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1 Introduction one direction. It is well known that the higher order motion of a

The characteristics of the transition vibration of a rotor Systel%eneral flexible rotor can be viewed as a summation of several
ond order motions by modal analysis technique if the gyro-

when it passes its critical speeds during acceleration are of gr . . N A
interest for active vibration control, active real-time balandibh §I§sopll§ee;f§gltiésd r:gtcs(;?nnr':;'iggtn;a'_f'g'(fg‘et?;gfsnlfg dlgéhls paper can

and rotor design. In the past, a few analylg®s8| have dealt with LT S
speed varying transient rotor dynamics. These researchers u simplify the problem, we assume that the acceleration is

numerical integration techniques to calculate numerical solutio§§ stant. The real part of the governing equation changes to
to the transient dynamic model. Although these models can be&+ 25w, X+ w,2x=C; cog at?/2+ ¢') + C,t? cog at?/2+ o).
used to predict the transient vibration for a complicated rotor sys- (2)
tem, it remains hard to obtain the quantitative characteristics of - <ocond order system, the response to an arbitrary forcing
the transient vibration. function f(t) is [12]

Lewis[9] and Dimentberd10] presented an analytical solution
of the problem of running a rotor system through its critical ot t e P t .
speeds at a uniform acceleration. The basic characteristic of the | €** | f(r)e"“0"dr—e’ [ f(r)e”Fo7dr}/(m(ag— Bo))-
“envelope” (amplitude of the transient vibration was studied by 0
an approximation method. In this paper, their work is extended. ®)
An analytical expression of the motion of the geometric center & the next section, an equivalent analytical expression for this
a simple Jeffcott rotor is derived. The exact “envelope” andhtegration solution will be presented.
“phase” of the transient vibration are presented. As stated |§| - . .
Dimentberg[10], it is found that the transient vibration through3 Derivation of the Analytical Solution
critical speeds consists of free vibration and synchronous vibra-The system is a linear system. If we ket be the response
tion. Explicit expressions of these two components are presenigsiresponding to the first forcing term amg be the response

in this paper. corresponding to the second forcing term, the total solution is the
summation of these two.
2 Problem Statement * The response caused b{,t? cos@t?/2+ o)

. i( 2 .
The Jeffcott rotor is a simplified rotor model that retains the Noting coset/2+ o) =Re e 2*?)], the response is
essential characteristics of more realistic rotor models in its im- t
balance response. The geometric setup of this model is shown in Xp= Re{ czeiv: e“O‘J r2elar2g=aorq . — oBot
Fig. 1. In this setup, the bearings are rigid and frictionless. The 0
shaft is isotropic, elastic, and massless. The disk is rigid and is ¢
located at the center of the shaft. _ _ % j T2eim—2/2€—ﬁo‘fd7}/(m( ao—ﬁo))}- (4)
In practice, only the motion of the geometric center of the disk 0
can be easily measured. Therefore, we take pBias the inter-
ested point. The equation of motion of poliin complex form is
[11]

F+ 25w, + @, 2r =w(w?—ia)e'®. 1)

Since the stationary coordinatec@and the body-fixed coordinate <M Bearing
systemgthey coincide with each other at the initial conditiare

usually selected arbitrarily, the system imbalance is representec
a general vectow, instead of just an eccentricity. The real par
and the imaginary part are symmetric in the above equation t
cause the shaft is isotropic and there is no gyroscopic effect in tl
rotor model. Therefore, the vibration characteristic of this syste
can be obtained by only considering this second order model

v
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Fig. 2 The trajectories of 2z, and z,

The contourC’ is shown in Fig. &). Noting I'(1/2)= |,
I'(3/2)= (@I2, Eqs.(8), and(9), yields

Using the variable substitution[9], r=2izy/a+ (iwn{ 0 when C’ does not include the origin
r—2 t 2niar2n—agr - e %zdz=

+a.)n 1= 8/ a for term for'e ¢ © -O 97 and 7= IZ.Z “ c’ \/; when C’ includes the origin

+(iwnl — wn1— ) a for term [§r2e' % FoTdr, the inte-

gration along the real axis in E¢4) transforms to an integration o2 0 when C does not include the origin
along a curve in the complex plane. The two curves are defined by —dz=
the trajectory ofz, andz,. z; andz, are ¢z

z(7)= —i(aT—iwné’—wn\/l—é’z)zl(Za)

27 when C’ includes the origin.
(10

Let z;=2,(t=0)=—iw3(i{—V1— )% (2a), and the integra-

(1) =—i(ar—ioyl+o1— )% (2a). ®)  tion from Zjtoz, is
Typical trajectories for, andz, with w,=100s?%, =0.01, and
a=15s? are shown in Fig. 2. f e 2 1ldz= 3g efzzxfldz_J' e 27" 1dz
Both the trajectories are in the form of a parabola. Using this c’ T

variable substitution, the first term in the bracket of Ef).turns ~ Curvefrom 2z, to z
out to be

S R — *j e 2" 1dz, (11)
7_2elaz /Ze*aonT:ie(*lwnJrZImn{ +20,{V1-{%)(2a) T,
0

. where the trajectoryf; and T, are shown in Fig. ®). The right-
Xf (ZizTa hand side of Eq(7) changes to
0 r ’
Cul V7K +e 2y(z)) —e 2y(zy)]+Cle a—e 4]
—agil@)?e 4/ \2iaz,dz,.  (6) ,
+ +e7? N—e &
Equation(6) can be simplified by using constar@is~ Cyg. Cel2VmK+e g(z) e (2] (12)
to, t t where ¢(z)=[ie ’JzFtovdv, ¢(z)=[se v/{yz+vdv, which
f el e 2gm a0rq r= C4J’ e’zlx/z—ldzﬁ Csf e Adzy are obtained by a simple variable substitution, &nid an indica-
0 0 0 tor function, which indicates if the contour &’ includes the
origin, i.e., if z; is in the 39 quadrant. More clearly,

0 whent=sw,({+ \/1752)/01
1 when t>wy({+V1- %)/ a.

§ e 22 ldz= (2™ — 1)T'(x), @) . The second term in the bracket of E(q) is si[jnpler than the

c first term because all the trajectory of is in the 3 quadrant. No
singular point is included in the integration contour. With a simi-
lar derivation, we can get

t
+Cs f e 4/\z,dz,. @)
0

From Macrober{13], (13)

wherel'(x) is the gamma function and the integration cutvés
shown in Fig. 3a).

Noting that the origin(0,0) is the only singular point of the t 2 ,
complex variable functioe™22*~* whenx=1/2 orx=3/2, by the J 2 e 2e=Bordr=Cgle %2 (2, ) — e 2i(2,)]
Cauchy residue theorem, 0
-2, _a—z
é e %7 ldz +Coleeme™)
< +Cide 2 ¢(2,') e 2h(2,)].
0 when C’ does not include the origin (14)

_ % e Z2*"'dz when C’ includes the origin. © Substituting Eqs(12) and(14) into Eqg.(4), we obtain an analyti-
c cal expression fok,.
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X,=Re C,{e® [ Cy(VmK+e 4 y(z,') —e M1(zy))
+Cs(ea —e 1)+ Co(2\mK+e 2 ¢(z,') — e 2¢(2y))]
— Pl I Cy(e 2 y(2,') — e 2ih(2,)) + Co(€™ %2 —e 22)

+Cole %2 h(2,') — e 2¢(2)) I (M( o= Bo)) ]
« The response caused b{; cos@t?/2+ o)

(15)

The integration form for the response corresponding 1

C, cos@t?/2+ o) is

t
o P2 _
X1=Re{Cle"’ {e“O‘f gler2gm a0y
0

t
— ePot f Oei ar’2g~Borg T] /(M(ag— ,30))} ) (16)

Using the same variable substitution as E§). and by similar
derivation, we can get the response,

x1=Rg C,6'7 {e®'Cy(2\mK+e %' ¢(z,') — e Aep(2y))
—ePlCo(e7%2 d(2,') — e 2¢(25)) (Mo~ Bo) V2i ) ].

a7

The total imbalance response of the Jeffcott model during
celeration can be obtained by the summatiow,0dndx, as given
in Egs.(17) and (15).

4 Analysis

-3
x10

5
t

10

Fig. 4 Transient imbalance response calculated by the analyti-
cal solution

y the time derivative ofit?/2+ w?(1—2¢?)/(2«). Itis the same
requency as the instantaneous rotating speed.
* The suddenly occurring vibration with the damped natural
frequency is contributed by 27K and @K.
The equation for this component is

Xn=RE{Coe'" " 907K Cy+ 27K Cg)

Although numerical integration has to be used to calculate P
functions ¢(z) and ¢(z) in Egs. (17) and (15), the analytical +2\TKC,Cae0 17 [ \2iat (m(ag— Bo))].  (21)
solution can provide more insights to the imbalance response dy- gccurs when K is first nonzero, i.e., whent=w,({
ing acceleration than a direct numerical solution. From the an

lytical solution, the full response can be viewed as three parts;,a

transient response due to initial condition; a “synchronous” vi
bration; and a suddenly occurring vibration at the damped natu
frequency.

* The transient response is contributed by the termsy«(z),
#(Z), and e#, i=1,2.

x(=Re[[Co€e! (e "A[Cyy(2}) + Cs+ Cob(2})]
— P2 Caih(2p) + Co+ Croh(25) 1}
+Crel” feo! iC(z7) — el

X C7¢p(z5)}2i all(m(ag— Bo))]- (18)

In the transient response, orgffo' andefo! are time variant. The
response vibrates at the damped natural frequengfl — ¢ and
decays at the rate @ ¢“n.

» The “synchronous” vibration is contributed by the terms

W(z), P(z), i=12.
Xs=Re[C,e'’{—e*' " A1[C,y)(z1) + C5+Cep(21)]
+eP' "% Cqif(25) + Co+ Croh(2,) 1}

+C1e' {— e T HCy4(2y)

+ et 2C, ¢(25)}/\2i al (M ap— Bo)) ] (19)
From Eq.(5), we have
aot—21(H) — e—mﬁg\f’l—gzla+[at2/2+ wi(1-289)(2a)]i
eBot—22(h) = ewﬁgv‘l— Cla+[at?i2+ w2(1-202)1(2a)]i _ (20)

& [1=7?)/a. The occurring time is very close to the time when

t

he rotating speed hits the damped natural frequencyl — 7%/ a
}é&rllen the damping of the system is low. It is also exponential

ecaying because the only vibrating termefst and e®o',

Figure 4 shows these vibration components and the full re-
sponse forw,=100s?', [=0.01, «=15s72, and w=(1+i)
X 1075

The transient respong&ig. 4a)) is quite small compared to
the full response. If the transient vibration is ignored, there are
two major components in the response: the synchronous vibration
(Fig. 4(b)) and the exponential decaying vibration at the damped
natural frequency after time= w,({+ J1— A/ (Fig. 4c)). Al-
though the functiorK is discontinuous, the full response is con-
tinuous because the functiab(z) and ¢(z) are also discontinu-
ous. These discontinuous functions compensate each other. The
full analytical responséFig. 4(d)) has been compared with the
numerical solution of Eq(1) that is calculated by the Runge-
Kutta method. The relative difference is less than 0.5 percent at
each time step.

Another useful observation of this analytical solution is that if
only x5 andx,, are considered, the transient response for a general
rotor system without gyroscopic effects can be written as

N
= I(Zl [ <724 AOIM (1) + wieellea 1 OTM ()],

(22)

Vv is a complex number that represents the vibration of the rotor in
two directions. N is the number of significant vibration modes.

is a complex number that represents the system imbalance in the
kth mode.wyy is the damped natural frequency of tkin mode.

Mgk, prs Mnk, andy, are defined as the generic magnitudes and
phases of the synchronous vibration and the suddenly occurring

This component is called “synchronous” vibration because thébration in thekth mode, respectively. They are only related with

instantaneous vibration frequency xf is at, which is obtained
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the dynamic parameters of the rotor system, not with the system
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x10 (a) )(103 (b) CQ = —2C7,80i/a2 C10= _C7B(2)/(a2\/m)
25 )1 5 My ,68(w) = magnitude and phase of system imbalance in Fig.
2 4 5.
231 5 ;1\ 233 ‘\ Oxy = stationar_y coordinate system '
. I o 2 i \ SG = geome_trlc and mass centers of the disk
= | = : \ SXY = body-fixed coordinate system
0.5 J \% o— | ™ U,,U; = real and imaginary pafthe X andY coordinates
0 - 1 of w
0 5 10 0 5 10 i = /=
s (c) @ r = x+iy, the vector fromO to Sin stationary coor-
— o'7~ rrrrr — dinate system
o/ \\ i } w = U,+iU;, a constant vector from S to G in body-
% =0 | % 5 | fixed coordinate system
g ‘ T ‘ z,,Z, = functions of timet or dummy variabler when
T 100 Tt i they are in the integrand
-150 L/ z,,z, = complex values of; andz, att=0
200 15 ¢, w, a = rotating angle, speed and acceleration of the rotor
oo S e V(0D
Bo = _gwn_i \/(wn_gzwn)
Fig. 5 The magnitudes and phases of x and x, {,w, = damping ratio and natural frequency of the rotor
system
oandg’ = arctaiJ;/U, and arctabJ; /U, + /2
imbalance. For a simple Jeffcott rotor, there is only one vibration 7 = dummy variable for integration
mode. Using the same parameters as that used in Fig. 4, we g'veknowIed ment
an example of the magnitudes and phases of the vibration comé& g

nents in Fig. 5Mg, p, andM,,, vy are the generic magnitudes and This work was supported by BalaDyne Corporation and the
phases of synchronous and suddenly occurring vibration, respecS. Department of Commerce, National Institute of Standards
tively. M,, and 6(w) are the magnitude and phase of the systeand Technology, Advanced Technology Program, Cooperative
imbalance. The unit for phase in Fig. 5 is degree. This informatiokgreement Number 70NANB7H3029.

is very useful for design of active vibration control and estimation

of magnitude and position of imbalance. References
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