends analytically (continuously) on any parameter  on 

which ~ and / depend analytically (continuously). I f  ~ is the scalar valued tuple ~(z)= 

z - w  = (z 1 - w  1 .. . .  , zn -wn)  for some w E U, then we obtain the Cauchy-Weil integral formula 
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1 ftrR~- w/(z) A dZl A . . .  A dzn. l(w) (2 :ti)~ 

Versions of the Cauchy-Weil integral have been published by many  authors, notably 

Weil [17], Arens [3], and Gleason [8]. In  Arens' version a 1 ... . .  an and / are allowed to have 

values in a Banaeh algebra A. He assumes tha t  al(z ) b I § § an(z)bn = id has a solution in A 

for each z E U"~,K. Our version appears considerably stronger since we make no assump- 

tions regarding the solvability of such an equation. 

Our development of the Cauehy-Weil integral is almost entirely algebraic. In  w 1 we 

use the formalism of exterior algebra to construct a map [ ~  R j  which supplies the inte- 

grand of the Cauehy-Weil integral. We construct the map R~ in a quite general algebraic 

context. In  order to apply the results of w 1 to the situation which interests us, it is neces- 

sary to construct in w 2 a special space of vector valued functions which we call !~(U, X). 

I f  we were using a classical notion of spectrum based on solvability of an operator equation 

like (1), then it would suffice to use for ~ (U,  X) the space of C ~ X-valued functions on U. 

Section 2 would not be necessary in this situation. 

In  w 3 we apply the results of w 1 to the space constructed in w 2 and obtain our Cauchy-  

Weil integral. An interesting feature of our construction is this: we do not use geometric 

integration theory; the only integration tha t  appears is ordinary Lebesgue integration in 

13 n. All of the combinatorial considerations involved in the Cauchy-Weil integral are taken 

care of by the algebraic construction of R~ in w 1. This approach makes it very easy to obtain 

a variety of transformation laws for the Cauchy-Weil integral. We also obtain an analogue 

of Fubini 's  Theorem which relates an i terated Cauchy-Weil integral to a double integral. 

In  w 4 obtain the analytic functional calculus and investigate some of its properties. 

The functional calculus makes it possible, in w 5, to obtain geometric relationships between 

Sp (zr X) and SpA (~) for various choices of a Banach algebra A. 

1. Algebraic machinery 

In  this section we distill the algebraic portion of our development of the Cauehy-Weil 

integral. Our basic tool is elementary exterior algebra. We refer the reader to MacLane 

and Birkoff [12], Chapter XVI,  for background in this area. 

We shall work in the context of modules over a commutat ive ring. Although eventually 

we shall be concerned with modules which arise as function spaces with considerable 

additional structure, the discussion is much simpler if we ignore the additional structure 

at this stage. 

We shall freely use terminology and elementary results from the theory of coehain 
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complexes. We shall a t t empt  to use terminology consistent with [11], Chapter  2, with one 

exception: a cochain map will be a homomorphism of graded modules which commutes  

with the coboundary  m a p - - w e  do no t  insist t ha t  it be of degree zero. 

Throughout  this section K will be a fixed commuta t ive  ring with identity.  Modules 

will be K-modules  unless otherwise specified. Tensor p roduc t  will mean tensor p roduc t  

over g .  

Notation 1.1. I f  a = (s~ .. . . .  sn) is an n-tuple of indeterminates,  then A[a] will denote the 

exterior algebra (over K) with generators s~ . . . .  , sn, while A~[a] will denote the  module 

consisting of elements of degree p in A[a] (cf. [12], XVI ,  w 6). 

I f  X is any  module, then X | A[a] and X | A~[a] will be denoted by  A[a, X] and 

J~[~ ,  X] respectively. An element x | s~/~ .. .  A s ~  A~[a, X] will be wri t ten simply as 

xs~,A ... As~.  Note  tha t  A[~, X] =(A~[a,  X]},  is a graded module (cf. [11] or [12]). 

I f  A is an algebra (over K) then A[a,  A] has the s tructure of a graded algebra under  

the  operat ion (~, fl) ~ ~/~ fl, where if 

~ =  ~ aJ,...JpSj, A . . . A s j p e A P [ ( ~ , A ]  
i,...tp 

and f l=  ~ bk,...k~Sk, A . . .  hskqeAq[a ,A]  
kl... kq 

then  c o a t i =  ~ (aj,...~pbk,...~q)sj, A .. .  As jpAsk ,  A .. .  A ~ e A ~ + q [ a , A ] .  
Jl . . .  kq  

Of course, if A fails to  be commuta t ive  then A[a, A] will no t  be an exterior algebra, i.e.: it  

will no t  be true tha t  ~A a = 0  for every ~. I n  fact, if ~ = a l s l + . . . + a n s n e A l [ a ,  A], then 

A ~ = ~,<j (a, a j -  aj ai) s i A s~. 

If  X is a module and A an algebra of endomorphisms of X, then the graded algebra 

A[a,  A] acts on the graded module A[a, X] via the operat ion (a, ~ ) ~ a y J = ~  A~, where if 

a = ~ aj,...tp 8i, A ... h s j ~ e A ' [ a , A ]  

and  ~ = ~ xk, ...k, sk, A. . .  A sk~ e A q [a, X] 

then  ~ A ~p = ~ (aj~...~pxk,...kq) Sj, A .. .  A sip Ask, A . . .  A s~q e AP+q [a, X]. 

I f  ~ = a 1 s 1 +. . .  + an sn E A 1 [a, A] then  ~v-+ a A ~p is a graded module homomorphism of 

degree 1 (i.e.: zr maps  AP[a, X] to A "+1 [a, X] for each p). I f  ~ A ~ = 0 then ~ acts as a cobound- 

a ry  operator  on A[a, X]. This happens if and only if a~ a~ =a~ a~ for i, ~ = 1, ..., n. 

De/init ion 1.2. I f  X is a module then ~ (X) will denote its algebra of endomorphisms.  

An  element z t=a l s  1 +.. .  +ansnEAl[a,  ~ (X)] will be called commuta t ive  if a h zr 
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I f  a E A  ~ [a, ~ (X)] is commutative,  then we denote by  F(X,  ~) the cochain complex 

whose graded module is A[a, X] and whose coboundary operator is a. The cohomology of 

F(X,  a) is the graded module H(X,  a)= {H~(X, a)}, where HP(X, a )=ker  {a: AP[a, X]-+ 

A~§ Z]}/Im {~: A~-I[~, X]-~A~[~, X]}. 
We shall say tha t  ~ = a l s l § 2 4 7  n is non-singular on X if the complex F(X,  a) 

is exact, i.e., if H'(X ,  a) = 0 for each p. 

The reader who is familiar with [15] will note tha t  we seem to be changing horses 

in mid-stream. In  [15] we declared a tuple a=(a  1 ... . .  an) of endomorphisms of X to be 

non-singular if a certain chain complex E(X,  ~) (the Koszul complex) was exact. In  the 

above definition we have said a is non-singular if the cochain complex F(X,  zr is exact. 

However, it is trivial to check tha t  if the grading in F(X,  ~) is reversed by  replacing p 

by  n - p ,  then one obtains a chain complex isomorphic to E(X,  ~). Hence, which of these 

we use is purely a mat ter  of convenience. We have chosen to use F(X,  a) here because it 

not only formally resembles a complex of differential forms, but in some situations in w 3 

it will actually be a complex of differential forms. In  these situations it would be needlessly 

confusing to depart  from the standard symbolism for differential forms. 

For convenience, we now restate three lemmas from [15] tha t  we shall have several 

occasions to use. 

L]~H~IA 1.3. (Lemma 1.3 of [15].) Let a 1 ... .  a n, b 1 ..... b,~ be mutually commuting endo- 

morphisms o/ X and set ~=alSl  +... +anSn, f l=bl t l  +... +b~tm, o ~ f l = a l s l  § +anS~ § 

bit 1 +... +brat m where a = (81, ..., sn), v = (tl, ..., tin), and a tJ v = (s 1, ..., tin) are tuples o] in- 

determinates. I] ~ is non-singular on X ,  then so is ~ | ft. 

LEMMA 1.4. (Lemma 1.1 of [15]). I / ~  =als  1 + ... +ansn where (a 1 ..... an) is a commuting 

n-tuple o/endomorphisms o / X ,  then H(X,  ~) may be considered a graded left module over the 

algebra A o/elements o / E  ( X ) that commute with each a ~ (since ker {:r A'[a,  X]-*A~+I[a, X]} 

and I m  {~: A~-I[~, X]-~Ap[~, X]} are invariant under A / o r  each p). Under this action o / A  

on H(X,  ~) we have a~H(X, ~)=0 /or i = l ,  ..., n. Hence, i / the  ideal generated by a 1 ... .  ,a~ 

in A is A,  then H(X,  ~) =0 and ~ is non-singular on X .  

L]~MMA 1.5. (Lemma 1.2 of [15]). Let X ,  Y, and Z be modules over a / ixed  algebra A,  

al, ..., an be mutually commuting elements o / A ,  and a = a l s  I + ... § I] O--> X ~-~ Y V'L~Z~O 

is a short exact sequence o/ A-modules, then there is a corresponding short exact sequence 
U A  V A  

O ~ F ( X ,  ~)---~F(Y, a)----~F(Z, ~)-->0 of cochain maps (u ̂  = u |  A[a, X ] ~ A [ a ,  Y] and 

v ̂  = v |  A[a, Y]->A[a,Z]), which induces a long exact sequence 

�9 .. ~ H ~ ( X ,  a) ~ H ~ ( Y ,  ~) ~H~(Z,  o:) -+ H~+I(X, :r ~ ... 
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o/cohomology. Hence, i / ~  is non-singular on any two o / X ,  Y, and Z then it is non-singular on 

the third as well. 

Our development of the Cauchy-Weil integral will be based on properties of certain 

transformations of A[a, X]. Most of these transformations fall into a special category which 

we now describe. 

De/inition 1,6. Let X and Y be modules and (~ = (s 1 . . . . .  s,), ~ = (tl, ..., t~) tuples of 

indeterminates. By a special transformation u :A[g, X]-~A[v, Y] we shall mean a graded 

module homomorphism (of degree zero) determined by a homomorphism u~ X-~ Y and 

an m • n-matrix (u~j) of commuting elements of ~ (Y) in the following way: 

u ( Y  xj,...j, sj, A . . .  A s~,) = 5 u ~ (x,.... , ,) u(sj,) A . . .  ^ u(sj , ) ,  

where u ( ~ ) = u l j t l + . . . + u m ~ t  m for ~=1 . . . . .  n, 

then 

(Here we agree that  yu~s=uij(y ) for yE Y). 

Note that  if 1 411 <]2 < "'" <~'~ ~.~n and x E X  

u(xs, ,  A . . .  A sj~) = u ~  u(sj,) A . . .  A u(s~)  

= U 0 (X) (Ult  , t I ~ - . . .  -I- Urn1 , tin) A . . .  A (UlJ. t 1 ~ - . . .  ~- Urn1. tin) 

= ~ (u~,J,...%,~u~ 
t1-- ~p 

= ~ (det (~Jl)k, t u~ (X)) t|, A.. .  A tip, 
i~ <|s... <fp 

if u is a special transformation determined by (u ~ (u~s}). 

LEMMA 1.7. Let u:  A[a, X]-~A[z, Y] be a special trans/ormation. Let (a 1 . . . .  , an) 

and (b I .... bin) be commuting tuples o/ elements o/ ~ (X)  and ~ ( Y )  respectively and set ~ = 

als  1 + . . .  +ans n and fl =bi t  1 + ... +brat m. Then u is a cochain m a p / r o m  F ( X ,  ~) to _F(X, fl) i /  

and only i / the  diagram 

6r 
X , AI[a,X] 

l u  ~ I ul 
Y fl , A 1 [T, Y] 

is commutative, where u 1 i8 u restricted to Al[a, X]. O! course, in  this case u induces a homo- 

morphism u*: H ( X ,  ~)-~H( Y,  fl) o/cohomology (c/. [11], Chapter 2). 
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Proo]. We must prove that  the diagram 

5 

A~[(~, X] , A~+~ [(~, X] 
ul , u l  (,.1) 

is commutative for every p if it is commutative for p = O. 

Hence, let ~o = x~jl A.. .  A 8jp EA~[~, X]. Then u(5~0) = u ( ~  A sj, A.. .  A sip) = u ( ~ )  A 

u(sj,) A ... A u(ejp). However, commutativity of (1.1) for p =0  implies that  u(~) =fl(uo(x)). 
Hence, u(~o) =fl(u~ A u(sj,) A . . .  A u(ssp) =fl(u~ A u(sj,) A ... A u(sj~)) =fl(u~o), and (1.1) is 

commutative for every p. 

We are now prepared to construct what will eventually be the integrand of our Cauchy- 

Weil integral. 

Def in i t ion  1.8. Let ~ o c  ~ be K-modules and let ~ (~ l~o)  be the algebra of endo- 

morphisms in E (~) which leave ~0 invariant. Let  (a I ..... a,,  d 1 ..... din) be a commuting 

tuple of elements of E (~  [ ~0) and set 5 = a l s  1 + ... + a , s , ,  ~ = d l t  1 +. . .  +dints.  We shall then 

call (~, ~o, ~, ~) a Cauchy-Weil system if ~ is non-singular on ~ /~0  (which is an ~ (~  I ~o)- 

module since ~o is invariant under E (~  ] ~o)). 

If  (~, ~o, 5, ~) is a Cauchy-Weil system, then we shall construct a homomorphism 

R=: Hv(~, ~)-+Hn+V(~o, ~) for each p. The map R= will be the composition of the three 

homomorphisms constructed below. 

If FEA~[v ,  ~ ]  we set s F = F A s ~ A  . . .  A s , ~ E A ~ + ~ [ ~ U v ,  ~].  Note tha t  s 6 F =  

~ F  A 8~ A ... A s~ = 5 F  A s~ A ... Asn  + <SF h s I A ... A s , ,  since 5 A s I A ... A s, = 0. Hence, sOF = 

(~@O)FASlA ... A s , = ( a |  Thus, s: F (~ ,  0)-~F(~,  5| is a cochain map of de- 

gree n. I t  follows that  s induces a homomorphism s*: H (~ ,  ~)-~H(~, 5| of degree n. 
. 

Let i: ~ o - ~  be the inclusion map. We have that  0 - ~ o - - ~ - * ~ / ~ o - ~ 0  is an exact 

sequence which may be considered an exact sequence of ~ (~  ] ~0)-modules. By hypothesis 

is non-singular on ~/~0- By Lemma 1.3, 5| is also non-singular on ~/~0- I t  follows from 

Lemma 1.5 that  i*: H(~o, 5|  5| is an isomorphism. 

Finally, let #t: A[aU ~, ~o]-~A[v, ~o] be the special transformation (cf. 1.6) such that  

n:~ ~o+,,~o is the identity and a(s~)=0 ( i=1,  ..., n), ~(t~)=t~ ( j = l  . . . . .  n). Note that  

~ ( 5 @ 8 ) / = ~ [  for / e ~  o. I t  follows from 1.7 that  ~: F(~o, 5 |  o, 8) is a cochain 

map of degree zero and induces a map n*: H(~o, ~O)O)-*H(~0, ~). 

Def in i t ion  1.9. If  (~, ~o, ~, ~) is a Cauchy-Weil system, then for each p we define 

R=: H~(~, 8)-~H"+~(~o, ~) to be the composition of the maps 
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H~(~, ~)--+H~+~(~, ~| o, ~ @~)--~+~ (~o, ~) 

defined above, followed by multiplication by ( -  1)L 

The properties we require of the Cauchy-Weil integral will follow from certain in- 

variance properties of the map R~. Developing these invariance properties occupies the 

remainder of the section. 

PROPOSITION 1.10. Let (~, ~3o, o~, ~) and (~3', ~3~, o~', (Y) be Cauchy-Weil systems, 
! ! t I t t t 

where o~=a~sl +... +a~s~, ~' =a~st + ... + a n S n ,  ~ =dttt  + ... +d~t m, and ~ =dlt~+ ... +dntm,. 

Let u: A[~, ~]~A[C,  ~']  be a special trans/ormation which satisfies the [ollowing conditions: 

(1) u~ ~ '  maps ~o into ~o; 

(2) ~0 is invariant under each u~; 

(3) u~176 /or i = l  ..... n a n d / E ~ ;  

(4) the diagram 

~3 , A ~ [v, ~3] 

]uO (~, [ ul 

~Y , A ~ [~', ~'] 
is commutative. 

Then, i /u*: H(~, ~)-+H(~', (Y) is the map guaranteed by 1.7, the diagram 

is commutative. 

R~ 
H'(~), ~) '//~+~(~o, ~) 

l u *  I u• 
H'(~)', ~') , H~+'(~)o, 0') 

Proo]. Conditions (1) and (2) on u simply guarantee that u: A[v, ~]-+A[T', ~ ']  maps 

A[~, ~o] into A[C, ~o]. 

We define a special transformation u^: A[~tJ v, ~]-+A[aO v', ~3'] by setting ~~176 

~-+~3', ~i(tj)=u(tj) ( j= l ,  ..., m), and ~(st)=st (i=1 ..... m). It  then follows from 1.7 and 

conditions (3) and (4) on u, that each of u: F(~,  O)-+F(~3', 6'), u: F(~0, (~)-+F(~g, ~'), 

~: F(~,  ~| a'| and ~i: _F(~0, ~| a'| is a cochain map. Further- 

more, the following diagram is commutative: 

.v(~,~) • F(~, . |  ~ F(~0,a| ~ F(~o,O) 

I F(~)',~') A F(~',  ~' | ~,) ~i F(~0 ' , | ~,) --~ F ( ~  ~') 

It  follows that u*R~=Ra,u*. 
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In the above proposition, the transformation u did not effect a in any essential way. 

In the next  proposition we derive the affect on R~ of a transformation of a. 

PROPOSITION 1.11. Let (~, ~)o, a, 6) and (~, ~0, fl, 6) be Cauchy-Weil systems, where 

a=alsl+. . .+ans~,  fl=bls~+...+bns'n and 6=dl t l+. . .+d,n t  m. I] ~ and ~ are related by 

b, = ~ u,j aj (i = 1 .. . .  , n), where {u,i} is an n • n-matrix o/elements o / ~ ( ~ l ~ o )  which commute 

with each other and with a 1 .... , an, d I ..... din, then Rpodet (uij)= R~. 

Proof. Consider the special transformation u: A[a U T, ~]  ~ A[a' U T, ~],  where u~ ~-+ 

is the identity and u(sj) = ~ u  u s;, u(tj) =tj. This carries A[aU % ~o] into A[a' U v, ~)0] 

and u: F(~), a | 174  and u: F(~o, a@5)-~F(~)0, fl| ) are cochain maps. 

Furthermore, the following diagram is commutative: 

F(!3, 6) i Y(!3, ace~) ~i F(~0  ' ~| ~n F(~0 ' 6) 

s' i zt 
F ( ~ 0 ~ )  - -  F(~3, /~ |  ~ F ( ~ o , ~ |  ~ F ( ~ 0 , ~ ) ,  

where det (u~j)E E(~ [!30) determines a eochain map det (u~r F(!~, 6)-+ F(!~, (~), since each 

u u commutes with d x ..... dz. Upon passing to eohomology, the proposition follows from 

the commutativity of this diagram. 

If (~, !~0, ~, 6) is a Cauehy-Weil system, then each a~ commutes with each de. Hence, 

each a~ acts as an endomorphism of Hv(~, 6). We then have: 

PROrOS~T~O~ 1.12. I /  (!3, ~o, ~, 8) is a Cauchy-Weil system and a=a~s~ +... +a~sn, 

then R~oav HV(~3, ~)-+H~+V(~0, 8) is zero/or each i. 

Proof. I t  follows from 1.4, that  aiHn+~(~, a~)(5) =0 for each i. The proposition follows 

from this and the definition of R a. 

Our next  result is a factorization lemma which will yield a formula relating iterated 

and double Cauchy-Weil integrals. 

PROPOSITION 1.13. Let ~ o ~  be modules and al, ..., an, b~ ..... bn, , dl, ..., d m 

commuting elements o/ ~ ( ~ )  which leave ~o and ~ invariant. Let o~=a~sx +...+ansn, 

fl=b~s~ +... +bn4,,  and (5=dxt~ +... +d,~t m. I f  (~, ~x, a, (~) and ( ~ ,  ~o, fl, r are Cauchy- 

Weil systems, then so is (~, !3o, o:| 8) and the following diagram is commutative: 

Ra~ # 

H ~+~ (~31, 6) 
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Proo[. Since 0 ~ / ~ 0 ~ / ~ 0 ~ / ~ 1 ~ 0  is a short exact sequence and ~ is non- 

singular on ~ /~1  and ~ is non-singular on ~1/~0, 1.3 and 1.5 imply that  ~ |  is non- 

singular on ~ /~0  and (~, ~o, ~| ~) is a Cauchy-Weil system. Now consider the diagram 

F(~,~) sAs' F(~,~|174 ~-i' F(~,,o~|174 -*- i~ F(~o,~t|174 -.,..a: F(~o,~) 

8 t $0 

F(~,e| s~ $ ' ( f~ ,e |  ~ F(f~l,~) ~ F ( ~ , [ I |  ~ F(~o,~|  

where d = I  A~, A ...A~,, s ' l = l  /~s[ A ...As',,(s /~s ' ) l= l  As~ /~ ...As~/~sl A ... As',,, ztds,)=O 

for i = 1  ..... n, ~l(S~) =s~ for i = l  ..... n', ~l(ti)=t~ for i = l  ..... m, ~ ( s [ ) = 0  for i = l  ..... n', 

~(t,)=t, for i = 1  . . . . .  m, and zr(s~)=~(s~)=0 for i = l ,  ..., n, j = l  . . . . .  n', zt(t~)=t~ for i = 1 ,  

.... m. The maps i I and i 0 are induced by the inclusions i1: ~ 1 ~  and i0: ~ 0 ~ x  �9 

The diagram is clearly commutative and each of its maps is a cochain map. On pass- 

ing to cohomology, we have R~=( -l~,-j ~1"1" ~-*-1~.o, Rp =lt-~jl~"'~t2~o . . . .  1~,.o , and R~ep = 

( - 1)~+'zt*i~-li*l-l(s A s')*, since i: ~ 0 - ~  is i l o i  o. The eommutativity of the above diagram 

now implies tha t  R~ez = Rao R~. 

Proposition 1.10 shows that  R~: HV(~, ~)-~H"+V(~ 0, ~) is "natural"  relative to a certain 

class of transformations of ~. The final proposition of this section is another result concern- 

ing the "natural i ty"  of R~ relative to 8. This result is not  needed in our development of the 

Cauehy-Weil integral or the functional calculus. However, we will need it to obtain a rela- 

tion between the spectrum of a tuple (]l(a) . . . . .  fz(a)) and the spectrum of a = (a 1 .. . .  , a,) 

for ]1 ..... fmE91(Sp (a, X)) (cf. Theorem 4.8). 

Let  (~, ~0, a, 8| be a Cauchy-Weil system, where a = a l s l + . . . + a , s ~ ,  O=dx t l+  

... +d~t=, and fl =blt~ + ... + b a t ' .  Without loss of generality we may assume that  b~, ..., b z 

are elements of the ground ring K so that  all of the objects in the discussion are modules 

over a ring containing these elements. In particular we may consider (b 1 . . . . .  bin) as a 

tuple of operators on H~(~, ~) and Hv(~0, ~) for each p. 

There are two ways of constructing a map R~*: Hr(H~  ~), f l ) -+HV(H"(~o,~) ,  fl) 

using the tuple ~. On the one hand, we could compute R~: H ~  O)->H"(~ 0' ~) for the 

Cauchy-Weil system (~,  ~o, ~, ~) and then let R~*: HV(H~ ~), fl)--.'-H~'(H'~(~o, ~), fl) 

be the map induced on cohomology by the corresponding cochain map R~: F(H0(~,  ~), fl)-+ 

F ( H " ( ~  o, t~), fl). On the other hand, there are natural  maps i*: Hr(H~ ~), fl)~HV(~, ~ ~fl) 

and k*://~+~(~o, ~|  ~), fl) which we shall describe below. Hence, we could 

define R~* as k*Raj*: HV(HO(~, t}), f l ) ~ H V ( H " ( ~ ,  ~), fl), where Ra: Hr(~ ,  ~ /~ ) -~  

H"+V(~o, ~@fl) is computed for the Cauchy-Weil system (~, ~o, ~, ~ f l ) .  We shall show 
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that  these two definitions of R* agree. There is a very short proof based on the theory 

of spectral sequences and the fact that  ]* and k* are just edge homomorphisms (cf. [11], 

Chapter XI). However, we shall at tempt to give a more elementary proof. 

Let i: H~ 5)=ker  (5: ~ A ~ [ ~ ,  ~ ) ] } ~  be the inclusion map and consider the 

corresponding inclusion j^:  A[v', H~ 8)] -~A[v U v', ~)]. Note that  since 5 =0  on H~ 8) 

we have that  j^:  F(H0(~, 8), f l )~F(~,  5~fl) is a cochain map and, hence, it induces a map 

i*: H(H~ 5), fl)-~H(!~, 5| 

Let k: A~[v, ~0]-~H'~(~o, 5) =A~[v, ~0]/Im (5: A~-~[~, 5]-~A~[v, 5]} be the factor map. 

There is a corresponding factor map k^: A[~ U v', ~o]-~A[v', H~(~o, 8)] defined by k^~ =0  

if ~o has degree less than n in t~, ..., tn and k^y~ = k~ if ~ has degree n in t~ ..... t~. Since ker k^ 

contains Im {5: A[~ U ~', !~o] -~A[v U v', !~o] }, the map k^: F(~) 0, 5 | F(H~(~o, 5), fl) is a 

coehain map of degree -n and induces a map/c*: Hn+~(~0, 5 | ~H~(H~(~o, 8), fl) for each p. 

P~oPOSlTXO~ 1.14. Let ~, fl, 5 and i* and k* be as above. Let R*: H~(H~ 5), fl)-~ 

H~(H~(~o, 5),fl) be induced by R~: H~ 5)~H"(~o, ~) and let R~: H~(~, 5|  n+~ 

(!~, 5| be the map Ra relative to the Cauchy-Weil system (~, ~o, ~, 5| Then the ]ol- 

lowing diagram is commutative: 

R~* 
H~(H~ 5), fi) ~ H~(H'(~o, 5), [~) 

H~(~, 5| , H~+~'(~o, 5|  

Proo]. Let C denote either ~) or 2~ o and ~ either 5 or ~| We introduce a filtration in 

F(C, 7 (~/~) by letting D~F( C, 7 | be the subcomplex of F( C, 7 aft)  consisting of elements 

of degree at  least p in t~ ..... t~. Note that  for each p there is a cochain map v: D~F(C,7 | 

F(A~[v ', C], y) of degree - p  defined by vW = 0 for v 2 E D ~+ 1F(C, ~ ~)fl) and v~ = y~ considered 

as an element of A[v, A~[~ ', ~]] if ~ has degree p in t~, ..., t ' .  

The maps s, i, and ~ of Definition 1.9 for the Cauchy-Weil system (~, ~)0, ~, 5Gfl) 

respect the filtration (D~}. Hence, we have the following commutative diagram of cochain 

maps: 

~ F ( ~ ,  ~| 

l,, 

• F(~,,~| ~ P(~o,~|174 ~ ~(~o,~| 

F T 

t 8 
F(A [.r', ~1, 0) F(A."I..t', ~ ] ,  o ~ 0 )  i ~(A~[..t, ' ~o], ~ |  ~ " ' 
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where u is the inclusion map. Note that  since A~[z ', ~]  is just a direct sum of copies of 

the map i: F(AV[~ ', ~o], ~@6)~F(A' [  z', ~], ~| induces an isomorphism of coho- 

mology. Using this fact, the map v, and induction on n - p ,  one can prove that  i: D'F(~o,  

~|174 a(~6| also induces an isomorphism of cohomology. Hence, with 

R~=(-1)ner*i*-~s *, we have a commutative diagram 

H'(D~F(!~, 6 | fl)) 

Iv* 
H ~ (A ~ [~', ~ ] ,  6) = A T [~', H ~ (~,  6)] 

R~ 
Hn+'(~0, 6| 8) 

lu*  

R~ 
, Hn+'(D~F(~o, 6(~fl)) 

R~ 
, A~[v ', Hn(!3o, 6)] = H'~(N'['d,i3o], 6). 

Furthermore, for each p, v* maps H~(JDPF(~, 6| and Hn+~(DP~'(~o, 6| ) into 

ker {8: AP[ C, H~ ~,  6)]-~ AP + 1[~ ', H~ 6)]) and ker {fl: AP[ ~', Hn(~o, 6)]-~ A~+~[T ', Hn(~o, 6)]} 

respectively. Hence, v* induces maps v** so the following diagram is commutative: 

R~ 
H , ( ~ ,  6 |  , Hn§ 6 |  

Iu, Tu. 
R~ 

H,(D~F(~,6|  , Hn+~(D,F(~o,6| 

Iv.. Iv'. 
R*~ 

H ' ( H ~  6), 8) , H ' (Hn(~ ,  6), fl). 

To complete the proof, we simply note that  v**: H~(DVF(~, 6|176 6), 8) 

is an isomorphism and j*=U*(V**) -1, and that  u*: H n + p ( D ~ F ( ~ o ,  6 @ f l ) ) ' - > H n + p ( ~  o, 6(Dfl)  

is an isomorphism and k*=v**(u*) -1. 

COROLLARY 1.15. Let al, . . . ,  an, b I . . . . .  b n be elements o/the ground ring K and d 1 . . . . .  d n 

a commuting tuple in E (~ ] ~0)- Let o~ = a I s 1 +... + a n sn, fl = blS~ +... + b ns'n, 6 = d I t I + . . .  + 

dntn, (o:- f l )=(al-bx)s~ +.,. +(an-bn)s"n, and suppose (~, ~o, o~, 6) and (~, ~o, fl, 6) are 

Cauchy-Weil systems. Then the maps R~: H~ 6)-~ Hn(~o, 6) and R•: H~ 6)~  Hn(~o, 6) 

induce identical homomorphisms o] HP(H~ 6), (o~ -f l))  into HP(Hn(~, 6), (~ -8 ) ) /o r  each p. 

Proo/. By Proposition 1.14 it suffices to show that  R~: HV(~, 6| 

Hn+~(~ 0, 6 0  (~-8))  and Rp: H~(!~, 6|247 6|  are the same homo- 
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morphism. To do this, we define a special transformation u: F ( ~ ,  a | 1 7 4  

F(~, fl|174 by defining u~ ~ - + ~  and u(t~)=t,, u(s~')=s~'-s',, and u(8,)=s',. 

Then the following is a commutat ive diagram of cochain maps: 

2~(~, 8| (~-  fl)) 

t id 

~(~, ~| 

lu lu I id 

On passing to eohomology, we conclude tha t  

R~ = RZ: HP(~, (~ | (a -~fl)) ~ H~+V(~o, ~ | (a -fl)).  

2. A special function space 

In  w 3 we shall develop the Cauchy-Weil integral by applying the results of w 1 to a 

Cauchy-Weil system (!~, !~0, a, (3) in which !~ is a space of vector valued functions on a 

domain U c  C ~ and !~ 0 is the subspace of !3 consisting of functions with compact support. 

In  this section we introduce the space ~ and develop its relevant properties. 

_Notation 2.1. If  X is a Frechet space and U a locally compact t tausdorff  space, then 

C(U, X) will denote the space of continuous X-valued functions on U with the compact- 

open topology. I f  U c  (~n is a domain, then ~(U, X) will denote the space of analytic X- 

valued functions on U, also with the compact-open topology. The theory of analytic 

functions with values in a Frechet space does not differ in any essential way from the 

theory of numerical valued analytic functions. We refer the reader to [5] and [7] for discus- 

sions of this matter.  

I f  X and Y are Frechet spaces, then L(X, Y) will denote the space of continuous linear 

maps from X to Y with the topology of uniform convergence on bounded subsets of X. 

In  [15] we discussed parameterized chain complexes. We shall be using cochain 

complexes in this paper. Hence, we restate Definition 2.1 of [15] as follows: 

Definition 2.2. Let  { YP} be a family of Banaeh spaces indexed by the integers and let U 

be a locally compact Hausdorff space. Let  {a v} be an indexed family of maps with 

a T E C( U, L( YP, yv+ 1)) for each p. I f  aV(z) o a T- l(z) = 0 for each p and each z E U, then we shall 

call Y = { YP, a T} a parameterized cochain complex on U. If, in addition, U is a domain in 

(P and a T Cg~(U, L( yv, yv-1)) for each p, then we shall call Y an analytically parameterized 

cochain complex. 
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If  Y = { Y~, a~} is a parameterized (analytically parameterized) coehain complex on 

U and V is an open subset of U, then C(V, Y) (~[( V, Y)) will denote the eoehain complex 

(C(V, Y~), ~ }  ((~(V, Y~), ~}), where (a~/)(z)=a~(z)/(z) for z~ V, /~C(V, Y~) (~(V, Y~)). 

The following is a restatement of Theorems 2.1 and 2.2 of [15]: 

LEMMA 2.3. I /  Y =  { YP, ~P} is a parameterized cochain complex on U, then/or each 

p the set o~ z e U / o r  which Y ( z )={Y  p, ~V(z)} is exact at thepth stage is an open set. I /  Y(z) 

is exact/or all z E V, where V is an open set in U, then C( V, Y) is exact. 

I /  U = U 1 • • U~ is a polydisc in C ~, Y is analytically parameterized on U, and Y(z) 

is exact/or each z E U, then 9~( U, Y) is also exact. 

Given a domain U ~  C n and a Banaeh space X, we seek a space ~(U, X) of X-valued 

functions on U which has certain special properties. Specifically, we need that  ~(U,  X) is 

closed under multiplication by functions in Coo(U), the differential operators ~/~Zl ..... ~/~zn 

act on ~(U,  X), and ~(U,  Y) is exact whenever Y is an analytically parameterized eochain 

complex such that  Y(z) is exact for each z E U. The obvious choice is Coo(U, X). Unfortuna- 

tely, we have been unable to prove that  C~ Y) is exact when Y is a pointwise exact 

analytically parameterized complex. Hence, we are forced to seek another choice for 

~(U,  X). 

Our choice is the following: !~(U, X) will be the subspace of C(U, X) consisting of 

functions ] for which the derivatives (~/~1) rl ... (~/~Sn)"/ (in the distribution sense) are 

elements of C(U, X) for all multi-indices (Pl, ..., P~). We make this more precise below. 

Definition 2.4. Let  X be a Frechet space and U a domain in C. I f / ,  g E C( U, X) we shall 

say / E ~I(U, X) and (a/as)/= g provided 

f f v ( ~ q J ) / d z A d S = - S f q J g d z A d ~  (2.1) 

for every ~v E O ( U ) - t h e  space of C ~ functions with compact support in U. 

We define ~k(U, X) for k > 1 by saying / E ~k(U, X) if / e ~I(U, X) and ~//~5 e ~ - I ( U ,  X). 

We set ~0(U, X) = C(U, X). 

Note that  the fact that  X is complete insures that  both integrals in (2.1) exist. Clearly, 

equation (2.1) uniquely defines g =~ / /~  in terms of ]. 

We topologize ~ (  U, X) in the following manner: we give ~ ( U ,  X) the Frechet space 

topology in which a sequence (/n) converges to zero if and only if (~/~2)P/n-+0 uniformly on 

compact subsets of U for p = 0, 1, ..., k. 

One might suspect that  it is always the case that  ~k(U, X) = C~(U, X). I t  is true that  
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a real valued function in ~ ( U ,  C) is also in C~(U). However, the function zoz  initial I 
is in BI(D, C) but not in C~(D), where D is the unit disc. 

The next  few lemmas develop elementary properties of the class ~ .  For  convenience, 

we set ~/~2=~ and (~/~5)~=~. 

L ~ A  2.5. I / l e ~ ( U ,  x)  and q)qC~ then q~le~(U, X) and ~(q~l)=(~)1+~(~]). 

Proo/. This is an elementary computation. 

L~MMA 2.6. If / E ~ ( U ,  X) then there is a sequence {/,} o/ /unctions in C~(U, X) 

such that ] ~  / in the topology o /~ (U,  X). 

Proo/. If  /E ~k( U, X) has compact support, we may consider / an element of !~k(C, X). 

We let {u~} ~ ~(i3) be a convolution approximate identity. Then u ~ -  / E C~176 X), ~V(un~/) = 

u=-)e(~P/) for p=O, 1 ..... k, and ~V(Un-)e/)~v ] uniformly for p = 0 ,  1 .. . . .  k. Hence, / is the 

limit of a sequence in C~(U, X) if / has compact support. By 2.5 every element of ~k(U, X) 

is the limit of a sequence of elements with compact support. The lemma follows. 

The next  Lemma is obviously true for ] E C~176 X) and in view of 2.6, it is true for all 

/e~k(U, X): 

LEMMA 2.7. I/ X and Y are Frechet spaces and aE~(U,L(X, Y)), /E~k(U, X) then 

~/E~k(U, Y) and ~(~])=~(~/), where ~/(z)=~(z)/(z). 

L~MMA 2.8. I/ /EC(U, X) and k >~O, then /e~k+l(U, X) i/ and only i/ there is a 

g E ~k( U, X) such that every compact set K c  U is contained in a compact set Dc  U with piece- 

wise smooth boundary such that 

/(z)= ~--~i [foD(~--z)-l/(~)d~ + SSD(~--z)-19(~) d~ Ad~ ] 

/or every z E int D. 

(2.2) 

Proo/. If ]EC~(U, X)and ~]=g, then (2.2) is just the generalized Cauchy integral 

formula (cf. [10], 1.2.1). I t  follows from 2.6 that  (2.2) holds for a l l / E ~ + I ( U ,  X). 

To prove the converse, we let ~0 E D(U) and choose a compact set D containing the 

support of ~. If we assume (2.2) holds for 1, g, D with ]EC(U, X) and ge~k(U,  X), then 

2 ztiff~q~ (z)/(z) dz Ad~= f S {fo ~q(z) ($-z)-'/(r 

+ f f {f SD~q~(z) (~ -z)-l g(~) d~ A d~} dz A d2. (2.3) 
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I f  we reverse the order of integrat ion and replace z by  w +~, then (2.3) becomes 

(2A) 

I f  we use the fact  t ha t  (2.2) holds for Coo-functions and tha t  ~ has compact  support  

in D, then (2.4) becomes 

-- 2gi (foDq~($) f(~) d~ + f fDg(~) q~($) d~ A d~l= - 2rd f f q~(~) g($) d$ A d~. (2.5) 

I t  foIIows tha t  equat ion (2.1) holds for f and g and tha t /E~)k+I(U,  X) and ~f=g. 

LEMMA 2.9. Let U~ C be a domain and V a domain with compact closure in U. _If 

lc>~O and gE~k(U, X) then there exists ]E~)k+~(U, X) such that ~f =g on V. 

Proof. By mult iplying g by  a C ~ funct ion which is one on V and has compact  support  

in U, we obtain goErS(U, X) such tha t  go has compact  support  and go=g on V. We set 

I t  follows from Lemma 2.8 tha t  /E ~k+l(U, X) and ~f = go. 

We now proceed to the case of several variables. Let  U be a domain in C ~ and X a 

Frechet  space. For  each i, we denote the operator  ~/~5~ = �89 + i(~/~yi)] by0~. As in Defini- 

t ion 2.4, if fCC(U, X) we shall say O~fEC(U, X) if there is a gEC(U, X) ( g = ~ f )  such tha t  

f v  q)) fdm Jq~gdm (2.6) (~ 

for every ~ E 9(U) ,  where m is Lebesgue measure in C ~. 

L~MMA 2.10. / / / E C ( U ,  X), ~ifEC(U, X), and ~(O~f) EC(U, X) for some pair i, j, then 

~jfEC(U, X) and 0 i ( ~ ] ) = ~ j ( ~ ] ) .  

Proof. Since the hypothesis  and conclusion are clearly local s ta tements  about  functions 

in C(U, X), we m a y  assume wi thout  loss of generali ty t ha t  U = U 1 • • U n is a polydisc 

and / has compact  support  in U. Also, we m a y  assume i = n. 

We set h(z) = ~ l(Zl . . . . .  zn-a, r (r - zn)-ld~ A d~, 

and g(z) = ~ /  ~f(zi  . . . . .  z~-~, r (~ -z~)-~dr A d~. 
n 
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Note tha t  h, g e C(U, X) and ~ 9 = h. Furthermore,  since / has compact support, it follows 

from Lemma 2.8 that  g =/.  Hence, ~r  h e C(U, X). That  ~ , (~/)  = ~ , ( ~ / )  follows from the 

fact tha t  ~ , ~ 0 = ~ s ~ 0  for ~ ( U ) .  

The above lemma makes it possible to define, in a non-ambiguous manner, a space 

~ ( U ,  X) for each multi-index ]=(]1 ..... ]~). 

De/inition 2.11. I f  ] = (0 ... . .  0) is the zero index, we set ~J(U, X ) =  C(U, X). For each 

i let 1 ~ = (0, ..., 0, 1, 0, ..., 0) (1 in the i th position). I f  ] = (]1 ..... ~n) (0 ~< ]1 < oo ) and ~J  ( U, X) 

has been defined, we define ~j+I,(U, X ) =  {/e C( U, X): ~ ]  E ~J( U, X)}. 

I f  ~ and k are multi-indices with ~ ~<k (?i ~<ki for each i) then we define ~J: ~k(U, X ) ~  

Without  Lemma 2.10, the above definition would be ambiguous since there are many  

ways to form a multi-index j by  beginning with 0 and successively adding indices lf. 

As before, we give ~k(U, X) the Frechet space topology in which /~-+0 if ~ J / ~ 0  

uniformly on compact sets for each ] ~< k. 

Let  U and V be domains in C n and C ~ respectively. We may  identify C(U • V, X) 

and C(U, C(V, X))  by identifying the function (z, w)-+/(z, w) in C(U • V, X )  with the 

function z ~ / ( z ,  .) in C(U, C(V, X)) .  I f  ~=(]1 ..... ]~), k = ( k  1 . . . . .  kin) , and i U k =  (]1 . . . . .  

j~, kl, ..., k~), then it is evident tha t  this identification also identifies ~juk(U • V, X) with 

~J(u,  ~ ( v ,  x)). 

We now introduce a special notation for use in the next  two lemmas. I f  ] = (]1 . . . .  , ?~) 

where ] ,=0 ,  1, 2 ... .  or ~ , = -  c~ for each i, then ~J(U, X) will represent the subspace of 

C(U, X)  consisting of functions / such tha t  / is analytic in z~ if ~,= - ~ o  a n d / ~ f ( U ,  X) 

for ] '=(]~, ..., ~n)," where "' if " " ~1=0 ]~= - c ~  and ~ = ~  if ] ~ # - ~ .  

By ~ v [ X ]  we will mean the sheaf of germs of the presheaf V-~Y~(V,  X )  for V~  U 

(el. [6], or [9], IV). 

LEMMA 2.12. For each ] = (]1 . . . . .  in) (j~ = - c~, or O, 1, 2 . . . .  ) a n d / o r  each i = 1 . . . . .  n 

with ]~ # - ~ ,  the sequence 

0 -~ ~ -  ~, [x]  - .  ~ 1, [x]  - - ~  ~ [x]  - .  0 

is exact, where oo~=(0 . . . . .  0% 0 ..... 0) and l f = ( 0  ... . .  1 ... . .  0) (c~ resp. 1 in the i th  position). 

Proo/. If /E~J+I~(V, X)  for some domain V c X ,  then ~ / = 0  implies tha t  / is analytic 

in the variable z~ on V. Hence, /EY~J-~(V,  X) .  

I f  z0E U a n d / E ~ ( V ,  X)  for some neighborhood V of z0, then it follows from Lemma 

2.9 tha t  there is a function g E~J+I~(V 1, X) for some possibly smaller neighborhood V 1 

2-- 702902 Acta mathematica. 125. Imprim6 le 17 Septembre 1970. 



18 JOSEPH L. TAYLOR 

such tha t  ~ g  = [  on V ~. To see this, note tha t  if V = Vx • ... • V~ is a polydisc, we m a y  

write ~J(V, X) =~J~(Vi, X')  where X '  = ~ r  ( V 1 • ... • V ~_x • V ~+ ~ x ... • V~, X )  and ?"= 

(]~ ..... ~_~, ?'~+t . . . .  , ]~). This reduces the problem to the one dimensional situation described 

in Lemma 2.9. 

On passing to germs, the above considerations show tha t  ~ :  ~ x ~ [ i J - + ~ v [ i ]  is a 

surjective map with kernel ~-~176 

LEMM~, 2.13. Let Y = (  YP, o~ ~} be an analytically parameterized cochain complex on a 

domain U c CL I /  Y(z) is exact/or each point z o/ U, then the complex ~ [ Y ]  = { ~ [ Y P ] ,  ~P} 

is an exact sequence o/sheaves on U /or each multi-index ]= (Jl . . . .  , ]~) ( j ~ = -  co, 0, 1, .,.). 

Proo/. I t  follows from Proposition 2.3 tha t  if each j~ is - o o  or 0 then ~/v[Y] is exact. 

The proof for general j proceeds by induction. 

Suppose ~ z  [ Y] is exact for all k < j, where ] = (Jl, ..., in) and k < j means/c i ~< j~ for all 

i and inequality holds for some i. We may  assume tha t  j~>0 for at least one i. Then, by 

Lemma 2.12 the sequence 

0 --~ ~]U-oo, [X] "-~ ~/u  [X]  ~ ~]u-1, [X] --> 0 

is exact. Hence, O->~Jv-~176 

is an exact sequence of coehain complexes (of sheaves). By the induction hypothesis, 

~ - o o , [ y ]  and ~v-l~[Y] are both  exact. I t  follows tha t  ~v [Y]  is also exact (cf. [11], 

Chapter 2). This completes the induction. 

LnMM:~ 2.14. I /  Y is an analytically parameterized cochain complex on U c  C ~ and 

i / Y ( z )  is exact/or each zE U, then ~k( U, Y)  is exact ]or k = ( k  I . . . . .  kn) (k~>~O). 

Proo/. Each of the spaces ~k( V, YP) ( V c  U) is closed under multiplication by  functions 

in C~(U) (cf. Lemma 2.5). I t  follows tha t  ~ [ Y P ]  is a fine sheaf for each p (cf. [6] or [9]). 

Hence, by Lemma 2.13, ~ [ Y ]  is an exact sequence of fine sheaves. I t  follows tha t  the 

corresponding sequence of global sections ~ ( U ,  Y) is also exact (eft [9], VI  or [6], I I ,  4). 

We are now ready to define ~ (U ,  X) and prove tha t  it possesses the properties tha t  we 

require. 

De/inition. 2.15. If  X is a Frechct space and U c C n a domain, then we define ~ (U,  X) = 

N (~J(U, X): ~'=(Jl ..... in), ~'i~>0} �9 We give ~ ( U ,  X )  the Frechet space topology in which 

/n-+0 if and only if ~J/n-+0 uniformly on compact sets for each ~. 
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T ~ g O R ~  2.16. The space ~ ( U ,  X) has the [oUowing properties: 

(1) ~( U, X) is closed under multiplication by/unctions in Coo(U); 

(2) if /E~(U, X) then ~J/E~(U, X)/or each multi-index j=( j~ ..... j~) and 2(U, X) = 

{/E~(U,  X): ~ J = 0 / o r  i = 1  ..... n}; 

(3) i / ~ :  V-+U is an I analytic map, then ~*: C(U, X)-~C(V, X) maps ~(U, X) into 

~(v, x); 

(4) if X 1 and X2 are Banach spaces and aEOft(U,L(X1, X2)), then ~/E~(U, X~) /or 

each/E~(U, X1); 

(5) if Y is an analytically parameterized coehain complex o/Banach spaces on U and 

Y(z) is exact/or each. zE U, then ~( U, Y) is also exact. 

Proo/. Properties (1), (2), (3), and (4) are routine in view of the preceding lemmas. 

Hence, we concentrate on par t  (5). 

Suppose each YP is a Banach space a n d / E ~ ( U ,  Y") with av/=O. I f  j ( i )=( i ,  i . . . .  , i) 

for i=O, 1 .... , then 2.14 implies tha t  there exists g,E ~ ( ~  Y'-~) for each i such tha t  

a~-lg, =/ .  Also, since a~-I (94+x-g,) =0,  we may  choose h~E ~(4)(U, YV-~) such that  aV-~h, = 

gi+l-g~. We then have 

gin=g0+ ~ aV-2h, for each m. 
4=0 

Clearly, ~ (U ,  ]Zp-2) is dense in ~J(0 (U, YP-~) for each i. Hence, if V is a domain with 

compact closure in U, we may  choose k~E~(U, yp-2) such that  [[~Jh~(z)-~Jk4(z)ll<l/24 

h for all z 6 ff and ] <~ ](i). I f  h = ~t =o ( ~ - ki) and g = go + ~v-2 h, then ~v-1 g = / and for each m 

4=0 l=m 

Sine~ ~ ~J (h~- k4) converges uniformly on V for each ~ ~< ~(m), we conclude tha t  

Since the above argument works for any V with compact closure in U and since 

~ ( U ,  y~--1) is closed under multiplication by functions in C~176 a standard partition of 

unity argument yields that  ~ (U ,  Y) is exact. 

We should point out that  the construction of the space ~ (U,  X) can be carried out if 

X is any quasi-complete locally convex topological vector space. However, the results 

on exactness of ~ (U ,  Y), when Y is a pointwise exact parameterized cochain complex, 

use the fact tha t  each YP is a Banach space in an essential way. This is the only barrier 

to extending all of our results to some very general category of topological vector spaces. 

Since Lemma 2.3 is patently false if it is not true tha t  each YV is a Banaeh space, an 
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extension of these results to a larger class of topological vector spaces will require a 

strengthened notion of exactness at  a point for a parameterized cochain complex. A similar 

problem occurs in the spectral theory of an operator on a topological vector space which is 

not a Banach space. The approach to this problem used in [1] and [13] may  suggest ways 

of extending the results of this paper. 

3. The Cauchy-Weil integral 

I t  is now a simple mat ter  to combine the results of the preceding two sections to 

obtain a very general form of the Cauchy-Weil integral. 

Notation 3.1. Throughout this section X will be a Banach space and L(X) will denote 

the space of bounded linear operators on X. 

Let  U c C  n+m be a domain. We shall write points of U in the form ( z ,w)= 

~zl . . . . .  zn, wl . . . . .  win). Corresponding to the coordinates in (~n+~ we choose tuples of in- 

determinates d5 = (d51 . . . . .  d~n) , d~o = (dff; 1 . . . . .  d~,). We consider ~-~ . . . . .  ~Sn' ~ 1  . . . . .  ~wm 

0 0 
to be operators on ~ (U,  X) and set -Oz =~zl dS1 + ... +~z~ dSneAl[dS' E(~(U, X))] and 

2 w - ~ - ~  w , +  ... §  d~me A![d~, ~(~(U,  X))] (cf. w 

Let  a 1 ... . .  an be operator valued functions in ~(U,  L(X)) such tha t  a~(z, w)aj(z, w)= 

aj(z, w)ai(z, w) for each i, )" and each (z, w)eU.  We choose a tuple of indeterminates 

.(~=(s I ..... sn) and set ~=alsl  +... +ans n and ~(z, w)=al(z, w)sl +... +an(z, w)sn. Each ai 

is considered an operator on ~ (U,  X), where aJ(z, w)=ai(z, w)[(z, w). 

For our ground ring K we choose an arbi trary commutat ive subring of 9~(U, L(X)) 

whose elements commute with al, ..., an. We may  then consider ~ (U,  X) to be a K-module 

and a 1 ..... an, ~/051 ..... ~/05n, ~/~wl .. . .  ,0/05~,~ to be module endomorphisms. 

De/inition 3.2. Let  ~ :  Cn+m->(~ ~ be the projection of (~n+m on its last m coordinates 

and set V =Zw U. 

A closed subset K ~  U will be called z-compact if K N {C n • is compact in U for 

each compact set L ~  V. 

The submodule of ~ (U,  X) consisting of functions with compact support  (z-compact 

support) will be called !~0(U , X) ( ~ ( U ,  X)). 

3.3 LEPTA.  The space ~(U,  X)/!~o(U, X) is the inductive limit o/the system {~(V, X): 

V= U, U \  V compact}, where { V: V ~  U, U \  V compact} is directed downward by inclusion 
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and [or Via V~ we map ~(V, ,  X) into ~(V1, X) by restriction. The same statement holds ]or 

~(U, X) /~I(U, X) with compact replaced by z.compact. 

Proo]. The restriction map v: ~(U,  X)-+~( ~ X) obviously induces a homomorphism 

�9 ̂ of ~(U,  Z)  into li_.m {~(V, X); V a  U, U \ V  compact} whose kernel is ~0(V, X). Hence, 

we need only show that  v^ is surjeetive. 

If V= U, U \V  is compact, and ]E ~(V,  X) then there exist compact sets K 1 and K ,  

with U \ V a i n t  Kx=KI=in tK2=K~aU.  We may choose q~fiC~tU) such that  ~0=0 

on K 1 and T = 1 on U\K, .  If g =~0] on V and g = 0  on U\V,  then g~ ~(U,  X) and g agrees 

with ] on U\K~. Hence, v^g is the element of lim {~(V, X)} determined by ]. 

3.4 LEMMA. I] the set S(~), o] points (z, w)~ U ]or which or(z, w)=al(z, w)sx+... + 

a~(z, w)s n is singular on X, is z-compact in U, then (~(U, X), ~ ( U ,  X), ~, 0~)0~) is a 

Cauchy-Weil system (c]. De]. 1.8). 

Proo]. Clearly each of 

0 0 0 

al' " ' "  ' an'  02--1' "" ' 02  n'  0 ~  x ' ~ 

leaves ~1 (U, X) invariant. Furthermore, as we mentioned earlier, any pair of these oper- 

ators commute. Hence, it suffices to prove that  ~ is non-singular on ~ / ~ r  

By hypothesis, S(~) is z-compact. If V = U~S(oO then for (z, w) E V the complex 

-~(X, ~(z, w)) is exact (of. Def. 1.2). I t  follows from Theorem 2.16 that  the complex 

F(~(V', x), ~) = ~ ( v ' ,  F(X, ~)) 

is exact for any open set V' c V. Since inductive limits preserve exactness it follows that  

F ( ~ / ~  a, ~t) is exact, i.e., ~ is non-singular on ~ / ~ i .  

We now have that  if S(a} is z-compact in U, then the homomorphism 

R~: H~(~(g, X), ~,| H "+~ (~l(V, X), ~| 

of Def. 1.9 is defined. To complete our Cauehy-Weil integral, we will use the Lebesgue 

integral in {3 n to define a homomorphism of H n+v (~1 (U, X), a, | into H~(~(V, X), ~w). 

0 ~ 0 _ 0 
If ezn+ l + . . .  + =0o 

then the map ] + ] A dZl A.. .  h dz,, (16 .F(!~ 1 (U, X), Oz (~ Ow) defines a cochain map of degree 

n from F ( ~  1 (U, X), an | 0~) into F(~ x (U, X), Oz | Oz | Ow). 
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We define a cochain m a p / - ~  ~ / o f  F(~I(U, X), dz| into F(~I(V, X), ~)  in the 

following way: we write / = gd51 A d z  1 A . . .  A dzn A d z  n + h, where h contains only terms of 

degree less than  2n in dz 1 . . . . .  dzn, d51 . . . . .  dSn; then 

f /=fg(z ,w)d~iAdz~/\ . . . / \d~/ \dz ,~ 

is (2i) '~ times the ordinary Lebesgue integral of g, where for each wE V, z-+g(z, w) is con- 

sidered a function with compact support  in (~ with values in A[d~, X]. 

Note tha t  

This is due to the fact that  ~dz h = 0  since h(z, w) has compact support in z for each w 

(Stokes Theorem). Hence ]-~ ~ / i s  a cochain map of degree - 2 n .  

I f  we combine the maps /~ /AdZlA ... Adzn and g-->.~9 we obtain a eoehain map  

/~5 /AdZlA. . .  Adz n of F ( ~ I ( U  , X), O~| X), ~,) of degree - n .  We shall 

occasionally denote this map by  ~. 

I t  follows tha t  ~ defines a homomorphism ~*: Hn+v(~I(U , X), ~)~Hv(~(V, X), ~w) 

for each ~. We shall also denote this homomorphism by / ~ ~ ] Adz x A... A dzn. 

De/inition 3.5. I f  U c C  n+m is a domain, X a Banach space, a 1 ..... anE~(U,L(X)) a 

commuting n-tuple such tha t  c~(z, w)=al(z, w)81 ~-... ~-an(z , W)8 n is non-singular except on 

a z-compact subset of U, then for each /EHP(~(U,  X), ~z@~) the Cauchy-Weil integral 

of ] with respect to ~ is the element 

~*Ra]= f (Rr A dzl A ... A dzn 

of Hv(~(V, X), ~w), where V =~w U. 

Note tha t  if p = 0  then H~ X), az| X). H~ X), ~w)=~(V, X), 

and so the Cauchy-~Weil integral maps 9~(U, X) into ~( V, X). I t  is the case p = 0 tha t  really 

interests us; however, for technical reasons we must  consider the integral in each degree 

until we complete some additional machinery. 

Also note that  if m =0, then we consider C m to be the singleton point {0} and set 

V={0}, ~(V, X ) = X ,  FP(~(V, X), ~w)=HV(~(V, X), ~ , )=X for p=O and 0 otherwise. 
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In this case, S R j  Adz  1A ... Adz  n is zero if ] EH~(~(U, X), ~) with p ~:0 and is an element 

of X if p=O. 

The key to eomputing the Cauchy-Weil integral for specific a 1 .... , a n is an analogue 

of Fubini's Theorem which we present below, 

TH]~OR]~M 3.6. Let U be a domain in @n+m and V = ~,o U c @ m. Let a 1 ... . .  anEW(U, L( X ) ) 

and b 1 . . . .  , b,n E 9~( V, L (X)  ) be commuting tuples with a i (z, w) bj (w) = bj (w) a t (z, w) /or  i = 1 ... . .  n, 

= 1 . . . .  , m and (z, w) e U. Let o~ = al sl +...  + an s~ and fl = b 1 s; +...  +bm s~ and suppose S(oO 

is z-compact in U and S(fl) is compact in V. Then /or  each ] eg~(U, X) ,  

f R o , / h  dzl h . . . / \  dz,~ e ~ ( V ,  X )  = (~(  V, X) ,  ~w) I-10 

and f f A dz, A ... Adz ,}  A dwl h ...  h dw ,  

= fR  B/A dz ,  A . . .  A A dw ,  A . . .  A dw e X .  

Proo]. Recall that ~I(U, X) is the space of functions in ~(U, X) with z-compact sup- 

port, and ~0(U, X) is the space of functions in !~(U, X) with compact support. The hypo- 

thesis on ~ and fl guarantee that (~(U, X), ~I(U, X), a, ~ |  and (~I(U, X), ~o(U, X), 

fl, O~)~w) are both Cauchy-Weil systems. By Proposition 1.13, (~(U, X), ~)o(U, X), 

a| ~zO~u) is also a Cauchy-Wefl system and RZ$ 'p=RBoR~.  Hence, we may write 

f c  R~,~,e] h dz~ h . . .  Adz ,  A dwl h . . .  h dw,, 
rt T rn 

To complete the proof, we need only show that the diagram 

R# 
H ~ ( ~ ( U , X ) , ~ )  , H~+m(~o(U,X) ,~ )  

Rp 
H~ , H " ( ~ o ( V , X ) , b , o  ) 

is commutative, where e~: F(~I(U, X), ~)-~(~0(V, X), ~ )  is defined by p~(/)=Sc,/A 

dz~ h ...  h dz~ and ~* is the corresponding map of eohomology. However, this follows 

readily, since the fact that b, . . . .  , b m are independent of z forces the following diagram 

to be commutative: 
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8 I 

2~(~3, (v ,x) ,  ~| ~ ~(~, (u, x), fl |  

8 ~ 

i P(~dY, x),/~|174 5 r(~0(u,x), ~ |  

F(~o(V,X),fl| 5 F(~8o(V,X),~+) 

(el. Definition 1.9). This completes the proof. 

I~ U and ~=als~+. . .+a,s  . satisfy the conditions of Definition 3.5, then for each 

wE g~ze w U a n d / E ~ ( U ,  X) there are two ways of obtaining an element of X. One could 

compute g = S R~ / A dzl A... A dzn E 9A(V, X) and then evaluate at w, or one could set 

a ~ (z) = a(z, w) and ]~ (z) =](z, w) and compute ~c, R ~ ]  ~ Adz 1 A ... A dz~ e X.  We shall show 

that  these yield the same result. This makes Theorem 3.6 much more useful than it would 

be otherwise. 

LEM~A 3.7. I /  U, X,  and o~ satis/y the conditions o/ Definition 3.5, wE V=gwU, 

and a~(z)=~(z, w) then ]or each/E~(U,  X) we have 

( f c  Ra/ A dzl A ... A dzn) (w) = f c  R~,w/W A dzl A ... A dz,, 

where/~(z) =/(z, w). 

Proof. Let  Uw = {z E Cn: (z, w) E U} and consider the special transformation u: F (~(U,  X), 

Oz| X),O~) determined by (u~ for ] E ~ ( U , X )  and 

u(dSO~d~, u(d~/)=O for i~-l ,  ...,n, j = l ,  . . . ,m (cf. Def. 1.6). Clearly u~ u~ 

f o r / E ~ ( U ,  X). Hence, it  follows from Proposition 1.10 that  the diagram 

is commutative. 

R~ 
~ o ( ~ ( u , x ) , ~ z ~ )  , H"(~(U,X),~z| 

l u* ~ u* 

Rew 

Also, u* clearly commutes with the map g-~Sg Adz 1 A ... A dzn. Hence, 

which is precisely the conclusion of the Lemma. 

The above lemma makes the following notation unambiguous: for / E~(U, X) and w E V, 

we set 
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f(R~c~.~)f(z,w))AdzlA..,  h d z ~ = ( f R a f A d z l A  ... Adz~)(w) 

f R ~  /~ /~ dz~ A ... A dzn. 

This is analogous to writing ~](x, y)dx for the integral of a function of two variables with 

respect to one of these variables. 

With Theorem 3.5 and Lemma 3.6 out of the way, we may  restrict at tention to the 

case where m = p  =0,  which is our real interest. Tha t  is, U will be a domain in C ~, (a 1 ..... a,~) 

a commuting n-tuple in ~(U, L(X)) such tha t  g=alSl~-.. .  +a~sn is non-singular except 

on a compact subset of U, and we c o n s i d e r / - ~ R a ]  Adz 1A ... A dz~ a map from ~t(U, X) 

to X. This will be the setting for the next  four Theorems. 

PROPOSITIO~ 3,7. I] A is the algebra of all operators on X which commute with a~(z) 

/or each i and each z e U, then f-~ ~ R j  Adz 1 h ... h dz~ is an A-module homomorphism /rein 

9~(U, X) to X.  Furthermore, if f ~ a 1 gl +... + a~ g~ for some gl . . . .  , g~ E 9~(U, X), then ~ R~ f A 

dZlA ... A dzn =0. 

Proof. By construction, R~ is a K-module homomorphism for any commutat ive ring 

K c 9~(U, X) consisting of elements which commute with each av In  particular, K could be 

chosen to be any commutat ive subring of A (where elements of ,4 are considered to be 

constant functions on U). Hence, aEA implies tha t  

I f / = a ~ g x +  ... +ang,, then R~,f=O by Proposition 1.12. 

PROPOSITIO~ 3.8. Let X u--% Y be a bounded linear map from the Banach space X to 

the Banach space Y and al ..... an e ~I( U, L(X)), bl ..... bn e ?i ( U, L(Y)) be commuting n-tuples 

with u(at(z)x) =b~(z)u(x) ]or all i, z. I] ~ a l s l  + ... +anSn, ~=blSi + ... +bnsn, and S(o 0 and 

S(fl) are both compact in U, then 

u fRjAdz~A...^dz~= fRputAdZlA...Adz~ 
/or every ]eg~(U, X) 

Proof. This follows directly from Proposition 1.10. 

As an application of the above theorem, we prove the continuity of the map 

f-~ ~R~ ] Adz 1 A... A dz~. Suppose A is a compact  Hausdorff  space and a 1 .... an e C(U • A, L(X) ) 
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is a commuting tuple of operator valued functions such that  z->a~(z, 2) is analytic on 

U for each 2 E A. If we set Y = C(A, X) then each a~ determines an element a~ E 9~( U, L(Y)), 

where (a'~(z)/)(2)=a i(z, 2)/(2) for ]E C(A, X ) =  Y. If a =a181 + . . .  + a n 8  n is non-singular 

except on a compact subset of U • A, then it follows from Lemma 2.3 that  ~' =a~s~ + ... + 

a'~sn is non-singular on Y, except for z in a compact subset of U. 

I f / E  C(U • A, X) is analytic in z E U for each 2 E A, t h e n / ' E  9~(U, Y), where/ ' (z)  = 

/(z , .  ). Hence, the Cauchy-Weil integral ~ Ra,/ '  Adz  1 A.. .  Adz  n exists and is an element of 

Y = C(A, X). 

Now fix 2 E A and consider the Cauchy-Weil integral ~ R~(z. ~/ (z ,  ,~)/~ dz 1 A...  fl dzn = 

R:( . . a ) / ( ' ,  2)dzl h ... A dzn E X .  Since the evaluation map ux: C(A, X ) ~ X  and the tuples 

~' and ~(., 2) satisfy the conditions of Theorem 3.8 we have that  

for each 2 EA. Hence, we have the following corollary to Theorem 3.8: 

COROLLARY 3.9. With A, ~, and / as above we have 

/" 
2 ~  JR~(~,a~ /(z, 2) A dzl A ... A d z .  

is a continuous/unction o / 2  E A.  

If  {/4} is a sequence in ~I(U, X) which converges uniformly on compact sets to 

/E ~(U, X), then we let A be the one point eompactification of the positive integers and 

set/(z, i) =/i(z) for i=1 ,  2 .. . .  and/(z,  ~ ) = / ( z ) .  We set ~(z, i )=a(z )  for i = l ,  2, ...,oo. The 

above corollary then implies that  

f R~/~ A dzl A ... A dzn-+ f A dzl A . .  A dzn. 

Hence, we have 

C o R 0 L L X R Y 3. lO. The map / ~ S Ra / A dzx A.. .  Adz  n is a continuous m a p / r o m  ~(  U, X)  

to X ,  where ~(  U, X )  is given the topology o/ uni/orm convergence on compact sets. 

The next  theorem shows tha t  the Cauchy-Weil integral is, in a sense, independent of U. 

Strictly speaking, it is the map R~ which depends on U and not the map e *=  

(/-+,[ ] Adz  a A ... A dzn). However, we shall still use the symbol .[uR~,/ A dz 1 A ... A dzn to in- 

dicate the Cauchy-Weil integral of /E 2[(U, X) computed relative to the Cauchy-Weil 

system (~(U, X), ~0(U, X), ~, 0). 
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PROPOSITIO~ 3.11. Let U 1 and U~ be domains in ~ and a I . . . .  , a n ~ [ ( U l  iJ U~,X) a 

commuting tuple. I / a = a l s ~ + . . .  +a ,s~  and S(a) ~ U~=S(a)  N U~ is compact, then 

/or every [~ (U1U U2, X ). 

Proo/. Without loss of generality we may assume that  U ~  U~ and S(a) n U2 is a com- 

pact subset of U r This ensures tha t  if we consider ~o(U1, X) to be a subspace of !~0(U 2, X), 

then (~(U2, X), ~o(U1, X), a, ~) is a Cauchy-Weil system. Likewise, (~(U2, X), ~)o(U~,X), 

a, ~) and (~)(U1, X) ,  ~)o( U1, X) ,  ~, ~) are Cauchy-Weil systems. 

If u: ~(U2,  X ) ~ ( U 1 ,  X)  is restriction and v: ~)o(U1, X ) ~ o ( U  ~, X )  is inclusion, then 

the following diagram is commutative: 

~(v~,x) ~ ~o(U2,X) 

seIid iv 

~(U~, X) ~ ~o(U1, X) 

I u I id 

~(u. x) ~ ~0(v. x). 

T h e  proposition now follows from a double application of Proposition 1.10. 

The following proposition is an immediate consequence of Proposition 1.11: 

PROPOSIT~O~ 3.12. Let a 1 . . . .  , a~ and b 1 . . . .  , bn be commuting tuples o/ elements o/ 

~ ( U , L ( X ) )  which are related by bi=~u~jaj, where (u~j) is an n •  o/ commuting 

elements o / ~ ( U ,  L(X))  which commute with each aj and each b~. I / ~ = a l s  1 + ... + a~s n and 

fl=bl Sl ~-... zcbnsa are both non-singular o/[ some compact subset o~ U, then 

f R~(det  (ulj) /) /\ dzi /\ . . .  /\ dz ,  = f Rp /  A dzi A ... A dzn, 

/or every [eg~(U, X) .  

If U and V are connected domains in (]~ and ~: U-~ V is a proper analytic map, then 

except on a set of measure zero ~ is a ]c-sheeted covering map for some integer k (el. [9], 

III .  B. 21). 

THEOREM 3.13. Let U and V be connected domains in C ~, where we use coordinate systems 

z 1 . . . .  , z ,  and w I . . . . .  w n in U and V respectively. Let qD: U ~  V be a proper analytic map which 



28 ~ s ~ e ~  ~. zxx '~os  

is a k-sheeted analytic cover (c[. [9], I I I .  B.). I / a l ,  ..., a, Eg~(v, X)  is a commuting tuple 

and o~=alsl +...+ans,, is non-singular except on a compact subset K ~  V, then o~oq~= 

aa oq~s 1 + ... + a~oq~s n is non-singular except on the compact subset q)-a( K ) o /U,  and 

kfR~/AdwiA...Adw,=fdet(~')(R~ojO~)Adz~A...Adz,, 

where q/ is the matrix ~Ozr 

Proo/. Consider the special transformation u:  F(~(V,  X), 0w)-+F(~(U, X), 0z) de- 

fined by Uo([)=]oqj for [ e ~ ( V ,  X)  and 

u(d~,) = Z--~j d~j = Z \ az/ 

I t  follows from the chain rule and Proposition 1.7 that  u is a eoehain map. Hence, by 

Proposition 1.10 we have 

B=o,(/og) =g~o+(U/ )=u(R~/ )=(de t  qo')(Rj)oq~. 

Hence, (detC)R,o+(/o~)= ]det~']2(R~])o~. However, ]det a'l  2 is the Jaeobian of the 

transformation ~0 as a map from U ~  R ~n to V~ R 9~. Hence, it follows from the change of 

variables formula for the Lebesgue integral in R 2~ that  

f (det q/) R~o.(/o~o) A dz~ A ... A dz. = f 'det q /"  (R./)o~o A dzt A ... A dz. 

k f R z  A ... dw.. 

We conclude this section by showing that  our version of the Cauehy-Weil integral 

behaves as it should in the usual special cases. 

L ~ M M A 3.14. Let U be a domain in C, a E 2(U, L(X))  an operator valued/unction such 

that a-a(z) exists except on a compact subset K ~  U, and F a Jordan curve in U with K con- 

tained in the union o/the bounded complementary components o /F .  Then i / ~  =as 1 we have: 

f R o [  A J v a  -1 (z) [(z) dz dz 

]or every [eg~(U, X). 

Proo/. We compute R~: H~ 0)-~HI(~(U, X), 0). We let [Eg~(U, X)  and refer 

to Definition 1.9. We have s/=/sleAl[aUd~,  ~3(U, X)]. 
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Let  V be a domain with compact closure such that  K =  V= V ~  int F. If we multiply 

a-l(z)/(z) by an appropriate function in C~(U), we obtain gE~(U,  X) such that  g(z)= 

a-l(z)/(z) on U \ V .  I t  follows that  ~g=(ag/O~)dg has compact support in U. We set h =  

# 1  - -  ~ A g - -  ~g = ( / - -  at) s 1 - -  (~gl~5) dS. 

Since ag = / o n  U \V we have that  h has compact support and h E A 1 [a U dg, ~0( U, X)]. 

Note that  ihEAl[(~Ud~, ~ ( U ,  X)] is equal to s / - ( ~ |  I t  follows that  s*[/]=i*[h], 

where [ ] represents cohomology class. 

Note that  ~h =:7~(/81 - - a ~ 8 1  - -  (~g/~5)d~) = - (~g/a~)d~ = -~g .  Hence, R a / =  - ~* i*-l  s*] = 

[~9] and 

This completes the proof. 

If we combine the above Lemma with Theorem 3.5 and use induction, we obtain: 

COROLLARY 3.15. Let U =  U 1 • ... x U,~ be a polydomain in C '~ and let a~Eg~(U~,L(X)) 

/or i = 1 . . . .  , n. I / a l ,  ..., a~ commute and a:~ 1 exists o / / a  compact set K i o/ U i /or each i, then 

f R~/AdziA...Adz.=fr .~ al l(Zl)  a~l(z~)/(z)dz ,  dz2.. .dzn, t . . . .  ~ 

J F 

where/or each i, I~t is a Jordan curve in U~ with K t ~ i n t  F~. 

Finally, we have: 

THEOREM 3.16. Let U be a domain in fJ~, w E U ,  and set z - w = ( z l - w l ) S l  + . . .  + 

(z, - w~) s~. T h e n / o r  any / E ~(U,  X), 

1 
fv (R~_~/ (z ) )  A dzx A ... A dz~. / (w) = (2 ~i)" 

Proo/. By Theorem 3.11, we may assume U is a polydisc containing w. The theorem 

then follows from Corollary 3.15 and the ordinary Cauchy integral formula. 

Note that,  now that  we have Theorem 3.16, we can use Theorem 3.13 to derive a 

formula for the number of sheets k in an analytic cover ~: U-~ V. In fact, if ~ = ( ~  ..... ~n), 

w~ ~ ( w ) = ( w ~ - w ~  § 1 7 6  and V ' = ~ V ' ]  \ ~z~ / ' 
then 

(2~i) ~ det (~') (R~o~ 1) AdZlA ... Adz , - -  (2gi)n R a l  AdWlA ... Adwn=k. 
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4. The functional calculus 

We now develop an analytic functional calculus for a commuting n-tuple of operators 

on a Banach space. The form of the Cauchy-Weil integral tha t  we have developed makes 

this task almost as easy for n-operators as it is for a single operator. 

Notation 4.1. In  this section, X will be a Banach space and (al, ..., a~) will be a com- 

muting tuple of operators on X. We set a=al81 -~ . . .  +ansnEAl[a, L(X)]. 

In  [15] we defined Sp (a, X) to be the set of all z E C n such that  z - a  = (z 1 - a l ) s  1 + ... + 

(z~-  an)s n is singular on X. The set Sp (a, X) is always a compact non-empty subset of the 

closed polydisc n~ of multiradius v = (Vl ..... v~), where v, = l im I]a~ll 1In (el. [15], w 3). 

De/inition 4.2. I f  / EO~(U) for some open set U ~ Sp (a, X), then for each x E X we define 

/(a) x = (2zd)~ (Rz_=/ ( z )  x)  A d z  I A . . .  A dzn.  

For the convenience of the reader, we recall briefly the steps involved in computing 

the above expression. Since z - a  is non-singular except on Sp (a, X ) =  U, it follows that  

(~(U, X), ~o(U, X), z -a ,~z )  is a Cauchy-Weil system (cf. Def. 1.8 and Lemma 3.4). 

Here, we set m = 0  in Lemma 3.4 so that  the variables w 1 ..... wm do not appear and we have 

~0(U, X) = ~ I ( U ,  X). I t  follows tha t  the map R~_~: H'(~(U,  X), ~)~H~+'(~o(U, X), ~)  

of Definition 1.9 is defined. With p =0  this yields a map Rz_a: 9~(U, X)---> H~(~o( U, X), ~z). 

Hence, if /E 9.I(U) then (z--->](z)x)E 9~( U, X) and R~_j(z)x has a representative g which is a 

differential form of degree n in d51 ..... dSn with coefficients in ~0(U, X). Thus, g A dz 1 A 

... A dz~ is a differential form of degree 2n with coefficients in ~0(U, X). We integrate this 

over U to obtain 

(27~i)n/( a) x = j i  Rz_=/(z) x) Adz 1 A ... A dz~ e X. 

Note tha t  if a = ( a )  (aEL(X)) is a singleton, then Sp (a, X)={zEC:  z - a  is not in- 

vertible} since the complex _F(X, z - a )  is simply the sequence 0 ~ X  z-5 X-->0. Further  

more, by  Lemma 3.14 we have 

f Rz j ( z )  x A dz = ~r (z -- a)-l /(z) xdz 

for a Jordan curve F =  U which encloses Sp (~, X). Hence, in the case of a single operator, 

the expression/(~)x of Definition 4.2 agrees with tha t  determined by the classical opera- 

tional calculus. 

THEOREM 4.3. I /  U is an open set containing Sp(a ,X) ,  then ]--->](a) is a continuous 

homomorphism o/the algebra 9~(U) into the Banach algebra (~)" o/ all operators on X which 
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commute with all operators commuting with each a ~. Furthermore, 1 ( a ) = i d  and z ,( a ) = a ~ ]or 

i = 1 ,  ..., n. 

Proof. I t  follows f rom Propos i t ion  3.7 a n d  Corol lary  3.10 t h a t  ([, x)~f(zt)x is a con- 

t inuous  l inear  m a p  of ~I(U) • X in to  X and  t h a t / ( ~ )  commutes  wi th  each opera to r  t h a t  

commutes  wi th  each ai. Hence,  ]~/(~) is a cont inuous  m a p  into  (zr wi th  t he  no rm topology .  

To prove  t h a t  1 (zr and  z~(g)=a~ for each i, no te  t h a t  for any  po lynomia l  P a n d  

xEX,  the  fun t ion  z~P(z )x  is in ~(C n, X). Since, z~-aiE~I(C,  X) for each i, i t  follows f rom 

Propos i t ion  3.11 t h a t  we m a y  replace  U wi th  C n wi thou t  loss of genera l i ty .  I t  t hen  follows 

f rom Corol lary 3.15 t h a t  

[. 
P(~) x = | (R~_~P(z) x) A dzi A. . .  A dzn 

(27d) n J c'~ 

1 n . X -- (2~i) f Fl"" f p,~ (zi - a l ) - l  ' ' '  (zn -an)- l  P(z) xdzl A '' ' A dzn = P(ai . . . .  an) 

for  F i ,  . - . ,  Fn suff ic ient ly  large circles. 

To prove  t h a t / ~ ] ( o r  is mul t ip l i ca t ive ,  note  t h a t  

' {L } / (or) g(a)x = (2:~i)2n R~_~,/(z) (Rw_~,g(w) x) A dw~ A. . .  h dw,~ A dz~ h . . .  A dz~ 

1 L (2:xi) 2n • (R(w_:)r g(w) x} A dwl A. . .  h dw~ A dzi A. . .  A dzn, 

b y  Theorem 3.6. I f  we t rans form the  tup le  ( w i - a  i . . . . .  wn-an, z i - a  I . . . . .  zn-a~) b y  the  

m a t r i x  (uu) , where u u = 1 if i = j, u u = - 1  if j = n + i, and  u u = 0 otherwise,  t hen  we ob ta in  

the  tup le  (w 1 - z  1 . . . . .  wn - zn ,  zi - a l  . . . . .  z , - a m ) .  Also, since de t  (uu) = 1 i t  follows f rom Propo-  

si t ion 3.12 t h a t  

(2~i)  2~ xv . . . . . .  

_ (2~i )  2~1 f ~ x ~  {R(~-~)r "" Adwn/kdZlA "'" Adzn 

- (2xei)2n R(z-a)/(z) (R(w-z)g(w)x) A d w i A  ...  AdWn Adz lA .. .  Adzn 

i f v  -- (2~i)~ (R~_:)f(z)g(z)x)AdziA.. ,Adz~=(/g)(~z) 'x.  

Hence,  ] ( ~ ) g ( ~ )  = ( /g)(:r  and  the  proof  is complete.  
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If 9~(Sp (a, X)) denotes the algebra of functions defined and analytic in some neighbor- 

hood of Sp (a, X) - t h a t  is, the inductive limit of the spaces ~(U) over neighborhoods U 

descending on Sp(a,  X ) - t h e n  since Proposition 3.11 implies that  the map/-~/(a)  com- 

mutes with restriction, we have the following corollary to Theorem 4.3: 

C o R 0 L L X a Y 4.4. The m a p  I-~ 1(~) ol Theorem 4.3 de/ines a homomorphism o/9~( Sp(a, X)) 

into (a)". 

The following invariance law for the functional calculus follows directly from Proposi- 

tion 3.8: 

P~OPOS~TIO~ 4.5. Let  X and Y be Banach  spaces and u: X ~ Y a bounded linear map.  

Let  a 1 . . . . .  a n E L(  X )  and bl, ... , bn E L ( Y )  be commut ing  tuples related by ua  ~ = b ~ u /or i = 1 ..... n. 

I / t  is analytic in  a neighborhood o / S p  (a, X)U Sp (fl, Y) ,  then u / (~ )= / ( f l ) u .  

Note that  at this point we have all of the conclusions of the usual Shilov-Arens- 

Calderon Theorem. In fact, if A is a commutative Banaeh algebra with identity and 

a 1 . . . . .  a n E A ,  then we may consider a 1 ..... an to be operators on A via the regular repre- 

sentation. I t  turns out that  Sp (a,A) is then just the usual spectrum of an n-tuple in a 

Banaeh algebra (of. [15]). In this case, the functional calculus of Theorem 4.3 reduces to 

the usual functional calculus in a commutative Banach algebra. If h is a complex homo- 

morphism of A, then Proposition 4.5--with u = h ,  Y=C, and b~=h(aO-- impl i e s  tha t  

h(/(o:)) =l(h(al) ,  ..., h(an)). 

Our next  Proposition gives a powerful relationship between the functional calculi 

for two different tuples of operators. 

PROPOS~TIO~ 4.6. Let  a I . . . . .  an, bl  . . . . .  bn be a commut ing  tuple o/operators  on X and 

set ~ = (a 1 . . . .  , an), fl = (bl . . . .  , bn), and ~ - f l  = (a 1 - b  1 . . . . .  a n -bn) .  I1 / is analyt ic  in  a neighbor- 

hood o / S p  (~, X) U Sp (fl, X )  then l( o~) - l(fl) acts as the zero operator on HP( X ,  a - f l )  /or each p.  

Proo/.  Let U ~ Sp (~, X) U Sp (fl, X). If / E 9~(U) and k E FP(X,  ~ -fl) ,  then 

(recall F~(X,  ~ - f l ) i s  a direct sum of ( ; ) e o p i e s o f X ) . N o w ,  b y C o r o l l a r y l . 1 5 , ( R z _  a -  

Rz_p) / ( z )k  is cohomologous to zero as an element of FV(Hn(~o(U,  X ) ,  8z), ~ - f l ) .  Also, the 

integral commutes with the coboundary operator determined by ~ -f t .  Hence, (](a) - / (f l ))  k 
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is cohomologous to zero in F'(X,  a- f l ) .  I t  follows tha t / (~ )  -[(f l )  is the zero operator  on 

H~(X, ~- f l ) .  

COROLLARY 4.7. I[ ~=(a 1 ..... an) is a commuting tuple o/ operators on X,  U a domain 

containing Sp ( ~, X), and / ~ ~( U), then/or each z ~ U the operator/(a) acts as the scalar opera- 

tor ](z) on H~(X, z - ~) /or each p. 

This serves as an effective tool in pinpointing the act ion of the opera tor / (~)  on X - - a s  

we shall see in the next  theorem. 

T h E  OR~EM 4.8. Let ~ = (a 1 .... , a~) be a commuting tuple in L(X), U a domain containing 

Sp(a ,X) ,  and /1  . . . .  , / m e ~ t ( U ) .  Let / :  U - > C  m be de/ined by/(z) =(/~(z) .. . . .  /m(Z)) and let/(:r 

be the tuple o/operators (/1( ~), ...,/m(~)). Then Sp (/(~), X ) = / ( S p  (g, X)). 

Proo/. I t  follows from Theorem 3.2 of [15] t ha t  the spectrum of / (~)  = (/1(~) .. . . .  /re(a)) 

is the projection on the last m-coordinates of the spectrum of (a I . . . . .  an, ]l(a) .. . . .  /re(a)) = 

aO](~) .  Hence, it suffices to prove tha t  the spectrum of a |  is {(z,w)E(3n+m: 

zE Sp(~ ,X) ,  w=/(z)}. To prove this it is sufficient to prove tha t  if zE Sp(~ ,X)  then  

( z -  cr162 is non-singular if and only if/(z) ~=0. We prove this by  induct ion on m. 

We assume t h a t  m ~> 0 is an integer such tha t  the following two s ta tements  are t rue of 

any  m- tup le /1  .. . . .  /mE~(U)  and any  zE U: 

(1) if ge2(U) then g(a) acts as the scalar operator  g(z) on H(X, ( z - a )@/ (~ ) ) ;  and 

(2) (z-a) |  is non-singular on X if and only i f / (z )  =~0. 

Let  [1, ..., [m+l be an ( m + l ) - t u p l e  in 9~(U). B y  L e m m a  1.3 of [15], there is an exact  

sequence 

. . . .  HP(X, (z-~)@/(~))--->H'(X, (z-a)@/'(a))--->H~+l(X, (z-a)Q](~))  

[m+l(~!HP+l(X," (z --  ~ ) ( ~ / ( ~ ) ) - >  ... 

w h e r e / '  = (/1, ...,/re+l) and / = (/1 .... ,/m)- I f  g eg~(U) then g(a) acts as g(z) on H'(X,  (z - ~) | 

[(a)) for each p. I t  follows from the above sequence tha t  g(a) acts as g(z) on H~(X, ( z -  ~)| 

]'(:r as well. Also, since/m+l(~) acts as/m+l(z) on H~(X, (z-:r174 for each p it follows 

tha t  H~(X, (z-~) |  if /,~+l(z)~0 and HP(X, ( z - a ) |  HP(X, (z-a)| 

if/m+l(Z) =0 .  Hence, since s ta tement  (2) above holds fo r /1  . . . .  , ]~, it continues to  hold for 

/1 . . . . .  /~+1. 

Since (1) and (2) clearly hold if m =0 ,  they  hold for all m by  induction. This completes 

the proof. 

3 - 7 0 2 9 0 2  Acta mathematica. 125. I m p r i m ~  le 18 S e p t e m b r e  1970 .  
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We close this section with an extension of the Shilov idempotent  theorem (ef. [14])i 

That  it is a true extension stems from two facts. First, our spectrum Sp (~, X) is in general 

smaller--hence more likely to be disconnected-- than the spectrum of ~ = (al, ...,an) as 

computed in terms of some enveloping commutat ive Banach algebra of operators. Second, 

Sp (~, X) is likely to be computable in situations where it  is virtually impossible to tell 

when an operator equation (z 1-a~)b  1 +... §  can or cannot be solved. 

THEOREM 4.9. I /  a t=(a  I . . . . .  a,) is a commuting tuple o/ operators on X ,  and i/  

Sp (~, X )  = K  1 U K s where K 1 and K1 are disjoint compact sets, then there are closed subspaces 

X x and X s o / X  such that: 

(1) X = X 1 0 X s ;  

(2) X 1 and X s are invariant under any operator which commutes with each ai; and 

(3) Sp ( ~ , X 1 ) = K  s and S p ( ~ , X s ) = K s .  

Proo/. Let U 1 and U s be disjoint open sets in C" containing K1 and K 2 respectively. 

I f  gv, is the characteristic function of UI, then Zv, E ~[(U 1 U Us). Hence, there exists an 

idempotent pE(~)" such tha t  Xv,(~)=p, I f  X l = I m  p and X ~ = K e r p ,  then (1) and (2) 

above clearly hold for X1, X s. Condition (3) follows from Theorem 4.8 applied to the tuples 

(zlgv . . . . . .  zngv,) and (zlgv, , ..., zngv,). 

COROLLARY 4.10. I /  Z is an isolated point  o / S p ( a , X ) ,  then X = X I |  where each 

z~-a~ is quasi.nilpotent on X 1 and z ~Sp (~, X2). 

5. Spectral hull  

The functional calculus allows us to derive relationships between our notion of spectrum 

and notions based on Banach algebra theory. 

Notation 5.1. Let  X be a Banach space and A a Banach algebra of operators on X. 

I f  ~=(a l ,  ..., an) is a tuple of operators in the center of A and wEC n, then we shall say 

w E SpA (a) if the equation 

(wl - al) bl +.. .  + (w, - an) bn = id (5.1) 

fails to have a solution for b 1 .. . . .  bnEA. We pointed out in [15] tha t  SpA(a)=Sp(~ ,A) ,  

if al . . . .  , an are considered operators on A via multiplication. 

I f  A is an algebra of operators, then A'  will denote the algebra of all operators tha t  

commute with each element of A. I f  (a) denotes the Banach algebra generated by  al . . . .  , a n 

in L(X) ,  then for any Banach algebra A with al .. . .  , anE center (A) we have ( a ) c A c  (~)" 

and Sp (~, X) c Sp(~.(a) c SpA (a) c Sp(~ (~) (cf. [15], w 4). 
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Let  ~(a) denote the norm closure of the algebra of operators of the fo rm/ (~ )  f o r /  

analytic in a neighborhood of Sp (~, X). Note tha t  (a), (a) ~, and ~{(a) are commutat ive 

algebras and ( a ) c ~ ( ~ ) c  ( ~ ) ' c  (~)'. Hence, we have 

Sp (~, X) c Sp(~), (a) = Sp~),, (~) c S p ~ )  (~) c S p ~  (a). (5.2) 

There are examples where each of the containments in (5.2) are proper. Examples 

where Spa(a)(~)~=Sp(a)(~) abound; one such example is the single operator /-~z/ on 

C(F), where F is the unit circle. In  w 4 of [15] we gave an example where Sp (a, X) +Sp(a),(~). 

We shalI reproduce this example here and show how it can be modified to obtain examples 

in the other two cases. 

Let  D be a compact polydisc and U an open polydisc with compact closure such tha t  

06 int D c  D c  U c  @ s. We set V = U \ D .  Let  C(V) be the space of continuous functions on 

the closure V of V and CI(V) be the subspace of C(V) consisting of functions with uni- 

formly continuous first partial derivatives on V. We give C(V) the sup norm. For /6  CI(V) 

we define II/H to be the sum of the sup norms of / and its first partial derivatives. We set 

x =c1(V)| 

We define five operators on X as follows: at(l, y)=(zl/, zig), as(/, g)=(zs/, zsg), 

as(/, g) = (0, ~//~Zx), ad(/, g) = (0, D//~zs), and as(~, g) = (0,/) .  Note tha t  (a 1 ... .  , as) is a com- 

muting tuple of bounded linear operators on X. Note also tha t  (al, as)' contains all operators 

of the form (/, g)-+(h/, h(j) (hECI(U)) as well as as, ad, and a 5. 

Since 0 q V the equation Zlh I + zsh s = 1 can be solved for hi, h s E CI(V). I t  follows tha t  

0 ~ Sp(~,.a,). (as, a~). However, 0 E Sp( ..... ),, (al, as) , for if we could solve a 1 b 1 ~-a s b s = 1 with 

bl, b 2 E (al, as)" then this equation would remain valid on X1/Xo, where X 1 = k e r  a s N ker a~ = 

{(/, g)EX: / is analytic on V} and X 0 =ke r  a 5 = {(0, g)EX}: however, X I / X  o is isomorphic 

to the space of continuous functions on U which are analytic on U (cf. [15], w 4). Since 

0 E U and al l  = z I/, a J  = z j  we have a contradiction. Hence, 

Sp( . . . . .  ),, (a 1, as) ~= Sp( ..... ). (al, as). 

A similar argument (which appears in [15]) shows tha t  Sp (a,X) =~ Sp(~). (a) for 

a = (a I . . . . .  as). 

I t  is simpler to obtain an example where Sp~(a)(~)~=Sp(a),(~). We let V and C(V) 

be as above. Let  X = C ( V )  and define a~eL(X)  ( i=1,  2) by  a i /=z t / .  I t  can be shown tha t  

(al, as)" consists of the operators /-+h/ ,  where heC(V) .  I t  follows tha t  0r as). 

However, ~(al,  as) is the algebra of operators of the form/-+g/ ,  where g is continuous on 

and analytic on V. Any such g can be uniquely extended to be analytic on U (cf. [9], I). 

Since 0 ~ U we have 0 ~Sp~(a,.~,)(a~, as). 
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I t  turns out tha t  Sp~a) (~) and Sp~(a) (a) are determined by  the geometry of Sp (~, X) 

as a subset of C n. 

I f  K c C  n is compact, then the polynomial hull of K is (zECn: ]p(z)] ~<supw~KlP(W)]) 

for all polynomials p )  (cf. [9]). 

THEOREM 5.2. For any commuting tuple :r 1 ..... an), Sp(~)(zt) is the polynomial 

hull o/ Sp (~, X). 

Proo/. Since (~) is the closure of the image of the map p-->p(ot) from the algebra P of 

polynomials into (a), the spectrum of a is just the set of z E C n for which the complex homo- 

morphism p-+p(z) of P extends to a complex homomorphism of (~). I t  is easily seen tha t  this 

set is exactly the polynomial hull of Sp (~, X). 

Definition 5.3. I f  K c  C ~ is compact then the spectral hull of K is the set of all wEC n 

such tha t  the equation 
(z 1-wl)]l(z ) § ... § (z n-wn)/n(z ) = 1 (5.3) 

fails to have a solution for/1 ..... /n analytic in a neighborhood of K. 

THEOREM 5.4. For any commuting n-tuple a=(a 1 ..... an) o/ operators, Sp~(a)(~)is 

the spectral hull o /Sp  (~, X). 

Proo/. I t  suffices to show tha t  for w EC n equation (5.3) can be solved for /1 ..... /hE 

O~(Sp (~, X)) if and only if equation (5.1) can be solved for b 1 ..... bn Eg~(a). 

I f  /1 ... .  , /hE 9~(Sp(~,X)) satisfy equation (5.3) then clearly the operators bl =]1(~), 

.... , b~=/n(a), given by  the functional calculus, satisfy equation (5.1). 

Conversely, if b 1 ..... bnEg~(:r satisfy (5.1), then there exist functions gl, ...,gnE 

9~(Sp (~, X)) such tha t  I] (wl - al) (gl (a) - bl) § § (Wn - -  an) (gn (~) - -  bn)II < 1. i t  follows tha t  

(w1--al)g1(6~)§ § is invertible in 9~(~), where h(z)=(wl-z l )g l (z )§  

.... § (W n - -Zn )  gn(Z  ). However, it follows from Theorem 4.8 that  h cannot vanish on Sp (a, X) 

if h(~) is invertible. Hence, h -1E ~(Sp (a, X)) and /1 =h-lgl ..... /n =h-lgn is a solution of 

(5.3). 

A compact set K ~  C n is polynomially convex if it is equal to its polynomial hull. 

Similarly, we call K spectrally convex if it is equal to its spectral hull. 

T~EOR]~M 5.5. I /  Sp(~,X)  is polynomially convex, then SpA(~)=Sp(~ ,X)  /or any 

closed subalgebra A ~ L(X) with a 1 ..... an Ecenter (A). 

-1/ Sp (~, X) is spectraUy convex, then SpA (~) = Sp (~, X) /or any closed subalgebra 

A c L(X) such that 9~(a)~center (A). 

Proo]. I f  a I .. . . .  an E center (A) then (a) ~ A and Sp (a, X) ~ SpA (a) ~ Sp~ (a). By  The- 

orem 5.2, if Sp (a, X) is polynomially convex then Sp (:r X ) =  SpA (:r Sp~ (a). 
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If 9~(~)c center (A) then Sp (a, X ) c  SpA(~)c Sp~(a)(a) and Theorem 5.3 implies the 

three are equal if Sp (a, X) is spectrally convex. 

There are several conditions that  ensure that  a set K c  C n is spectrally convex. For 

example, K is spectrally convex if K has trivial cohomology relative to the sheaf of germs 

of analytic functions. Hence, K is spectrally convex if it is an ~(U)-convex subset of a 

domain of holomorphy U (cf. [9]). 

We close with a few comments concerning the algebra 9~(~). I t  follows from Theorem 

4.8 that  9~(~) is closed under the application of analytic functions. Hence, 9~(a) may be 

viewed as an analytic functional completion of the algebra (a). Warning: although it is 

true that  Sp2(~)(~) is the spectral hull of Sp (~, X), this may not be the maximal ideal 

space of 9~(~). If A is the maximal ideal space of 9/(a) and a~', ..., an are the Gelfand trans- 

forms of the elements a 1 ..... an, then the map ~: A-+ C n (~ = (a~', ..., a~')) maps A onto the 

spectral hull of Sp (a, X). However, a~', ..., a~" may fail to separate points of A. We give an 

example to show what can happen. 

Example 5.6. Let  r 1 > r  2 > ... be a sequence of positive numbers converging to zero 

and, with n > l ,  set Sk={zECn: Iz] =( Iz l12+. . .+  Iznl~)~=r~}. We set K={0}U (U~=~S~) 

and X = C(K). The operators a 1 .... , an are defined by (a,/)(z)=z~/(z). 

If ] is a function defined and analytic in a neighborhood of a set of the form 

(zEC~: r - e <  Iz] < r + e }  then / has a unique extension to a function analytic on (zEcn: 

IzI < r + e )  provided n > l  (cf. [9]). I t  follows that  the spectral hull of the set K above is 

Since the equation (Z 1 - -  W l ) / l ( Z )  ~ - . . .  ~-  (Z n - -  Wn)/n(Z) = 1 can be solved for/1 .... ,/~ E C(K) 

if w=(w 1 . . . .  , Wn)~K, we have Sp(~,X)cSp(a) ,  ( a ) c K .  On the other hand, if wEK 

then the above equation cannot be solved for ]1,-.. ,/nEC(K) =X; hence, the map 

(w-~)n- l :  Fn-I(X, w-o~)=(~)nx--~X=Fn(X, w - a )  fails to be onto, and the complex 

F(X, w - ~ )  is not exact (cf. Def. 1.2). I t  follows that  Sp (~, X ) = K  and Sp~(~)(~) is the 

spectral hull of K which is (z e C~: I z I 4 r l ) .  Note, however, that  the maximal ideal space 

A of 9~(~) is the one point compactification of the disjoint union of the sets (z E Ca: I zl ~< r~}. 

This follows from the fact that  9~(K)~ |  ~((z: I zI ~< r~}). The map a: A-~Sp~(~)(~)= 

{~: I~l <~r~} is just the map induced on A by the inclusions (z: Iz] ~r~}~(z: Izl <~ri}. The 

inverse image of zero under this map is an infinite set. Hence, & is not even a light map. 

Note one other thing about this example. The algebra 9~(~) contains a non-trivial 

projection corresponding to each of the sets (z: I z I = rl}. The version of the Shilov idempo- 

tent  Theorem given in 4.9 detects these projections since each (z: I z[ =r~} is a component 

of Sp (~, X). However, Sp~{~) (~) = {z: [z [ = r~) is connected and does not indicate the 

existence of these projections. 
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