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Abstract

The Analytic Hierarchy Process (Saaty 1977, 1980) is a decision-making pro-
cedure for establishing priorities in multi-criteria decision making. Underlying the
AHP is the theory of ratio-scale measures developed by psychophysicist Stanley S.
Stevens (1946, 1951) in the middle of the last century. It is however well-known that
Stevens’ original model was flawed in various respects. We reconsider the AHP at
the light of the modern theory of measurement based on the so-called separable rep-
resentations (Narens 1996, Luce 2002). We provide various theoretical and empirical
results on the extent to which the AHP can be considered a reliable decision-making
procedure in terms of the modern theory of subjective measurement.

Keywords: Decision analysis; Analytic Hierarchy Process; separable representa-
tions.

1 Introduction

The Analytic Hierarchy Process (AHP) is a decision-making procedure originally devel-
oped by Thomas Saaty (Saaty 1977, 1980, 1986). Its primary use is to offer solutions to
decision problems in multivariate environments, in which several alternatives for obtain-
ing given objectives are compared under different criteria. The AHP establishes decision
weights for alternatives by organizing objectives, criteria and subcriteria in a hierarchic
structure.

Central in the AHP is the process of measurement, in particular measurement on
a ratio scale. Decision weights and priorities are obtained from the decision maker’s
assessments of the way in which each item of a decision problem compares with respect
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to any other item at the same level of the hierarchy. Given a family of n ≥ 2 items of
a decision problem (for example, 3 alternatives) to be compared for a given attribute
(for example, one criterion), in the AHP a response matrix A = [aij ] is constructed with
the decision maker’s assessments aij , taken to measure on a subjective ratio scale the
relative dominance of item i over item j. For all pairs of items i, j, it is assumed:

aij =
wi

wj
· eij (1)

where wi and wj are underlying subjective priority weights belonging to a vector w =
(w1, w2, ..., wn)′, with w1 > 0, ..., wn > 0 and by convention

∑
wj = 1; and where eij is

a multiplicative term introduced to account for errors and inconsistencies in subjective
judgments typically observed in practice.

The AHP has spawned a large literature. Critics have concerned both technical and
philosophical aspects (see e.g., Dyer 1990a, Smith and Winterfeldt 2004, and references
therein). On the more philosophical side, several decision analysts have argued that the
AHP lacks of sound normative foundations and is inconsistent with the axioms of utility
theory which characterize rational economic behavior. Furthermore, they contended
that the comparisons considered by the AHP are ambiguous, especially when they deal
with intangibles, because of the difficulty for humans to express subjective estimates
on a ratio scale. On the more technical side, debates have concerned the way in which
the AHP obtains the priorities wj from the response matrix A = [aij ]. The classical
method proposed by Saaty (1977) based on the principal eigenvector (Perron vector) of
A has been criticized and other methods based on stronger statistical principles, like the
logarithmic least square method, have been proposed (e.g. de Jong 1984, Crawford and
Williams 1985).

Defenders of the AHP have always rejected the various criticisms.1 One argument
often put forward is that the normative foundations of the AHP are not in utility the-
ory, but in the theory of measurement (see e.g., Harker and Vargas 1987 and 1990,
Saaty 1990, Forman and Gass 2001). Appeal has often been made to the work of psy-
chophysicist Stanley S. Stevens (1946, 1951) and his famous classification of scales of
measurement, putting ratio scale measures at the top of all forms of scientific measure-
ment. Furthermore, in line with Stevens’ ratio-scaling method, AHP proposers have
also vindicated the ability of individuals to perform subjective ratio assessments, which,
even if not perfect, are considered sufficiently accurate to be used in AHP analyses. In
fact, on the more technical ground, Saaty and co-authors (e.g., Saaty and Vargas 1984,
Saaty 2003) have always argued that precisely because subjective ratio assessments are
only approximately accurate, the principal eigenvector method is the only method which

1 Other criticisms against classical AHP are discussed in, e.g. Dyer (1990b). A debated one is the
problem of rank reversal (Belton and Gear 1983). Rank reversal may arise in the AHP during the
procedures of hierarchic decomposition and aggregation. Extensions of AHP techniques can avoid rank
reversal (see e.g., Pérez 1995, for discussion and references). In this paper we will not deal with the issue
of rank reversal and only in the conclusion will we make some reference to the implications of the paper
on the principles of hierarchic composition.
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should be used in the AHP to obtain the priorities wj , since it is the only method which
delivers unambiguous ranking when subjective ratio assessments are near-consistent.

In this paper we reconsider the disputes around the AHP at the light of the newer
theory of psychological measurement. Indeed, despite the appeal of the AHP defenders
to Stevens’ ratio scaling method, it is well known in mathematical psychology that
Stevens’ theory was flawed in several respects (see e.g., Michell 1999, chapter 7). For
mathematical psychologists a major drawback of the theory has always been seen in the
lack of rigor and of proper mathematical and philosophical foundations justifying the
proposition that, when assessing a ratio judgment, a “subject is, in a scientific sense,
‘computing ratios’ ” (Narens 1996, p. 109).

In recent years, however, there has been an important stream of research clarifying
the conditions and giving various sets of axioms that can justify ratio estimations. An
important achievement of the recent literature has been the axiomatization of various
theories of subjective ratio judgments belonging to a class of so-called separable repre-
sentations (see Narens 1996, 2002, and Luce 2002, 2004). We will show how, within the
class of separable representations, equation (1) of the classical AHP approach should be
recast as:

aij = W−1

(
wi

wj

)
· eij (2)

where W−1(·) is the inverse of a subjective weighting function W (·) relating elicited
subjective proportions to numerical ratios. Clearly, when W is the identity, equations
(1) and (2) are equivalent. As, however, predicted by mathematical psychologists, the
identity and closely related forms like the power model for W have been rejected by var-
ious recent psychophysical experiments (see Ellermeier and Faulhammer 2000, Zimmer
2005, Steingrimsson and Luce 2005a, 2005b, and other references in Section 3.3).2

We will consider the implications of separable representations for the AHP. After a
short review of the ratio-scaling method of classical AHP, we will move on to consider the
relationships between the AHP and the modern theory of measurement. We will first of
all show how to derive equation (2) from coherent models of subjective ratio judgments.
Then we will show how typical inconsistencies often observed in the AHP should be
reinterpreted in terms of representation (2). After, we will develop a statistical method
to estimate the priority vector w = (w1, w2, ..., wn)′ from equation (2) which takes into
account possible nonlinearity in the subjective weighting function W ; and we will show
how to separate in the estimates of w = (w1, w2, ..., wn)′ the effects due to random
errors (as those due to eij in equations (1) and (2)) from those due to the psychological
distortions carried by W .

Then we will apply the method to some experimental data we have obtained from a
subjective ratio estimation experiment. We will compare the results of our method to

2Earlier studies testing structural assumptions implicit in direct measurement methods and developing
non axiomatic representations for them include Birnbaum and Veit (1974), Birnbaum and Elmasian
(1977), Mellers, Davis and Birnbaum (1984). Also notice that the theoretical and experimental research
on the nonlinearity of the subjective weighting function in the psychophysical literature parallels the
possibly most well-known literature on the nonlinearity of the probability transformation function in
utility theory (as for example typified in Prospect Theory, Tversky and Kahneman 1992).
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those obtained by the principal eigenvector and by logarithmic least squares. Among
other things, the empirical analysis shows that the main inconsistencies in the response
data are in fact due to the psychological distortions in W rather than to random errors
eij . We will conclude discussing the implications of the findings for the status and the
practice of the AHP.

2 Scaling and prioritization in classical AHP

The explicit words used by Saaty to present the AHP in the title of the article where the
approach was firstly set forward (Saaty 1977) were “scaling method for priorities in hier-
archical structure”. The term scaling was derived from psychophysics. In psychophysical
scaling, subjects are asked to relate number names to sensation magnitudes generated by
stimuli, which are then treated by the analyst (scaler) as proper mathematical numbers
to derive subjective scale measurements of the sensation (feeling, preference, judgment)
in question. Much of the present paper will focus on the philosophical and theoretical
justifications for the correspondence, also assumed by the AHP, between the number
names in the instruction of the subjective scaling procedures and scientific numbers3.
Before entering such a discussion it is important to review some specific characteristics
of the AHP as a scaling method.

2.1 Saaty’s “fundamental scale”

In the 1977 paper and subsequent book (Saaty 1980) the AHP was developed as a set
of operational procedures without axiomatic foundations. Axioms were later added by
Saaty (1986). Central in Saaty’s system of axioms is the primitive notion of a “fun-
damental scale” for pairwise comparisons of alternatives for a finite set of criteria (or
attributes or properties). Let A be a set of alternatives Ai with i = 1, ..., n and n finite;
and let C be one among a set of criteria to compare the alternatives. A fundamental
scale for criterion C is a mapping PC , which assigns to every pair (Ai, Aj) ∈ A×A a
positive real number PC(Ai, Aj) ≡ aij , such that: 1) aij > 1 if and only if Ai dominates
(or “is strictly preferred to”) Aj according to criterion C; 2) aij = 1 if and only if Ai is
equivalent (or “indifferent”) to Aj according to criterion C.

Remark that the aij ’s of the definition correspond to the entries of the response
matrix A of the Introduction. Thus, the definition not only assumes the existence of the
“scale” PC , but also identifies the scale values PC(Ai, Aj) as the responses given by the
individual in the subjective assessments procedure, so that A = [aij ] ≡ [PC(Ai, Aj)] (see
Saaty 1986, p. 844).

Four axioms are then presented by Saaty to characterize various operations which can
be performed with fundamental scales. The first axiom establishes A = [aij ] as a positive
reciprocal matrix, that is aij = a−1

ji and aii = 1 all Ai, Aj ∈ A. The other three axioms

3More precise characterizations of the notions of psychophysical scaling and scientific measurement

will be given below. Readers interested in the several different emphases and subtleties which the two
terms may assume in psychophysics are referred to Luce and Krumhansl (1988).
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are hierarchic axioms. The second, the so-called homogeneity axiom, recommends to
aggregate or decompose the items of a decision stimuli into clusters or hierarchy levels so
that the stimuli do not differ too much in the property being compared. Otherwise, large
errors in judgment may occur. Based on empirical research, the AHP has elaborated
various scale models to elicit judgments, including Saaty’s famous verbal scale with
integers from 1 to 9 for intensities of relative importance. The third and fourth axioms
are more controversial and AHP proposers have themselves considered situations in
which they may not be applicable.4

A fundamental scale PC does not deliver directly a rank order of alternatives, i.e. a
scale of priorities. A scale of priorities is, in Saaty’s language, a derived scale. A derived
scale is a n-dimensional mapping w, from the set of positive reciprocal matrices A to the
n-fold Cartesian product of [0, 1]. Thus, a scale of priority is a n−dimensional vector,
w(A) = (w1, w2, .., wn)′, with 1 ≥ wi ≥ 0. Now, one question which has taken a lot of
debate in the AHP concerns the best prioritization method, that is the best method to
obtain the vector (w1, w2, .., wn)′ from A = [aij ] so that the i−th component of w(A)
accurately represents the relative dominance of alternative Ai among the n alternatives
in A.

2.2 Principal eigenvalue method for consistent and near consistent ma-

trices

It is shown by Saaty that the answer would be straightforward when the fundamental
scale PC satisfies a property called of (cardinal) consistency, namely when PC(Ai, Aj) ·
PC(Aj , Ak) = PC(Ai, Ak) for all i, j and k. Only in this case the fundamental scale de-
livers directly a ratio scale of priorities,5 that is PC(Ai, Aj) = wi

wj
. The pairwise response

matrix A is also consistent and, in particular, all rows of A are linear transformations
of a single row, so that given a row (ai1, ai2, ..., ain) of A all other rows can be obtained
by the relation ajk = aik/aij . Thus, in case of consistency, a single row of A is sufficient
to deliver the ratio scale of priorities, since the rank of the matrix is r(A) = 1.

The AHP does not impose consistency. In fact, the AHP acknowledges that people
can be subject to errors and inconsistencies, mainly due to imprecisions and random
errors.6 When subjective ratio assessments concern stimuli of relatively comparable
activities (so that the homogeneity axiom is satisfied), the relevant concept is that of
near consistent matrix. Consider the positive reciprocally consistent matrix A0 = [wi

wj
]

with the entries given by the mathematical ratios of priorities. The positive reciprocal
response matrix A = [aij ] is a near consistent matrix if it is a small reciprocal multi-
plicative perturbation of A0 = [wi

wj
]. This means that A is thought to be given by the

Hadamard product A = A0 ◦E, where E ≡ (eij), eij = e−1
ji , and eii = 1 all i. Its entries

4The third and fourth axioms refer to the principles of hierarchic composition in the AHP and have
been discussed and revised at the light of the issue of rank reversal (see footnote 1).

5This is quite an interesting result of Saaty which anticipates Narens (1996); see Section 3.1 below.
6As we shall see, this notion that errors imply consistency violations is emphasized by Saaty as one

important difference of the AHP from standard psychophysical ratio-scaling techniques (see e.g., Saaty
1977, p. 277).
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are given by equation (1) of the Introduction, namely:

aij =
wi

wj
· eij . (1)

A small perturbation means that eij is close to 1. A near consistent matrix remains
obviously reciprocally symmetric, that is aij = a−1

ji , and has unit diagonal terms aii = 1
all i. It may however violate cardinal consistency aij = aik × akj ; or even the weaker
requirement of ordinal consistency, namely that when aij > 1 and ajk > 1 then also
aik > 1.

The possibility of consistency violations poses the problem of estimating the priority
vector w = (w1, w2, ..., wn)′ in an appropriate way. The estimation or prioritization
technique proposed by Saaty in his original paper (Saaty 1977) and defended since then
(e.g. Saaty 2003) remains the maximum eigenvalue method (ME). It uses the response
matrix A = [aij ] to solve for the column vector of interest w = (w1, w2, ..., wn)′ the linear
system of equations:

Aw = λmaxw,
n∑

i=1

wi = 1 (3)

where λmax > 0 is the largest eigenvalue in modulus (the Perron eigenvalue) of A. It
is known by the Perron-Frobenius theorem that system (3) has a unique solution, the
Perron eigenvector, henceforth denoted by w = (w1, w2, ..., wn)′. Moreover, if E = I, so
that A is cardinally consistent with A = A0, ME delivers the correct priority weights
wi = wi for all i, and the maximum eigenvalue is at its minimum λmax = n. When A is
not cardinally consistent, w = (w1, w2, ..., wn)′ usually differs from the correct priority
vector and λmax > n. Therefore, the normalized difference µ = (λmax − n)/(n − 1) is
proposed by the AHP as a rule to measure inconsistency. In particular, if the consistency
index for a certain response matrix is larger than a given cut-off, the AHP proposes to
correct the matrix restarting from the subjective judgments of the individuals until near
consistency is reached (various methods are proposed in the AHP to conduct such a
revision, e.g., Saaty 2003). Once near consistency is reached, no further adjustment
is required by the AHP. In fact, the ME is recommended as the best prioritization
method by Saaty and several of his co-authors because in their opinions the ME does
not introduce arbitrariness when the slightly perturbed rows of a positive reciprocal near
consistent matrix A are used to derive a unique ratio scale of priorities.7

2.3 Classical AHP and statistics

Despite the latter consideration, the ME method can be criticized for being a procedure
not paying attention to the stochastic structure of the data (see e.g. de Jong 1984). For

7In this sense, Saaty and Vargas (1984) have argued that the principal eigenvalue method is the only
method which “directly deals with the question of inconsistency and captures the rank order inherent
in the inconsistent data” (p. 205). In more technical terms, the argument rests on an averaging effect
which Saaty has shown to be possessed by the principal eigenvector calculation, namely it corresponds
to finding the dominance of each alternative Ai along all paths of length k, as k goes to infinity (see
Saaty 1986, p. 582; or Saaty 2003, for a more recent exposition of the same notion).
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this reason, alternative techniques to estimate w have been proposed in the literature.
By statistical standards the most important alternative is the logarithmic least squares
method (LLSM). It is based on the minimization of the sum of squares

∑
i

∑
j ε

2
ij , where

εij = ln eij are the errors of the log transformation of equation (1):

ln aij = lnwi − lnwj + εij , 1 ≤ i, j ≥ n. (4)

Statistical properties of the LLSM estimates of wi, henceforth denoted with wi, have
been discussed by several authors. Crawford and Williams (1985) have shown that when
the εij are independently normally distributed, with zero mean and common variance
σ2, the wi are in fact maximum likelihood estimators;8 de Jong (1984) has discussed
the statistical properties of the LLSM solution allowing for possible dependence between
the error terms εij . Important results on the relationships between the ME and the
LLSM procedure have been obtained by Genest and Rivest (1994). In particular, under
the assumption that every error εij is independent of the other errors and has common
variance σ2 that is the asymptotic parameter of the model, they have shown that the
ME and the LLSM estimates are similar, in the sense that the w and w are equal within
the order of σ: w = w+O(σ2). Moreover they have shown that the unbiased estimate of
σ2 is linearly related to Saaty’s consistency index µ. These results imply that when the
response matrix A = [aij ] is not too inconsistent and equation (1) holds, the ME and
LLSM methods are more or less equivalent in practice. Simulation studies consistent
these predictions were anticipated by Zahedi (1986) and Budescu, Zwick and Rapoport
(1986).

In the following we discuss other theoretical and empirical reasons to question the
validity of equation (1) and propose a more general model of ratio estimation for the
AHP, more consistent with the latest developments in the theory of psychological mea-
surement.

3 Stevens, separable representations and the AHP

As is well known, the original idea of developing analytical procedures and experimental
techniques for constructing subjective ratio measurement scales in the behavioral sci-
ences is due to Stanley S. Stevens (1946, 1951). The idea came out as a response to
the seven years work of a committee of the British Association for the Advancement of
Science precisely appointed to deliberate on the possibility of measuring psychological
phenomena. Commenting on the work of the committee in his 1946 article in Science,
Stevens noted that deliberation led only to disagreement, mainly about the very notion
of scientific measurement, which for many members of the committee required an ob-
servable form of addition, much as in the measurement of weights and lengths. Stevens
rejected this position, considering that “measurement, in the broadest sense, is simply

8Crawford and Williams (1985) also refer to LLSM as the row geometric mean method (GMM), since
with the normalization w1 + w2 + ... + wn = 1, wi is known to be proportional to the geometric mean

of the elements of the i−th row of A, namely wi =
(∏

k aik

)1/n
/
∑

j

(∏
k ajk

)1/n
for 1 ≤ i ≤ n.
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defined as the assignment of numerals to objects or events according to rules” (1946, p.
677). He went on, especially with his 1951 book, to propose a new measuring method
which carefully avoided the use of additive operations. The method, known as Stevens’
ratio-scaling approach, can be applied in different forms.

In a ratio estimation, which is a scaling procedure conceptually very similar to the
way of obtaining the entries of matrix A in the AHP, an individual is provided with two
stimuli z and x, and then is asked to state the value p which corresponds to the subjective
ratio of z to x, i.e. that of t = z/x.9 Thus, the experiment provides information about
the ratio estimation function p = p(z, x). Stevens thought that the subjective responses
recovered in this way could be treated as any other form of scientific measurement and
that the subjective estimation function p(z, x) directly represented a ratio-scale measure.
In fact, he conjectured that subjective value is a power function of real value, so that
Stevens’ ratio estimation function p(z, x) can be written as:

p(z, x) =
( z
x

)k
(5)

which corresponds to his famous psychophysical law, that equal physical ratios produce
equal psychological ratios.

3.1 Separable representations

A long history of controversies has followed from Stevens’ approach.10 While on the one
hand Stevens’ ratio scaling method has become a very successful paradigm in applied
psychophysics, on the other hand strong criticism has been levied by several authors.
The main point of criticism has always been seen in the fact that neither Stevens nor
the many ratio-scalers who have followed his approach have ever provided or discussed
in a rigorous way the mathematical and philosophical conditions necessary to justify his
form of psychological measurement.

In the last 10 years or so, however, a great effort has been done by mathematical
psychologists, notably Louis Narens (1996, 2002, 2006) and Duncan Luce (2002, 2004),
to comprehend in a deeper perspective the structural assumptions inherent in Stevens’
approach and to develop axiomatic theories for direct measurement methods.

A key result of the new development has been the derivation of rigorous conditions
that permit one to formulate a representation of subjective estimation in a generalized
sense.11 Formally, we say that a separable representation holds in a ratio estimation if

9A dual and perhaps more standard scaling procedure in psychophysics is known as ratio production,
in which an observer is required to produce a stimulus x that appears p times more intense than a
reference stimulus. (See Luce 2004, and Steingrimsson and Luce 2006, for a deeper discussion of the
different notions of ratio production and ratio estimation.)

10See e.g., Graham (1958), Anderson (1970), Shepard (1981), Luce and Krumhansl (1988), Michell
(1999), for discussions and references on Stevens’ approach.

11Pioneering non-axiomatic generalizations of direct measurement methods are due to Michael Birn-
baum with various co-athours, e.g. Birnbaum and Veit (1974), Birnbaum and Elmasian (1977). (See
also below.)
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there exist a psychophysical function ψ and a subjective weighting function W such that
the ratio p is in the following relation with z and x:

W (p) =
ψ (z)

ψ (x)
. (6)

Equation (6) corresponds to Narens’ (1996) original model and incorporates the
notion that independent distortions may occur both in the assessment of subjective
intensities and in the determination of subjective ratios (see also Luce 2002). Narens
developed the model in the tradition of representational measurement theory. Central
in his approach is the distinction between numerals, which are the response items p
provided by the subject to the experimenter, and scientific numbers.

When uncovering what he called Stevens’ assumptions, Narens then argued that the
case W (p) = p, in which subjects’ numerals can be interpreted “in the same manner
as is done in science ... is anything more than a coincidence” (Narens 1996, p. 111).
In particular, he showed that a given behavioral property, called multiplicativity, must
hold.12 The property states that if p is the numeral for the subject’s subjective measure
of ratio z to x, and q is the numeral for the subject’s subjective measure of ratio y to
z, then the numeral r for the subject’s subjective measure of ratio y to x must satisfy
r = p · q.

When multiplicativity fails, a weaker behavioral property has been shown by Narens
to stay behind representation (6). The condition is called commutativity. It states that
when p is the numeral for the subject’s subjective measure of ratio x to t and of ratio
w to y, and q is the numeral for the subject’s subjective measure of ratio z to x and of
ratio y to t, then z = w. In broad terms this means that a subjective proportion, say,
of 2 multiplied by a subjective proportion of 3 is equivalent to a subjective proportion
of 3 multiplied by a subjective proportion of 2, though neither products of subjective
proportions is equivalent to a subjective proportion of 6, for which the full force of the
multiplicative property is necessary.

Psychophysical tests of the multiplicative and commutative properties have been con-
ducted by Ellermeier and Faulhammer (2000) and Zimmer (2005) in loudness magnitude
production experiments. Both experiments found evidence in favor of commutativity,
but against multiplicativity. Other recent evidence in support of separable represen-
tations has been obtained by Luce and Steingrimsson (2005a, 2005b) and Bernasconi,
Choirat and Seri (2008).

A psychophysical axiomatization of separable representations has also been provided
directly by Duncan Luce. In Luce (2002 and 2004) form (6) is derived as a special case
of a global theory of psychophysics, developed from empirically testable assumptions

12Here we follow the behavioral interpretation of Narens’ derivation of form (6). In his 1996 article,
Narens also provides a cognitive axiomatization relating the numerical representation to the unobservable
sensations. Also note that Narens’ original definition of the multiplicative and the following commutative
properties are expressed in terms of ratio production tasks, but he postulates that the properties are
equally well suited for magnitude estimation (see also Steingrimsson and Luce 2006).
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relating sensorial stimuli intensities (like auditory or visual).13 Luce’s approach is also
relevant for the functional relationships between the number names used by subjects in
the experiments (numerals) and their scientific correspondences, namely the forms of ψ
and W . Some properties of these functions, tested experimentally by Steingrimsson and
Luce (2006 and 2007), are discussed below.

It is also important to remark that the axiomatic approach underlying separable
representations has direct application in the context of utility theory for gambles (see
e.g., Luce 2000 and 2002), where ψ is called utility, with domain represented by valued
goods and W is a subjective weighting function of probabilities or events.14 Indeed,
a very large literature has accumulated over the years using the nonlinearity of W to
generalize the classical expected utility model of von Neumann and Morgenstern (1944)
and explain several violations observed against that theory. Tversky and Kahneman’s
Prospect Theory (Kahneman and Tversky 1979, and Tversky and Kahneman 1992) is
probably the best-known model of the list.

3.2 AHP in separable form

Separable representations and ratio estimation have also a natural interpretation in the
AHP. The elicited proportions p from a ratio estimation correspond to the entries aij

of a response matrix A in the AHP.15 In principle, two interpretations are possible
for the relationships between the stimuli of a ratio estimation and the priority weights
of the AHP. According to the first, the priority weights w = (w1, w2, ..., wn)′ could
be identified with the stimuli x1, x2, ... successively presented to a subject in a ratio
estimation (and appropriately normalized to sum up to one). In this case, however,
the method could only be applied when the stimuli come from a known scale. A more
general and consistent interpretation of ratio estimation in terms of the AHP is that
of identifying the priority weights w = (w1, w2, ..., wn)′ with the subjective perception
of stimuli, that is w1 = ψ (x1), w2 = ψ (x2) , ... Among other things, this is coherent
with the objective of the AHP to measure personal judgments, thoughts, feelings and
preferences. In fact, as alluded to above, when dealing with preferences between goods,

13In particular, since Luce’s axiomatization is based on joint presentation of pairs of sensorial stimuli
intensities (like two loudness intensities successively presented to the left and to the right ear), the term
separable representation is used to denote the special case of a more general model called “subjective-
proportion representation” (Luce 2002, p. 523), when one of the stimuli is 0 (namely, at the threshold
level).

14Consider a gamble (x, p, y) giving x with probability p and y otherwise. Luce (2000) proposes an
axiomatization in which its utility is given by:

U(x, p, y) = U(x)W (p) + U(y)[1 − W (p)]

This representation is called rank-dependent utility. It is consistent with his subjective-proportion rep-
resentation (Luce 2002). When W is linear, it collapses to expected utility. Moreover, when y = 0, the
expression U(x, p, y) = U(x)W (p) is a separable form.

15More exactly, since Stevens’ method does not consider the effect of errors and always imposes
consistency, a typical ratio estimation in psychophyiscs needs and produces only one row of a response
matrix. (On this see also Saaty 1977, p. 277).
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a similar interpretation for the psychophysical function ψ(·) is endorsed by Luce himself,
who explicitly refers to ψ(·) as utility (see e.g., Luce 2002, p. 523).

Thus, with this specification, the theory of separable representations implies that the
entries aij of a response matrix A and the priority weights w = (w1, w2, ..., wn)′ in the
AHP stand in the following relationship:

W (aij) =
wi

wj
. (7)

Representation (7) and equation (1) of the Introduction assumed by classical AHP
differ in two respects: the ratio form of equation (1) restricts the weighting function W (·)
to be the identity; whereas representation (7) ignores considerations of errors eij . The
role of the errors eij was emphasized by Saaty (1977, 1980) as an important difference
from Stevens. In fact, as noted in Section 2, errors may induce possible inconsistencies
in the response matrix of classical AHP, giving rise to the issue of prioritization. Below
we will re-comprehend the effect of errors in a more general stochastic version of model
(7). Firstly, it is important to emphasize the implications of the theory of separable
representation for classical AHP, even in the idealized situation in which representation
(7) is thought to hold exactly.

3.3 The subjective weighting function W (·) and consistency

In Section 2 we have recalled various properties of the AHP response matrix A = [aij ].
We now reconsider the properties in terms of model (7). The first most important prop-
erty is cardinal consistency, namely that for any three elicited ratio assessments aij , aik

and akj , then aij = aik × akj . It should be transparent that in the theory of separable
representations, cardinal consistency is equivalent to the multiplicative property which
Narens (1996) has shown to be central in Stevens’ ratio-scaling approach. In particu-
lar, only if cardinal consistency and Narens’ multiplicative property hold, then a ratio
estimation situation can be seen to provide a ratio-scale measure directly in the sense
supposed by Stevens, so that the subjective weighting function W (·) can be chosen as
W (p) = p. The recent experiments by Ellermeier and Faulhammer (2000) and Zimmer
(2005) reject the multiplicative property and the specification W (p) = p. In fact, their
results also reject the slightly more general specification in which W is a power function
W (p) = pk with k > 0 and W (1) = 1.16

It is interesting that a similar power model was considered by Saaty himself and
referred to as the eigenvalue power law (Saaty 1980, p. 189). Saaty thought that the
model was relevant as an approximation for pairwise comparisons obtained aggregating
or decomposing stimuli into clusters or hierarchy levels. But the evidences alluded to
above and also those obtained by Luce and Steingrimsson (2005a, 2005b) and Bernasconi,
Choirat and Seri (2008) reject this possibility as well.

16It is trivial that the power function W (p) = pk always satisfies multiplicativity (W (p) · W (q) =
W (p · q)) when W (1) = 1. A subtlety investigated by Steingrimsson and Luce (2007) is that when
multiplicativity fails, W (p) may still be a power function with W (1) 6= 1. (More on this point below.)
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The implications for the AHP are clear: whenever the weighting function is not
the identity or the power model, violations of cardinal consistency are inherent in any
subjective ratio assessment. At the same time, the importance of separable representa-
tions is that when multiplicativity fails, but commutativity holds, ratio estimations may
still result into a ratio scale, though it is necessary to pass through the function W to
interpret the subjects’ subjective measures of ratios as numerical ratios.

In this respect, an important property of functionW (·) is monotonicity, which follows
in the mathematical derivation of separable representations (Luce 2002, p. 522). In terms
of the AHP, monotonicity implies ordinal consistency (that if aij > 1 and ajk > 1, then
also aik > 1; see Section 2.2). Moreover, if W (·) is monotonic, W−1 is invertible so that
the actual entries of the AHP responses matrix A = [aij ] are given by:

aij = W−1

(
wi

wj

)
. (8)

This is quite important for the AHP, because it implies that if one knows how to estimate
the function W−1(·) and W−1(·) is invertible,17 then one can pinpoint between the
elicited numerals aij and the numerical ratios wi/wj in order to obtain the priority
weights w = (w1, w2, ..., wn)′, which represent the ultimate objectives of the AHP. In
Sections 4 and 5 we will show how this can be done in quite a general way, firstly
theoretically and then in an actual experiment.

Another important condition on the subjective weighting function is W (1) = 1, that
is individuals are able to correctly perceive proportions of equal stimuli. This is generally
assumed in an ordinary separable model. Notice that the condition is necessary for the
AHP to assume aii = 1 for all entries on the diagonal of A = [aij ]. Symmetry, that
is aij = 1/aji, instead requires that W (·) is reciprocally symmetric, namely W (1

· ) =
1

W (·) . This is implied by several derivations of separable representations, including a

specification developed by Luce (2001, 2002), similar to one which Prelec (1998) proposed
in the context of utility theory for risky gambles. A more recent specification proposed
by Luce (2004) does not instead impose either W (1) = 1 or symmetry. Since, however,
the initial evidence on the matter is not conclusive,18 our main focus in what follows is
on the implications of the nonlinearity of W (·) on cardinal consistency in the AHP.

17In earlier works by Birnbaum and Veit (1974) and Birnbaum and Elmasian (1977), a function JR

conceptually identical to the inverse function W−1(·) is introduced directly as a monotonic judgmental
transformation of a ratio model relating overt magnitude estimation of ratios to subjective impressions
of ratios, and is put in connection to a judgmental transformation JD of a model relating overt rated
differences to subjective differences.

18In recent psychophysical experiments on loudness production, Steingrimsson and Luce (2007) and
Zimmer (2005) have rejected the behavioral hypothesis underlying the specification with W (1) = 1 and
have accepted one with W (1) 6= 1. In an experiment estimating the distance-ratio between cities (similar
to the one presented below), Bernasconi, Choirat and Seri (2008) have instead accepted W (1) = 1. The
same restriction is also accepted by several economic experiments estimating the subjective weighting
function W (·) on probabilities, which suggest an inverse s-shaped form for W (see e.g., Wu and Gonzalez
1996, Prelec 1998, and references therein).
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4 A separable statistical model for the AHP

The mathematical theories of separable forms discussed in the previous sections “are
about idealized situations and do not involve considerations of error” (Narens 1996, p.
109). This is acknowledged as a limitation. People are not like robots. Various elements,
including lapses of reason or concentration, states of mind, trembling, rounding effects
and computational mistakes imply the obvious notion that no model of human behavior
can be thought to hold deterministically.

As emphasized in Section 2, this was also remarked by Saaty in the AHP with the
notion of the multiplicative errors eij . We now re-comprehend the errors in the separable
specification of the AHP. In particular, introducing the multiplicative terms eij to model
(8), we obtain the separable statistical model (2) of the Introduction, namely:

aij = W−1

(
wi

wj

)
· eij . (2)

Model (2) raises several issues for the AHP. Here we focus on the specification of a
procedure for conducting a rigorous mathematical and statistical analysis of model (2),
which we then apply to the data of a ratio estimation experiment in the AHP. A different
issue concerns the effects of the separable form and of the nonlinearity of the subjective
weighting function W (·) on the mathematical behavior of Saaty’s maximum-eigenvalue
method. We do not conduct a technical analaysis of the latter issue here. Still, in the
empirical analysis, we will show how it is possible to separate the effects of the distortions
due to W (·) from those due to the noise eij on the subjective assessments aij , and thus
to indicate the type of mistakes which may be done using the maximum-eigenvalue to
estimate the priority vector.

We proceed first showing how to obtain a regression model from equation (2) (in
Section 4.1), and then presenting an inference method to obtain the unknown parameters
of the model (in Section 4.2). We remark that the procedure must be considered to
apply on an individual basis, in the sense that the responses aij for which we propose
the analysis must be considered as given by a single individual.19

4.1 Regression model

As a first step to transform equation (2) into a regression model amenable to statistical
analysis, we apply the log transformation:

ln aij = lnW−1 [exp (lnwi − lnwj)] + εij (9)

19This is standard in psychophysical experiments of separable representations (see e.g., all experimental
studies cited in Section 3). The AHP considers instead also the possibility to be applied to group
decision making (Saaty 1980, Saaty and Aczél 1983), treating two possible approaches: the aggregation
of individual judgments or the aggregation of individual priorities. A large literature has discussed which
approach is the best and under which conditions. In terms of that literature, an interesting issue opened
up by separable representations (which is not considered in the present paper) concerns the question
about the implication for group decision making of the nonlinearity of the individuals’ weighting functions
W .
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where εij = ln eij . We now assume that the deterministic function lnW−1 [exp (·)] can
be approximated through a polynomial in its arguments. This is generally possible:
according to the Weierstrass Approximation Theorem, any continuous function on a
compact domain can be approximated to any desired degree of accuracy by a polynomial
in its arguments. Here we stop to an approximation of the third order, which yields the
expression:

lnW−1 [exp (z)] ≃ β0 + β1z + β2z
2 + β3z

3 (10)

with z = lnwi − lnwj . We emphasize that an approximation to the third order is
sufficient to characterize all the various restrictions discussed in the previous sections for
the AHP.20 In particular, notice that:

• the restriction W (1) = 1 (from aii = 1) implies β0 = 0;

• the fact that W is reciprocally symmetric (from aji = 1
aij

) implies β2 = 0;

• the classical AHP where W is the identity (or the power model W (p) = pk with
k > 0 and W (1) = 1, see Section 3.3) restricts β1 = 1 and β3 = 0;

• at last, the case in which β1 = 1 and β3 is left free to vary corresponds to a (third
order) log approximation of the inverse separable model (8) of Section 3.3, namely:

lnW−1 [exp (z)] ≃ z + β3z
3. (11)

Substituting in equation (9), we finally obtain the statistical inference model:

ln aij ≃ (lnwi − lnwj) + β3 (lnwi − lnwj)
3 + εij (12)

which, when β3 = 0, collapses to the AHP log form (4) analyzed with the logarithmic
least squares method (LLSM) by many previous authors (see Section 2.3).

4.2 Statistical analysis

In fact, we now propose a method to conduct the statistical inference in model (12) which
can be viewed as a generalization of the LLSM method (in particular, of the analysis of
Genest and Rivest 1994). We derive the estimators ŵi and β̂3 minimizing the sum of
squares:21

(
ŵ1, . . . , ŵn, β̂3

)
= arg min

(w1,...,wn,β3)

n∑

i,j=1

ε2ij

20More generally, in the statistical approach presented below the order of the approximation can be
extended to any desired degree (provided of course that one has enough data to estimate the model) and
then the order of the polynomial can be selected using various techniques, for example the statistical
theory of model selection, as we do in Bernasconi, Choirat and Seri (2008).

21The precise statement of the results of this Section and the full derivation of the asymptotic theory
of estimator (ŵ1, . . . , ŵn, β̂3) is in an Electronic Companion Appendix.
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where
εij = ln aij − (lnwi − lnwj) − β3 (lnwi − lnwj)

3 ,

under the constraint that
∑n

i=1 ŵi = 1. As in Genest and Rivest (1994), we assume
that the errors εij for 1 ≤ i ≤ n, 1 ≤ j < i are independent with common variance σ2.
Also recall that εij = −εji and εii = 0. Under suitable hypotheses it is possible to show

that the estimator
(
ŵ1, . . . , ŵn, β̂3

)
is consistent and asymptotically normal when σ ↓ 0,

but the formulas of its asymptotic variance depend on the unknown parameter σ. It is
slightly more complicated to find an estimator of σ2, but if we define the residuals

ε̂ij = ln aij − (ln ŵi − ln ŵj) − β̂3 (ln ŵi − ln ŵj)
3 ,

the estimator

σ̂2 =
1

n2 − 3n
·

n∑

i,j=1

ε̂2ij

is asymptotically unbiased (in the sense that limσ↓0
Eσ̂2

σ2 = 1). The problem is that this
estimator is not consistent. Also the LLSM estimator of Genest and Rivest (1994) is not
consistent. This is not dramatic: it only implies that when σ ↓ 0 and σ2 is replaced by
its estimator σ̂2, the classical t-tests on coefficients are t(n2−3n

2 )-distributed (in classical
regression theory they are N ). Tests and confidence intervals can however be built even
if asymptotic theory is nonstandard.

5 The experiment

We consider the data of an experiment with 69 individuals and n = 5 alternatives.
Participants were asked to estimate the relative distances of 5 Italian cities from Milan
(between brackets the distances normalized to sum up to 1): Turin (0.051559), Venice
(0.102703), Rome (0.204158), Naples (0.273597), Palermo (0.367983).

In 10 pairwise comparisons, subjects were asked to indicate: firstly, which city in
each pair they considered more distant from Milan; and then to quantify with a number
chosen in the interval of integers from 1 to 9 how many times the more distant city
was according to them actually more distant from Milan than the less distant city.
The interval of integers 1-9 was used in accordance with Saaty’s verbal “scale of relative
importance”. Also notice that the integers 1-9 cover the proportions between the physical
stimuli, so that the design satisfies Saaty’s homogeneity axiom. It may still be objected
that quantification on a discrete interval could by itself induce rounding errors and
consistency violations. In this respect we emphasize that in the experiment presented
in Bernasconi, Choirat, Seri (2008), we have conducted a distance experiment similar to
the one described here, but with quantifications on the continuous space of real numbers,
and we have obtained results similar to those presented below. The discrete interval 1-9
is used here to to be closer to classical AHP.22

22Indeed, distance experiments similar to the one presented here have been conducted in various
occasions by Saaty as demonstrations of the AHP (see e.g., Saaty 1977).
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Participants were undergraduates students in Economics at the University of Insubria
in Italy. It was decided to use a monetary reward as an incentive for subjects to perform
the experiment as well as possible. Subjects were explained at the beginning of the
experiment how the payment would be calculated. Namely, payment was proportional
to good estimates in the experiment.

5.1 Empirical estimates

We have estimated the priority vector (w1, . . . , wn, )
′ for every individual participating in

the experiment using the various methods of estimation discussed in the paper: Saaty’s
maximum eigenvalue-eigenvector method (ME), the logarithmic least squares method
(LLSM) proposed by de Jong (1984), Crawford and Williams (1985), Genest and Rivest
(1994), and our theory of polynomial approximation based on the joint estimation of
vector (ŵ1, . . . , ŵn)′ and parameter β̂3.

In Fig. 1 we plot the estimates (ŵ1, . . . , ŵn)′ obtained by our method against the
corresponding true values 0.05155925, 0.10270270, 0.20415800, 0.27359667, 0.36798337,
and compare them with the ME and the LLSM estimates.23 In the individual graphs,
the black solid piecewise lines represent our estimates; the black dashed lines give the
confidence intervals at 95%; the light-grey lines represent the estimates as obtained by
Saaty’s ME method; the dark-grey lines are the estimates obtained by the LLSM method.
It turns out that the ME and LLSM estimates are very similar, in fact indistinguishable
in the diagrams, confirming previous results and theoretical expectations (see Zahedi
1986, Budescu, Zwick and Rapoport 1986, Genest and Rivest 1994). Estimates based on
our method are for many subjects more different than those from the other two methods.
Confidence intervals are often (but not always) quite small.

In Fig. 2 we show the functions W−1 (x) ≃ x · exp
{
β3 ln3 x

}
estimated for each sub-

ject (remark that we do not plot W , but its inverse). In each graph, the grey solid lines
represent the identity function; the black solid lines represent the estimated functions;
the black dashed lines show the confidence intervals at 95%. The confidence intervals
allow us to conduct graphically for each subject the test of the null hypothesis that W is
the identity: in 47 cases out of 69 the hypothesis is rejected at 95%, in 22 cases it cannot
be rejected. The diagrams also indicate that most subjects substantially underestimate
the ratios (fitted W−1 is below the 450 line, with only 4 subjects showing a tendency for
overestimation). Moreover, a concave shape of function W−1 (x) is estimated for most
subjects, indicating that the tendency to underestimate ratios increases as the ratios get
larger and larger above one.

We take these results as a clear confirmation of modern measurement theory, that
subjects’ subjective measures of ratios are affected by systematic distortions and cannot
be interpreted as numerical ratios. This is in line with the various recent experiments
referred to in Section 3.

It is here also of interest to notice the confirmation of the implications of the subjec-

23We give here a graphical representation of the results. The individual data are available in the
Electronic Companion Appendix.

16



0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 1

0.0 0.1 0.2 0.3
0.

0
0.

4
0.

8 2

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 3

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 4

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 5

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 6

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 7

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 8

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 9

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 10

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 11

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 12

0.0 0.1 0.2 0.3
0.

0
0.

4
0.

8 13

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 14

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 15

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 16

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 17

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 18

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 19

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 20

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 21

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 22

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 23

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 24

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 25

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 26

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 27

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 28

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 29

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 30

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 31

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 32

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 33

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 34

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 35

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 36

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 37

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 38

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 39

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 40

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 41

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 42

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 43

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 44

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 45

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 46

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 47

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 48

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 49

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 50

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 51

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 52

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 53

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 54

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 55

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 56

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 57

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 58

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 59

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 60

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 61

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 62

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 63

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 64

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 65

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 66

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 67

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 68

0.0 0.1 0.2 0.3

0.
0

0.
4

0.
8 69

F
ig

u
r
e

1
:

In
d
iv

id
u
al

estim
ates

of
p
riority

w
eigh

ts
ob

tain
ed

b
y

variou
s

m
eth

o
d
s.

17



tive weighting function for the relationships between the various methods of estimating
the priority vector. In particular notice that only when the subjective weighting func-
tion is linear, then our statistical theory of obtaining the priority vector yields estimates
similar to Saaty’s ME and LLSM method. This in particular applies to the 22 subjects
with a linear W−1 (x) estimated in Fig. 2, who also have plots of the priority vectors in
Fig. 1 generally indistinguishable from those obtained by the ME and LLSM methods;24

whereas for the 47 subjects with a nonlinear W−1 (x) the estimates of the priority vector
in Fig. 1 are less close to the estimates obtained by the ME and LLSM methods.

The diagrams in Fig. 2 also allows to conduct some tests of ordinal consistency.
In particular, recall that if W−1 is not an invertible function, then the subjects’ ratio
assessments violate ordinal consistency. In our estimation procedure we have decided
not to impose invertibility. Nevertheless, we find that only for 5 subjects out of 69 the
estimated function W−1 is not invertible.25

5.2 The effects of W and errors εij

Having confirmed that the subjective weighting function is for many subjects nonlinear,
perhaps the most empirically relevant question for the AHP is whether the distortions
due to W (and thus β3) are larger or smaller than the ones due to the noise eij (or
εij). In this respect, the estimates of the priority vectors and of the subjective weighting
functions allow to conduct the comparisons between Saaty’s eigenvector w = (w1, ..., wn)′

and eigenvalue λ computed from the matrix of the elicited responses A = [aij ] only taking
account of the distortions due to the noise, with the eigenvalue-eigenvector obtained
firstly removing from the matrix the effect of the noise, thus computing w and λ on

the basis of Ŵ−1
(

ŵi
ŵj

)
(with Ŵ−1 and ŵ = (ŵ1, . . . , ŵn)′ estimated according to our

method); and then removing also the effect of the distortions due to W , thus computing
w and λ directly on the basis of matrix [ ŵi

ŵj
].

The results of the decomposition are shown in Fig. 3. The six subgraphs display the
empirical cdf (cumulative distributions) of the 69 values for the five components of the
maximum eigenvectors obtained from the different matrices indicated above, followed by
the empirical cdf of the 69 values of the maximum eigenvalue computed for the various
matrices. In particular, the thin-black lines refer to the cdf of the five components of
Saaty’s eigenvector w = (w1, ..., wn)′ and eigenvalue λ; the grey curves represent the
empirical cdf of the 69 values of the corresponding quantities (eigenvector and eigen-
value) computed for each individual on the basis of the matrix with generic element
ŵi
ŵj

· exp
{
β̂3 · ln

3 ŵi
ŵj

}
= aij/ε̂ij ; the thick-black curves represent the empirical cdf of the

69 values of the same quantities computed for each individual on the basis of the matrix
with generic element ŵi

ŵj
. The dashed vertical lines represent the real values. Summing

up: the thin-black curves are based on the elicited data, the grey curves on the data

24The 22 subjects with a presumably linear W−1 (x) are: subjects 8, 9, 10, 14, 20, 22, 26, 27, 29, 35,
37, 38, 45, 49, 50, 52, 53, 56, 59, 63, 67, 68.

25The subjects are: 21, 34, 60, 61, 69.
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without the noise, the thick-black curves on the data without the noise and W , and the
dashed lines are the real values.

Looking at the diagrams, it is apparent that the distance between the grey and the
thin-black curves is less than the distance between the thick-black and the grey curves.
This indicates that the distortions due to the errors εij have a definitively smaller effect
on the elicited responses than the distortions due to W . The important implication
is that the errors εij have only a limited impact on consistency violations. This is
demonstrated by the last graph for the eigenvalue which shows that the errors εij have
a moderate effect to generate inconsistencies in the data, since the grey line computed
with the data cleaned by the noise is only a bit lower than the thin-black line for the
elicited data (recall that perfect consistency holds when the Perron eigenvalue λmax = 5),
whereas inconsistencies are completely removed only when the effect of W is also taken
away from elicited responses (see the thick-black line).

The above analysis has important implications also under a practical perspective.
Saaty has always warned “that once near consistency is attained, it becomes uncertain
which coefficients should be perturbed to transform a near consistent matrix to a con-
sistent one. If such perturbations were forced, they could be arbitrary and thus distort
the validity of the derived priority vector in representing the underlying decision” (Saaty
2003, p. 85). The present analysis indicates how one could operate in order to avoid
arbitrariness of corrections. The subjective weighting function W (·) is clearly not ar-
bitrary, but “is the scientific way of interpreting the subjective measures of ratios as
numerical ratios” (Narens 1996, p. 110). The forms of the weighting function estimated
provide important information for classical AHP, which could lead to two possibilities of
revision. First of all, the estimated subjective weighted functions could be used to obtain
a proper ratio scale ŵi

ŵj
from the elicited responses aij (as in the procedure underlying

the thick-black lines in Fig. 3). Alternatively, the estimated function could be used to
provide suggestions to the decision makers about how to improve the scientific accuracy
of their elicited responses. For example, it is clear that in a repetition of the present
experiment, participants should be advised of their tendency to increasingly underweight
the ratios as the ratios get larger above one (see again the plots in Fig. 2).

In all cases, the results of the experiment confirm that the responses obtained by the
AHP cannot be taken to provide a ratio-scale measure directly, nor that the hypothesis of
multiplicative perturbations (or random error) is sufficient to characterize the observed
departures from a ratio scale. AHP proposers must be aware of this and corrections
must be chosen accordingly.

6 Conclusion

The AHP is a problem solving technique for establishing priorities in multivariate envi-
ronments. Quarrels have concerned both its normative and descriptive status. Quoting
Smith and von Winterfeldt (2004): “our view is that if the AHP is truly intended as
a descriptive model, then one should test it to see how well it describes actual deci-
sion making behavior. Though we do not know of such tests, we are confident that
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the AHP would not do a very good job in predicting decision making behavior, just as
the expected utility model has limited descriptive power. The appeal of the AHP as
a prescriptive theory remains a matter of disagreement. While many in the decision
analysis community (ourselves included) follow Dyer (1990a) in believing the AHP to be
fundamentally unsound, others (including Saaty, Harker, and Vargas) disagree and the
AHP is still widely used in practice today” (p. 568).

Our opinion is that much of the disagreement about both the descriptive and norma-
tive status of the AHP derives from the confusion and imprecision which characterizes
its relationships with the theory of measurement. Most of the obscurity derives from the
appeal of AHP supporters to rely on a direct method of measurement similar to Stevens’
ratio-scaling approach, which is itself ill-founded. In particular, the error of Saaty and
of the AHP in following Stevens is to believe that the numerals obtained by subjects in
ratio estimation procedures can be treated as scientific numbers. This is what we believe
most of the AHP opposers have always contended, implicitly or explicitly, in their critics.
Rightly so: “direct measurement methodologies that rely on assigning a number to a
stimulus because it corresponds to a number named in the instructions should be looked
with incredulity” (Narens 2006, p. 298).

From this, however, we also believe that most of the critics to the AHP have derived
the belief that no ratio-scale measures of subjective judgments, feelings, preferences are
possible. This may be equally wrong. In recent years mathematical psychology has
provided various axiomatizations based on different psychological primitives that have
made explicit the structural assumptions inherent in representing direct measurement
data. If on the one hand tests of these properties have confirmed the difficulty to use
ratio-scaling methods to obtain ratio-scale measures directly, on the other hand they
have shown that the data produced by direct measurement instructions can still be an
important tool in rigorous behavioral applications if analyzed by appropriate methodolo-
gies. In particular, support for separable representations and their underlying properties
“suggests that ratio scales obtained through the use of numbers names in instructions
and proper measurement techniques may still be a valuable tool for basic psychophysics”
(Narens 2006, p. 299). The key for a rigorous analysis is the subjective weighting func-
tion W (·), which allows one to pinpoint on the basis of normatively justified arguments
and descriptively supported hypotheses, between the subjects’ perception of proportions
and their underlying scientific ratio-scale representation.

In this paper we have shown how the same notions of separable representation and
of subjective weighting function can be extended to the AHP. Our analysis has focused
on subjective ratio assessments more directly applicable to single-level hierarchies. In
complex, multi-level hierarchies, the AHP obtains subjective ratio assessments at each
level of the hierarchy, which are then weighted and added to obtain an overall ratio scale
of alternatives. The problem of inconsistencies originated by the subjective weighting
function could then become even more severe, since the distortions in the assessments
occurred at each level of the hierarchy multiply with each other possibly increasing the
distortions in the final assessment of alternatives.

Our method of investigating the subjective weighting function can be extended to
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multi-level hierarchies simply replicating the analysis to measure inconsistencies at all
hierachic levels. This could also contribute to provide the AHP with more descriptive
and prescriptive credibility.
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A Asymptotic theory of estimator
(
ŵ1, . . . , ŵn, β̂3

)

The model is:

aij =
wi

wj
· exp

[
β3 ·

(
ln
wi

wj

)3
]
· exp εij

ln aij = lnwi − lnwj + β3 · (lnwi − lnwj)
3 + εij .

We want to obtain estimates of w = (wi, . . . , wn)′ and β3. In order to do so, we
minimize the following objective function:

Q (w, β3) ,

n∑

i6=j=1

ε2ij =
n∑

i6=j=1

[
ln aij − lnwi + lnwj − β3 · (lnwi − lnwj)

3
]2
. (13)

We will indicate the objective function as Q(σ) in order to stress the dependence on the

asymptotic parameter σ; Q(0) is the objective function when σ = 0, while Q
(σ)
0 and Q

(0)
0

are the previous quantities when evaluated at the true parameters w0 and β3,0; it is clear

that Q
(0)
0 ≡ 0. When needed, we will write θ = (w, β3).

We make the following assumptions.

Ass. 1 The estimator θ̂ is obtained minimizing the function (13) under the constraint∑n
i=1wi = 1.

Ass. 2 Let E0 be the skew-symmetric matrix applying when w = w0 and β3 =

β3,0, with generic (i, j)−element ε0,ij . Let ε0 = ṽ (E0) the
((

n2−n
2

)
× 1
)

vec-

tor obtained stacking the subdiagonal elements of E0; ε0 is such that σ−1
ε0

D
−→

N

(
0, I( n2−n

2

)
)

. Asymptotic results are stated for σ ↓ 0.

Ass. 3 The parameter wi takes its value in the interval [εi, 1 − εi] for some εi > 0; the
parameter β belongs to a compact interval [βL, βU ]; the weights respect the equality∑n

i=1wi = 1. The parameter space is Θ = {
∏n

i=1 [εi, 1 − εi] ∩ {
∑n

i=1wi = 1}} ×
[βL, βU ]; moreover θ0 ∈ relintΘ = {

∏n
i=1 (εi, 1 − εi) ∩ {

∑n
i=1wi = 1}} × (βL, βU ).

We remark that the asymptotic parameter is σ and not n. This implies that even if
these results seem standard, they aren’t. In particular, normalizations through functions
of n are very important since different normalizations (e.g. by n and by n − 1) do
not lead to the same asymptotic behavior. We also remark that the requirement that
wi ∈ [εi, 1 − εi] is in line with Axiom 2 of Saaty (1986).

Consider the indexes 1 ≤ i, j ≤ n with i > j, and let k = (j − 1) · n + i − j(j+1)/2.
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Then we will need the
(
(n+ 1) ×

(
n2−n

2

))
matrix Q0 given by:

[Q0](h,k) = 4 · 1i=h ·

(
−

1

w0,i
−

3β0

w0,i
· (lnw0,i − lnw0,j)

2

)

+4 · 1j=h ·

(
1

w0,j
+

3β0

w0,j
· (lnw0,i − lnw0,j)

2

)
,

for 1 ≤ h ≤ n, 1 ≤ k ≤
(

n2−n
2

)
,

[Q0](n+1,k) = 4 · (lnw0,j − lnw0,i)
3

for 1 ≤ k ≤
(

n2−n
2

)
.

Matrix Q0 is such that Q̇
(σ)
0 = Q0 ·ε0, where ε0 is defined in Ass 2 (it can be checked

that the k−th element of ε0 is ε0,ij , where k = (j − 1) · n+ i− j(j+1)/2 and i > j).
The following Proposition shows that consistency and asymptotic normality (when

σ2 is known) hold for this estimator.

Proposition A.1. Under Ass. 1 and 3, the estimator θ̂ is weakly consistent for θ0 as
σ ↓ 0. Under Ass. 1-3 it has the following asymptotic distribution:

σ−1
(
θ̂ − θ0

)
D
−→ N

(
0, 16 · Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

n

)

where Dn is the ((n+ 1) × n) matrix Dn =

[
−
(
e′n−1, 0

)

In

]
.

Now we consider the situation in which σ is replaced by an estimator.

Proposition A.2. Under Ass. 1-3, the estimator:

σ̂2 =
1

n2 − 3n
·

n∑

i6=j=1

ε̂2ij

is asymptotically unbiased (in the sense that E
σ̂2

σ2 → 1) and has asymptotic distribution:

(
n2 − 3n

2

)
·
σ̂2

σ2
→D χ2

(
n2 − 3n

2

)
.

Consider a full row rank (m× (n+ 1)) matrix Γ. Then:

(
θ̂ − θ0

)′
Γ′
{
ΓDn (D′

nQ0Q
′
0Dn)−1

D′
nΓ

′
}−1

Γ
(
θ̂ − θ0

)

16σ̂2m
→D F

(
m,

n2 − 3n

2

)
.

When m = 1, in particular:

Γ
(
θ̂ − θ0

)

4σ̂
{
ΓDn (D′

nQ0Q
′
0Dn)−1

D′
nΓ

′
}1/2

→D t

(
n2 − 3n

2

)
.
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Consider the residual ε̂ij with i > j. Let ek be the ((n+ 1) × 1) vector with 1 in the
k−th position and all other components equal to 0. Then the following result holds with
k = (j − 1) · n+ i− j (j + 1) /2:

ε̂ij

σ̂ ·
√

1 − e′kQ
′
0Dn (D′

nQ0Q
′
0Dn)−1

D′
nQ0ek

→D t

(
n2 − 3n

2

)
.

Proof of Proposition A.1. We start with a result of consistency. When σ = 0,
ln aij = lnw0,i − lnw0,j − β0 · (lnw0,i − lnw0,j)

3; thus when σ ↓ 0, we have

Q(σ) (w, β) −Q(0) (w, β) = 2
n∑

i6=j=1

ε0,ij ·
[
lnw0,i − lnw0,j + β0 · (lnw0,i − lnw0,j)

3
]

−2
n∑

i6=j=1

ε0,ij ·
[
lnwi − lnwj + β · (lnwi − lnwj)

3
]

+
n∑

i6=j=1

ε20,ij .

This converges uniformly in probability to 0 under Ass. 3 when as σ ↓ 0. Q(0) is
continuous on a compact space and is uniquely minimized at wi = w0,i and β = β0.
Therefore Theorem 2.1 in Newey and McFadden (1994) applies.

For the asymptotic distribution, we reason in terms of θ̃ =
[

0n×1 In

]
· θ, that

is θ without the first component; remark that θ can be recovered as θ =

[
1

0n×1

]
+

[
−
(
e′n−1, 0

)

In

]
θ̃. Therefore, the gradient and the Hessian are ∂Q(σ)

∂θ̃
= D′

n · ∂Q(σ)

∂θ

and ∂2Q(σ)

∂θ̃∂θ̃
′ = D′

n · ∂2Q(σ)

∂θ∂θ
′ · Dn. A limited development of the first order conditions

∂Q(σ)

∂θ̃

(̂̃
θ

)
= 0 yields:

∂Q
(σ)
0

∂θ̃
+
∂2Q(σ)

∂θ̃∂θ̃
′ (θ⋆) ·

(̂̃
θ − θ̃0

)
= 0

σ−1
(̂̃
θ − θ̃0

)
= −

(
∂2Q(σ)

∂θ̃∂θ̃
′ (θ⋆)

)−1

· σ−1∂Q
(σ)
0

∂θ̃
.

Therefore the distribution of σ−1
(
θ̂ − θ0

)
can be obtained as:

σ−1
(
θ̂ − θ0

)
= −Dn

(
D′

n ·
∂2Q(σ)

∂θ∂θ
′ (θ⋆) · Dn

)−1

D′
n · σ−1∂Q

(σ)
0

∂θ
.

In the following we will indicate respectively the gradient and the Hessian with respect
to θ with one and two dots. We start from the behavior of the gradient.
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The gradient is:

∂Q(σ) (w, β)

∂β
= −2 ·

n∑

i6=j=1

(
ln aij − lnwi + lnwj − β · (lnwi − lnwj)

3
)
· (lnwi − lnwj)

3

∂Q(σ) (w, β)

∂wi
= −4 ·

∑

j∈{1,...,n}\i

(
ln aij − lnwi + lnwj − β · (lnwi − lnwj)

3
)

wi

·
[
1 + 3β · (lnwi − lnwj)

2
]
.

Now we consider Q̇
(σ)
0 :

∂Q(σ) (w0, β0)

∂β
= −2 ·

n∑

i6=j=1

εij,0 · (lnwi,0 − lnwj,0)
3

∂Q(σ) (w0, β0)

∂wi
= −4 ·

∑

j∈{1,...,n}\i

εij,0
wi,0

·
[
1 + 3β0 · (lnwi,0 − lnwj,0)

2
]
.

The fact that Q̇
(σ)
0 = Q0 · ε0 implies that V

(
σ−1Q̇

(σ)
0

)
= Q0Q

′
0 and σ−1Q̇

(σ)
0 = Q0 ·

σ−1
ε0 →D N (0,Q0Q

′
0)

The asymptotic Hessian for σ ↓ 0 is:

∂2Q(σ) (w, β, λ)

∂β2
→

∂2Q(0) (w, β, λ)

∂β2
= 2 ·

n∑

i6=j=1

(
ln
wi

wj

)6

∂2Q(σ) (w, β, λ)

∂w2
i

→
∂2Q(0) (w, β, λ)

∂w2
i

= 4 ·
∑

j∈{1,...,n}\i

1

w2
i

·

(
1 + 3β ·

(
ln
wi

wj

)2
)2

∂2Q(σ) (w, β, λ)

∂wi∂wj
→

∂2Q(0) (w, β, λ)

∂wi∂wj
= −4 ·

1

wiwj
·

[
1 + 3β ·

(
ln
wi

wj

)2
]2

∂2Q(σ) (w, β, λ)

∂wi∂β
→

∂2Q(0) (w, β, λ)

∂wi∂β
= 4 ·

∑

j∈{1,...,n}\i

(
ln wi

wj

)3

wi
·

[
1 + 3β ·

(
ln
wi

wj

)2
]

.
Under Ass. 2 and 3 convergence is uniform. Therefore, we have V

(
Q̇

(σ)
0

)
= σ2 ·

Q0Q
′
0 = 4σ2 · Q̈

(0)
0 , that is the variance of the gradient is 4σ2 the limiting Hessian.

Therefore:

σ−1
(
θ̂ − θ0

)
= −Dn

(
D′

n ·
∂2Q(σ)

∂θ∂θ
′ (θ⋆) · Dn

)−1

D′
n · σ−1∂Q

(σ)
0

∂θ

∼ −4 · Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

nQ0 ·
ε0

σ

σ−1
(
θ̂ − θ0

)
→D N

(
0, 16 · Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

n

)
.
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Remark that θ0 can be replaced by any consistent estimator such as θ̂.
Proof of Proposition A.2. Let E be the skew-symmetric matrix with generic (i, j)−element

εij = ln aij − lnwi + lnwj − β · (lnwi − lnwj)
3; consider the

((
n2−n

2

)
× 1
)

vector ε =

ṽ (E). A limited development around ε0 can then be obtained as ε ∼ ε0 + ∂ε

∂θ
′ · (θ − θ0).

Through direct computation, it is simple to show the equality ∂ε

∂θ
′ = 1

4 · Q0, so that

through Proposition A.1 ε̂ ∼ ε0 + ∂ε

∂θ
′ ·
(
θ̂ − θ0

)
becomes:

ε̂ ∼ ε0 − Q0Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

nQ0 · ε0

=
{
In(n−1)

2

− Q′
0Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

nQ0

}
· ε0

This implies:

V (ε̂) ∼ σ2 ·
{
In(n−1)

2

− Q′
0Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

nQ0

}
.

On the other hand:

n∑

i6=j=1

ε̂2ij
σ2

=
2ε̂

′
ε̂

σ2
∼ 2 ·

ε
′
0

σ
·
{
In(n−1)

2

− Q′
0Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

nQ0

}
·
ε0

σ
.

Therefore:

E




n∑

i6=j=1

ε̂2ij
σ2


 ∼ 2 · Etr

{
In(n−1)

2

− Q′
0Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

nQ0

}

= n (n− 1) − 2tr
(
Q′

0Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

nQ0

)

= n2 − 3n.

We consider the estimator:

σ̂2 =
1

n2 − 3n
·

n∑

i6=j=1

ε̂2ij .

Clearly this estimator is asymptotically unbiased.
The matrix A1 = In(n−1)

2

−Q′
0Dn (D′

nQ0Q
′
0Dn)−1

D′
nQ0 is idempotent and has rank

equal to its trace, that is n2−3n
2 . The asymptotic distribution is:

(
n2 − 3n

2

)
·
σ̂2

σ2
=

1

2

n∑

i6=j=1

ε̂2ij
σ2

∼
ε
′
0

σ
·
{
In(n−1)

2

− Q′
0Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

nQ0

}
·
ε0

σ
→D χ2

(
n2 − 3n

2

)
.

Now we work out the distribution of a vector of linear combinations of the regression

parameters. Consider the k combinations σ−1Γ
(
θ̂ − θ0

)
of the regression parameters θ̂
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represented by the (m× (n+ 1)) matrix Γ, of full row rank. Remark that the quadratic

form
(

n2−3n
2

)
· σ̂2

σ2 is asymptotically independent of the linear form σ−1Γ
(
θ̂ − θ0

)
.

From:

σ−2
(
θ̂ − θ0

)′
Γ′
{

V

[
σ−1 · Γ

(
θ̂ − θ0

)]}−1
Γ
(
θ̂ − θ0

)

∼
1

16σ2
·
(
θ̂ − θ0

)′
Γ′
{
ΓDn

(
D′

nQ0Q
′
0Dn

)−1
D′

nΓ
′
}−1

Γ
(
θ̂ − θ0

)
→D χ2 (k)

we get:

(
θ̂ − θ0

)′
Γ′
{
ΓDn (D′

nQ0Q
′
0Dn)−1

D′
nΓ

′
}−1

Γ
(
θ̂ − θ0

)

16σ̂2m

→ D

χ2(m)/m

χ2
(

n2−3n
2

)
/
(

n2−3n
2

) = F

(
m,

n2 − 3n

2

)
.

When m = 1, in particular:

{
ΓDn (D′

nQ0Q
′
0Dn)−1

D′
nΓ

′
}−1/2

Γ
(
θ̂ − θ0

)

4σ̂
→D t

(
n2 − 3n

2

)
.

At last, we develop the distribution of the residuals. Consider ε̂ij = e′kε̂ where ek is a
vector of zeros with 1 at position k = (j − 1) · n+ i− j(j+1)/2:

σ−1 · ε̂ij ∼ N
(
0, 1 − e′kQ

′
0Dn

(
D′

nQ0Q
′
0Dn

)−1
D′

nQ0ek

)

ε̂ij

σ ·
√

1 − e′kQ
′
0Dn (D′

nQ0Q
′
0Dn)−1

D′
nQ0ek

→D N (0, 1) .

If we replace σ with σ̂, we get:

ε̂ij

σ̂ ·
√

1 − e′kQ
′
0Dn (D′

nQ0Q
′
0Dn)−1

D′
nQ0ek

→D t

(
n2 − 3n

2

)
.

B Estimates of the Experiment

Table 1: Estimates by various methods of the subjects’ priority vector (w1, . . . , wn, )

Subj. Model w1 w2 w3 w4 w5 β3

1 ME 0.04129063 0.0708945 0.1106584 0.2036664 0.5734901

LLSM 0.04172535 0.07419514 0.1124588 0.2052478 0.5663729

SRPA 0.01916008 0.03929491 0.06892905 0.1491650 0.723451 -0.03566354

(0.00516022) (0.01029210) (0.01680887) (0.03197533) (0.05581976) (0.00468128)

[0.00061943]
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Table 1: continued

Subj. Model w1 w2 w3 w4 w5 β3

2 ME 0.02628716 0.05072505 0.1641858 0.2226889 0.5361131

LLSM 0.02570832 0.04985564 0.1595814 0.2418801 0.5229745

SRPA 0.006490734 0.02097762 0.1079738 0.2023028 0.662255 -0.0268643

(0.00245435) (0.00696277) (0.02666896) (0.04466031) (0.06218403) (0.00339927)

[0.00052191]

3 ME 0.02583643 0.03622918 0.08717453 0.2057127 0.6450472

LLSM 0.02691077 0.04206622 0.09409599 0.2146092 0.6223179

SRPA 0.004766087 0.008671295 0.02841957 0.1019029 0.8562402 -0.02315544

(0.00243196) (0.00455861) (0.01454140) (0.04677840) (0.06284450) (0.00354627)

[0.00126041]

4 ME 0.03954093 0.06899994 0.1628576 0.2706986 0.4579029

LLSM 0.03912404 0.06669853 0.1602265 0.2753927 0.4585582

SRPA 0.01841276 0.04332897 0.1342935 0.2662853 0.5376794 -0.03794797

(0.00516649) (0.00988510) (0.02211231) (0.03728890) (0.05014453) (0.00559486)

[0.00105957]

5 ME 0.03959574 0.0825392 0.1585573 0.2907122 0.4285957

LLSM 0.03703162 0.0765722 0.1445817 0.2752335 0.4665809

SRPA 0.006164041 0.03141557 0.09944917 0.3900263 0.4729449 -0.03624931

(0.00424253) (0.01825205) (0.04228243) (0.09480283) (0.09990390) (0.00917698)

[0.01085047]

6 ME 0.03424897 0.03961011 0.1187271 0.211999 0.5954148

LLSM 0.03642007 0.04338934 0.1251956 0.2141063 0.5808887

SRPA 0.01025982 0.01192563 0.05334017 0.1271143 0.79736 -0.02886232

(0.00513872) (0.00600363) (0.02487535) (0.05367914) (0.07966364) (0.00505655)

[0.00230541]

7 ME 0.03602147 0.0914084 0.09467922 0.2100932 0.5677977

LLSM 0.0361625 0.09567082 0.0977082 0.2124507 0.5580078

SRPA 0.01816898 0.06282722 0.06562521 0.1695388 0.6838398 -0.03252466

(0.00461637) (0.01355458) (0.01405381) (0.03070741) (0.05192648) (0.0049152)

[0.00118624]

8 ME 0.07810686 0.04265432 0.1980524 0.2266181 0.4545683

LLSM 0.06641183 0.04325354 0.1961923 0.2155291 0.4786132

SRPA 0.06101148 0.03823877 0.1881922 0.2109741 0.5015834 -0.01561739

(0.03464129) (0.02786233) (0.06978067) (0.07484325) (0.14375560) (0.06298271)

[0.81402440]

9 ME 0.04380688 0.08279949 0.1712654 0.2653895 0.4367387

LLSM 0.04421443 0.08348458 0.1709491 0.2652866 0.4360653

SRPA 0.04053150 0.08014656 0.1673619 0.2644088 0.4475512 -0.01284905

(0.00796735) (0.01038654) (0.01618932) (0.02137739) (0.03435552) (0.02207040)

[0.58570480]
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Table 1: continued

Subj. Model w1 w2 w3 w4 w5 β3

10 ME 0.03965914 0.09661405 0.1725403 0.2735888 0.4175977

LLSM 0.03986529 0.09670542 0.1723873 0.2758946 0.4151474

SRPA 0.03246532 0.0880511 0.1637548 0.2734765 0.4422523 -0.02393819

(0.00994344) (0.01603886) (0.02421823) (0.03463748) (0.04916443) (0.02120898)

[0.31025730]

11 ME 0.05542534 0.09114355 0.1488258 0.219417 0.4851884

LLSM 0.05682476 0.09340581 0.1535360 0.2197052 0.4765282

SRPA 0.0351334 0.06451847 0.1198285 0.1906863 0.5898333 -0.05286325

(0.00881806) (0.01461234) (0.02336027) (0.03313632) (0.06198701) (0.01045049)

[0.00390515]

12 ME 0.03102907 0.04571794 0.09514932 0.3582529 0.4698508

LLSM 0.03096251 0.04743282 0.09326362 0.3571193 0.4712217

SRPA 0.008669132 0.01651892 0.04786312 0.3342732 0.5926756 -0.02912672

(0.00188644) (0.00362494) (0.00865897) (0.03490794) (0.03790180) (0.00190965)

[0.00002197]

13 ME 0.03439497 0.04945492 0.1281071 0.2585371 0.529506

LLSM 0.03442574 0.05015303 0.1276154 0.2638769 0.523929

SRPA 0.01352831 0.02404054 0.08411951 0.2220423 0.6562693 -0.03111255

(0.00249105) (0.00421156) (0.01162079) (0.02530579) (0.03453735) (0.00240081)

[0.00048764]

14 ME 0.118193 0.1956172 0.0786651 0.1953216 0.412203

LLSM 0.1002870 0.205355 0.09467973 0.1909118 0.4087665

SRPA 0.01919027 0.1006695 0.03702765 0.06936455 0.773748 -0.06911407

(0.01399486) (0.09252098) (0.03073148) (0.06317346) (0.19233930) (0.03331963)

[0.09273423]

15 ME 0.05526368 0.07712407 0.177081 0.2290141 0.4615172

LLSM 0.0560352 0.07668478 0.1739160 0.2294835 0.4638806

SRPA 0.03296243 0.0519529 0.1436594 0.2093331 0.5620922 -0.05112254

(0.01002867) (0.01437588) (0.02984952) (0.03955660) (0.06817072) (0.01144384)

[0.00659601]

16 ME 0.02631965 0.03993277 0.1049874 0.2902212 0.538539

LLSM 0.02676726 0.04153865 0.1027419 0.2883822 0.5405699

SRPA 0.004885648 0.01054933 0.04489413 0.2347508 0.7049201 -0.02514762

(0.00238254) (0.00520409) (0.01844219) (0.07011547) (0.08014366) (0.00363817)

[0.00097154]

17 ME 0.03419073 0.05062252 0.1991733 0.278945 0.4370685

LLSM 0.03433243 0.05066689 0.1967061 0.2814804 0.4368141

SRPA 0.01430529 0.02698342 0.1613546 0.2791007 0.518256 -0.03366923

(0.00313376) (0.00521186) (0.01723731) (0.02596455) (0.03311462) (0.00286178)

[0.00007803]

34



Table 1: continued

Subj. Model w1 w2 w3 w4 w5 β3

18 ME 0.03582386 0.04708124 0.1056337 0.2332736 0.5781877

LLSM 0.03583778 0.04892269 0.1120414 0.2389275 0.5642706

SRPA 0.01189003 0.02036089 0.0586934 0.1612880 0.7477676 -0.02999754

(0.00254683) (0.00433972) (0.01119177) (0.02640995) (0.03846036) (0.00245904)

[0.00000654]

19 ME 0.03680229 0.04439121 0.1384403 0.2379025 0.5424637

LLSM 0.03674372 0.04409448 0.1431017 0.2425886 0.5334715

SRPA 0.01336694 0.02037039 0.09324938 0.1822217 0.6907915 -0.03079098

(0.00359147) (0.00532217) (0.01904024) (0.03313657) (0.04956805) (0.00337846)

[0.00026628]

20 ME 0.0379017 0.09820258 0.1797497 0.2772508 0.4068952

LLSM 0.03817232 0.09913269 0.1804774 0.276235 0.4059826

SRPA 0.02910284 0.09026181 0.172718 0.2757089 0.4322084 -0.02670483

(0.00575042) (0.00995761) (0.01547555) (0.02168919) (0.02951034) (0.01109777)

[0.06114102]

21 ME 0.1243080 0.1427924 0.1884158 0.2164329 0.3280509

LLSM 0.1243080 0.1427924 0.1884158 0.2164329 0.3280509

SRPA 0.09558736 0.1133592 0.1654336 0.1964584 0.4291615 -0.246865

(0.01742286) (0.02087584) (0.02810807) (0.03147202) (0.07273991) (0.06898243)

[0.01589728]

22 ME 0.04697142 0.1131730 0.2076236 0.2076236 0.4246084

LLSM 0.04676154 0.1126123 0.2076814 0.2076814 0.4252634

SRPA 0.04360901 0.1100425 0.2063675 0.2063675 0.4336135 -0.01259874

(0.00530785) (0.00769640) (0.01159768) (0.01159768) (0.02134560) (0.01675300)

[0.48590660]

23 ME 0.04366988 0.0751404 0.1425024 0.2676959 0.4709914

LLSM 0.04339587 0.0755566 0.1426641 0.2693748 0.4690087

SRPA 0.02899676 0.05969662 0.1239616 0.2574097 0.5299354 -0.03434922

(0.00118869) (0.00192361) (0.00318029) (0.00538030) (0.00807965) (0.00164328)

[0.00046417]

24 ME 0.0711349 0.09426032 0.1474914 0.2817728 0.4053406

LLSM 0.07061233 0.09317353 0.1495885 0.2824493 0.4041763

SRPA 0.04211116 0.06736587 0.1220367 0.2665333 0.501953 -0.07312354

(0.00836280) (0.01217722) (0.01788685) (0.03074827) (0.04583395) (0.01105655)

[0.00118908]

25 ME 0.03421998 0.04908188 0.1668968 0.2469100 0.5028913

LLSM 0.03420684 0.04942891 0.1677349 0.2507546 0.4978747

SRPA 0.01459324 0.02637093 0.1266597 0.2187408 0.6136354 -0.03153449

(0.00242082) (0.00399123) (0.01324903) (0.02044830) (0.02981471) (0.00235705)

[0.00041742]
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Table 1: continued

Subj. Model w1 w2 w3 w4 w5 β3

26 ME 0.08639348 0.06220666 0.1090458 0.2230819 0.5192722

LLSM 0.07642455 0.06134916 0.1018316 0.2073463 0.5530483

SRPA 0.07440574 0.05988523 0.09989507 0.2049374 0.5608766 -0.005273608

(0.04860630) (0.04390933) (0.05721311) (0.08543718) (0.19929680) (0.11580110)

[0.96543960]

27 ME 0.1313191 0.03033239 0.2633019 0.1701323 0.4049143

LLSM 0.1274945 0.03797291 0.2854408 0.1312711 0.4178207

SRPA 0.08293897 0.01630948 0.2972459 0.1187186 0.484787 -0.04267262

(0.0644448) (0.02167591) (0.16642160) (0.08387341) (0.20481290) (0.02586954)

[0.15995240]

28 ME 0.03724576 0.0672826 0.1934432 0.2536117 0.4484167

LLSM 0.03741405 0.06680075 0.194327 0.256416 0.4450422

SRPA 0.01390006 0.03619523 0.1549768 0.2374581 0.5574698 -0.03885975

(0.00467339) (0.01009202) (0.02916613) (0.04048124) (0.05698635) (0.00536051)

[0.00078007]

29 ME 0.05947937 0.1136486 0.1540947 0.2672144 0.405563

LLSM 0.0601973 0.1136630 0.1535542 0.2673534 0.405232

SRPA 0.05059017 0.1066557 0.1444181 0.2668051 0.4315310 -0.03926962

(0.01241821) (0.01709790) (0.02042155) (0.03066031) (0.04753027) (0.03283786)

[0.28536400]

30 ME 0.05256206 0.08387636 0.2226623 0.2330976 0.4078017

LLSM 0.05218784 0.0837867 0.2234816 0.2336812 0.4068626

SRPA 0.03594672 0.06948397 0.2169497 0.2239887 0.4536309 -0.04617491

(0.00300314) (0.00419048) (0.00848960) (0.00869274) (0.01437468) (0.00478404)

[0.00020256]

31 ME 0.04132681 0.1017848 0.2112218 0.2396299 0.4060367

LLSM 0.04127759 0.1015226 0.2123121 0.2387972 0.4060905

SRPA 0.03030898 0.09157548 0.2074739 0.2334032 0.4372385 -0.03225136

(0.00421862) (0.00712069) (0.01248610) (0.01362360) (0.02102073) (0.00770109)

[0.00858921]

32 ME 0.05539319 0.08967754 0.1540355 0.2534363 0.4474574

LLSM 0.05522681 0.08953515 0.1538905 0.2529578 0.4483897

SRPA 0.04321040 0.07804835 0.1417718 0.2486166 0.4883529 -0.03796704

(0.00511773) (0.00707535) (0.01026570) (0.01491932) (0.02495058) (0.00990710)

[0.01222328]

33 ME 0.03735165 0.06065903 0.1170628 0.2504509 0.5344757

LLSM 0.03734766 0.06139029 0.1195450 0.2524533 0.5292637

SRPA 0.01936088 0.03813114 0.08747908 0.2102903 0.6447387 -0.03169708

(0.00323886) (0.00576379) (0.01112909) (0.02213795) (0.03371001) (0.00323822)

[0.00018939]
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Table 1: continued

Subj. Model w1 w2 w3 w4 w5 β3

34 ME 0.0985663 0.0985663 0.1763024 0.3132825 0.3132825

LLSM 0.09863931 0.09863931 0.1758347 0.3134433 0.3134433

SRPA 0.07749908 0.07749908 0.1626110 0.3411956 0.3411953 -0.117799

(0.00000047) (0.00000047) (0.00000055) (0.00000101) (0.00000101) (0.00000102)

[0.00000000]

35 ME 0.07009935 0.1088047 0.1752197 0.2037169 0.4421594

LLSM 0.06978948 0.1083025 0.1738778 0.2044941 0.4435361

SRPA 0.06440575 0.1035366 0.1704232 0.2002767 0.4613577 -0.02638769

(0.01127913) (0.01359067) (0.01807811) (0.01987816) (0.04299553) (0.03930063)

[0.53171210]

36 ME 0.03574621 0.09848842 0.2133273 0.2470735 0.4053646

LLSM 0.03573016 0.09884118 0.2143809 0.246259 0.4047887

SRPA 0.02717614 0.09058508 0.2098656 0.2398813 0.4324919 -0.02481461

(0.00454401) (0.00801239) (0.01434302) (0.01580614) (0.02371722) (0.00878543)

[0.03691183]

37 ME 0.04986753 0.05904872 0.2106950 0.2813668 0.399022

LLSM 0.0504573 0.05934178 0.2115656 0.2791625 0.3994729

SRPA 0.07894669 0.08757942 0.2216829 0.2703329 0.3414582 0.2572728

(0.02088205) (0.01978443) (0.01369105) (0.01499456) (0.04041080) (0.33350180)

[0.47531130]

38 ME 0.06005359 0.06900756 0.2260894 0.287187 0.3576624

LLSM 0.06050393 0.06950076 0.2255538 0.2869629 0.3574786

SRPA 0.06457479 0.07375251 0.2266955 0.2852187 0.3497585 0.02361672

(0.01861330) (0.01795956) (0.01766713) (0.02128090) (0.03769352) (0.11015600)

[0.83870960]

39 ME 0.05098402 0.04685101 0.1199987 0.2890309 0.4931354

LLSM 0.05260404 0.04815507 0.121153 0.2910396 0.4870483

SRPA 0.02020586 0.01908973 0.06918481 0.2406134 0.6509062 -0.03917061

(0.00429399) (0.00405688) (0.01230212) (0.03225512) (0.04162073) (0.00331436)

[0.00007634]

40 ME 0.04510774 0.07856545 0.1394286 0.2399333 0.4969649

LLSM 0.04675109 0.0776699 0.136988 0.246197 0.492394

SRPA 0.01801508 0.03367796 0.08453871 0.1910886 0.6726797 -0.04481222

(0.00816371) (0.01509117) (0.03340520) (0.06498136) (0.09883743) (0.00966985)

[0.00566214]

41 ME 0.02964577 0.05384828 0.1717498 0.2296569 0.5150992

LLSM 0.02940533 0.05436467 0.1754407 0.2337654 0.5070239

SRPA 0.01007403 0.02676122 0.1252396 0.1958673 0.6420579 -0.02990095

(0.00292669) (0.00677522) (0.02335486) (0.03369758) (0.05052168) (0.00338752)

[0.00030910]
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Table 1: continued

Subj. Model w1 w2 w3 w4 w5 β3

42 ME 0.03335678 0.05675491 0.1321911 0.2501153 0.527582

LLSM 0.03320838 0.05707763 0.1352357 0.2545456 0.5199327

SRPA 0.01117187 0.02639897 0.08565307 0.203935 0.6728411 -0.03201326

(0.00339976) (0.00750210) (0.01992268) (0.04064223) (0.05693059) (0.00392342)

[0.00044927]

43 ME 0.02990993 0.04213677 0.1473065 0.2505858 0.530061

LLSM 0.03046376 0.0435927 0.1492476 0.2565225 0.5201734

SRPA 0.009149535 0.01596293 0.08953594 0.2028206 0.682531 -0.028705

(0.00262503) (0.00444129) (0.01860254) (0.03658470) (0.04948919) (0.00285688)

[0.00016709]

44 ME 0.04153540 0.06615878 0.1603843 0.2219270 0.5099946

LLSM 0.04254179 0.06830013 0.1606527 0.2298890 0.4986163

SRPA 0.02549878 0.04786479 0.1379374 0.2004536 0.5882455 -0.03575434

(0.00809625) (0.01305157) (0.02861683) (0.03804588) (0.06539195) (0.00929047)

[0.01201946]

45 ME 0.06140871 0.1099535 0.20776 0.2559947 0.3648831

LLSM 0.06209589 0.1106923 0.2090064 0.2543041 0.3639013

SRPA 0.06548954 0.1127750 0.2095016 0.2536183 0.3586155 0.02167581

(0.01561218) (0.01510286) (0.01975992) (0.02200422) (0.03738973) (0.10067060)

[0.83802960]

46 ME 0.07736575 0.0791885 0.1875765 0.2319334 0.4239359

LLSM 0.07773487 0.07939028 0.1867385 0.2326259 0.4235104

SRPA 0.06059107 0.05887027 0.1713362 0.2148802 0.4943223 -0.06387362

(0.01218636) (0.01196106) (0.02287556) (0.02656211) (0.05092063) (0.01817074)

[0.01700615]

47 ME 0.05197311 0.07875992 0.2198869 0.2457468 0.4036332

LLSM 0.0517144 0.07838438 0.2214543 0.2452753 0.4031717

SRPA 0.03302500 0.0615924 0.2145860 0.2345289 0.4562677 -0.04833492

(0.00459371) (0.00645725) (0.01380052) (0.01475431) (0.02313145) (0.00635565)

[0.00062450]

48 ME 0.04246682 0.08008809 0.2233581 0.2318353 0.4222517

LLSM 0.04244599 0.08014545 0.2235258 0.2318269 0.4220558

SRPA 0.03627382 0.07405743 0.2203308 0.2276673 0.4416707 -0.02029807

(0.00246653) (0.00325978) (0.00632393) (0.00646015) (0.01103379) (0.00591974)

[0.01865811]

49 ME 0.05646834 0.1045575 0.1595529 0.2407516 0.4386697

LLSM 0.05677564 0.1043773 0.1582063 0.2397960 0.4408448

SRPA 0.04842568 0.09603027 0.1506398 0.236304 0.4686003 -0.03215048

(0.00809881) (0.01125355) (0.01489357) (0.01999069) (0.03522961) (0.02017440)

[0.17190060]
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Table 1: continued

Subj. Model w1 w2 w3 w4 w5 β3

50 ME 0.07701049 0.08687491 0.1804432 0.2588493 0.3968221

LLSM 0.07738633 0.08775351 0.1796905 0.2571315 0.3980382

SRPA 0.06545127 0.07455711 0.1682683 0.2564771 0.4352462 -0.05742063

(0.01363891) (0.01435853) (0.02071041) (0.02658462) (0.04726433) (0.03421988)

[0.15419040]

51 ME 0.02619319 0.03972608 0.1091969 0.2424197 0.5824641

LLSM 0.02675197 0.04151492 0.1128038 0.2484714 0.5704579

SRPA 0.005480701 0.01154233 0.04915994 0.1661737 0.7676434 -0.02490111

(0.00261880) (0.00552472) (0.02054254) (0.05891411) (0.07553016) (0.00377406)

[0.00120198]

52 ME 0.04867407 0.09002774 0.2039273 0.2315724 0.4257984

LLSM 0.04874113 0.08988917 0.2038626 0.2311734 0.4263337

SRPA 0.04449563 0.08621614 0.2015158 0.2286105 0.4391619 -0.01612111

(0.00541855) (0.00684143) (0.01134404) (0.012263050) (0.02183840) (0.01596779)

[0.35901900]

53 ME 0.04930247 0.09547731 0.2065928 0.2354418 0.4131856

LLSM 0.04945857 0.09537517 0.2068634 0.2345761 0.4137267

SRPA 0.04568355 0.09195999 0.2050354 0.2325483 0.4247728 -0.01536264

(0.00592496) (0.00742020) (0.01191965) (0.01289063) (0.02240267) (0.01862329)

[0.44697430]

54 ME 0.05478022 0.08545023 0.1517679 0.2496663 0.4583353

LLSM 0.05449409 0.08518374 0.1518488 0.2496017 0.4588718

SRPA 0.04265518 0.07472437 0.1395797 0.2445896 0.4984511 -0.03546789

(0.00586220) (0.008014250) (0.01187927) (0.01720338) (0.02934512) (0.01120431)

[0.02493896]

55 ME 0.06785552 0.1021570 0.2057980 0.2260366 0.3981529

LLSM 0.06760769 0.1011599 0.2071423 0.22464 0.3994501

SRPA 0.05277203 0.08989176 0.2008313 0.2195110 0.4369939 -0.05809331

(0.00850703) (0.01071121) (0.01706134) (0.01816203) (0.03260006) (0.01930451)

[0.02977906]

56 ME 0.05707625 0.09748253 0.2363964 0.2698964 0.3391485

LLSM 0.0576019 0.09795583 0.2358996 0.2709775 0.3375651

SRPA 0.04584295 0.0885473 0.2349682 0.278719 0.3519225 -0.0465344

(0.01348691) (0.01508112) (0.02436956) (0.02814947) (0.03566497) (0.03376442)

[0.22661900]

57 ME 0.02899733 0.03771295 0.149102 0.3044785 0.4797092

LLSM 0.03018718 0.03970696 0.1452655 0.2982098 0.4866305

SRPA 0.005840981 0.009639123 0.07725994 0.2953153 0.6119446 -0.02768686

(0.00267854) (0.00446383) (0.02338546) (0.06267345) (0.07005612) (0.00360897)

[0.00059968]
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Table 1: continued

Subj. Model w1 w2 w3 w4 w5 β3

58 ME 0.06527027 0.0910018 0.1768715 0.2623762 0.4044802

LLSM 0.06492536 0.0907432 0.1754231 0.2658918 0.4030165

SRPA 0.03384953 0.05971756 0.1466381 0.2584412 0.5013535 -0.07106378

(0.00608018) (0.00953986) (0.01709514) (0.02591097) (0.03711853) (0.00801698)

[0.00030384]

59 ME 0.04093548 0.2590007 0.06375906 0.2566673 0.3796375

LLSM 0.05272539 0.2525224 0.08865427 0.2334321 0.3726658

SRPA 0.01245671 0.3020141 0.05842126 0.2855809 0.341527 -0.05404574

(0.02157024) (0.15371160) (0.06061038) (0.14935060) (0.16341240) (0.03914380)

[0.22590080]

60 ME 0.07568192 0.08585216 0.2115315 0.2722892 0.3546452

LLSM 0.0779401 0.0874453 0.2105879 0.2778724 0.3461543

SRPA 0.05321041 0.05362012 0.1978015 0.2850018 0.4103662 -0.09278795

(0.02104277) (0.02116285) (0.03555432) (0.04801921) (0.06095434) (0.02309015)

[0.01013575]

61 ME 0.1096824 0.1938939 0.2193648 0.2576942 0.2193648

LLSM 0.1106379 0.1926317 0.2212757 0.2541790 0.2212757

SRPA 0.07952625 0.1930009 0.2284706 0.2705317 0.2284706 -0.2947341

(0.03851621) (0.02142326) (0.02495234) (0.02771683) (0.02495234) (0.09127065)

[0.02322567]

62 ME 0.03269941 0.03914843 0.1140874 0.3051881 0.5088767

LLSM 0.03337364 0.04037852 0.1106154 0.3040078 0.5116247

SRPA 0.006949039 0.01107536 0.05270659 0.2746094 0.6546596 -0.02845276

(0.00269183) (0.00435183) (0.01640982) (0.05781842) (0.06466492) (0.00332706)

[0.00036006]

63 ME 0.03844505 0.05584371 0.1369972 0.3025894 0.4661246

LLSM 0.03862487 0.05676696 0.1327747 0.3011241 0.4707094

SRPA 0.01459137 0.02665779 0.09053726 0.3079189 0.5602947 -0.03693221

(0.00414683) (0.00722789) (0.01783269) (0.04349846) (0.05133930) (0.00406733)

[0.00027101]

64 ME 0.0869807 0.1388629 0.2268645 0.3107637 0.2365281

LLSM 0.0891365 0.1383261 0.2273738 0.3177899 0.2273738

SRPA 0.1422412 0.1676223 0.2271497 0.2441337 0.2188530 5.990984

(0.08644416) (0.04511194) (0.03884423) (0.07676963) (0.02478278) (36.88026)

[0.87731700]

65 ME 0.03230626 0.0683695 0.1387820 0.2783662 0.4821760

LLSM 0.03144746 0.0664103 0.1329390 0.29329 0.4759132

SRPA 0.0064899 0.02309557 0.07802701 0.2547423 0.6376453 -0.0320199

(0.00312160) (0.01031742) (0.02781419) (0.06807117) (0.08332007) (0.00544111)

[0.00201309]
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Table 1: continued

Subj. Model w1 w2 w3 w4 w5 β3

66 ME 0.04890132 0.07312151 0.2399679 0.2399679 0.3980414

LLSM 0.04862182 0.07275175 0.2411323 0.2411323 0.3963617

SRPA 0.02682540 0.05159574 0.2305677 0.2305680 0.4604432 -0.04860295

(0.00224534) (0.00337201) (0.00844658) (0.00844659) (0.01289868) (0.00252430)

[0.00000697]

67 ME 0.04743928 0.09487856 0.1791066 0.3203622 0.3582133

LLSM 0.04748162 0.09496324 0.1793072 0.3196335 0.3586144

SRPA 0.04534373 0.09312256 0.1779058 0.3224452 0.3611828 -0.008949557

(0.00568909) (0.00666839) (0.00937088) (0.01409979) (0.01623938) (0.02002046)

[0.67355870]

68 ME 0.05116532 0.09628559 0.2083451 0.2376999 0.4065041

LLSM 0.05128775 0.09629617 0.2088610 0.2368413 0.4067138

SRPA 0.04362916 0.08945698 0.2051869 0.2325557 0.4291713 -0.02889702

(0.00559622) (0.00730799) (0.01208610) (0.01315172) (0.02215205) (0.01447903)

[0.10248990]

69 ME 0.0891051 0.09826153 0.1767079 0.3533593 0.2825662

LLSM 0.09159645 0.09702114 0.1729501 0.3541452 0.2842871

SRPA 0.05170118 0.04194808 0.1322603 0.3789344 0.395156 -0.1121476

(0.01639990) (0.01288315) (0.02924278) (0.04825235) (0.04892556) (0.02198803)

[0.00376891]

In brackets standard errors; in square brackets p-values for estimates of β3.
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