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1. The basics of algebraic number theory. An algebraic number field is a 
field K = Q(a) where a is a zero of an irreducible (over Q) polynomial f(x) 
with integral coefficients. The degree of K, which we denote by 
n = n(K) = [K:Q], is the degree of ƒ(%). We write the roots of /(x) = 0 as a(1), 
a(2), • • • ,a ( n ) m such a way that for l^j^r1 = r1(K), aQ) is real, while for 
j>ru a0 ) is complex. If we let n = ri+2r2, then it is customary to order the 
rr=r2(K) complex conjugate pairs of roots so that for r i+ l ^ j ^ r i+ r 2 , 
aQ)=a(i+r2\ The a ( , ) s are called the conjugates of a and the fields 
K ( , )=Q(a0)) are called the conjugate fields of K. If r2 = 0, we say K is totally 
real and if ri=0, we say K is totally complex. 

The integers of K are those elements of K which are zeros of a 
polynomial with integer coefficients and leading coefficient 1. The integers of 
K form a ring which we denote by o. As is well known, factorization of the 
integers of K into prime integers is not necessarily unique. Various equiva
lent ways of remedying this have been used; we follow Dedekind's method. 
If a i , • • • , ak are elements of X, the set 

a = [ a i , • • • , «k] = j X a i a i I ttiGZ| 

is called the module generated by au • • • , ak (today it would be called a 
finitely generated Z module). The ring o is an example of such a module; on 
the other hand, K is not an example since it is not finitely generated over Z. 
If b=[/3i, • • • , j3m] is another module, we define the product ctb to be the 
module generated by the km numbers aift. 

Since 1 is in o, we always have OÛDÛ for any module a. If oa = a then we 
say a is a fractional ideal of K The nonzero fractional ideals of K form an 
abelian group under multiplication with identity element o. An integral 
ideal, or just ideal for short, is a fractional ideal of K which is contained in 
o. The integral ideals of K are precisely the ideals of o in the sense of ring 
theory today. Every fractional ideal is a quotient of two integral ideals and 
factorization of ideals into prime ideals is unique. 

Among the fractional ideals of K are the principal fractional ideals. If a is 
in K then the principal fractional ideal generated by a is 

(a) = ao = [a]o. 
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The nonzero principal fractional ideals form a subgroup of the group of 
nonzero fractional ideals; the quotient group is called the ideal class group 
of K, and the cosets are called the ideal classes of K The order of the ideal 
class group of K is denoted by h = h(K). For algebraic number fields, 
h(K) = l if and only if o is a unique factorization domain. 

A nonzero fractional ideal of K always has n generators and n is minimal. 
A set of n generators of a fractional ideal a is called a basis of o. If 
a=[ai, • • • , a„] is a fractional ideal, set 

I 
ocr ••• a(;y 

The number D(a) is rational and is independent of the choice of basis for a. 
When a = o, we write just D=DK=D(o); D is called the discriminant of K. 
We define the norm N(a) of a fractional ideal a by 

D(a) = D -N(a)\ 

with N(a)>0. The norm of a fractional ideal is rational and indeed, the norm 
of an integral ideal a is the order of the finite ring o/a and is thus an integer. 
Norms are multiplicative so that N(ab)=N(a)N(b). Elements of K also have 
norms. If a is in K we define 

N(a) = f\aQ\ 

The norm of a is connected to the norm of the principal ideal generated by 
a by N((a)) = |N(a)|. Every prime ideal p divides a unique principal ideal of 
the form (p) where p is a rational prime. If we write (p) as 

(P) = 1 1 P N then pB = N((p)) = nN(p,r* 
and so there is a positive integer f{ such that N(pi)=pfi. It also follows that 
(p) is divisible by at most n prime ideals. If any Ci>l, we say that pi is a 
ramified prime in K and p ramifies in K. It turns out that a necessary and 
sufficient condition that a prime p ramify in K is that p | D. A refinement of 
this involves an ideal b of K called the different of K It has the two 
properties that N(b) = |D| and that a necessary and sufficient condition that a 
prime ideal p is ramified in K is that p\ b. 

We are now in position to define the zeta function of K. For complex s, 
we define 
(1) fr(s) = l N ( o ) -

a 

where the summation is over all nonzero integral ideals of K. The Riemann 
zeta function is given by the special case, £(s)=£Q(s). We have, at least 
formally, an analytic expression of the unique factorization of ideals, 

(2) fc(s) = n ( l + N ( p ) - + N ( p 2 ) - + --.) = r i ( l - N ( p ) - r 1 , 
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where the product is over all prime ideals of K. But now, for R e s > l , we 

h3Ve I|N(p)-|sI»|p-| 
P P 

which is convergent. Thus (2) converges absolutely for R e s > l and, as a 
result, (1) converges absolutely for Re s > 1 . This defines £K(S) as an analytic 
function of s for Re s > l which has no zeros in this region since none of the 
factors of the product in (2) have any zeros in this region. As we will soon 
see, the simple fact that the series for ÇK(s) converges absolutely for Re s > l 
has some surprising consequences. 

2. Some initial applications of the zeta function. In an algebraic number 
theory course at this point, one would usually prove Dirichlet's unit 
theorem, the finiteness of the class-number and Minkowski's discriminant 
theorem. We sketch here analytic proofs of these results. None of these 
proofs have appeared in print before although it seems likely that Hecke 
knew of the first two. It was Hecke who first extended £K(S) to the entire 
s-plane. We begin by sketching his method. 

If S is an ideal class of K, we let 

f ( s , 6 ) = l N ( û ) -

where the summation is over all integral ideals of S and the series converges 
absolutely for R e s > l by comparison with (1). Let b be a fixed fractional 
ideal in ©_1. If o is in ©, ab=(a) is principal, and a necessary and sufficient 
condition that a is integral is that a be an element of b. Thus 

(3) £(s,e) = ( N 6 ) s r | N ( a ) r 
aeb 

where £ ' denotes the fact that only one generator of each nonzero ideal (a) 
is used in the summation. Since there are only finitely many roots of unity 
which satisfy irreducible equations over Q of degree less than or equal to n, 
the number, w, of roots of unity in K is finite. We now have 

w£(s,©) = ( N b r Z ' ' | N ( « ) r 

where £ " denotes the fact that whenever a ^ 0 is used in the sum, so are all 
w roots of unity in K times a used and only these w generators of (a) are 
used. 

A two or three page calculation then shows that with 

£(s, <£) = (|D|/(22^7r"))s/2r(s/2)rT(S)^(s, <£), 

we have 

(4) wt(s, <£) = £ f V ' ^ 1 f • • • ( I"exp{-c(b)xm(a, v)} dv dx 
Z Jo J-» J-<=° aeb 

where v=(vi, • • • , v,) is an r dimensional vector, 

r = r(K) = r1(K) + r 2 ( K ) - l , 

c(b) = 1r/[|D|1/"N(b)2M], 
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and m(- • •) denotes the Stark mess function. This notation is used to denote 
something the reader would usually not care to see. In this case 

m(a, v)=t (<*(,))V' + 2 '£* |a0)|2 e\ 
j = l j = r i + l 

where vr+i is defined by 
ri ri+r2 

j = l j = r1 + l 

We have written (4) under the assumption that r2>0. If r2=0, the right side 
of (4) is off by a factor of 2. In any event, all the integrations and 
interchanges that are necessary to reach (4) are valid for R e s > l . 

If K has no units of infinite order, then the S U m /, aGb is over all nonzero 
elements of b. But in this case, it is easy to show that for r>0, the inner 
r-fold integral in (4) would be divergent. Thus when r>0, K has units of 
infinite order. A refinement of this argument produces r multiplicatively 
independent units ei, • • • , er in K. At this point, we may alter the right side 
of (4) by changing the r-fold inner integral to an integral over a certain r 
dimensional parallelepiped V determined by ei, • • • , er and extending the 
range of summation on a, 

(5) wê(s,©) = ? f xcsw2)-if . . [Xwexp{-c(b)xm(a,ü)}dt;dx. 
Z JO J V J a€Eb 

Here £'" denotes the fact that when a ^ O is used in the sum, so is ea 
whenever e is a unit in the group E generated by ei, • • • , er and the roots of 
unity of K. 

On the other hand, since V is compact, the integral on the right of (5) 
may be shown to be convergent for Re s > 1 when X«eb is replaced by 
£aeb,«*o. But this means that E is of finite index in the group of units of K 
since otherwise this integral could be evaluated so as to involve a sum of the 
form on the right side of (3) except with each (a) occurring infinitely often 
and this would contradict the convergence of the integral. With a slight 
amount of work, it follows that the units ei, • • • , er can be chosen so that E 
is the whole group of units. This is Dirichlet's unit theorem. We assume in 
the sequel that ei, • • • , er are so chosen. 

Now in (5) the summation over a is over all a ^ 0 in b. The summation 
over all a in b gives rise to a multidimensional 6-function. By utilizing the 
transformation formulae of the 6-function, Hecke showed that 

(6) + f f x^2»-1 f • • • f Y exp{-c(b)xm(a, v)} dv dx 

+ n r ^ a - w j - i f . . f £ exp{-c(b-' b-')xm(a, t>)} dv dx, 
1 Ji J v J o e i r V ^ o 
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where the volume of V is TlR and R = R(K) is the regulator of K One may 
express R as an r by r determinant involving the units ei, • • • , er and their 
conjugates. (6) is valid initially only for R e s > l , but the integrals on the 
right converge for all s and thus give an analytic continuation of £(s, (£) to 
the entire s plane. Again if r2=0, the integrals on the right of (6) are off by a 
factor of 2. If s is real, then everything in the integrals is positive, and so for 
s real, s > l , we have 

(7) w?(s,e)>2^R/[s(s-l)], 

which is a positive lower bound independent of (S. But the sum over © of the 
left side of (7) exists and so there are only finitely many ©, i.e., the 
class-number of K is finite. 

The right-hand side of (6) is invariant when the pair b, s is replaced by the 
pair b_1b_1, 1 -s . With 

i(s) = (|D|/(22^7r"))s/T(S/2)rT(s)r^K(s), 

this gives us the functional equation for ÇK(s), 

£(s) = £(l-s). 

If we analyze the growth of £(s) from (6), we find that the function 
f(s)=s(s-l)t;(s) is an entire function of order 1. The Hadamard product 
theorem then says that 

(8) /(S) = eA+B!Il{l-(s/p)K/P 

P 

where p = |3+iy runs through the zeros of f(s). The numbers p are called the 
nontrivial zeros of £K(S); since £K(s) has no zeros with R e s > l , it follows 
that |3 is between 0 and 1. 

If we logarithmically differentiate (8) and use the equation f(s)=f(l-s), 
we can get rid of both A and B, 

f(s) = y 1 
f(s) pS-p' 

To ensure convergence, the p and p terms must be grouped together; with 
this grouping we have 

and this is valid for all s. On the other hand, the definition of f(s) leads to 

dO) HÛ-1+ 1 I ! In J lPl 'i I r i F ( 5 / 2 ) ! r r ' ( s ) I ^ k ( s ) 

(10) H^-^J^i^^W^r 2 r(s/2) + r2r(s)
+£K(sr 

If s is real, s > l , then from (9), f (s) / / (s)>0 and from (2), 

C'K(S)= y log(Np) 
M s ) r(Npy-i u-
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Therefore (10) implies that 

m v 1 , n ^ r , f . r ' (s /2)l , 2r2\, . . . r ( s ) l 2 / 1 , 1 \ 
(11) - l o g D > - [ l o g ^ - T ^ ) J + -[log(27r)-I^yj--(- + ^ î j . 

With s =3 , we get 

- log D > - (1.1) + — ( 0 . 9 1 ) - - - f 
n to n n n 6 

^0 .91 -5 / (3n ) . 

Hence for M =^2, we have 

n _ 1 l o g D > 0 . 0 7 , 

and so D > 1 and, indeed, 

(12) D>(1.07) n . 

If n is large, we may take s closer to 1 in (11) and improve our estimate in 
(12). The ultimate result may be expressed as 

^r1n-1(3.108) + 2r2n-1(2.415) + o(l) 

^2 .415 + o(l) 

as n—»oo. Thus for large degrees, 

(13) D1/n>(22)r> /n(ll)2r2/n. 

This is in fact better than Minkowski's original result, which numerically was 

D1/n>(7.389)r'/n(5.803)2r2/n 

when n is large. 

3. The Brauer-Siegel theorem. There are many standard applications of 
zeta functions to algebraic number theory that must be skipped here for lack 
of time. The most obvious of these is the prime ideal theorem which says 
that the number of prime ideals of a field K with norm ^ x is asymptotic to 
x/log x as x—»oo. This theorem was covered in my Las Vegas address [4]. I 
would also like to mention the topic of values of L-series at s = l ; the reader 
is referred to [6] for further details on this topic. 

There is a Riemann hypothesis for £K(s). It says that the only zeros of 
£K(s) in the region R e s > 0 lie on the line R e s = i As with the ordinary 
Riemann hypothesis (the case K = Q), no progress has been made. A very 
important special case is the following 

CONJECTURE. If S is real, s > l - ( 4 log |D|)_1, then £K(s)#0. 

Even this is not known to be true for all K but it is known that the 
conjecture can only be wrong once for each K. 



1975] THE ANALYTIC THEORY OF ALGEBRAIC NUMBERS 9 6 7 

LEMMA. There is at most one real zero of £K(s) between l - (41og|D|) _ 1 

and 1; if it exists, it is a simple zero of ÇK(S). 

The proof of the Lemma may be based on (9) and (10). If we take s real 
and slightly greater than 1, then two zeros of £K(s) very near 1 make 
f'(s)/f(s) in (9) larger than the l / ( s - l ) term on the right side of (10) allows. 
(The T and £ terms are negative.) If £K(so) = 0 for some real s0 between 
l - (41og|D|) _ 1 and 1, we will call s0 the exceptional zero of £K(S). 

Suppose for the moment that the conjecture is true for a particular K; i.e., 
£K(s) does not have an exceptional zero. In this case, thanks to the first 
order pole of £K(s) at s = l , £K(s) is less than or equal to zero at 
s 0 =l- (41og |D| ) - 1 . We now sum (6) over the h different classes Ê and set 
s=s 0 . On the left side we find w£(s0) which is less than or equal to zero; on 
the right we find 2rhR/s0(s0-l) which is negative while the integral terms are 
clearly positive. Indeed the integral terms may be shown to be moderately 
large. This means that hR cannot be too small and in fact one obtains an 
estimate of the following form, 

(14) hR >crnSo(l -so) |D|s°/2> c r ( l -so) |D|1/2 

where Ci and c2 are large constants (effectively computable). This is an 
excellent lower estimate of hR but it depends on the conjecture. If the 
conjecture is false, the best we can do is let s0 be the exceptional zero of 
£K(S). We then get (14) again but the result is much poorer if s0 is very close 
to 1; indeed the result is useless if s0 is within |D|~1/2 of 1. 

The Brauer-Siegel theorem gets around this, but in an ineffective way. 
The main idea of the proof is to make the exceptional zeros of two different 
zeta functions contradict each other by showing that they are both zeros of 
the zeta function of the composite field. When successful, this argument 
yields a result of the form 

(15) hR>c 3 (e) - 1 |D | ( 1 / 2 ) -

where c3(e) is a large number depending upon e > 0 and is ineffective since it 
depends upon a hypothetical counterexample to the conjecture. Before now, 
no proof of (15) was known for which c3(e) could be explicitly given for any 

With today's knowledge (about Artin L-series, in particular), the argu
ment leading to (15) can be carried out for two types of fields. First, we may 
derive (15) for all fields K o f a fixed degree n, in which case c3(e) depends 
upon n also. Second (this is the more frequently quoted case), we may 
derive (15) for a sequence 3C of fields K which are normal over Q and such 
that n(K)~l log |D K | ^°° as K runs through 3C. Because of the first case, we 
may restrict ourselves in the discussion of the second case to sequences 3fC 
such that n(K)-»o° as K runs through 3Sf. In this case, c3(e) depends upon SC 
also. In either case, (15) represents the interesting half of the Brauer-Siegel 
theorem. 

The dull half of the Brauer-Siegel theorem says that 

(16) hR<c4(e) |D| ( 1 / 2 ) + e 
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where c4(e) is effectively computable for each e>0 . In the first case, c4(e) 
depends upon n also, and in the second case, c4(e) depends upon 3fC also. 
However, because of (16), we may recast (15) in a more picturesque form 
and this is the way the result is usually phrased. 

BRAUER-SIEGEL THEOREM (FIRST VERSION). If K runs through a sequence of 
fields of fixed degree, then 

(17) log[h(K)R(K)]~èlog|DK | . 

BRAUER-SIEGEL THEOREM (SECOND VERSION). If K runs through a sequence 
of normal extensions of Q such that n(K)—>o°, n(K)_1 log|DK|—»°°, then (17) 
holds. 

It is to be emphasized that up to now, both versions of the Brauer-Siegel 
theorem have been completely ineffective. To make them effective, it is 
necessary to specify c3(e) in (15) for each e, 0 < e < i 

Perhaps the most important application of the Brauer-Siegel theorem is 
the case that K is totally complex, k is totally real, [K:k] = 2. Then the 
regulators of K and k are essentially the same (the unit theorem says that 
the units of k form a subgroup of finite index in K and this index may be 
easily estimated). Thus 

h(K)/h(k)>c5(8)-1 |DK | (1/2)-7|Dk | (1/2)+e. 

Now \DK\ = Dlf, where ƒ is an integer, and so 

(18) h(K)>c5(eT1 |Dk|
(1/2)-3ef1/2)-e. 

Here c5(e) depends also upon the degree of k and is ineffective. If k is fixed 
and K runs through all totally complex quadratic extensions of k, then 
|DK|—»°° and so /-^°°. Therefore as K runs through all totally complex 
quadratic extensions of a fixed totally real field k, h(K)—>o°. This result 
depends upon the first version of the Brauer-Siegel theorem and is ineffec
tive. 

It was Heilbronn's proof of this last result for k = Q that motivated 
Siegel's part of the Brauer-Siegel theorem. Siegel's theorem is the first 
version of the Brauer-Siegel theorem for n(K) = 2 and is also ineffective. 
However, it now turns out that the case of fields of degree 2 is where the 
entire difficulty lies in the Brauer-Siegel theorem. Every other case of the 
Brauer-Siegel theorem can be made somewhat effective, and in some 
instances the whole result can be made effective. 

The key to this new development is most easily found if we assume an 
unproved conjecture of Artin. If M is a normal extension of Q then 

X 

where \ r u n s through the nontrivial irreducible characters of the Galois 
group G = G(M/Q) of M and m(x) is the degree of x which is a positive 
integer. The functions L(s,x) are Artin L-series and are conjectured to be 
entire functions of s. Assuming this to be true, if s0 is a real simple zero of 
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£M(s) between 0 and 1, then £(s0)^0, and so L(s0, x)=® f ° r exactly one x, 
say x=X2- The character X2 must be real (L(s0, X2) = 0 also) and the corre
sponding m(x 2 )=l . 

The theory of Artin L-series says that corresponding to such a character 
there is a quadratic field F contained in M such that ÇF(s) = Ç(s)L(s, Xi) and 
so So is a zero of £F(s) also. Furthermore, if K is any subfield of M, £K(s) has 
a product decomposition into L-series of the form 

X 

where m(K, * ) ^ 0 . One finds that m(K, * 2)>0 if and only if F c K Thus 
£K(SO) = 0 if and only if F<^K. The upshot is that if s0 is a real simple zero of 
£M(s) between 0 and 1 and if 

(i) each L(s,x) is analytic at s0, 
then 

(ii) M has a quadratic subfield F such that £F(SO) = 0 , and 
(iii) if K is a subfield of M then £K(s0) = 0 if and only if F<=:K. 

Recently Heilbronn [1] proved (ii) without having to assume (i). His proof 
does not yield the important second part of the result above. However, I 
have found another version of his result that does enable one to prove (iii) 
also. The key step is, in fact, a proof [5] (via group representation theory) 
that each L(s,x) *s analytic at any simple zero of £M(S). In particular, (i) is 
true and (ii) and (iii) follow. 

This result has startling consequences for the Brauer-Siegel theorem. Let 
K be a field and M the splitting field of K over Q. We may estimate DM and 
find that for n = n(K), 

(19) \DM\<\DK\nl. 

Let g(K)=l if K is normal over Q (M = K) and g(K) = n\ otherwise. 
Suppose So is a real zero of £K(S) between l-(4g(K)log|DK | )_ 1 and 1. A 
result of Aramata (rediscovered by Brauer) states that £M(s)/£K(s) is entire 
and so s0 is a zero of £M(S) also. In fact s0 is in the range 
l - ( 4 log |DM |)_1=So<l and so s0 is a simple zero of £M(s). Therefore there is 
a quadratic subfield F of K such that £F(SO) = 0 . As a result, s0 does not exist 
if K has no quadratic subfields. In particular, the Brauer-Siegel theorem is 
completely effective for fields of odd degree. 

But even if K does have a quadratic subfield, we may say something 
effective about the Brauer-Siegel theorem. If F is a quadratic subfield of K 
and £K(SO)=0 where s0 is real, then 

So<l-(cêl/\DF\V2) 

where c6 is a large constant that is effectively computable (actually TT/6 will 
probably work). (This is the e=\ case of Siegel's theorem which is effective; 
however this case gives no useful information about F.) But 

\DK\ = \DF\"% 
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for some positive integer fl9 where we are still using n = n(K). Therefore 

\DF\1/2^\DK\1/n 

and hence 
S O < I - ( C 6 V | D K | 1 M ) . 

In particular, 

1-S o>min(l/(4g(X)log |DK|), (c6V|DKr/n)) 

>(ng(K) i D x r T 1 • min(e/4, ce1). 

Thus, from (14), 

(20) h(K)R(K)>(cy1C2n/ng(K))\D\(1/2)-(1/n) 

where c7 is effectively computable. This shows that the second version of the 
Brauer-Siegel theorem is effective also. In fact our methods lead to the 
following result. 

THEOREM 1. Both versions of the Brauer-Siegel theorem are effective for 
fields of odd degree. The second version of the Brauer-Siegel theorem is 
effective. The first version of the Brauer-Siegel is partially effective for fields of 
degree n(K) = n>2 in that we may specify c3(e) in (15) for e^n~\ In any 
event, the first version of the Brauer-Siegel theorem is a corollary of SiegeVs 
theorem. 

Because we have made the first version of the Brauer-Siegel theorem 
partially effective, we can now derive an effective class-number result. It has 
the general appearance of (18) except that the estimate is made somewhat 
better by the use of L-series [5]. 

THEOREM 2. Let K be a totally complex field of degree In containing a 
totally real field k of degree n. We let f denote the positive integer such that 
|DK | = |Dic|2/ and we let g (k)= l if k/Q is normal, g(k) = n\ otherwise. For e in 
the range 0<e^j, and for sufficiently large c8(e) (where c8(e) is effectively 
computable and independent of n), 

(21) h(K) >(ng(k)c8(e)nr1 |D K | ( 1 / 2 ) - ( 1 / H ) - / ( 1 / 2 ) - 1 / ( ? W ) . 

As a corollary, we obtain the following result. 

THEOREM 3. If k is a fixed totally real field other than Q, then when K 
runs through all complex quadratic extensions of k, h(K)->™ effectively. If n is 
fixed, n>2, then given h, there are only finitely many totally real fields k of 
degree n which have any totally complex quadratic extensions of class number 
h and these k may be effectively determined. 

Indeed, since c8(e) in Theorem 2 is independent of n, it is possible to 
replace the words "totally complex quadratic" in the last theorem by 
"totally complex abelian". 

4. Postscript. It is now almost two years since the talk on which this 
paper is based was given. There have been some significant advances on two 
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of the topics covered in this paper. With reference to the estimate (13) of 
discriminants, the best that the geometry of numbers has produced is the 
estimate of Mulholland [2], 

(22) |D|1/n^(32.561) r i /n(15.775)2r2 /n+o(l) a s n ^ ^ , 

which is better than (13). Odlyzko has recently refined (11) so as to produce 
estimates better than this. His best estimates are complicated but he has 
produced a very simple refinement [3] of (11), 

|D|1/n^(50) r i /n(19)2r^ /n+o(l) as n->oo 

which is already better than (22). 
The analytic methods we used in [5] to get (21) already suffice to produce 

a reasonable lower estimate for the associated L-function which is indepen
dent of the degree of k. If k is totally real of degree n, K is a totally complex 
quadratic extension of k, \DK\ = Dlf, then 

CK(S) = MS)L(S,X) 

where ^ is a real character of k whose conductor has norm ƒ and the 
associated L-series, L(s, x), *s entire. From Lemma 5 of [5] and p. 150, lines 
4-7 of [5], we see that for s real, 3 / 2 ^ s ^ 2 , 

(23) L ( l , x ) > [ c 9 n g ( k ) r 1 m ( s r .[Dr ) ( s-1)+1 /71 / (2n )] 

where c9 is effectively computable and 

m(s) = 7rs/2/[r(s/2)£(S)]. 

Since IT > TT2/6 = £(2), m(s) > 1 for s near 2. For example m(1.66) > 1. If we 
take s = 1.66 in (23) and assume that k/Q is normal so that g (k )= l , then for 
n>n0, where n0 is effectively computable, 

(24) L(l,x)>l/(Dkf)
w. 

An estimate of this form has been previously derived only ineffectively, and 
even then some sort of extra hypothesis has been needed to eliminate from 
consideration those fields with small discriminants. Class-number results 
follow from (24) because h(K) is essentially (Dk/)1/2L(1, x). However, the 
correct estimate is actually [5, equation (31)], 

h(K)^(h(k)/(27rr)(Dkf)
1/2L(hx) 

and for variable n, the factor (27r)"n is deadly. With better choices of s, a fair 
amount of the (27r)~n can be absorbed, but not all of it. Odlyzko's methods, 
however, give enough of an improvement on (23) so that the restriction in 
Theorem 3 that n be fixed can be removed for k normal over Q. He proves 
[3] that given Jt, there is an effectively computable n0(h) such that if k is a 
totally real field of degree n and K is a totally complex quadratic extension 
of k (or even a totally complex abelian extension of k) with h(K) = h, then 
n^n0(h). 
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