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Abstract. Different from dense metals, many engineering materials exhibit pressure-sensitive yielding and plastic 
volumetric deformation. Adopting a yield criterion that contains a linear combination of the Mises stress and the 
hydrostatic stress, the analytic solutions of plane-stress mode I perfectly-plastic near-tip stress fields for pressure- 
sensitive materials are derived. Also, the relevant characteristic fields are presented. This perfectly plastic solution, 
containing a pressure sensitivity parameter #, is shown to correspond to the limit of low-hardening solutions, and when 
/~ = 0 it reduces to the perfectly plastic solution of near-tip fields for the Mises material given by Hutchinson [1]. The 
effects of material pressure sensitivity on the near-tip fields are discussed. 

1. Introduction 

Classical plasticity theory based on the Von Mises yield criterion assumes that the hydrostatic 
pressure has no effect on material plastic deformation, and hence plastic dilatancy is neglected. 
This theory is applicable mainly to dense metals. Different from dense metals, many engineering 
materials exhibit pressure-sensitive yielding and plastic volumetric deformation. They include 
rocks, concretes, soils, other porous materials and two important advanced materials - 
toughened polymer and ceramics. Experimental results and detailed discussion concerning the 
mechanical behavior of these materials can be found in Drucker [2], Spitzig and Richmond [3], 
Carapellucci and Yee [4], Sue and Yee [5], and Chen and Reyes Morel [6]. 

We adopt a simple pressure-sensitive yielding criterion that contains two stress invariants, the 
effective shear stress ~e and the hydrostatic stress #,,. The yield criterion is stated as 

~l(~ij) = ~e "[- l'2~m = Q, (1.1) 

where fe = (sijsij/2) 1/2, gij = ~ i j -  ffm~ij,#m = ~ / 3 ,  and O(aij) represents the current yield 
surface in the stress space. The material constant/~ measures the pressure sensitivity at yield. 
The characteristic yield strength Q can be taken to depend on the plastic work W p. 

A direct measurement of the pressure sensitivity factor # relies on shear experiments under 
pressure. It can be obtained from the difference between the compressive yield strength ffc and 
the tensile yield strength 6t through the relation (Needleman and Rice I-7]) 

(1.2) 

An alternative method to determine # is to perform compressive tests under pressure/5. Let ~o 
denote the compressive yield strength in the absence of pressure, and ~Yf denote the compressive 
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yield strength when superimposed by hydrostatic pressure/3. If the experimental data can be 
fitted by the linear relation 1-6] 6~ = 6 ° + ~i0, the factor/t  can be calculated according to 

¢ (i .3) # = x//33 + ~O • 

Note that the relations (1.2) and (1.3) give the same upper bound of #, equal to x/~. The 
experimental curves in 14] show that the factor ~ for glassy bisphenol A-polycarbonate is about 
0.14. For ZrO2-containing ceramics, Chen and Reyes Morel [6] reported that the constant ~O 
in (1.3) may approach 2.0, which corresponds to/~ = 0.69. 

Based on the theory of deformation plasticity and normality flow rule, the multiaxial 
stress-strain relation for pressure-sensitive dilatant materials has been generalized by Li and Pan 
[8] from a power law hardening relation. The corresponding incremental constitutive relation 
can be found in Rudnicki and Rice I-9] and [7]. 

From the viewpoint of phenomenological fracture mechanics, the initiation and growth of a 
crack depend on the surrounding stress and deformation fields near the tip. Therefore, analyses 
of the crack-tip stress and deformation fields are critical in relating continuum stress analyses 
to micromechanical failure mechanisms. The asymptotic crack-tip fields for the Mises materials 
have been presented by Hutchinson [1] and Rice and Rosengren [10]. The deformations of this 
well-known HRR fields are volume-preserving. An example of the HRR type crack-tip fields 
with volumetric deformation was presented by Hutchinson [11] for power-law creep materials 
undergoing creep-constrained grain boundary cavitation, and the dominance of this fields 
including the finite deformation effects was studied by Li, Needleman and Shih [12]. 

The hardening and non-hardening solutions of the crack tip fields for pressure-sensitive 
dilatant materials have been given by Li and Pan [8, 13] under plane strain and plane stress 
conditions. The plane-strain perfectly-plastic near-tip field solution in [8] is an analytic solution. 
However, the plane-stress perfectly-plastic near-tip field in [13] was obtained by a numerical 
calculation using a Newton-Raphson scheme together with a combined fourth fifth-order 
Runge-Kutta integration scheme. In this study, a linear stress characteristic relation for the 
pressure sensitive material is derived. Hence, the analytic solution of plane-stress perfectly- 
plastic near-tip fields is obtained. Also, the relevant characteristic fields are presented. This 
perfectly plastic solution, containing /~ as the pressure sensitivity parameter, is shown to 
correspond to the limit of the low-hardening solutions, and when /~ = 0 it reduces to the 
perfectly-plastic near-tip field solution given by [1]. 

2. The yield condition and the characteristic relation 

The yield condition for pressure-sensitive materials can be expressed as fe + #6,, = fo or 
6e + x/3#6,, = 60, where 6~ = x//3ge is the effective stress, ti o = x/~go, and go is the shear yield 
stress. Referred to a Cartesian coordinates (xl, x2), the yield condition for plane stress is written as 

f(a,j) = ~r e + w/3#a,, - 1 = (a~l + a~2 - all,r22 + 3a~2) i/2 + ~ 3 ( a l l  + a 2 2 ) - 1  = O. 

In (2.1) and throughout this paper, all unbarred stress quantities are normalized by fro. 

(2.1) 
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A general development of the theory of perfect plasticity has been given by Hill [14, p. 132, p. 
305]. This theory is used here to derive the stress characteristic relation for the pressure sensitive 
material under plane stress condition. Suppose that a curve C is a stress characteristic and let a, 
denote the normal stress component acting along the characteristic, a, the normal stress 
component acting across the characteristic, and a,, the shear stress. The condition for C to be a 
stress characteristic is 

Of 2a, - a. p 
- + ~ = 0. (2.2) 

2 a ~  Oa, ,/3 

The yield condition requires that 

a~ + ~ 3 ( a ,  + a . ) - i  = O. (2.3) 

Combining (2.2) and (2.3) gives the following relation on a stress characteristic: 

3 + 2# 2 ~/3/.t 
at = 2(3 - #2iO'n 3 -- #2" (2.4) 

Let ¢ denote the angle, at some point P on the characteristic C, between C and the other 
characteristic, say C', rotated from C to C' in the clockwise sense. With the help of the Mohr 
diagram, it is easy to show that 

2Crtn 
- - - .  (2.5) tan ¢ a. - a~ 

Equation (2.5) indicates that the two characteristic directions coincide when at, = 0. Note that 
the bisectors of the two angles made by the characteristics at a point give the directions of the 
two in-plane principal stresses. It is evident from (2.2) that when the normality flow rule of 
plasticity is in force the tangents to a stress characteristic correspond to the directions of zero 
rate of extension and the stress characteristics coincide with the velocity characteristics. 

Equation (2.4) is a general relation on the stress characteristics for materials that yield 
according to (2.1), and it will be used in the next section to derive the solution of the 
perfectly-plastic crack-tip stress fields. 

3. T h e  p e r f e c t l y  p la s t i c  c r a c k - t i p  s tress  f i e lds  

We consider the planar crack depicted in Fig. 1, where the Cartesian coordinates (xl, X2) and the 
associated polar coordinates (r, 0) are centered at the crack tip and the x3 axis lies perpendicular 
to the xl-x2 plane. 

Guided by the low hardening solutions for the pressure-sensitive materials in [13] and the 
perfectly plastic solution given by [1] for the Mises material for which /~ = 0 in (2.1), we 
construct the stress fields under plane stress and mode I (or symmetric) loading condition with 
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Fig. 1. The coordinates and the assembly of the crack-tip fields. The fields are composed of two constant stress (C. S.) 
sectors, and a centered fan (C. F.) sector. 

the assumption that the material near the crack tip is yielding over the entire angular range. The 
crack-tip field is composed of a centered fan sector in front of the crack and two constant stress 
sectors with one of them adjacent to the traction-free crack face, see Fig. 1. At the boundary 
between the two constant stress sectors, i.e. at 0 = 0B, there is a jump in the radial stress tr,r 
coming from the quadratic yield condition. This discontinuity in % is strongly suggested by our 
low hardening solutions [13], which will be briefly presented in Section 5. Some comments on 
stress discontinuity in perfect plasticity have been made in [1], and for more detailed discussion 
on this issue, see Hill 1-14, p. 157]. A general study of the structure of near tip fields for 
elastic-perfectly plastic materials can be found in Rice [15]. 

3.1. The analytic solution in the centered fan sector (0 <% 0 <~ Oc) 

For a perfectly plastic material, the stress near the tip is bounded. Hence, terms of the form 
r8au/t3r in the equilibrium equations must vanish as r ~ 0. Therefore, the equilibrium equations 
reduce to two ordinary differential equations [15]: 

dtrro 
dO = tr°° - tr,,, 

daoo 
- 2 ~ r r o .  

dO 

(3.1) 

In the fan sector, the radial lines emanating from the crack tip are characteristics, and, hence, 
c3f(au)/c3trrr = 0. The characteristic relation (2.4) becomes 

3 + 2~t 2 x ~ #  (3.2) 
a,, = 2(3 - #2) a°° 3 - -  ].12" 

Equation (3.2) when # = 0 reduces to % = ½tr0o which is the characteristic relation for material 
of the Mises yield condition given by Hill [16]. 

Now, the yield condition can be replaced by the characteristic equation (3.2), which is 
combined with the two equilibrium equations in (3.1), reducing the nonlinear problem to the 
solving of linear ordinary differential equations for the three unknown stress components. The 
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initial values of the stress components ,  aij(0), can be obtained from the yield condition, the 
characteristic relation (3.2), and the symmetry condition, i.e. a~o(O) = 0 for mode I loading. The 
results are 

(3 - /12)l /2 _ x/~/I 
G . ( o )  = 

(3 -- /12) _~_ %//3/1(3 -- /12)1/2' 

2 
tT00(0) (3.3) 

(3 -/12)1/2 + x/~/1' 

~,0(0)=0. 

Since there is no difficulty in solving of the linear O.D.E., in what follows we list the final 
results of the analytic solution in the centered fan sector. 

3 + 2/12 2x/~/1 
a~, = (3 -/12)1/2 (3 - 4/12) cos kO 3 - 4/12 

aoo - 3 - -  4/12 COS kO 3 - -  4/12 /1 < (3.4) 

( ~ r O  - -  

1 

(3 - 4 / 1 2 )  1 / 2  sin kO, 

o-. = - ~ 0 2  

aoo=2(1 -02) ( /1=-~) 

a,o = ]0, 

(3.5) 

f f  r r  = - -  

3 + 2/12 
(3 - / 1 2 ) 1 / 2 ( 4 / 1 2  - 3) cosh kO + 4---~ Z-3 

2(3 - / 1 2 ) 1 / 2  2x/~/1 
°'°° -- 4/12 3 cosh kO + - -  

- -  4 /12  - -  3 

sinh kO. O'r0 ---- (4/22 -- 3)1/2 

In (3.4) and (3.6), 

3 - 4/12 1/2 
k= 3_--s 7 (3.7) 

where I ' " [  denotes the absolute value. 
(3.4)-(3.6) satisfies the two equilibrium 
condition, a,o(O) = O. 

A direct substi tution can verify that the solution 
equations, the yield condition, and the symmetry 
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Note  that  the solution in (3.4)-(3.6) is cont inuous  with respect to /~ on the entire interval 

0 ~</~ < ,v/3, especially at ~t = x/3/2. When  # = 0, (3.4) reduces to the solution for material  of 
the Mises yield condit ion given by 1-16]. 

3.2. The  constant  s tress  sector I (OB < 0 <~ ~z) 

The traction-free condit ions at 0 = n and the yield condi t ion (2.1) give the stress solution in this 
sector: 

0"11 ~- - - f l ,  0"22 = 0"12 = 0 (3.8) 

o r  

0",, = -½fl(1 + cos 20), 0"oo = -½3(1 - cos 20), 0",0 = ½3 sin 20, (3.9) 

where 

(3.1o) 

3.3. The  cons tant  stress sector I I  (Oc < 0 < OB) 

The continuity of t ract ion across the bounda ry  between the two constant  stress sectors requires 

the continuity of 0"oo and 0",0 at 0 = 0~. The j u m p  in 0",, across the radial bounda ry  at 0 = OB, 
resulting f rom the quadrat ic  yield equation,  is 

+ J(O~)~ 0"~ - -  0"rr 

3 (3 4#2)ag0(0B) 4(3 #2)0"2o(0n) 4v/3130"oo(08)] 1/2, (3.11) = 3 - / a  2 [4 . . . . .  

where J(08) can be calculated by substi tut ing (3.9) into (3.11) to obta in  

- 3 [ 1-4/~ ] 2 2 ~  1 J(08) -- 2(3 ~ + 3 cos 208 • (3.12) 

Taking  into account  the j u m p  in 0"rr as expressed in (3.11), gives the uniform stress in this sector 

0"~" = ½(J(On) - 1) + ½(J(08) - cos 208) cos 2(0 - 0n) + ½sin 208 sin 2(0 - 08), 

0"o-2o = ½(J(On) - 1) - ½(J(08) - cos 208) cos 2(0 - 0n) - ½sin 208 sin 2(0 - 0n), (3.13) 

0"tO 
- ½(J(08) - cos 20n) sin 2(0 - 0n) + Kin  208 cos 2(0 - 0s). 
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3.4. The determination of  On and Oc 

The continuity of traction across the radial boundary line between the centered fan sector and 

the constant stress sector II requires the continuity of aoo and a~o at 0 = Oc, which by the 
solutions (3.13) and (3.4)-(3.6) requires that 

½(J(On) - 1) - l ( j (On)  - cos 2On) cos 2(0c - 0n)-½sin 20B sin 2(0c - OB) = trCoV(Oc)/~ (3.14) 

--½(J(OB) -- COS 208) sin 2(0c -- OB) + ½sin 20B cos 2(0c -- 0~) = acoV(Oc)/fl. (3.15) 

In (3.14) and (3.15), a0c0 v and trr cr denote the solutions in the centered fan sector. A simple 

numerical scheme is used to solve (3.14) and (3.15) for the two unknowns, 0B and Oc. The 

numerical values for 0B and Oc are listed in Table 1. For the Mises materials (# = 0), 

0B = 151.24 °, Oc = 79.84 °. These numbers differ from those in [1] by less than 0.2 °. Direct 

substitutions into (16) and (18) appearing in [1] can show that the two numbers given here are 
more accurate. 

3.5. The effects of  pressure sensitivity on the near tip fields 

It  is seen from Table 1 that when # increases from 0, the angle 0B increases except for a small 

drop around # = 0.1, while the angle Oc always decreases. When # closes to V/3, OB approaches 

to 180 ° and Oc approaches to 0 °, indicating that the constant stress sector I adjacent to the crack 
face and the fan sector will become vanishingly small when # ~ x/~. 

Figure 2 shows the perfectly-plastic stress fields for # = 0, 0.6 and 1.2, calculated from the 
solution (3.4)-(3.6), (3.9) and (3.13). It can be seen from this figure (also from (3.8) and (3.10)) that 

at the crack face (0 = n) a large # gives a large uniaxial compressive stress. The major  effects of 

the pressure sensitivity on the near tip fields is the change of the stress state directly ahead of the 

crack, at 0 = 0. Since the stress state ahead of the crack is of major concern in studying crack 

initiation and growth, in Fig. 3 we plot the stress components tr,, and a00 at 0 = 0 versus the 

pressure sensitivity factor #. The points on these curves are calculated using (3.3). Figure 3 shows 

that the stress at, decreases with #, and becomes compressive when # > x/3/2 with a larger 

amplitude for a larger #, while the crack opening stress a00 is always positive and decreases with 

# until # = 3/2. On the interval of 3/2 < # < w/3, a00 is elevated slightly with a limit value of 2/3 
when # = x/~ is approached. 

Table I. The numericalvalues ~r0B and Ocin degrees 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

08 151.24 151.01 151.14 151.54 152.16 152.96 153.92 155.02 156.25 157.61 

Oc 79.84 76.26 73.03 70.04 67.21 64.47 61.77 59.08 56.36 53.58 

# 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.72 1.731 
08 159.09 160.71 162.49 164.44 166.63 169.15 172.21 176.66 178.15 179.57 
Oc 50.68 47.63 44.37 40.79 36.74 31.95 25.71 14.91 10.17 3.82 
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4. The plane-stress characteristic fields 

In the centered fan sector, the radial lines emanating from the crack tip form the first family of 
characteristics. The second family of characteristics in the centered fan sector and the two 
families of characteristics in each of the two constant stress sectors can be determined from a 
known stress state by using (2.5) or through a coordinate rotation such that the stress 
characteristic relation (2.4) is met. 

In the centered fan sector, (2.5) becomes 

2grO 
tan 4~ - - - ,  (4.1) 

GO0 - -  Grr 

where ~b is the angle rotated from the radial characteristics to the curved characteristics in the 
clockwise sense, so that the inclination of the curved characteristics is (0 - q~). Substituting the 
solutions (3.4)-(3.6) into (4.1) gives 

4~(O) = arctan(~ tankO), (# < ~-~-) 

4~(0) = arctan(20), ( # = ~ )  (4.2) 

c~(O)=arctan(~tanhkO). (/~ > ~ )  

Integrating dr/r = - d0/tan ~b with ~ expressed as in (4.2), gives the equations of the curved 
characteristics in the fan sector 

rZsinkO=c°nstant, ( P < ~ )  

r20 = constant, (/~ = ~ )  (4.3) 

r2 sinh k0 = c°nstant' (/~ > ~ )  

The characteristics in the two constant stress sectors are straight lines. In the constant stress 
sector I (Oa < 0 ~< r 0, the inclination c~ of the straight characteristics satisfies 

) cos 2~ = 3\V/~ - 1 . (4.4) 
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The two solutions of (4.4), say ctl and a2, related by ~1 + ~2 = 7~, give the inclinations of the two 
families of characteristics in constant stress sector I. Some typical numbers are ~1 = 54.74° for 

= 0, ~1 = 35.26 ° for /~ = ,,f3/2, and cq 4 0  ° when # 4  xf3. In constant stress sector II 
(Oc < 0 < OB), one family of the characteristics are parallel to the radial line OC with the 
inclination Oc, and the other family of characteristics has the inclination Oc - ck(Oc), where ck(Oc) 
is calculated according to (4.2). 

Figure 4 shows the characteristic fields for/~ = 0, 0.6 and 1.2, where AOB and BOC are the 
two constant stress sectors, and COD is the centered fan sector. The angular locations of OB 

and OC, represented by 0B and Oc, have been listed in Table 1. Note that the maximum height of 
the characteristic patterns, i.e. the y-coordinate of point B in the three plots in Fig. 4 is the same. 
It can be seen from this figure that the pressure sensitivity factor ~ generally tends to diminish 
the fan sector and the constant stress sector adjacent to the crack face. 

5. Concluding remarks 

In this study, a simple stress characteristic relation is obtained for pressure-sensitive perfectly 
plastic materials. This relation simplifies the nonlinear problem to the solving of linear ordinary 
differential equations. Hence, the analytic solution of the near-tip stress fields is derived. The 
mode I plane-stress crack-tip field solution when /~ = 0 reduces to the stress field solution 
constructed by [1] for materials of the Mises yield condition. 

When deformation theory of plasticity is invoked and the hardening behavior of the 
pressure-sensitive materials is described by a power law relation between the plastic shear strain 
7 p and the shear stress z so that 7 p ~: ~", the asymptotic stress and strain fields take the form 

j ll/.+' 
~'J = L ~ J  a,j(o; ~, ~), 

eij= LD(n ' p)rJ gij(O; n, ~), 

(5J) 

0 D 

B ~ = 0 8  

A ~ 
0 

/3 ~.=12 

0 D 

Fig. 4. The plane stress characteristic fields for/~ = 0, 0.6 and 1.2. 
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where J is the path-independent J-integral introduced by Rice [17], and r is the distance from 
the crack tip. The constant C and D, and the angular functions 6ij and gij depend on the 
hardening exponent n and the pressure sensitivity factor #. Details of the solution (5.1) for plane 
stress can be found in [13]. In Fig. 5, plotted are the angular distributions of #u for n = 20 (low 
hardening material) and p = 0.0, 0.6 and 1.2. A comparison of Fig. 5 with Fig. 2 indicates that 
the perfectly plastic solutions obtained are indeed the limits of the corresponding hardening 
solutions as n tends to infinity. 

In [13], the hardening solutions for both stress and strain were given for the pressure-sensitive 
materials. We have shown that the perfectly plastic solution for stresses presented in this paper 
is the limit of the corresponding low-hardening solutions given in [13] as the hardening 
exponent n tends to infinity. In this paper, no attempt has been made to obtain the plastic strain 
field for the pressure-sensitive materials, since the distribution of plastic strain near the tip 
according to perfect plasticity theory cannot be obtained by a simple analysis analogous to that 
for the stresses. However, certain details of the strain field can be inferred directly from the slip 
line field of Fig. 4. For example, the plastic strains can have a 1/r singularity only in the centered 
fan region, 0 < Oc. According to the normality flow rule, the characteristic lines give the 
directions along which the extensional strain rates are zero. Therefore, in the fan zone, the radial 
component of strain must vanish for all 0. These details of crack tip strain field are clearly 
reflected in the low-hardening strain solution (n = 20) in Fig. 6 of publication [13]. The perfectly 
plastic stress field obtained here for the pressure-sensitive materials when/~ = 0 reduces exactly 
to the perfectly plastic stress field for the Mises materials given by [1]. The details and 

1.5 

1.0 

0 .5  

0 .0  

- 0 . 5  

- 1 . 0  

r~ - 1 . 5  

- 2 . 0  

- 2 . 5  

- 3 . 0  

- 3 . 5  ' 
0 .0  

-- . . . . .  . a o o  . (a) 
(Yr o 

n = 2 0  

/~=0.0 

45.0 90.0 135.0 180.0 
Angle  O 

1, 

1. 

O. 

O. 

- 0 .  

- 1 .  

~ - 1 .  

- 2 .  

- 2 ,  

- 3 .  

- 3 .  

0 - - - -  6"oe 6"to (b) 

5 

0 

5 

0 

5 

0 

5 ' 
0 .0  

n=20 
/z=0.6 

I L L ~ ~ , I , 

4-5.0 90.0 135.0 180.0 
Angle 0 

1.5 

1.0 

0 .5  

0 .0  

,~ - 0 . 5  

- i  . o  

- i  . s  

- 2 . 0  

- 2 . 5  

- 5 . 0  

- 3 . 5  
0.0 

_•._a ~~o (c) 

n=20 

p,=1.2 
i 

45.0 90.0 135.0 180.0 
Angle  0 

Fig. 5. T h e  a n g u l a r  d i s t r ibut ions  o f  the n o r m a l i z e d  stresses ,  6q ,  o b t a i n e d  f rom the l o w  h a r d e n i n g  (n = 20) s o l u t i o n s  for  
p = 0, 0.6 a n d  1.2. 
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comments  made here on the plastic strain field for pressure-sensitive materials are similar to 

those on the plastic strain field for the Mises materials made by Hutchinson in his widely 

accepted paper [1]. 

It is found that  when the pressure sensitivity factor/~ is very large, the centered fan sector in 

front of the crack and the constant  stress sector adjacent to the crack face will become very 

small. The major  effects of the pressure sensitivity on the near-tip stress fields are the lowering of 

the normal  stresses ahead of the crack. These effects can be used in studying the toughening 

mechanisms of polymeric and ceramic composite materials. 
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