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Istituto Nazionale di Fisica Nucleare — sezione di Torino,

Via P. Giuria 1, I-10125 Torino, Italy
bDepartment of Physics, Faculty of Science, Chulalongkorn University,

Thanon Phayathai, Pathumwan, Bangkok 10330, Thailand
cI.N.F.N. Sezione di Roma Tor Vergata,

Via della Ricerca Scientifica, I-00133 Roma, Italy
dInstitute of Theoretical Physics, Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece
eWalter Burke Institute for Theoretical Physics, California Institute of Technology,

Pasadena, CA 91125, U.S.A.
fMani L. Bhaumik Institute for Theoretical Physics,

Department of Physics and Astronomy, UCLA,

Los Angeles, CA 90095, U.S.A.

E-mail: gliozzi@to.infn.it, andrea.guerrieri@roma2.infn.it,

petkou@physics.auth.gr, cwen@caltech.edu

Abstract:We describe in detail the method used in our previous work arXiv:1611.10344

to study the Wilson-Fisher critical points nearby generalized free CFTs, exploiting the ana-

lytic structure of conformal blocks as functions of the conformal dimension of the exchanged

operator. Our method is equivalent to the mechanism of conformal multiplet recombina-

tion set up by null states. We compute, to the first non-trivial order in the ǫ-expansion,

the anomalous dimensions and the OPE coefficients of infinite classes of scalar local op-

erators using just CFT data. We study single-scalar and O(N)-invariant theories, as well

as theories with multiple deformations. When available we agree with older results, but

we also produce a wealth of new ones. Unitarity and crossing symmetry are not used in

our approach and we are able to apply our method to non-unitary theories as well. Some

implications of our results for the study of the non-unitary theories containing partially

conserved higher-spin currents are briefly mentioned.

Keywords: Conformal Field Theory, Higher Spin Symmetry

ArXiv ePrint: 1702.03938

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP04(2017)056

mailto:gliozzi@to.infn.it
mailto:andrea.guerrieri@roma2.infn.it
mailto:petkou@physics.auth.gr
mailto:cwen@caltech.edu
https://arxiv.org/abs/1611.10344
https://arxiv.org/abs/1702.03938
http://dx.doi.org/10.1007/JHEP04(2017)056


J
H
E
P
0
4
(
2
0
1
7
)
0
5
6

Contents

1 Introduction 1

2 The analytic structure of the conformal OPE 4

2.1 Singularities of generic conformal blocks 4

2.2 Singularities of conformal blocks and higher-spin theories 8

3 Generalized free field theories and their central charges 9

4 The smooth deformations of generalized free CFTs 12

4.1 A simple example 12

4.2 The φ2n critical points 15

4.3 OPE coefficients 17

5 O(N) invariant models 18

5.1 Anomalous dimensions 18

5.2 OPE coefficients 21

6 Multiple deformations 22

7 Conclusion 24

A Computing the conformal block expansion using Casimir operator 25

B Singular conformal blocks and the OPE 26

C Wick contractions and free OPE coefficients for O(N) vector models 28

D Functions f(p, n), g(p, n) and anomalous dimensions γ
(2)
0,1 29

1 Introduction

The notion of criticality and its intimate relationship with phase transitions is central in our

quests for understanding the physical world. Over the past few decades, significant progress

in the study of criticality has been achieved for systems that can be described by quantum

fields. In this case, critical behaviour is generally associated with the existence of conformal

field theories (CFTs). The latter theories posses a large spacetime symmetry that allows

the calculation of various physically relevant quantities such as scaling dimensions, coupling

constants and central charges. This program has led to some remarkable results for two-

dimensional systems where one can explore the infinite dimensional Virasoro algebra [1].
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Nevertheless, critical systems are also abundant in dimensions d > 2 and therefore

we are forced to study higher-dimensional CFTs to understand them better. Higher-

dimensional CFTs are much harder to explore than their two-dimensional counterparts,

and that explains the relatively slow progress in their study up until the end of the mil-

lennium. This has changed dramatically by the advent of AdS/CFT [2–4] that put the

focus back into higher-dimensional CFTs and their relevance not only for critical systems,

but for quantum gravity and string theory as well. It is inside this fertile environment

of general rethinking about CFTs in d > 2 that the more recent significant progress of

the higher-dimensional conformal bootstrap [5] was born. The latter can be described as

a combination of analytic and numerical tools that give remarkably accurate results for

critical points in diverse dimensions [6–36].

One of the intriguing features of the conformal bootstrap approach is that some proper-

ties of the critical systems that are strictly related to the renormalization group description

of phase transitions, can be seen instead as a direct consequence of conformal invariance.

For instance, in the quantum field theory approach to the Wilson-Fisher (WF) [37] fixed

point of the φ4 theory in d = 4 − ǫ (or its generalizations in other dimensions with dif-

ferent marginal perturbations1) there are two distinct small dimensionless parameters in

the game: the coupling constant g which turns on the interaction in the Lagrangian, and

ǫ = 4 − d. One performs a (scheme-dependent) loop expansion in g of some physical

quantity like for instance the anomalous dimensions of local operators. When d is slightly

smaller than four the perturbation φ4 becomes slightly relevant at the Gaussian UV fixed

point and the system flows to the infrared WF fixed point. The vanishing of the Callan-

Zymanzik β(g) equation fixes the relation between g and ǫ and gives scheme-independent

ǫ-expansions for the anomalous dimensions.

The conformal bootstrap approach tells a parallel but different story. For instance, in

the numerical bootstrap it suffices to ask for a consistent CFT with a scalar field φ having

an operator product expansion (OPE) [φ]× [φ] = 1+ [φ]+ . . . , in order to be able to select

a unique solution of the bootstrap equations in the whole range 2 < d < 6. This procedure

allows one to evaluate the low-lying spectrum of the primary operators of a φ3 theory [20]

which compares well with strong coupling expansions and Monte Carlo simulations as well

as with more recent conventional ǫ-expansions [38]. If one restricts the search to unitary

CFTs where convex optimization methods apply, one is led to a wealth of non-trivial re-

sults which are particularly impressive in the case of 3d Ising model, where very precise

determinations of the bulk critical exponents are obtained [16, 22, 32]. However, the ana-

lytic approaches to bootstrap, if we exclude supersymmetric theories, have not yet reached

the high level of accuracy of the conventional ǫ-expansion in quantum field theory, but

nevertheless are in many cases much more simple to apply and sometimes give results that

cannot be obtained by other analytic methods. For instance in the recent approach where

the 4pt functions are expanded in terms of exchange Witten diagrams instead of the con-

ventional conformal blocks [39–41], one obtains anomalous dimensions of some local oper-

1Strictly speaking they are relevant deformations for ǫ > 0, we will often loosely call them marginal in

the sense of ǫ ∼ 0.
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ators to O(ǫ3). Similarly in a study of CFTs with weakly broken higher-spin symmetry the

spectrum of broken currents is obtained at the first non-trivial order of the breaking param-

eter [42–49]. The Wilson-Fisher points with O(N) invariant symmetry have been studied in

the limit of large global charges in [50, 51]. In [52], using the fact that in a φ4 theory in 4−ǫ

dimensions the equations of motion imply that φ3 becomes a descendant of φ at the WF

fixed point, the anomalous dimensions of operators are obtained with no input from pertur-

bation theory. Such an approach has also been generalized in various ways in [46, 53–56].

In a recent short paper [57] we have extended some of the above ideas to the wide

class of generalized free CFTs. More specifically our method is based on considering two

of the three axioms of [52], but we did not have to assume any Lagrangian equations

of motion (eom). We pointed out that the mechanism of recombination of conformal

multiplets2 can be directly read from the analytic properties of the conformal blocks without

further assumptions. We considered in particular the set of scalar states with dimensions

∆k = d
2 − k where k = 1, 2, . . . ; k = 1 corresponds to the dimension of a canonical scalar

field, while k > 1 corresponds to the subclass of generalized free CFTs with �
k kinetic

term that are coupled to the stress tensor [61, 62]. These states have generically scalar

null descendants with dimensions ∆desc = d
2 + k, which is equivalent to saying that their

conformal blocks are in principle singular at ∆ = ∆k. However, since the 4pt functions of

the free theory are always finite, the states with ∆k = d
2 − k must either decouple in the

free field theory limit or have their singularities somehow removed. In the first case it is the

descendants that emerge as regular primary fields in the free theory limit. In the second

case, as it was firstly discussed in [63], the would-be singular blocks with ∆k = d/2 − k

do arise in the OPE of free nonunitary CFTs but their singularities cancel out due to the

presence of corresponding null states in the spectrum. The fate of singular blocks in the

conformal OPE is briefly summarized in appendix B.

In this work we will heavily use the first of the above two mechanism in order to

calculate explicitly various critical quantities in nontrivial CFTs. As we switch-on the in-

teraction by assuming non-vanishing anomalous dimensions in d− ǫ, we have ∆k 6= d
2 − k

and nothing is singular anymore. In a CFT language the corresponding scalar multiplet

becomes long. Using then the explicit results for the residues of the conformal multiplets,

and the known OPE coefficients of the free theory, we will be able to calculate analyti-

cally the leading corrections to the anomalous dimensions for wide classes of operators in

many nontrivial CFTs. In particular, we find that for any pair of positive integers k, n the

(generically fractional) space dimension d = 2nk/(n− 1) is an upper critical dimension, in

the sense that there is a consistent smooth deformation of the free theory at d − ǫ repre-

senting a generalized WF fixed point associated with the marginal perturbation φ2n. At

such WF fixed points we can calculate the anomalous dimensions of composite operator

of the form φp with p ∈ Z
+, as well as non-trivial OPE coefficients. We are also able to

present O(N)-symmetric generalizations of the above WF fixed points, and calculate the

anomalous dimensions, at the first non-trivial order in ǫ, of the corresponding scalar com-

2Conformal multiplet recombination has been discussed in the context of the holography of higher-spin

theories in [58, 59]. For a more recent work see [60].
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posite operators φp as well as of fields carrying symmetric traceless tensors representations

of O(N), having general form φ
(s)
i1...is

φ2p, for any p and spin s. In this work we describe in

more detail our calculations presented in [57] and present some new results.

The content of this paper is as follows. In section 2 we study with a new method the

singularities of generic conformal blocks as a function of the scaling dimension ∆ of the

exchanged operators in a 4pt function of four arbitrary scalars. Requiring the cancellation

of singularities in the expansion in conformal blocks of a suitable function we find that

conformal blocks have simple poles in ∆. The position and corresponding residues of

these poles coincide with those dictated by the null states and obtained in [22, 64] by

completely different methods. Here we also point out the intimate relationship of the

poles in generic conformal blocks with partially conserved higher-spin currents and their

corresponding generalized Killing tensors. In section 3 we review and improve the analysis

of [63] regarding the definition and the OPE of generalized free CFTs. Also, generalizing

our earlier results, we give a remarkably simple formula for the total central charge of

nonunitary generalized free CFTs in arbitrary even dimensions. In section 4 we study in

detail the generalized Wilson-Fisher fixed points near generalized free CFTs in arbitrary

dimensions for single-scalar theories and give analytic results for the anomalous dimensions

of large classes of operators and OPE coefficients to leading order in the ǫ-expansion. In

sections 5 and section 6 we study respectively nontrivial CFTs with O(N) global symmetry

and theories with multiple marginal deformations. We give there too results for anomalous

dimensions and OPE coefficients that match earlier calculations, but we also give many new

ones. Finally in section 7 we draw some conclusions. Technical details of our calculations

are presented in the appendices.

2 The analytic structure of the conformal OPE

2.1 Singularities of generic conformal blocks

We begin by studying the analytical structure of generic conformal blocks as functions of

the conformal dimension ∆ of the exchanged operator. This will play the central role in

our study of WF fixed points in this paper. For our purposes we will consider conformal

blocks with general external scalar operators. In a generic CFT in d dimensions the 4pt

function of arbitrary scalars can be parametrised as [65]

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
g(u, v)

|x12|∆
+
12 |x34|∆

+
34

( |x24|
|x14|

)∆−

12
( |x14|
|x13|

)∆−

34

, (2.1)

where ∆±
ij = ∆i±∆j , i, j = 1, 2, 3, 4 and ∆i is the scaling dimension of Oi, while u =

x2
12x

2
34

x2
13x

2
24

and v =
x2
14x

2
23

x2
13x

2
24

are the cross ratios. The function g(u, v) can be expanded in terms of

conformal blocks Ga,b
∆,ℓ(u, v), i.e. eigenfunctions of the quadratic (and quartic) Casimir

operators of SO(d+ 1, 1):

g(u, v) =
∑

∆,ℓ

p∆,ℓG
a,b
∆,ℓ(u, v) , a = −∆−

12

2
, b =

∆−
34

2
, (2.2)
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with ∆ and ℓ being the scaling dimensions and the spin of the primary operators contribut-

ing to the {12}, {34} channel. The scalar 2pt functions are normalized as

〈Oi(x1)Oj(x2)〉 =
δij

|x12|∆i+∆j
, (2.3)

and we normalize here the conformal blocks such that putting u = z2 and v = (1− z)2 in

the limit z → 0 we have

Ga,b
∆,ℓ(u, v) = z∆ + higher order terms. (2.4)

These conformal blocks form a complete basis which can be used to expand a general

function of u and v. Our starting point is the expansion of uδ into conformal blocks

Ga,b
∆,ℓ(u, v), with δ, a, b and ν = d

2 − 1 arbitrary parameters. We will use such an expansion

to extract the positions and the residues of the poles of the conformal blocks in the ∆

variable. The same expansion will be used to find the OPE of generalized free field theories,

however the results of this section are valid for any CFT in arbitrary dimensions.

A systematic method of finding the conformal block expansion of uδ is described in

detail in the appendix A and here we briefly sketch its salient features. We begin with the

following expansion,

uδ =
∑

∆,ℓ

λa,b
∆,ℓG

a,b
∆,ℓ(u, v) , (2.5)

and the goal is to find the coefficient λa,b
∆,ℓ. The idea is to apply the following differential

operator

Ω(n) =
∏

[∆,ℓ]∈Σ,2τ+ℓ<n

(C2 − c2(∆, ℓ)) , (2.6)

to both sides of (2.5). C2 is the quadratic Casimir operator of SO(d+ 1, 1) while c2(∆, ℓ)

is its eigenvalue. The definitions and explicit formulae of C2 and c2(∆, ℓ) can be found in

appendix A. Ω(n) projects out all the conformal blocks corresponding to the eigenvalues

appearing in the product. Applying recursively Ω(n), as we show in appendix A, we obtain

the following identity

uδ =
∞∑

τ=0

∞∑

ℓ=0

λa,b
δ,τ,ℓG

a,b
2δ+2τ+ℓ,ℓ(u, v) =

∞∑

τ=0

∞∑

ℓ=0

(−1)ℓ(2ν)ℓ
τ !ℓ!(ν)ℓ(ν + ℓ+ 1)τ

ca,bδ,τ,ℓG
a,b
2δ+2τ+ℓ,ℓ(u, v),

(2.7)

where (x)y = Γ(x+y)
Γ(x) is the Pochhammer symbol. The coefficient ca,bδ,τ,ℓ is given by

ca,bδ,τ,ℓ =

∏
i=a,b(i+ δ)ℓ+τ (i+ δ − ν)τ

(∆− 1)ℓ(∆− ν − τ − 1)τ (∆− 2ν − τ − ℓ− 1)τ
, (2.8)

with ∆ = 2δ + 2τ + ℓ. Clearly it has three families of simple poles at ∆ = ∆k, with

∆k = 1− ℓ+ k (k = 1, 2, . . . , ℓ) ,

∆k = 1 + ν + k (k = 1, 2, . . . , τ) ,

∆k = 1 + ℓ+ 2ν + k (k = 1, 2, . . . , τ) . (2.9)

– 5 –
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The left-hand side of (2.7), uδ, is a regular function of ∆, thus such singularities must

cancel on the right-hand side. Since the Ga,b
∆,ℓ’s are linearly independent, the only way for

such a cancellation to happen is that another conformal block Ga,b
∆′,ℓ′(u, v) must appear in

the sum, having ∆′ = 2δ + 2τ ′ + ℓ′, and most importantly it becomes singular with the

opposite sign residue, namely the residue should be proportional to yet another conformal

block Ga,b
∆,ℓ. Thus we can write

Ga,b
∆′,ℓ′(u, v) ∼

Ra,b(k, ℓ)

∆′ −∆′
k

Ga,b
∆k,ℓ

(u, v) , (2.10)

with ∆′
k−∆k = ∆′−∆. We note ∆ and ∆′ actually differ by an integer, namely, ∆′−∆ =

ℓ′ − ℓ+ 2τ ′ − 2τ .

Now another key observation is to recall that the conformal blocks Ga,b
∆,ℓ(u, v) are

eigenfunctions not only of the quadratic Casimir C2 but also of the quartic Casimir op-

erator C4 of SO(d + 1, d) with corresponding eigenvalue c4(∆, ℓ). Therefore G∆k,ℓ(u, v)

and lim∆′→∆′

k
G∆′,ℓ′(u, v) share the same eigenvalues c2 and c4. We look for the possible

solutions of the system of algebraic equations

c2(∆, ℓ) = c2(∆
′, ℓ′) , c4(∆, ℓ) = c4(∆

′, ℓ′). (2.11)

where the Casimir eigenvalues are respectively,

c2(∆, ℓ) =
1

2
∆(∆− d) +

1

2
ℓ(ℓ+ d− 2) , (2.12)

c4(∆, ℓ) = ∆2(∆−d)2+
1

2
d(d−1)∆(∆−d)+ℓ2(ℓ+d−2)2+

1

2
(d−1)(d−4)ℓ(ℓ+d−2) .

By solving these equations we discover a precise link between the position of the poles ∆′
k of

a generic conformal block Ga,b
∆′,ℓ′ and the scaling dimension and spin [∆k, ℓ] of the conformal

block contributing to the residue in (2.10). We explicitly find three possible families of

solutions shown in table 1. In the first and the third rows of the table the condition that

∆′
k −∆k = integer follows automatically from the solution of the equations. In the second

row, namely when ℓ′ = ℓ, the constraint from quartic Casimir is actually redundant, so the

condition that ∆′−∆=integer is necessary to find the solutions. It is amusing to see that we

re-obtain in such a purely algebraic way the spectrum of the representations listed in (2.9).

In other words, the requirement of the cancellation of singularities of the coefficients of the

expansion (2.7) with the poles of the conformal blocks can be equivalently reformulated

as the search of solutions of the algebraic system (2.12) combined, in some cases, with the

condition that ∆′ −∆ be an integer. Furthermore requiring the complete cancellation of

the singularities in (2.7) allows us to fix the factor R(k, ℓ) in the residue for each case. In

the following we will study each case separately and compute the corresponding R(k, ℓ).

In the first case, namely [∆′
k = 1− ℓ′− k, ℓ′] and [∆k = 1− ℓ+ k, ℓ = ℓ′+ k], the OPE

coefficient in (2.7) becomes singular for k = 1, 2, . . . , ℓ, and its residue is given by

r(1)(k, ℓ, τ) =
(−1)k(2ν)ℓ

τ !ℓ!(ν)ℓ(ν + ℓ+ 1)τ

(a+ δ)ℓ+τ (b+ δ)ℓ+τ (a+ δ − ν)τ (b+ δ − ν)τ
Γ(k)Γ(ℓ+ 1− k)(k − ℓ− ν − τ)τ (k − 2ν − τ − 2ℓ)τ

,

(2.13)
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∆′
k ∆k ℓ

1− ℓ′ − k 1− ℓ+ k ℓ′ + k k = 1, 2, . . .
d
2 − k d

2 + k ℓ′ k = 1, 2, . . .

d+ ℓ′ − k − 1 d+ ℓ+ k − 1 ℓ′ − k k = 1, 2, . . . , ℓ′

Table 1. Solutions of the algebraic system (2.12). The first column lists the position of the poles

of a generic conformal block Ga,b
∆′,ℓ′ . The second and third columns list the scaling dimension ∆k

and the spin ℓ of the conformal block contributing to the residue in (2.10).

with δ = 1−2ℓ−2τ+k
2 . The cancellation of the singularity requires that

r(1)(k, ℓ+ k, τ) = −Ra,b
1 (k, ℓ)× λa,b

τ,ℓ . (2.14)

It thus yields

Ra,b
1 (k, ℓ) = −r(1)(k, ℓ+ k)

λa,b
τ,ℓ

= −k(−1)k

(k!)2
(ℓ+ 2ν)k

(
1−k
2 + a

)
k

(
1−k
2 + b

)
k

(ℓ+ ν)k
. (2.15)

We then move to the second case, the OPE coefficient becomes singular when ∆k = d
2 + k

for k = 1, 2, . . . , τ , and the residue is given by

r(2)(k, ℓ, τ) =
(−1)ℓ+τ+k(2ν)ℓ

τ !ℓ!(ν)ℓ(ν + ℓ+ 1)τ

(a+ δ)ℓ+τ (b+ δ)ℓ+τ (a+ δ − ν)τ (b+ δ − ν)τ

Γ(k)Γ(k − τ)(d2 + k − 1)ℓ(k − d
2 − ℓ− τ + 1)τ

.

Now we have

r(2)(k, ℓ, τ + k) = −Ra,b
2 (k, ℓ)× ca,bτ,ℓ , (2.16)

which leads to R(k, ℓ) for this case,

Ra,b
2 (k, ℓ) = −r(2)(k, ℓ, τ + k)

ca,bτ,ℓ

= −k(−1)k

(k!)2

(
d
2 − 1− k

)
2k

∏
i=±a,±b

(
ℓ+ d

2
−k

2 + i

)

k(
ℓ+ d

2 − 1− k
)
2k

(
ℓ+ d

2 − k
)
2k

. (2.17)

Finally, we will consider the third case, ∆k = d+ ℓ+ k − 1. Now the residue is

r(3)(k, ℓ, τ) =
(−1)ℓ+τ+k(2ν)ℓ

τ !ℓ!(ν)ℓ(ν + ℓ+ 1)τ

∏
i=a,b(i+ δ)ℓ+τ (i+ δ − ν)τ

Γ(k)Γ(τ − k)(d+ ℓ+ k − 2)ℓ(
d
2 + ℓ+ k − τ − 1)τ

.

From

r(3)(k, ℓ, τ + k) = −Ra,b
3 (k, ℓ+ k)× ca,bτ−k,ℓ+k , (2.18)

we have finally,

Ra,b
3 (k, ℓ) = −k(−1)k

(k!)2
(ℓ+ 1− k)k

(
1−k
2 + a

)
k

(
1−k
2 + b

)
k

(ℓ+ d
2 − k)k

. (2.19)
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It is well known that poles in a conformal block associated with a primary Oℓ occur at

special scaling dimensions and spin [∆′
k, ℓ

′] where some descendant of the state created

by Oℓ becomes null [22, 64], which generalizes the original results of Zamolodchikov for

two-dimensional conformal blocks [66]. This null state and its descendants form together

a sub-representation, thus the residue of the associated pole is proportional to a conformal

block, as we found in (2.10). It is interesting to notice that requiring the cancellation of

singularities in the conformal block expansion of uδ reproduces exactly the complete list

of null states and their residues of any CFT in arbitrary space dimensions. Actually our

table 1 coincides exactly with a similar table in [22, 64] and our residues (2.15), (2.17)

and (2.19) coincide, apart form a different normalization of the conformal blocks, with

those calculated there with a completely different method.

2.2 Singularities of conformal blocks and higher-spin theories

It should not be surprising that the analytic properties of generic conformal blocks are in-

timately connected with the rich and nontrivial structure of higher-spin gauge theories [67]

that underlies generic free CFTs and, as we will see, dictates also their nearby critical

points. The first and third sets of dimensions shown in table 1 are in one-to-one corre-

spondence with the dimensions of the partially (or better: multiply) conserved higher-spin

currents and their corresponding generalized Killing tensors of generic non-unitary theo-

ries, such as those of scalars with kinetic terms �k [62, 68–70], but also fermionic ones that

have not been studied yet. Indeed, in such theories one can construct partially conserved

higher-spin currents Jµ1...µℓ
which are symmetric and traceless spin-ℓ operators satisfying

equations such as

∂µ1 · · · ∂µℓ−t
Jµ1...µℓ

= 0 , t = 0, 1, 2, . . . , ℓ− 1 . (2.20)

The dimensions of these currents are ∆ℓ,t = d − 1 + ℓ − (ℓ − t). The positive integer t

is the depth of partial conservation and the maximal depth case t = ℓ − 1 corresponds to

the usual conserved higher-spin currents with dimensions ∆ℓ,ℓ−1 = d − 2 + ℓ. We then

observe that ∆ℓ,t coincide with the positions of the singularities in the third line of table

1 if we identify ℓ− t = k. When interactions are turned-on one generally expects that the

conservation equation (2.20) is modified as

∂µ1 · · · ∂µℓ−t
Jµ1...µℓ

∼ Oµℓ−t+1...µℓ
(2.21)

The r.h.s. represent operators with spin ℓ′ = ℓ−k and dimensions ∆′
ℓ′,t = d+ℓ′+k−1 which

coincide with the dimension and spin of the would-be null states in the third line in table 1.

The existence of the above partially conserved currents is connected with existence of

corresponding generalized Killing tensors. These have been discussed extensively in [71–

78] as well as more recently in [62, 68–70]. For our limited purposes here, however, it is

simpler to just generalize the discussion of the usual higher-spin conserved currents in [79].

Consider the marginal deformations of the form

∫
Jµ1...µℓ

hµ1...µℓ
. (2.22)
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Following [79] one expects that under relatively mild assumptions, such as the existence of

a large-N expansion, hµ1...µℓ
can be considered as spin-ℓ partially massless gauge field in a

possible nontrivial UV fixed point (induced partially massless higher-spin gauge theory) of

the theory. The existence of the gauge fields hµ1...µℓ
implies the presence of corresponding

Killing tensors that generalize the conformal Killing equation for gravity. For example, in

the case of the usual conserved higher-spin currents and their corresponding higher-spin

gauge fields, the Killing equation takes the form [79]

(L̂t=ℓ−1 · v)µ2...µℓ
≡ ∂(µ1

vµ2...µℓ) −
ℓ− 1

d+ 2ℓ− 4
g(µ1µ2

∂νvµ3...µℓν) = 0 (2.23)

where the parentheses denote total symmetrization and trace subtraction. Notice that in

this case, to a spin-ℓ gauge fields corresponds a spin-(ℓ−1) Killing tensor. For partially

conserved higher-spin currents of depth t one expects a generalization of (2.23) with more

derivatives, such that to a spin-ℓ partially massless gauge field of depth t corresponds a

generalized Killing tensor of spin ℓ′ = ℓ − (ℓ − t) ≡ ℓ − k. From (2.22) we can read the

dimensions of hµ1...µℓ
to be ∆̃ℓ,t = 1−2ℓ+t ≡ 1−ℓ+k and these coincide with the dimensions

of the would-be null states in the first line of table 1. The Killing equation (2.23) and its

generalization sets to zero the unphysical gauge degrees of the free partially massless gauge

field hµ1...µℓ
. When the extended higher-spin gauge symmetry is broken, however, one

generally expects that the theory is no longer free3 and those degrees of freedom enter the

spectrum of the interacting theory. Schematically one can write

Hµ1...µℓ
= hµ1...µℓ

+ (L̂t · v)µs−t+1...µs (2.24)

where the spin-ℓ field Hµ1...µℓ
is no longer a partially massless gauge field. This is of

course a sketch of the expected Higgsing mechanism for partially massless gauge fields, or

equivalently the corresponding multiplet recombination. From the above we can read the

dimension of the spin ℓ′ = ℓ − (ℓ − t) ≡ ℓ − k Killing tensors to be ∆̃′
ℓ′,t = 1 − ℓ′ − k. We

then recognise these operators as the singularities in the first line of table 1. Finally, the

second set of dimensions in table 1 corresponds to states and their shadows irrespective

of their spin. The generalized multiplet recombination that we are describing here is the

explicit realization of the algebraic analysis of [71–78].

3 Generalized free field theories and their central charges

Before studying generalized Wilson-Fisher fixed points, namely interacting theories, we will

briefly review the generalized free field theories in the context of conformal bootstrap [63].

Scalar generalized free conformal field theories (GFCFTs) can be defined as the CFTs

generated by a single elementary scalar field φ with scaling dimension δ and 2pt function

normalized to be 〈φ(x1)φ(x2)〉 = 1/x2δ12. All other correlation functions of the theory,

either of φ or its composites as well as currents built from φ, are given by simple Wick

contractions. As a consequence all the correlation functions with an odd number of φ’s

3The arguments for the case of the usual higher-spin gauge theories were presented e.g. in [80, 81], but

one expects that they generalize to the case of partially massless higher-spin gauge theories as well.
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vanish, a condition that may be called elementariness. The simplest nontrivial example of

a correlation function is the 4pt function of the elementary fields which is given by

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x2δ12x
2δ
34

, g(u, v) = 1 + uδ +
(u
v

)δ
. (3.1)

Taking advantage of the expansion of uδ given in (2.7) and putting a = b = 0, it is easy

to obtain the conformal block expansion of g(u, v). It suffices to note that the exchange

x1 ↔ x2 in (3.1) entails u ↔ u/v and a change of sign of the G∆,ℓ(u, v) with ℓ odd, while

those with ℓ even stay unchanged, then

g(u, v) = 1 + 2
∞∑

τ=0

∞∑

n=0

λ0,0
δ,τ,2nG2δ+2τ+2n,ℓ=2n(u, v), (3.2)

where the λ’s are defined in (2.7) and (2.8). This result coincides with the one found in [82]

using Mellin space methods.

As δ is an arbitrary (real) number, generalized free CFTs do not necessarily admit a

Lagrangian description. For the latter to be true one would require a non-vanishing cou-

pling of the theories to the energy momentum tensor Tµν . According to (3.2) the subclass

coupled to Tµν , i.e. to the primary of scaling dimension ∆ = 2δ+2τ + ℓ = d and spin ℓ = 2

has δ = d/2− k with k = 1, 2, . . . ; k = 1 corresponds to the canonical free theory, while all

cases with k > 1 describe non-unitary theories as the fundamental scalar φ lies below the

unitarity bound. According to table 1 the dimension of this field coincides with the sub-

class of scalar states having a null scalar descendant. A specific property of the conformal

block expansion (3.2) in this subclass of theories, as first noted in [63], is that some of the

OPE coefficients are singular for some space dimension d depending on the scale dimen-

sions of φ. Since the expanded function g(u, v) is regular these singularities must cancel

with corresponding singularities of the conformal blocks. This corresponds exactly to the

cancellation mechanism that has been explained in full generality in the previous section.

A particular class of generalized free CFTs coupled to the energy momentum tensor

appears to play an important role in the study of the 1/N expansions of vector-like theories.

One quite intriguing observation made in [83] is that the highly nontrivial results for the

1/N corrections to the central charges4 of vector-like theories in d ≥ 6 simplify considerably

when d is even. There, the nontrivial result is simply given by the sum of two terms, each

one of them being the contribution of a free CFT. The general formula can be presented as

C
(s,f)
T (d) = NC

(φ,ψ)
T (d) + c

(σ2,σ1)
T (d) +O(1/N) , d = 2n , n = 2, 3, 4, 5, . . . (3.3)

The case with d = 4 is relevant only for the fermions. The first term is the contribution of

the free vector-like CFTs of N canonical scalars φ or N Dirac spinors ψ in d dimensions,

with

C
(φ)
T (d) =

d

(d− 1)
, C

(ψ)
T (d) =

d

2
TrI , (3.4)

where the corresponding spinor representation has dimension TrI. The second term in (3.3)

is the contribution of the free CFT of a single generalized free field, the σ field. In the

4By that we colloquially mean the coefficient in front of the 2pt function of the energy momentum tensor.
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scalar case (for d ≥ 6) this is the non-unitary σ2 scalar with fixed scaling dimension ∆2 = 2

in any d, while in the fermionic case it is the σ1 scalar with fixed dimension ∆1 = 1. In

a Lagrangian description σ2 and σ1 can be described by higher derivative actions. The

explicit results read

c
(σ2)
T (d) =

(−1)
d
2
+1d(d− 4)(d− 2)!

(d− 1)
(
d
2 + 1

)
!
(
d
2 − 1

)
!
, c

(σ1)
T (d) =

(−1)
d
2 d(d− 2)(d− 2)!

2
(
d
2 + 1

)
!
(
d
2 − 1

)
!

. (3.5)

The observation above indicates that for even dimensions d ≥ 4, 6 (for fermions and

scalar respectively), there exist two types of free CFTs that are naturally connected to

each other. On the one hand we have the canonical free CFTs of scalars φ and fermions

ψ whose corresponding scaling dimensions are ∆φ = d
2 − 1 and ∆ψ = d

2 − 1
2 . On the other

hand, we have the associated σCFTs of σ2 and σ1. The latter can be consistently defined

as generalized free CFTs in any even dimension. Their OPE structure was studied in [83]

and their corresponding central charges were calculated to be exactly (3.5), either by using

the OPE or by the direct evaluation of their energy momentum tensor [61].

It is also interesting to note that having at hand the general results (2.7) and (2.8)

we can give a general formula for the central charge of the whole class of scalar GFCFTs

that are coupled to the energy momentum tensor. The result follows using the fact that

the coefficient in front of the energy momentum conformal block is determined by a Ward

identity [84], and then taking properly into account the normalization of the conformal

blocks that we use here (see e.g. [85]) we have that

2λ0,0
d
2
−k,k−1,2

=

(
d

2
− k

)2 C
(φ)
T (d)

c
(k)
T (d)

(3.6)

From (2.7) and (2.8) we then obtain

c
(k)
T (d) = cos[(k − 1)π]

kΓ(d2 − k + 1)Γ(d2 + k + 1)

Γ(d2 + 2)Γ(d2)
C

(φ)
T (d) , (3.7)

where clearly we have C
(φ)
T (d) ≡ c

(1)
T (d).

For a given even d we may define the normalized total central charge of the theory

as the sum of the central charges for all free scalars with ∆k = d
2 − k , k = 1, 2, 3, . . ..

Except for k = 1, these are all nonunitary operators which in general correspond to ghost

states. This is a delicate process because for even d we hit the poles of Γ(d2 − k+1) in the

numerator of (3.7). However, if we first do the sum for general d, Mathematica gives a

remarkably simple answer

Ctotal
T (d) ≡ 1

c
(1)
T (d)

∞∑

k=1

c
(k)
T (d) =

d

4(d+ 3)
, (3.8)

Notice that this is positive despite the fact that the underlying theory contains negative

norm states. Now we could take the d =even and obtain a finite result. Apparently, this
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result involves an underlying regularization that we do not yet understand. Nevertheless

the result is consistent with the observation that

lim
d→∞

c
(k)
T (d)

c
(1)
T (d)

= (−1)k−1k . (3.9)

In other words, in the limit d → ∞ the sum (3.8) becomes the Euler alternating sum

1 − 2 + 3 − 4 . . . which is evaluated to 1/4 after appropriate regularization. This is still

positive despite having summed over an infinity of ghost states. It would be interesting to

unveil the possible physical interpretation behind this simple result.

4 The smooth deformations of generalized free CFTs

After introducing the generalized free CFTs in the previous section, we now define and

study their smooth deformations using conformal invariance as our only input. The results

obtained include the calculation of the anomalous dimensions of an infinite class of scalar

operators as well as OPE coefficients at the first non-trivial order in the ǫ-expansion. Our

approach is similar in spirit to the one of Rychkov and Tan [52], even if we do not use

the equations of motion to obtain our results. This way of reasoning suggests a possible

definition of Wilson-Fisher fixed point and its extension to generalized free theories without

any dynamical notion related to Lagrangians.

Let us start by considering a generalized free CFT in d dimensions. We say that this

theory is close to a WF fixed point in d− ǫ dimensions if it admits a smooth deformation

in ǫ, i.e. if there is a one-to-one mapping to another CFT in which any local operator Of of

the free theory corresponds to an operator O of the deformed theory with the same spin,

but with scaling dimension and relevant 3pt couplings analytic functions of ǫ yielding the

free results in the ǫ → 0 limit

∆O(ǫ) = ∆Of
+ γ

(1)
O ǫ+ γ

(2)
O ǫ2 +O(ǫ3); λOiOjOk(ǫ) = λ

Oi
f
O

j
f
Ok

f

+O(ǫ) , (4.1)

where γ
(i)
O is the anomalous dimension of O at the i−th order in the ǫ expansion. Some, but

not necessarily all, of the above ǫ-corrections should be different from zero. Note that the

above definition does not imply that all primary operators of the free theory correspond to

primary operators of the interacting one. Actually, the main ingredient of our calculation

is the fact that some operator which is primary in free theory becomes a descendant when

the interaction is turned on.

4.1 A simple example

We begin by applying in detail our method in the simple case of the deformation of a

canonical free theory in d = 4 − ǫ dimensions before generalizing it to the wide class of

generalized free CFT with δ = d
2 − k. Consider the following OPE in a free theory

[φf ]× [φ2
f ] =

√
2[φf ] +

√
3[φ3

f ] + spinning operators . (4.2)
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The OPE coefficients are computed using Wick contractions with normalization [φn] ≡
φn/

√
n!. Using the above, we calculate the mixed 4pt function 〈φf (x1)φ

2
f (x2)φf (x3)φ

2
f (x4)〉

in the form (2.1) and obtain5

gf (u, v) = 2G
af ,bf
∆φf

,0 + 3G
af ,bf
∆

φ3
f
,0 + spinning blocks , (4.3)

where ∆φf
= d

2 − 1, ∆φ3
f
= 3∆φf

, and

af = −bf = −
∆φf

−∆φ2
f

2
= −d− 2

4
(4.4)

Notice that according to (2.10) and the table 1 the conformal block G
af ,bf
d/2−1,0 appears

to be singular having a simple pole exactly at ∆ = d
2 − 1, however one can see that

the corresponding residue Raf ,bf (1, 0) computed in (2.17) is zero. Let us investigate the

viability of a deformed theory by setting

∆φn = ∆φn
f
+ γ

(1)
φn ǫ+ γ

(2)
φn ǫ

2 +O(ǫ3) (4.5)

where γ
(i)
φn ≡ γ

(i)
n denotes the anomalous dimension of φn at i-th order in ǫ. In the deformed

(thus interacting) theory the first contributing conformal block is Ga,b
∆φ,0

with

a = −b = −d− 2

4
+

γ
(1)
φ2 − γ

(1)
φ

2
. (4.6)

Now the residue is no longer vanishing:

Ra,b(1, 0) =
(d− 2)(γ

(1)
φ2 − γ

(1)
φ )2

4d
ǫ2 +O(ǫ3), (4.7)

thus eq. (2.10) becomes

Ga,b
∆φ,0

=
Ra,b(1, 0)

∆φ −∆φf

Ga,b
∆φf

+2,0 + . . . (4.8)

It follows that in an interacting theory with γ
(1)
φ2 −γ

(1)
φ 6= 0 there exists a scalar with scaling

dimension ∆φf
+ 2 which is a descendant of φ. Precisely the primary φ contains a sub-

representation (a null state) with the same Casimir eigenvalue ( apart from ǫ-corrections)

and scaling dimension ∆φf
+ 2. It is important to stress that according to (4.5) this

mechanism holds true only in the interacting theory; in the free theory the primary φf

does not contain that sub-representation, so eq. (4.8) may be viewed as playing the analog

of the classical equation of motion of the Wilson-Fisher fixed point.

5From now on we will suppress for simplicity the u, v dependence of the conformal blocks.
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Let us analyze the deformed theory at d = 4− ǫ. There are two cases to be considered:

a) If we take γ
(1)
φ 6= 0 we would have

Ga,b
∆φ,0

= ǫ
(d− 2)(γ

(1)
φ2 − γ

(1)
φ )2

4dγ
(1)
φ

Ga,b
∆φf

+2,0 + finite terms. (4.9)

At d = 4− ǫ the descendant operator O∆φf
+2 of the deformed theory becomes degen-

erate with φ3, therefore, according with the assumed one-to-one mapping between

free and deformed theory, also φ3 is a descendent and its contribution should match

in the ǫ → 0 limit with the coefficient of G
af ,bf
3d
2
−3,0

in (4.3), however this is impossible

because of the different dependence in ǫ.

Hence the only consistent case is:

b) γ
(1)
φ = 0, when

Ga,b
∆φ,0

=
(d− 2)(γ

(1)
φ2 )

2

4dγ
(2)
φ

Ga,b
∆φf

+2,0 + F a,b
∆φ

. (4.10)

and F a,b
∆φ

forms in the limit ǫ → 0 another eigenfunction of C2 having the same

eigenvalue with Ga,b
∆φf

+2,0.
6 Now the coefficient of the descendant is finite, hence

there is a perfect matching with the φ3 contribution in the free theory if and only if

(
γ
(1)
φ2

)2

γ
(2)
φ

= 12 , (4.11)

which is consistent with the classic results for the corresponding anomalous dimen-

sions evaluated using other methods (see e.g. [86]).

Let us stress that eq.s (4.10) and (4.11) rigorously show, using no other assumptions

than conformal invariance, that the only consistent smooth deformation of the canonical

free theory in d = 4− ǫ is an interacting theory in which φ3 is a descendant of φ. Clearly,

this corresponds to the interacting theory generated by the marginal φ4 perturbation and

the conformal block expansion of the deformed theory becomes

gI(u, v) = (2 +O(ǫ))Ga,b
∆φ,0

+ spinning blocks. (4.12)

Now, new results on OPE coefficients can be obtained by considering the deformations

of suitable OPEs in which a φ3
f contribution appears on the r.h.s., for instance

[φ2
f ]× [φ5

f ] =
√
10[φ3

f ] + 5
√
2[φ5

f ] +
√
21[φ7

f ] + spinning operators , (4.13)

or

[φf ]× [φ4
f ] = 2[φ3

f ] +
√
5[φ5

f ] + spinning operators . (4.14)

6It is worth noting that the decomposition (4.10) in two terms survives in the limit ǫ → 0, while the

first term is absent if we directly put ǫ = 0 in (4.7).
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Both the above OPE expansions contain a φ3
f contribution which is no longer a primary

field in the deformed theory, hence it should be replaced by the conformal block of φ.

Repeating the calculation described previously and using the corresponding values for the

residues we obtain the following OPE coefficients

λ2
φ2φ5φ = 5γ

(2)
φ ǫ2 +O(ǫ3) =

( √
5

2
√
3
γ
(1)
φ2 ǫ

)2

+O(ǫ3); (4.15)

λ2
φφ4φ = 2γ

(2)
φ ǫ2 +O(ǫ3) =

(
1√
6
γ
(1)
φ2 ǫ

)2

+O(ǫ3) , (4.16)

where the second equalities are obtained using (4.11).

4.2 The φ2n critical points

In this section we will apply the method explained in detail above to the much more

general class of generalized free CFTs in various spacetime dimensions. Furthermore, we

will demonstrate that we are able calculate precise values of anomalous dimensions instead

of their ratios as in (4.11). We begin by considering the free OPE, but for a more general

class of operators,

[φp
f ]× [φp+1

f ] =

p+1∑

n=1

λp,p,2n−1[φ
2n−1
f ] + . . . . (4.17)

The corresponding OPE coefficients are calculated to be

λp,p,2n−1 = B2n−1,n

√
p+ 1

(2n− 1)!
(p− n+ 2)n−1 , (4.18)

with Bn,m the binomial coefficient. We can now take in general ∆φf
= d

2−k, k = 1, 2, 3, . . .,

which correspond the subclass of generalized free CFTs coupled to the energy-momentum

tensor, as discussed in section 3. Inserting (4.17) into the direct channel of the 4pt function

〈φpφp+1φpφp+1〉 one obtains an expansion in terms, among others, of scalar conformal

blocks of the type G
af ,−af
∆

φ
2n−1
f

,0
with af = ∆φf

/2. When we smoothly deform the theory,

each OPE coefficient should be modified with a term which vanishes in the limit of ǫ → 0.

Most importantly the operator φ2n−1 becomes a descendant, which should be removed

from the expansion. As we discussed in the previous subsection, the conformal block in the

interacting theory Ga,−a
∆φ,0

(now for the interacting theory a = af+γp+1−γp and ∆φ = ∆φf
+

γ1) has a pole with a residue proportional to the conformal block Ga,−a
d
2
+k,0

which is precisely

the missing conformal block of the operator φ2n−1 in the free theory in the limit ǫ → 0.

Matching the operator dimensions requires the spacetime dimension to be d = 2nk/(n−1).

One finds again for k = 1 and n = 2 the special case treated in the previous subsection.

To be explicit, the four-point correlator 〈φp(x1)φ
p+1(x2)φ

p(x3)φ
p+1(x4)〉 admits the

following the conformal block expansion

gf (u, v) = λ2
p,p,1G

af ,−af
∆φf

,0 + λ2
p,p,2n−1G

af ,−af
∆

φ
2n−1
f

,0 + . . . , (4.19)

gI(u, v) = (λ2
p,p,1 +O(ǫ))Ga,−a

∆φ,0
+ . . . , (4.20)
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where gf (u, v) and gI(u, v) represent correlators in the free and interacting theories, respec-

tively. Using then the explicit result for the residue in (2.17), the matching condition gives

(p+ 1)
(γ

(1)
p+1 − γ

(1)
p )2

γ
(2)
1

(−1)k+1
(
d
2 − k

)
k

4k
(
d
2

)
k

= λ2
p,p,2n−1 , (4.21)

where we have also used the fact that λ2
p,p,1 = p+1. We see that the consistency condition

requires γ
(1)
1 = 0 and this leads to the following recursion relation

γ
(1)
p+1 − γ(1)p = κ(k, n)(p− n+ 2)n−1 , (4.22)

with

κ2(k, n) =
(−1)k+14k B2

2n−1,n

(
nk
n−1

)

k

(2n− 1)!
(

k
n−1

)

k

γ
(2)
1 , (4.23)

where we used d = 2nk/(n− 1). There is seemingly a sign ambiguity here, however we will

fix κ(k, n) completely shortly. Since we have of course γ0 = 0, the solution of the recursion

relation can be written in the form

γ(1)p =
κ(k, n)

n
(p− n+ 1)n. (4.24)

Now the crucial observation is that the operator φ2n−1 that becomes a descendant of φ has

a fixed dimension, namely d
2 + k as shown in table 1, therefore in the perturbed theory in

d− ǫ we have

∆φ2n−1 = (2n− 1)

(
d− ǫ

2
− k

)
+ γ

(1)
2n−1ǫ+O(ǫ2) =

d− ǫ

2
+ k (4.25)

From this fact we find explicitly its anomalous dimension to be γ
(1)
2n−1 = n − 1. Plugging

this into (4.24) fixes κ(k, n) = n(n−1)
(n)n

, which is interestingly k-independent. As promised,

there is no sign ambiguity, and it yields

γ(1)p =
(n− 1)

(n)n
(p− n+ 1)n . (4.26)

From the result of κ(k, n), we also obtain the anomalous dimension of φ at order ǫ2 as

γ
(2)
1 = (−1)k+12

n
(

k
n−1

)

k

k
(

nk
n−1

)

k

(n− 1)2
[
(n!)2

(2n)!

]3
. (4.27)

A few comments are in order. In the case of k = 1, namely for the canonical scalar,

γ
(2)
1 ≡ γ

(2)
φ reduces to

γ
(2)
φ = 2(n−1)2

[
(n!)2

(2n)!

]3
, (4.28)

which is a well-known multicritical result [86]. In particular for n = 2 eq.s (4.26) and (4.28)

correspond to the φ4 theory in d = 4− ǫ as we discussed briefly in previous section, while
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for n = 3 these results describe the interacting φ6 theory in d = 3 − ǫ. More generally

when k > 1, we are able to describe smooth deformations of scalar generalized CFTs with

∆φ = d
2 −k = k

n−1 in d = 2nk
n−1 . For k > 1, we have assumed that we only turn on one possi-

ble marginal deformation of the form φ2n, in principle one may have marginal interactions

with derivatives. Notice also that k > 1 allows us to study multicritical, but non-unitary,

theories in integer dimensions d > 6.

4.3 OPE coefficients

We can apply the same procedure described above to compute non-trivial OPE coefficients

at the generalized Wilson-Fisher critical points. We begin by considering the general OPE

in the free theory,

[φp]× [φp+2m+1] =

p+m+1∑

n=m+1

λf
p,p+2m+1,2n−1[φ

2n−1] + . . . , (4.29)

with the free OPE coefficients λf
p,p+2m+1,2n−1 given by

λf
p,p+2m+1,2n−1 =

√
Γ(2n)Γ(p+ 1)Γ(2m+ p+ 2)

Γ(n−m)Γ(n+m+ 1)Γ(m− n+ p+ 2)
. (4.30)

When m = 0, it reduces to eq. (4.17). For the theory in d = 2nk
n−1 dimensions with

marginal deformation φ2n, we are now able to compute the following OPE coefficients at

the interacting WF fixed points. Consider the 4pt correlator 〈φp φp+2m+1 φp φp+2m+1〉 with
m > 0 in free and interacting theory in terms of conformal block expansions, we have

gf (u, v) = (λf
p,p+2m+1,2n−1)

2G
af ,bf
∆

φ2n−1
+ . . . , (4.31)

gI(u, v) = (λ1,p,p+2m+1)
2Ga,b

∆φ
+ . . . . (4.32)

Note when m > 0, the operator φ does not appear gf (u, v), but it should in general arise

in the interacting theory. Thus the residue of the singular block Ga,b
∆φ

in gI(u, v) should

reproduce G
af ,bf
∆

φ2n−1
in the free theory, which leads to the matching condition that reads

C1,p,p+2m+1 ×
Ra,b(k, 0)

γ
(2)
φ ǫ2

=
Γ(2n)Γ(p+ 1)Γ(2m+ p+ 2)

Γ2(n−m)Γ2(n+m+ 1)Γ2(m− n+ p+ 2)
, (4.33)

here we denote C1,p,p+2m+1 = (λ1,p,p+2m+1)
2. The residue Ra,b(k, 0) is given by

Ra,b(k, 0) =
(−1)k+1 [((m+ 1)(d/2− k))k]

2 [(m(k − d/2))k]
2

k!(k − 1)!(d/2− k)2k
. (4.34)

Thus we obtain an infinite class of non-trivial OPE coefficients of the theory,

C1,p,p+2m+1 = ǫ2
[
(n!)3

(2n)!

]2
(n− 1)2Γ(p+ 1)Γ(2m+ p+ 2)

Γ2(n−m)Γ2(n+m+ 1)Γ2(m− n+ p+ 2)
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×

(
k

n−1

)

k(
nk
n−1

)

k

Γ2(k) ( k
n−1)2k[

( (m+1)k
n−1 )k (

−mk
n−1 )k

]2 , (4.35)

for any p and m ≥ 1. Here we have plugged in the result of the anomalous dimension (4.27)

from the previous section. In the case of canonical scalar theory with k = 1 the OPE

coefficient simplifies to

C1,p,p+2m+1 = ǫ2
[
(n!)3

(2n)!

]2
(n− 1)4Γ(p+ 1)Γ(2m+ p+ 2)

[Γ(n−m)Γ(n+m+ 1)Γ(m− n+ p+ 2)m(m+ 1)]2
. (4.36)

To our knowledge, this general result of OPE coefficients is new. For some special cases, for

instance those computed in [54], we find agreement (after taking into account the difference

of normalizations).

5 O(N) invariant models

In this section, we will apply our method to theories with global symmetries in general

dimensions. We focus on theories with global O(N) symmetries having elementary scalars

fields φi, i = 1, 2, . . . , N that transform as vectors under O(N), with dimensions ∆φi
=

d/2− k. In contrast to the single scalar case, composite operators involving many φi’s fall

into rank-s symmetric tensor representations of O(N). We will show here that using our

method we will be able to calculate the anomalous dimensions as well as various non-trivial

OPE coefficients for all those operators in tensors representations of O(N) at the WF fixed

points of the theories. Explicit results for d = 4k, d = 3k and d = 8k/3 are given and

several other examples can be found in appendix C and D.

5.1 Anomalous dimensions

The correlators that will provide relevant information about anomalous dimensions are the

following two types of mixed 4pt functions:

〈[φiφ
2(p−1)](x1)[φ

2p](x2)[φiφ
2(p−1)](x3)[φ

2p](x4)〉 =
1

(x212x
2
34)

(2p− 1
2
)∆φ

(
x213
x224

)∆φ

2

g(1)(u, v) ,

(5.1)

〈[φ2p](x1)[φiφ
2p](x2)[φ

2p](x3)[φiφ
2p](x4)〉 =

1

(x212x
2
34)

(2p+ 1
2
)∆φ

(
x213
x224

)∆φ

2

g(2)(u, v) .

(5.2)

Here φ2p ≡ (φiφi)
p denotes the O(N) singlet. The conformal block expansions of the above

4pt functions in the free and interacting theory are

g
(m)
f (u, v) = (λ

(m)
p,p,0)

2G
af ,−af
∆φf

,0 + · · ·+ (λ(m)
p,p,s)

2G
af ,−af
∆(2n+1)φf

,0 + . . . (5.3)

g
(m)
I (u, v) =

(
(λ

(m)
p,p,0)

2 +O(ǫ)
)
Ga,−a

∆φ,0
+ . . . , (5.4)
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where m = 1, 2, while λ
(1)
p,p,n = λp,p−1,n and λ

(2)
p,p,n = λp,p,n. The definition of the free OPE

coefficients λp1,p2,p3 and the recursion relations used to compute them for general p can be

found in the appendix C.

As before, deforming the free theory spectrum and OPE coefficients, the operator

[φiφ
2n] becomes a descendant of φi for d = 2k(n + 1)/n − ǫ. The matching conditions for

both 4pt functions above become

r(k, n)
(γ

(1)
p−1,1 − γ

(1)
p,0)

2

γ
(2)
0,1

=

(
λp,p−1,s

λp,p−1,0

)2

, r(k, n)
(γ

(1)
p,0 − γ

(1)
p,1)

2

γ
(2)
0,1

=

(
λp,p,n

λp,p,0

)2

, (5.5)

where we have defined

r(k, n) =
(−1)(k+1)

(
k
n

)
k

4k
(
k n+1

n

)
k

. (5.6)

Here we denote the anomalous dimension of φ2p as γp,0 = γ
(1)
p,0ǫ + γ

(2)
p,0ǫ

2 + . . ., and corre-

spondingly for [φiφ
2p] as γp,1 = γ

(1)
p,1ǫ + γ

(2)
p,1ǫ

2 + . . .. Removing γ
(1)
p,0 from (5.5), we obtain

the following recursion relation for γ
(1)
p,1

γ
(1)
p,1 − γ

(1)
p−1,1 =

(
λp,p,n

λp,p,0
+

λp,p−1,n

λp,p−1,0

)
√√√√ γ

(2)
0,1

r(k, n)
:= f(p, n)

√√√√ γ
(2)
0,1

22nn!(N/2 + 1)n r(k, n)
. (5.7)

We have fixed the sign ambiguity in taking the square root by matching the formulae

for N = 1 to the corresponding ones in the single scalar case. The function f(p, n) is

determined in terms of the OPE coefficient λp,q,n, whose explicit formula can be found in

appendix D up to n = 6. Solving then the recursion relation (5.7), we obtain the general

formula for the anomalous dimension,

γ
(1)
p,1 = g(p, n)

√√√√ γ
(2)
0,1

22nn!(N/2 + 1)n r(k, n)
, (5.8)

where g(p, n) up to n = 6 are given in appendix D. As before [φiφ2n] becomes a descendant

with a fixed conformal dimension d/2 + k = k(2n+ 1)/n and this leads to γ
(1)
n,1 = n. This

result allows us to fix γ
(2)
0,1 in (5.8),

γ
(2)
0,1 =

n2

g2(n, n)
22nn!

(
N

2
+ 1

)

n

r(k, n) . (5.9)

Plugging this result back to (5.8) and (5.5) we also obtain,

γ
(1)
p,1 =

n

g(n, n)
g(p, n) , γ

(1)
p,0 = γp,1 −

λp,p,n

λp,p,0

n

g(n, n)
√
22nn!(N/2 + 1)n

. (5.10)

Explicit formulas for λp,q,n and g(p, n) can also be found in appendix D and appendix C,

respectively.
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The above analysis can be extended to the general class of symmetric traceless rank-

s O(N) tensors operators defined as such as φi1φi2 . . . φisφ
2p − traces ≡ φ

(s)
i1...is

φ2p. As

concrete examples we give here the rank-2 and the rank-3 tensors

φ
(2)
ij φ2p = φiφjφ

2p − 1

N
δijφ

2(p+1) , (5.11)

φ
(3)
ijkφ

2p = φiφjφkφ
2p − 1

N + 2
(δijφk + δikφj + δjkφi)φ

2(p+1) . (5.12)

To study the anomalous dimension of rank-s tensor operator as γ
(1)
p,s we consider the cor-

relator

〈[φ(s)
i1...is−1k

]φ2(p−1)](x1) [φ
(s−1)
i1...is−1

φ2p](x2) [φ
(s)
j1...js−1k

φ2(p−1)](x3) [φ
(s−1)
j1...js−1

φ2p](x4)〉. (5.13)

The above correlator can be expanded exactly as in (5.3) and the matching condition yields

the following recursion relation,

(λ
(s,s−1,1)
p−1,p,0 )2r(k, s)

(γ
(1)
p−1,s − γ

(1)
p,s−1)

2

γ
(2)
0,1

= (λ
(s,s−1,1)
p−1,p,n )2 . (5.14)

There is again a sign ambiguity which is fixed by considering some suitable formal N -limits.

We first note that in the formal limit N → 0 the rank-2 tensor operators above effectively

becomes a scalar since the trace part dominates. Hence its anomalous dimension should

reduce to that of a scalar for N → 0. Similarly, the rank-3 tensor reduces to a vector

operator in the formal limit N → −2. More generally the formal limit N → −2(s − 2)

reduces a rank-s tensor operator to a rank-(s− 2) tensor. In this way, not only we fix the

sign ambiguity, but can also perform highly non-trivial checks of our results.

Taking then the square root in (5.14) we find

γ
(1)
p−1,s = γ

(1)
p,s−1 −

√√√√ γ
(2)
0,1

r(k, n)

λ
(s,s−1,1)
p−1,p,0

λ
(s,s−1,1)
p−1,p,n

, (5.15)

where the free OPE coefficients λ
(s,s−1,1)
p1,p2,p3 and the corresponding recursion relations used

to compute them in general are given in appendix D. We can now give a few explicit

examples of the general results above. We consider the cases n = 1, 2, 3, correspondingly

d = 4k, 3k, 8/3k:

• The n = 1 case corresponds to considering the deformed theories in d = 4k − ǫ. The

anomalous dimension γ
(2)
0,1 of the φi is given by (5.9)

γ
(2)
0,1 =

8(N + 2)

g2(1, 1)
r(k, 1) =

(−1)k+1(k)k
2k(2k)k

(N + 2)

(N + 8)2
, (5.16)

and substituting in (5.10) yields

γ
(1)
p,1 =

p(N + 6p+ 2)

N + 8
, γ

(0)
p,0 =

p(N + 6p− 4)

N + 8
. (5.17)
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Using γ
(1)
p,1 we can solve the recursion relation in (5.15)

γ(1)p,s =
s(s− 1) + p(N + 6(p+ s)− 4)

N + 8
, (5.18)

which yields γ
(1)
p,0 and γ

(1)
p,1 for s = 0 and s = 1.

• The n = 2 case corresponds to considering theories in d = 3k − ǫ. Again plugging

n = 2 in (5.9) we get

γ
(2)
0,1 =

32(N + 2)(N + 4)

g2(2, 2)
r(k, 2) =

(−1)k+1(k/2)k
8k(3k/2)k

(N + 2)(N + 4)

(3N + 22)2
, (5.19)

γ
(1)
p,1 =

10p+ 3N + 2

3(3N + 22)
p(2p− 1), γ

(1)
p,0 =

2(10p+ 3N − 8)

3(3N + 22)
p(p− 1). (5.20)

Applying the recursion relation in (5.15), we obtain the general formula for the

anomalous dimension for tensor operators,

γ(1)p,s =
(2p+ s− 2)(s(s− 1) + p(3N + 10(p+ s)− 8))

3(3N + 22)
. (5.21)

• Finally we consider n = 3 in d = 8k/3− ǫ

γ
(2)
0,1 =

(−1)k+13(k/3)k
k(4k/3)k

(N + 2)(N + 4)(N + 6)

(1072 + 3N(50 +N))2
(5.22)

and

γ(1)p,s =
1

3N(N + 50) + 1072

[
s4 + 2(10p− 3)s3 + (90p2 + 6(N − 19)p+ 11)s2

+ 2(70p3 + 15(N − 11)p2 − (18N − 97)p− 3)s

+ p(p− 1)

(
10(3N − 17)p+ 70p2 + 3

(
N2

2
− 15N + 32

))]
. (5.23)

Our results for γ
(2)
0,1 when k = 1 and for n = 1, 2, 3 agree with older known results obtained

with completely different methods [87, 88]. Finally, our results for γ
(1)
p,s in all three cases

satisfy the following highly non-trivial relationship

γ(1)p,s = γ
(1)
p+1,s−2 , (5.24)

which is obtained taking the formal limits N → −2(s− 2) as discussed above.

5.2 OPE coefficients

As in the case of a single scalar in section 4.3, an infinite set of non-trivial OPE coefficients

can be computed by considering a class of 4-point functions

〈[φ2p](x1) [φiφ
2(p+m)](x2) [φ

2p](x3) [φiφ
2(p+m)](x4)〉 . (5.25)
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For m = 1, . . . , s, the free OPE [φ2p]f × [φiφ
2(p+m)]f contains the operator [φiφ

2n]f . Since

when we smoothly deform the theory [φiφ
2n] becomes a descendant of φi, it follows that it

cannot appear as a primary in the interacting OPE. This gives the matching condition

λ2
p,p+m,0

Ra,b(k, 0)

γ
(2)
0,1

= λ2
p,p+m,n, (5.26)

where λ2
p,p+m,0 is zero in the free theory and proportional to ǫ2 in the deformed theory.

Here we list the explicit results for the OPE coefficients for the cases n = 1, 2, 3.

• The n = 1 case corresponds to consider the deformed theories in d = 4k − ǫ. The

non-trivial OPE coefficients λp,p+1,0 can be obtained from (5.26)

λ2
p,p+1,0 =

[Γ(2k)]2(k)k
2k k! Γ(3k)(2k)k

(p+ 1)(N + 2p)(N + 2p+ 2)

N(N + 8)2
ǫ2 . (5.27)

• The n = 2 case corresponds considering theories in d = 3k − ǫ. In this case there

are two different sets of OPE coefficients that can be computed looking at the OPE

[φ2p]× [φiφ
2p+2] and [φ2p]× [φiφ

2p+4]

λ2
p,p+1,0=

k!Γ(k)(k/2)k(k/2)2k
8k[(−k/2)k(k)k]2(3k/2)k

25p2(p+ 1)(N + 2p)(N + 2p+ 2)

N(3N + 22)2
ǫ2 , (5.28)

λ2
p,p+2,0=

k!(k−1)!(k/2)k(k/2)2k

16k[(−k)k]2[(3k/2)k]3
(p+1)(p+2)(N+2p)(N+2p+2)(N+2p+4)

N(3N + 22)2
ǫ2 .

(5.29)

• Finally we consider the n = 3 case for d = 8k/3 − ǫ. The OPE coefficients for this

case can again be easily computed using results given in the appendix D, yielding

λ2
p,p+1,0=

p2(p+1)(N+2p)(N+2p+2)(N+14p−8)2[Γ(−k/3)Γ(4k/3)Γ(k+1)]2

2N(1072 + 3N(N + 50))2[Γ(k/3 + 1)Γ(5k/3)]2
ǫ2, (5.30)

λ2
p,p+2,0=

49π41−2kp2(p+1)(p+2)(N+2p)(N+2p+2)[Γ(−2k/3)Γ(4k/3)Γ(k)]2

N(1072 + 3N(N + 50))2[Γ(k/3)]4[Γ(k + 1/2)]2
ǫ2, (5.31)

λ2
p,p+3,0= (5.32)

=
(p+1)(p+2)(p+3)(N+2p)(N+2p+2)(N+2p+4)(N+2p+6)k!(k−1)!(k/3)k(k/3)2k

2kN(1072 + 3N(N + 50))2[(−k)k]2[(4k/3)k]3
ǫ2.

6 Multiple deformations

So far we have only considered theories with only one marginal deformation. In this section,

we consider smooth deformations of free CFT’s with more than one marginal deformations.

We show that we can still use our method, but some new and interesting features arise. As

an example we consider a theory in d = 6− ǫ with two scalars denoted as σ and φi with the

latter being the O(N) vector of the previous section. In this particular case, the possible

marginal deformations are σ3 and σφ2
k. Due to O(N) symmetry, as the interaction turns on
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we can have σφi becoming a descendant of φi, while a linear combination, Od = g1σ
2+g2φ

2 ,

becomes a descendant of σ. This implies that there is another linear combination of σ2

and φ2 which remains as a primary, namely

Op =
1√

2N
√
g21N + g22

(g1Nσ2 − g2φ
2) . (6.1)

Here 〈OpOd〉 = 0 and 〈OpOp〉 = 1. We then expand the 4pt function 〈φiφiφjφj〉, in terms

of conformal blocks to obtain

gf (u, v) = 1 +
2

N
G∆

φ2 ,0
+ . . . (6.2)

gI(u, v) = 1 + C2
φiφiσ

G∆σ ,0 +
2 g22

g21N
2 + g22N

G∆Op ,0
+ . . . ,

where again gf (u, v) denotes the free theory expansion while gI(u, v) the interacting one.

In the free theory φ2 is a primary operator, but after the interaction is turned on only

Op remains as a conformal primary. Then, taking the ǫ → 0 limit, we must require that

G∆Op ,0
becomes G∆

φ2 ,0
. On the other hand, due to the singularity structure of conformal

blocks, we have,

G∆σ ,0 =
1

6(∆σ −∆σf
)
G∆

φ2 ,0
+ . . . , (6.3)

namely G∆σ ,0 produces another contribution to G∆
φ2 ,0

in the free theory limit. Thus,

matching with the free theory yields

2 g22
g21N

2 + g22N
+

C2
φiφiσ

6γ
(1)
σ ǫ

=
2

N
, (6.4)

and we obtain C2
φiφiσ

=
12g21

g21N+g22
γ
(1)
σ ǫ . Moreover, from the mixed 4pt function 〈φiσφiσ〉,

again in the conformal block expansion we have,

gf (u, v) = 1 + G∆φiσ
,0 + . . .

gI(u, v) = 1 + C2
φiφiσ

G∆φi
,0 +O(ǫ)G∆Op ,0

+ . . . , (6.5)

where the same OPE coefficient C2
φiφiσ

appears in the interacting theory. From the singu-

larity of G∆φi
,0, we see that φiσ is descendant of φi, and the matching condition leads to

C2
φiφiσ

= 6γ
(1)
φi

. One may then cancel out the OPE coefficient C2
φiφiσ

to obtain the ratio of

the anomalous dimensions as
γ
(1)
φ

γ
(1)
σ

=
2g21

g21N + g22
. (6.6)

We can obtain more information by considering other correlators. For instance from the

4pt function 〈σσσσ〉, a similar analysis leads to,

C2
σσσ =

12 g22
g21N + g22

γ(1)σ ǫ . (6.7)

Our results are consistent with the loop calculations of [89] and also with the more recent

work [54] that uses the equations of motion.
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It is also interesting to note that the correlation function 〈φi σ φi σ〉 we considered

earlier could be expanded in the crossing {1, 3}{2, 4} channel. In this different choice of

the OPE expansion, we then have

gf (u, v) = 1 ,

gI(u, v) = 1 + CφiφiσCσσσ G∆σ ,0 −
2g1g2

g21N + g22
G∆Op ,0

+ . . . . (6.8)

Note in this channel the free theory correlator gf (u, v) does not contain the operator φ2

which would the descendant of σ, thus it requires following cancellation,

CφiφiσCσσσ

6γ
(1)
σ ǫ

− 2g1g2
g21N + g22

= 0 . (6.9)

This identity is indeed verified by using explicit results of Cφiφiσ and Cσσσ, and thus shows

the consistency of our analysis.

7 Conclusion

In this work we have used properties of CFTs, and in particular the analytic structure of

generic conformal blocks, to study the possible smooth deformations of generalized free

CFTs in arbitrary dimensions. In this way we could define and generalize the notion of

Wilson-Fisher fixed points in terms of conformal invariant concepts, with no reference to

the renormalization goup or to any Lagrangian approach. The examples analyzed include

general classes of multicritical points, O(N) invariant theories as well as theories with

multiple deformations. Combining the OPE structure with universal properties of certain

scalar null states we derived, at the first non-trivial order in the ǫ-expansion, the anomalous

dimensions of infinite classes of scalar local operators as well as non-trivial OPE coefficients

in the interacting theories. For theories with O(N) global symmetry we were able to

consider general symmetric traceless O(N) tensor operators. In the particular cases where

other computational methods were applied, the results agree. Our method allows us to put

huge classes of critical theories under a unified calculation scheme without using any kind of

dynamical equation of motion. We also remark that unlike the usual conformal bootstrap

program, neither crossing symmetry nor unitarity have been used in our scheme. Therefore

the method can be useful to study non-unitary theories that are relevant in the description

of certain critical systems. Nevertheless, it should be mentioned that going beyond leading

order using our method would require additional input. Our method is equivalent to

calculating leading order critical quantities using the tree-level results. The next-to-leading

order calculations would require the equivalent of conformal block analysis for a one-loop

graph, which would in turn require the contributions from an infinite class of conformal

blocks. Alternatively, one might try to use the information coming from crossing symmetry.

Clearly, this discussion is extremely interesting but beyond the scope of the present work.

There is a plethora of directions that one can follow based on this work and we briefly

mention a few of them here. One could for example extend our methods to fermionic

non-unitary theories in general dimensions and perhaps even try to identify possible super-

symmetric WF fixed point of generalized free CFTs. An extension of our methods should
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probably work for matrix and tensor critical models, e.g. such as the one discussed recently

in [90]. The anomalous dimensions of partially conserved higher-spin currents is also an-

other well-defined project within the range of applicability of our methods. The intimate

connection of the conformal OPE with higher-spin gauge theory, whose surface we have just

scratched here, is by itself an interesting subject and we believe that our methods provide a

concrete and computationally solid path for its study. To this end, we also mention that our

result regarding the total central charge of non-unitary free CFTs in even dimension is rem-

iniscent of the remarkable recent calculations for the partition function of higher-spin the-

ories (see e.g. [91, 92]). Work on some of the paths mentioned above is already in progress.
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A Computing the conformal block expansion using Casimir operator

In this appendix we compute the conformal block expansion (2.7) using the properties of

the quadratic Casimir operator C2. The conformal blocks are eigenfunctions of C2:

C2G
a,b
∆,ℓ(u, v) = c2(∆, ℓ)Ga,b

∆,ℓ(u, v), c2(∆, ℓ) =
∆(∆− 2ν + 2) + ℓ(ℓ+ ν)

2
. (A.1)

The Casimir operator can be written, using the notation of [65], as

C2 = Dz +Dz̄ + 2ν
zz̄

z − z̄

[
(1− z)

d

dz
− (1− z̄)

d

dz̄

]
(A.2)

with

Dz = (1− z)z2
d2

dz2
− (a+ b+ 1)z2

d

dz
− ab z (A.3)

and

u = zz̄; v = (1− z)(1− z̄); ν =
d

2
− 1; a = −1

2
∆−

12; b =
1

2
∆−

34. (A.4)

Our normalization is chosen in such a way that for z = z̄ → 0 Ga,b
∆,ℓ(u, v) = z∆ +

higher order terms. First, we want to show that the spectrum of conformal blocks con-

tributing to uδ is Σ = {∆ = 2δ + 2τ + ℓ, ℓ}, (τ, ℓ = 0, 1, . . . ). For this purpose we define
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the following differential operator

Ω(n) =
∏

[∆,ℓ]∈Σ,2τ+ℓ<n

(C2 − c2(∆, ℓ)) . (A.5)

This operator projects out all the conformal blocks of Σ belonging to the subset 2τ+ℓ < n.

It turns out, in the z = z̄ → 0 limit,

Ω(n)uδ = O(z2δ+n) (A.6)

showing that no other conformal block with ∆ < 2δ + n can contribute.

In order to compute the coefficient λa,b
δ,τo,ℓo

of the conformal block corresponding to the

representation [∆o = 2δ+2τo+ ℓo, ℓo] ∈ Σn ≡ Σ&(2τ + ℓ < n) it suffices to omit the factor

corresponding to it in the product (A.5):

Ω′
∆o,ℓo =

∏

[∆,ℓ]∈Σn,[∆,ℓ]6=[∆o,ℓo]

(C2 − c2(∆, ℓ)) . (A.7)

We have, again in the z = z̄ → 0 limit,

Ω′
∆o,ℓo u

δ=z∆oλa,b
δ,τo,ℓo

∏

[∆,ℓ]∈Σn,[∆,ℓ]6=[∆o,ℓo]

(c2(∆o, ℓo)−c2(∆, ℓ))+higher order terms (A.8)

from which λa,b
δ,τo,ℓo

can be computed. It is important to note that the limit z = z̄ → 0 has

to be taken only at the very end of the calculation. In practice we apply this procedure for

low values of n, guess a formula, and check it to higher values of n. The result is reported

in (2.7) and (2.8).

B Singular conformal blocks and the OPE

To illustrate the role played by the singular conformal blocks in the conformal OPE, we

consider the following 4pt function of a scalar φ with dimension ∆φ

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

(x212x
2
34)

∆φ
g(u, v) (B.1)

In free theory limit, using Wick contractions one then finds

gf (u, v) = 1 + u∆φ +
(u
v

)∆φ

(B.2)

and the conformal block expansion is of the form

gf (u, v) = 1 + 2G∆
φ2 ,0

+ · · · (B.3)

where the dimension of the operator φ2 is 2∆φ. However, as we have not yet specified

neither ∆φ not d, it is possible that we might encounter problems with the OPE (B.3).

Namely, suppose that the dimension of φ2 is such that the corresponding block is singular,

– 26 –



J
H
E
P
0
4
(
2
0
1
7
)
0
5
6

i.e. 2∆φ = d
2 − 1.7 If we require that the free (B.3) is regular, the singularity of the

conformal block of φ2 must somehow cancel. We can see how this happens in the explicit

case when ∆φ = 2 where for general d the free OPE (B.3) is found to be

gf (u, v) = 1 + 2G4,0 +
24(d− 1)

5d
G6,2 +

80(d2 − 1)

21(d+ 2)(d+ 4)
G8,4 + . . . (B.4)

+
8(d−6)

d(d−10)
G6,0+

288(d−6)(d−1)

7(d−14)d(d+4)
G8,2+

640(d− 6)(d2 − 1)

11(d−18)(d+2)(d+4)(d+8)
G10,4 + . . .

+
36(d− 8)(d− 6)2

(d−7)(d−12)(d−14)d(d+2)
G8,0+

320(d− 8)(d− 6)2(d− 1)

(d−18)(d−16)d(d+4)(d+6)(d−7)
G10,2+. . . .

We note that some of the OPE coefficients become singular at certain spacetime dimension.

For instance at d = 10, the coefficient of conformal block G6,0 becomes singular. It turns

out that this singularity is precisely cancelled by the singularity of the conformal G4,0 whose

residue is proportional to G6,0. Indeed, the state that corresponds to the conformal block

G4,0 is φ2, whose conformal dimension hits the singularity point as ∆ = 4 = d/2− k with

k = 1 when d = 10. On the other hand, the primary state contributes to G6,0 is given by

S6,0 = i

(
1

16
∂µφ∂

µφ− ∆φ

8(2 + 2∆φ − d)
φ∂2φ

)
, (B.5)

as first studied in [63]. For the special values of ∆φ = 2 and d = 10, the coefficient

simplifies, it becomes

S6,0 =
i

16

(
∂µφ∂

µφ+ φ∂2φ
)
=

i

32
∂2φ2 . (B.6)

Thus we see that the primary S6,0 now becomes a descendant of φ2, as a primary and

a descendant at the same time, it is thus a null state. Or more explicitly, since for this

particular case ∆φ2 = d/2− 1, which is actually the dimension of a canonical scalar, thus

its two-point function is killed by ∂2. Similar analysis applies to other perfect cancellations

for other terms in eq. (B.4): between the terms with G4,0 and G8,0 in d = 12; between the

terms with G6,2 and G8,2 in d = 14; between the terms with G8,4 and G10,4 in d = 18 etc.

On the other hand when we deform the theory we assume an OPE of the form

gI(u, v) = 1 + g∗G∆φ,0(u, v) + · · · (B.7)

As we have seen in the text, this implies a conformal cubic interaction which is relevant for

the description of the Wilson-Fisher fixed point of φ3 in d = 6−ǫ. Now if we want a smooth

free field theory limit, we must be concerned for the singularity of the conformal block

G∆φ,0(u, v) as ∆φ → d
2−1, and in fact the operator φ does not appear in the free OPE (B.3).

What happens now is that the critical coupling g∗ has a zero in the free theory limit

which kills the regular leading term of Gd/2−1,0(u, v) and cancels its pole that multiplies

the descendant with dimension d
2 + 1. The result is that the descendant emerges as the

primary operator φ2 in the free theory limit, and from the relations d/2+1 = 2∆φ = d− 2

we find the critical dimension d = 6 as expected. This is the mechanism described in great

detail in the main text.
7The argument generalizes straightforwardly also when 2∆φ = d/2− k with k > 1.
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C Wick contractions and free OPE coefficients for O(N) vector models

In order to compute some relevant OPE coefficients, we consider two classes of three-point

functions involving scalars and vector operators

G1(p, q, s) = 〈φ2p(x1)φiφ
2q(x2)φiφ

2s(x3)〉 (C.1)

G2(p, q, s) = 〈φ2p(x1)φ
2q(x2)φ

2s(x3)〉 (C.2)

Performing the first step of Wick contraction we can derive the following recursion relations

G1(p, q, s) =
4pq

x
4∆φ

12

G1(p−1, q−1, s) +
2p(2s+N)

x
2∆φ

12 x
2∆φ

13

G2(p−1, q, s)

+
(2s+N)

x
2∆φ

23

G2(p, q−1, s−1) (C.3)

G2(p, q, s) =
2p(2(q−1)+N)

x
4∆φ

12

G2(p−1, q−1, s) +
4ps

x
2∆φ

12 x
2∆φ

13

G1(p−1, q−1, s−1)

+
2s

x
2∆φ

23

G1(p, q−1, s−1). (C.4)

To recursively compute the free three-point functions we specify the initial conditions

G1(0, 0, 0) = 〈φi(x2)φi(x3)〉 =
N

x
2∆φ

23

, G2(0, 0, 0) = 〈I〉 = 1, (C.5)

and

G1(p, 0, p) = 〈φ2p(x1)φi(x2)φiφ
2p(x3)〉 = 22pp!

(
N

2
+ 1

)

p

N

x
2∆φ

23 x
4p∆φ

13

(C.6)

G2(p, 0, p) = 〈φ2p(x1)φ
2p(x3)〉 = 22pp!

(
N

2

)

p

1

x
4p∆φ

13

. (C.7)

The OPE coefficients used in section 5 are then defined as

λp,q,s =
G̃1(p, q, s)√

B2(p)B1(q)B1(s)
, (C.8)

where G̃i is the structure constant of three-point functions and the normalizations of two-

point functions B1(p) and B2(p) are defined as

〈φiφ
2p(x)φiφ

2p(0)〉 =
22pp!

(
N
2 + 1

)
p
N

(x2)(2p+2)∆φ
=

B1(p)

(x2)(2p+2)∆φ
(C.9)

〈φ2p(x)φ2p(0)〉 =
22pp!

(
N
2

)
p

(x2)2p∆φ
=

B2(p)

(x2)2p∆φ
. (C.10)
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The OPE coefficients needed for the computation of the anomalous dimensions γ
(2)
0,1 are of

the form λp,p,q and λp,p−1,q, we show their values up to q = 3:

q = 0 : λp,p−1,0 =

√
2p

N
λp,p,0 =

√
2p+N

N
, (C.11)

q = 1 : λp,p−1,1 =

√
2p

N

N + 6p− 4√
2(N + 2)

, λp,p,1 =

√
2p+N

N

3
√
2 p√

N + 2
, (C.12)

q = 2 : λp,p−1,2 =

√
2p

N

2(p− 1)(3N + 10p− 8)√
2(N + 2)(N + 4)

,

λp,p,2 =

√
2p+N

N

√
2 p(N + 10p− 6)√
(N + 2)(N + 4)

, (C.13)

q = 3 : λp,p−1,3 =

√
p

N

(p− 1)(3N(N + 20p− 30) + 4(5p(7p− 17) + 48))√
6(N + 2)(N + 4)(N + 6)

, (C.14)

λp,p,3 =

√
2p+N

N

5p(p− 1)(3N + 14p− 10)√
3(N + 2)(N + 4)(N + 6)

.

Here we now list relevant free OPE coefficients needed for the computation of λ2
p,p+1,0,

λ2
p,p+2,0 and λ2

p,p+3,0 in interacting theories (see eq. (5.26)),

λ2
p,p+1,1 =

(p+ 1)(N + 2p)(N + 2p+ 2)

N(N + 2)
(C.15)

λ2
p,p+1,2 =

25p2(p+ 1)(N + 2p)(N + 2p+ 2)

N(N + 2)(N + 4)
(C.16)

λ2
p,p+2,2 =

(N + 2p)(N + 2p+ 2)(N + 2p+ 4)
(
p+2
2

)

N(N + 2)(N + 4)
(C.17)

λ2
p,p+1,3 =

3p
(
p+1
2

)
(N + 2p)(N + 2p+ 2)(N + 14p− 8)2

N(N + 2)(N + 4)(N + 6)
(C.18)

λ2
p,p+2,3 =

49p(N + 2p)(N + 2p+ 2)(N + 2p+ 4)
(
p+2
3

)

N(N + 2)(N + 4)(N + 6)
(C.19)

λ2
p,p+3,3 =

(N + 2p)(N + 2p+ 2)(N + 2p+ 4)(N + 2p+ 6)
(
p+3
3

)

N(N + 2)(N + 4)(N + 6)
(C.20)

D Functions f(p, n), g(p, n) and anomalous dimensions γ
(2)
0,1

• n = 1 case

f(p, 1) = N + 12p− 4 , g(p, 1) = p(N + 6p+ 2) . (D.1)

The corresponding anomalous dimension given by

γ
(2)
0,1 =

(−1)k+1(k)k
2k(2k)k

N + 2

(N + 8)2
. (D.2)
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• n = 2 case

f(p, 2) = 4(N(4p−3)+4(2+p(5p−6))) , g(p, 2) =
4

3
p(2p−1)(3N+10p+2) . (D.3)

The corresponding anomalous dimension given by

γ
(2)
0,1 =

(−1)k+1(k/2)k
8k(3k/2)k

(N + 2)(N + 4)

(3N + 22)2
. (D.4)

• n = 3 case

f(p, 3) = 2(p− 1)(3N2 + 90(p− 1)N + 8(5p(7p− 11) + 24)) , (D.5)

g(p, 3) = p(p− 1)(3N2 + 30(2p− 1)N + 4(5p(7p− 3) + 2)) . (D.6)

The corresponding anomalous dimension given by

γ
(2)
0,1 =

3(−1)k+1(k/3)k
k(4k/3)k

(N + 2)(N + 4)(N + 6)

(3N(N + 50) + 1072)2
. (D.7)

• n = 4 case

f(p, 4) = 16(p− 1)(3N2(3p− 5) + 14(2p− 3)(4p− 5)N

+ 4(p(248 + 7p(9p− 31))− 96)) , (D.8)

g(p, 4) =
8

5
p(p− 1)(2p− 3)(15N2 + 70(2p− 1)N + 4(7p(9p− 5)− 2)) . (D.9)

The corresponding anomalous dimension given by

γ
(2)
0,1 =

(−1)k+1(N + 2)(N + 4)(N + 6)(N + 8)(k/4)k
6k(3464 + 5N(3N + 98))2(5k/4)k

. (D.10)

• n = 5 case

f(p, 5) = 8(p− 1)(p− 2)(5N3 + 10(28p− 51)N2 + 20(105p(p− 3) + 236)N

+ 16(7p(3p(11p− 42) + 161)− 480)) , (D.11)

g(p, 5) =
8

3
p(p− 1)(p− 2)(5N3 + 30N2(7p− 10) + 20N(47 + 63p(p− 2))

+ 24(2 + 7p(11 + p(11p− 24)))) . (D.12)

The corresponding anomalous dimension given by

γ
(2)
0,1 =

(−1)k+115(N + 2)(N + 4)(N + 6)(N + 8)(N + 10)(k/5)k
16k(139488 + 5N(3968 +N(150 +N)))2(6k/5)k

. (D.13)

• n = 6 case

f(p, 6) = 32(p− 1)(p− 2)(5N3(8p− 21) + 30N2(147 + 2p(15p− 67))

+ 4N(p(12761 + 297p(4p− 23))− 7770)

+ 48(960 + p(p(2338 + 11p(13p− 87))− 2482))) , (D.14)

g(p, 6) =
32

7
p(p−1)(p−2)(2p−5)(35N3+210N2(3p−4)+28N(73+99p(p−2))

+ 24(2 + p(169 + 11p(13p− 30)))) . (D.15)
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The corresponding anomalous dimension given by

γ
(2)
0,1 =

(−1)k+19(N + 2)(N + 4)(N + 6)(N + 8)(N + 10)(N + 12)(k/6)k
320k (480576 + 7N(9796 + 5N(84 +N)))2(7k/6)k

. (D.16)
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