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The Analytical Imbalance
Response of Jeffcott Rotor
During Acceleration
Since many rotor systems normally operate above their critical speeds, the proble
accelerating the machine through its critical speeds without excessive vibration d
increasing attention. This paper provides an analytical imbalance response of the Je
rotor under constant acceleration. The response consists of three parts: transient v
tion due to the initial condition of the rotor, ‘‘synchronous’’ vibration, and sudden
occurring vibration at the damped natural frequency. This solution provides phys
insight to the vibration of the rotor during acceleration.@DOI: 10.1115/1.1352021#
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1 Introduction
The characteristics of the transition vibration of a rotor syst

when it passes its critical speeds during acceleration are of g
interest for active vibration control, active real-time balancing@1#,
and rotor design. In the past, a few analyses@2–8# have dealt with
speed varying transient rotor dynamics. These researchers
numerical integration techniques to calculate numerical soluti
to the transient dynamic model. Although these models can
used to predict the transient vibration for a complicated rotor s
tem, it remains hard to obtain the quantitative characteristics
the transient vibration.

Lewis @9# and Dimentberg@10# presented an analytical solutio
of the problem of running a rotor system through its critic
speeds at a uniform acceleration. The basic characteristic o
‘‘envelope’’ ~amplitude! of the transient vibration was studied b
an approximation method. In this paper, their work is extend
An analytical expression of the motion of the geometric cente
a simple Jeffcott rotor is derived. The exact ‘‘envelope’’ a
‘‘phase’’ of the transient vibration are presented. As stated
Dimentberg@10#, it is found that the transient vibration throug
critical speeds consists of free vibration and synchronous vi
tion. Explicit expressions of these two components are prese
in this paper.

2 Problem Statement
The Jeffcott rotor is a simplified rotor model that retains t

essential characteristics of more realistic rotor models in its
balance response. The geometric setup of this model is show
Fig. 1. In this setup, the bearings are rigid and frictionless. T
shaft is isotropic, elastic, and massless. The disk is rigid an
located at the center of the shaft.

In practice, only the motion of the geometric center of the d
can be easily measured. Therefore, we take pointS as the inter-
ested point. The equation of motion of pointS in complex form is
@11#

r̈12§vnṙ1vn
2r5w~v22 ia!eiw. (1)

Since the stationary coordinate Oxy and the body-fixed coordinat
systems~they coincide with each other at the initial condition! are
usually selected arbitrarily, the system imbalance is represente
a general vectorw, instead of just an eccentricity. The real pa
and the imaginary part are symmetric in the above equation
cause the shaft is isotropic and there is no gyroscopic effect in
rotor model. Therefore, the vibration characteristic of this syst
can be obtained by only considering this second order mode
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one direction. It is well known that the higher order motion of
general flexible rotor can be viewed as a summation of seve
second order motions by modal analysis technique if the gy
scopic effect is not significant. Hence, the result in this paper c
also be applied to complicated flexible rotor models.

To simplify the problem, we assume that the acceleration
constant. The real part of the governing equation changes to

ẍ12§vnẋ1vn
2x5C1 cos~at2/21s8!1C2t2 cos~at2/21s!.

(2)

For a second order system, the response to an arbitrary forc
function f (t) is @12#

x5H ea0tE
0

t

f ~t!e2a0tdt2eb0tE
0

t

f ~t!e2b0tdtJ /~m~a02b0!!.

(3)

In the next section, an equivalent analytical expression for t
integration solution will be presented.

3 Derivation of the Analytical Solution
The system is a linear system. If we letx1 be the response

corresponding to the first forcing term andx2 be the response
corresponding to the second forcing term, the total solution is
summation of these two.

• The response caused byC2t2 cos(at2/21s)

Noting cos(at2/21s)5Re@ei(at2 /21s)#, the response is

x25ReFC2eisH ea0tE
0

t

t2eiat2/2e2a0tdt2eb0t

3E
0

t

t2eiat2/2e2b0tdtJ /~m~a02b0!!G . (4)

e

Fig. 1 The geometric setup of a planar rotor
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Using the variable substitution@9#, t5A2iz1 /a1( ivnz

1vnA12z2)/a for term *0
t t2eiat2/2e2a0tdt and t5A2iz2 /a

1( ivnz2vnA12z2)/a for term *0
t t2eiat2/2e2b0tdt, the inte-

gration along the real axis in Eq.~4! transforms to an integration
along a curve in the complex plane. The two curves are define
the trajectory ofz1 andz2 . z1 andz2 are

z1~t!52 i ~at2 ivnz2vnA12z2!2/~2a!

z2~t!52 i ~at2 ivnz1vnA12z2!2/~2a!. (5)

Typical trajectories forz1 andz2 with vn5100 s21, z50.01, and
a515 s22 are shown in Fig. 2.

Both the trajectories are in the form of a parabola. Using t
variable substitution, the first term in the bracket of Eq.~4! turns
out to be

E
0

t

t2eiat2/2e2a0tdt5 ie~2 ivn
2
12ivn

2z212vn
2zA12z2!/~2a!

3E
0

t

~A2iz1 /a

2a0i /a!2e2z1/A2iaz1dz1 . (6)

Equation~6! can be simplified by using constantsC3;C6 .

E
0

t

t2eiat2/2e2a0tdt5C4E
0

t

e2z1Az1dz11C5E
0

t

e2z1dz1

1C6E
0

t

e2z1/Az1dz1 . (7)

From Macrobert@13#,

R
C
e2zzx21dz5~e2pxi21!G~x!, (8)

whereG(x) is the gamma function and the integration curveC is
shown in Fig. 3~a!.

Noting that the origin~0,0! is the only singular point of the
complex variable functione2zzx21 whenx51/2 orx53/2, by the
Cauchy residue theorem,

R
C8

e2zzx21dz

5H 0 when C8 does not include the origin

2 R
C
e2zzx21dz when C8 includes the origin.

(9)

Fig. 2 The trajectories of z1 and z2
300 Õ Vol. 123, MAY 2001
by

is

The contourC8 is shown in Fig. 3~b!. Noting G(1/2)5Ap,
G(3/2)5Ap/2, Eqs.~8!, and~9!, yields

R
C8

e2zAzdz5H 0 when C8 does not include the origin

Ap when C8 includes the origin

R
C8

e2z

Az
dz5H 0 when C8 does not include the origin

2Ap when C8 includes the origin.
(10)

Let z185z1(t50)52 ivn
2( i z2A12z2)2/(2a), and the integra-

tion from z18 to z1 is

E
Curve:from z18 to z1

e2zzx21dz5 R
C8

e2zzx21dz2E
T1

e2zzx21dz

2E
T2

e2zzx21dz, (11)

where the trajectoryT1 andT2 are shown in Fig. 3~b!. The right-
hand side of Eq.~7! changes to

C4@ApK1e2z18c~z18!2e2z1c~z1!#1C5@e2z182e2z1#

1C6@2ApK1e2z18f~z18!2e2z1f~z1!# (12)

where c(z)5*0
`e2vAz1vdv, f(z)5*0

`e2v/Az1vdv, which
are obtained by a simple variable substitution, andK is an indica-
tor function, which indicates if the contour ofC8 includes the
origin, i.e., if z1 is in the 3rd quadrant. More clearly,

K5H 0 when t<vn~z1A12z2!/a

1 when t.vn~z1A12z2!/a.
(13)

The second term in the bracket of Eq.~4! is simpler than the
first term because all the trajectory ofz2 is in the 3rd quadrant. No
singular point is included in the integration contour. With a sim
lar derivation, we can get

E
0

t

t2eiat2/2e2b0tdt5C8@e2z28c~z28!2e2z2c~z2!#

1C9~e2z282e2z2!

1C10@e2z28f~z28!2e2z2f~z2!#.

(14)

Substituting Eqs.~12! and~14! into Eq. ~4!, we obtain an analyti-
cal expression forx2 .

Fig. 3 The integration curves
Transactions of the ASME
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x25Re@C2$e
a0t1 is@C4~ApK1e2z18c~z18!2e2z1c~z1!!

1C5~e2z182e2z1!1C6~2ApK1e2z18f~z18!2e2z1f~z1!!#

2eb0t1 is@C8~e2z28c~z28!2e2z2c~z2!!1C9~e2z282e2z2!

1C10~e2z28f~z28!2e2z2f~z2!!#%/~m~a02b0!!# (15)

• The response caused byC1 cos(at2 /21s8)
The integration form for the response corresponding

C1 cos(at2 /21s8) is

x15ReFC1eis8H ea0tE
0

t

eiat2/2e2a0tdt

2eb0tE
0

t

eiat2/2e2b0tdtJ /~m~a02b0!!G . (16)

Using the same variable substitution as Eq.~5! and by similar
derivation, we can get the response,

x15Re@C1eis8$ea0tC3~2ApK1e2z18f~z18!2e2z1f~z1!!

2eb0tC7~e2z28f~z28!2e2z2f~z2!!%/~m~a02b0!A2ia!#.

(17)

The total imbalance response of the Jeffcott model during
celeration can be obtained by the summation ofx1 andx2 as given
in Eqs.~17! and ~15!.

4 Analysis
Although numerical integration has to be used to calcul

functions f(z) and c(z) in Eqs. ~17! and ~15!, the analytical
solution can provide more insights to the imbalance response
ing acceleration than a direct numerical solution. From the a
lytical solution, the full response can be viewed as three part
transient response due to initial condition; a ‘‘synchronous’’
bration; and a suddenly occurring vibration at the damped nat
frequency.
• The transient response is contributed by the termsc„zi8…,

f„zi8…, and ezi8, iÄ1,2.

xt5Re@@C2eis$ea0t2z18@C4c~z18!1C51C6f~z18!#

2eb0t2z28@C8c~z28!1C91C10f~z28!#%

1C1eis8$ea0t2z18C3f~z18!2eb0t2z28

3C7f~z28!%/A2ia#/~m~a02b0!!#. (18)

In the transient response, onlyea0t andeb0t are time variant. The
response vibrates at the damped natural frequencyvnA12z2 and
decays at the rate ofe2zvn.
• The ‘‘synchronous’’ vibration is contributed by the terms
c„zi…, f„zi…, iÄ1,2.

xs5Re@@C2eis$2ea0t2z1@C4c~z1!1C51C6f~z1!#

1eb0t2z2@C8c~z2!1C91C10f~z2!#%

1C1eis8$2ea0t2z1C3f~z1!

1eb0t2z2C7f~z2!%/A2ia#/~m~a02b0!!#. (19)

From Eq.~5!, we have

ea0t2z1~ t !5e2vn
2zA12z2/a1@at2/21vn

2
~122z2!/~2a!# i

eb0t2z2~ t !5evn
2zA12z2/a1@at2/21vn

2
~122z2!/~2a!# i . (20)

This component is called ‘‘synchronous’’ vibration because
instantaneous vibration frequency ofxs is at, which is obtained
Journal of Manufacturing Science and Engineering
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by the time derivative ofat2/21vn
2(122z2)/(2a). It is the same

frequency as the instantaneous rotating speed.
• The suddenly occurring vibration with the damped natural
frequency is contributed by 2ApK and ApK.

The equation for this component is

xn5Re@$C2eis1a0t~ApKC412ApKC6!

12ApKC1C3ea0t1 is8/A2ia%/~m~a02b0!!#. (21)

It occurs when K is first nonzero, i.e., whent5vn(z
1A12z2)/a. The occurring time is very close to the time whe
the rotating speed hits the damped natural frequencyvnA12z2/a
when the damping of the system is low. It is also exponen
decaying because the only vibrating term isea0t andeb0t.

Figure 4 shows these vibration components and the full
sponse forvn5100 s21, z50.01, a515 s22, and w5(11 i )
31025.

The transient response~Fig. 4~a!! is quite small compared to
the full response. If the transient vibration is ignored, there
two major components in the response: the synchronous vibra
~Fig. 4~b!! and the exponential decaying vibration at the damp
natural frequency after timet5vn(z1A12z2)/a ~Fig. 4~c!!. Al-
though the functionK is discontinuous, the full response is co
tinuous because the functionf(z) andc(z) are also discontinu-
ous. These discontinuous functions compensate each other.
full analytical response~Fig. 4~d!! has been compared with th
numerical solution of Eq.~1! that is calculated by the Runge
Kutta method. The relative difference is less than 0.5 percen
each time step.

Another useful observation of this analytical solution is that
only xs andxn are considered, the transient response for a gen
rotor system without gyroscopic effects can be written as

v5(
k51

N

@wke
i @at2/21rk~ t !#Msk~ t !1wke

i @vdkt1gk~ t !#Mnk~ t !#.

(22)

v is a complex number that represents the vibration of the roto
two directions. N is the number of significant vibration modes.wk
is a complex number that represents the system imbalance in
kth mode.vdk is the damped natural frequency of thekth mode.
Msk , rk , Mnk , andgk are defined as the generic magnitudes a
phases of the synchronous vibration and the suddenly occur
vibration in thekth mode, respectively. They are only related wi
the dynamic parameters of the rotor system, not with the sys

Fig. 4 Transient imbalance response calculated by the analyti-
cal solution
MAY 2001, Vol. 123 Õ 301
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imbalance. For a simple Jeffcott rotor, there is only one vibrat
mode. Using the same parameters as that used in Fig. 4, we
an example of the magnitudes and phases of the vibration com
nents in Fig. 5.Ms , r, andMn , g are the generic magnitudes an
phases of synchronous and suddenly occurring vibration, res
tively. Mw andu(w) are the magnitude and phase of the syst
imbalance. The unit for phase in Fig. 5 is degree. This informat
is very useful for design of active vibration control and estimat
of magnitude and position of imbalance.

5 Conclusion
In this paper, an analytical solution for the imbalance respo

of the Jeffcott rotor during acceleration is obtained. This solut
provides physical insights into the motion of a Jeffcott rotor d
ing constant acceleration. The solution quantitatively shows
the motion consists of three parts: a transient vibration at dam
natural frequency, a synchronous vibration with the frequency
instantaneous ‘‘synchronous’’ frequency, and a suddenly oc
ring vibration at damped natural frequency. This analytical so
tion provides guidelines for rotor design, estimation of syst
imbalance, synthesis of active vibration control, and balancing
rotor systems.

Nomenclature

C1;C10 5 constants used to simplify the expression
C1 5 2aAUi

21Ur
2 C25a2AUi

21Ur
2

C3 5 ie(2 ivn
2
12ivn

2z212vn
2zA12z2)/(2a)

C4 5 C3A2i /(aAa) C5522a0iC3 /a2

C6 5 2a0
2C3 /(a2A2ia)

C7 5 ie2( ivn
2
22vn

2z212vn
2zA12z2)/(2a) C85C7A2i /(aAa)

Fig. 5 The magnitudes and phases of x s and x n
302 Õ Vol. 123, MAY 2001
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C9 5 22C7b0i /a2 C1052C7b0
2/(a2A2ia)

Mw ,u(w) 5 magnitude and phase of system imbalance in Fi
5.

Oxy 5 stationary coordinate system
S, G 5 geometric and mass centers of the disk
SXY 5 body-fixed coordinate system

Ur ,Ui 5 real and imaginary part~the X andY coordinates!
of w

i 5 A21
r 5 x1 iy , the vector fromO to S in stationary coor-

dinate system
w 5 Ur1 iU i , a constant vector from S to G in body-

fixed coordinate system
z1 ,z2 5 functions of timet or dummy variablet when

they are in the integrand
z18 ,z28 5 complex values ofz1 andz2 at t50

w, v, a 5 rotating angle, speed and acceleration of the rot
a0 5 2zvn1 iA(vn

22z2vn
2)

b0 5 2zvn2 iA(vn
22z2vn

2)
z,vn 5 damping ratio and natural frequency of the rotor

system
s ands8 5 arctanUi /Ur and arctanUi /Ur1p/2

t 5 dummy variable for integration
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