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Abstract

In this paper, the existence and uniqueness of the interface coupling (IC) of time and

spatial (TS) arbitrary-order fractional (AOF) nonlinear hyperbolic scalar conservation

laws (NHSCL) are investigated. The technique of arbitrary fractional characteristic

method (AFCM) is used to accomplish this task. We apply Jumarie’s modification of

Riemann–Liouville and Liouville–Caputo’s definition to extend some formulae to the

arbitrary-order fractional calculus. Then these formulae are utilized to prove the main

theorem. In this process, we develop an analytic method, which gives us the ability to

find the solution of IC AOF NHSCL. The feature of this method is that it enables us to

verify that the obtained solution satisfies the fractional partial differential equation

(FPDE), and the solution is unique. Furthermore, a few examples illustrate the

implementation of this technique in the application section.

Keywords: Arbitrary-order fractional calculus; Interface coupling arbitrary-order
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1 Introduction

The notion of hyperbolic conservation laws (HCLs) was raised about five decades ago

[1, 2]. Long ago, the properties for a partial differential equations’ (PDEs’) system of this

type were distinguished. Moreover, the interface coupling (IC) of HCLs has important

applications. Several phenomena occur in mathematical physics, and their mathematical

models are expressed in the form of the IC HCLs. Hence many researchers have tried to

develop new techniques to find analytical and numerical solutions for IC HCLs. Many of

them have been successful in introducing methods to find numerical solutions.

The analytical method has become a very appealing tool to pursue a solution to dif-

ferential equations (DEs), which leads to the exact answer. Analytical results for most IC

FDEs cannot be obtained, so developing a new method is important. To the best of our

knowledge, the analytical solution of interface coupling fractional conservation law has

not been addressed, yet. This article aims at fulfilling this gap and investigates the an-

alytical solution of IC HCL. In the present paper, we adopt the fractional characteristic
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method (FCM), which is a very powerful technique that converts an IC FPDE to a sys-

tem of IC FODE, which makes it possible to solve the problem. The FCM method was

introduced by Guo-chang Wu [2], and it is further developed to address the IC AOF hy-

perbolic conservation laws. Due to its efficiency in obtaining the exact solution, it became

a very attractive method for seeking answers to differential equations. The feature of this

technique compared to the other analytical solution is the ability to check if the obtained

solution is a correct answer to our problem by substituting the answer in the IC FPDE and

showing it satisfies the differential equation.

The homogeneous interface coupling hyperbolic conservation laws in the form of

arbitrary-order fractional (AOF) refers to first-order systems of fractional PDEs in diver-

gence form,

⎧

⎨

⎩

∂
α(τ )
t H(u) +

∑m
i=1 FiL(u)∂

βi(τ )
xi Gi(u) = 0, xi < 0, t > 0, i = 1, . . . ,m,

∂
γ (τ )
t H(u) +

∑m
i=1 FiR(u)∂

λi(τ )
xi Gi(u) = 0, xi > 0, t > 0, i = 1, . . . ,m,

0 < α(τ ),γ (τ ),βi(τ ),λi(τ ) ≤ 1, τǫR,

where u is a function of the spatial variables (x1, . . . ,xm) and time t. The given functions

H, FiR, FiL and Gi where i = 1, . . . ,m are smooth maps from R to R. Also α : R → (0, 1),

γ :R → (0, 1), βi(τ ) :R → (0, 1) and λi(τ ) :R→ (0, 1) where α(τ ), γ (τ ), βi(τ ) and λi(τ ) for

i = 1, . . . ,m are continuous. The symbol ∂t stands for
∂
∂t
, and ∂x stands for

∂
∂x
. If we assume

α(τ ),γ (τ ) = 1 and βi(τ ),λi(τ ) = 1 for i = 1, . . . ,m in the above problem, then it reduces to

the classical interface coupling conservation law, numerical approximations of which have

been studied by researchers. We are wondering if there is any solution that is unique and

satisfies the equation of IC AOF HNCL.

This paper is organized as follows: Sect. 2 elaborates the background on fractional cal-

culus, constant- and variable-order fractional derivative, and preliminaries on the defi-

nitions of Riemann–Liouville fractional derivative of variable-order, and Caputo deriva-

tive of variable-order are introduced. Then the definitions of Riemann–Liouville frac-

tional derivative of arbitrary-order and Liouville–Caputo derivative of arbitrary-order

are presented. Furthermore, the generalization of some integer calculus (IC) formulae to

constant- and arbitrary-order calculus, which will be used in later sections, is introduced.

Section 3 presents the proof of the existence and uniqueness of IC VOF NHSCL, and in

this process, we introduce a very powerful technique to solve interface coupling FPDEs.

Section 4 shows the implementation of this analytical method to solve a few physical ex-

amples and presents a benchmark for solution of each one. Then, we used MATLAB to

sketch the graphs of the obtained solutions.

2 Literature review

2.1 Background

Partial differential equations (PDEs) are one of the most essential and powerful mathe-

matical tools to describe many phenomena. Scientists have been implementing PDEs in

mathematical physics, engineering fields, solid-state physics, quantummechanics, plasma

physics, fluid mechanics, chemical kinematics, ecology, optical fibers, geochemistry, biol-

ogy, meteorology, and so on. Hence many researchers have tried to develop new tech-

niques to find exact or analytical solutions for PDEs. Many of them have been successful
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in introducing methods to find exact or analytical solutions for PDEs, such as the sine–

cosine functionmethod and Bernoulli’s equation approach [3, 4], the Kudryashovmethod

[5], the functional variable method [6], the (G’/G)-expansion method [7, 8], Hirota’s bi-

linear method [9], the first integral method [10], etc. However, the integer calculus often

contradicts the experimental results, so it is more suitable to use fractional calculus, a

generalization of it.

Fractional calculus (FC) exhibited a remarkable evolution during the last three decades

and has attracted the attention of many researchers in many scientific areas [11–16]. The

definition and concept of fractional derivative (FD) and fractional integral (FI) are pre-

sented in different forms. One of them is the Riemann–Liouville derivative [17], which

has been mostly used in mathematical framework studies. Still, in the last decade, the Ca-

puto derivative [18] became popular in applied sciences due to the way it is dealing with

the initial conditions [18]. Also, the Grünwald–Letnikov definition is considered mostly

for approximations in numerical methods. Also, Kilbas et al. [19] have a book titled “The-

ory and Applications of Fractional Differential Equations.”

Samko and Ross [20] introduced the concept of variable-order fractional (VOF) deriva-

tive and integral (which is a generalization of constant-order fractional derivative and inte-

gral) together with some basic properties in 1993. Lorenzo and Hartley [21] investigated

the definitions of VOF operators in different forms and then summarized the research

results of the VOF operators. Then, a new extension and valuable implementation of the

VOF differential equations’ (DEs) models have been further developed [22]. Subsequently,

VOFDEs have attractedmore andmore attention, describing their suitability inmodeling,

along with a large variety of phenomena, ranging from science to engineering. In particu-

lar, we mention anomalous diffusion [23, 24], viscoelastic mechanics [22, 25], the control

system [26], chaotic systems [27], petroleum engineering [28], and many other branches

of physics and engineering, to name a few [29–33].

The exact solutions of most VOF PDEs cannot be found easily, so numerical methods

[34, 35] must be used. The solutions of the VOF PDEs are investigated by many authors

using powerful numerical techniques. Several numerical methods, such as the homotopy

perturbationmethod [36], the Adomian decompositionmethod [37], the variational itera-

tion method [38], the differential transformmethod [39], the fractional Riccati expansion

method [40], and the fractional subequation method [41–44], have been suggested for

solving FDEs. However, solutions obtained through all these methods are local, and it is

important to explore other techniques to find exact analytical solutions of FDEs [45].

2.2 Preliminaries

2.2.1 Riemann–Liouville and Liouville–Caputo variable-order fractional derivative for

the function of one variable

The generalization of the Riemann–Liouville and Liouville–Caputo (LC) derivative from

constant to variable-order of differentiation and integration have been presented [46].

Given α(t) ∈ (0, 1), the left and right Riemann–Liouville and LC fractional derivatives and

integrals of order α(t) of a function x : [a,b] → R are generally defined in two different

ways for Riemann–Liouville and three different ways for LC. The definition of the first

type for Riemann–Liouville and of the third type for LC derivatives are presented as fol-

lows.
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Definition 1 (Type I Riemann–Liouville fractional derivatives of variable-order α(t) [46])

Given a function x : [a,b]→R and 0 < α(t) < 1,

1. Type I left Riemann–Liouville fractional derivative of variable-order α(t) is defined

by

aD
α(t)
t x(t) =

1

Γ [1 – α(t)]

d

dt

∫ t

a

(t – τ )–α(t)x(τ )dτ ; (2.1)

2. Type I right Riemann–Liouville fractional derivative of variable-order α(t) is

defined by

tD
α(t)
b x(t) =

1

Γ [1 – α(t)]

d

dt

∫ b

t

(τ – t)–α(t)x(τ )dτ . (2.2)

Definition 2 (Type III Caputo fractional derivatives of variable-order α(t) [46]) Given a

function x : [a,b]→R and 0 < α(t) < 1,

1. Type III left Caputo derivative of variable-order α(t) is defined by

C
aD

α(t)
t x(t) =

1

Γ [1 – α(t)]

∫ t

a

(t – τ )–α(t)x′(τ )dτ ; (2.3)

2. Type III right Caputo derivative of variable-order α(t) is defined by

C
t D

α(t)
b x(t) =

1

Γ [1 – α(t)]

∫ b

t

(τ – t)–α(t)x′(τ )dτ . (2.4)

2.2.2 New definition for Riemann–Liouville and Liouville–Caputo fractional

arbitrary-order derivative

In the above definitions, the variable t in α(t) and x(t) is the same; however, it produces

different definitions. Now we would like to introduce a definition where the variables of α

and x are different; in this case, we will have only one definition for each, which is proper

to name them as the Riemann–Liouville and Liouville–Caputo fractional arbitrary-order

derivatives.

Definition 3 (New Riemann–Liouville fractional derivatives of arbitrary-order α(t))

Given a function f : [a,b]→R, and α :R→ (0, 1), where f (x) and α(t) are continuous,

1. New left Riemann–Liouville fractional derivative of arbitrary-order α(t) is defined

by

aD
α(t)
x f (x) =

1

Γ [1 – α(t)]

d

dx

∫ x

a

(x – s)–α(t)f (s)ds; (2.5)

2. New right Riemann–Liouville fractional derivative of arbitrary-order α(t) is defined

by

xD
α(t)
b f (x) =

1

Γ [1 – α(t)]

d

dx

∫ b

x

(s – x)–α(t)f (s)ds. (2.6)

Definition 4 (New Liouville-Caputo fractional derivatives of arbitrary-order α(t)) Given

a function f : [a,b]→R, and α :R → (0, 1), where f (x) and α(t) are continuous, then
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1. New left Liouville–Caputo derivative of arbitrary-order α(t) is defined by

C
aD

α(t)
x f (x) =

1

Γ [1 – α(t)]

∫ x

a

(x – τ )–α(t)f ′(τ )dτ ; (2.7)

2. New right Liouville–Caputo derivative of arbitrary-order α(t) is defined by

C
xD

α(t)
b f (x) =

1

Γ [1 – α(t)]

∫ b

x

(τ – x)–α(t)f ′(τ )dτ . (2.8)

2.2.3 Some results based on Definitions 3 and 4

We can extend all the results in Jumarie’s paper [47] about the fractional constant-order to

the fractional arbitrary-order, based on Definitions 3 and 4 and replacing of α with α(t).

Consequently, we present some of these results as follows.

Proposition 1 The following formulas hold true:

Dα(t)
x xγ =

Γ (γ + 1)

Γ [γ + 1 – α(t)]
xγ–α(t), γ > 0, (2.9)

Dα(t)
x xα(t) = Γ

[

α(t) + 1
]

, (2.10)

Dα(t)
x

(

ex
α(t))

= Γ
[

1 + α(t)
]

ex
α(t)

, (2.11)

Dα(t)
x lnxα(t) =

Γ [1 + α(t)]

xα(t)
. (2.12)

The formulae that are presented abovewill be used to prove the theorem and to solve the

examples in the application section.We can also derive the following integrating formulae

using (2.10), (2.11), and (2.12).

Proposition 2 The following formulas hold true:

∫

(dx)α(t) = xα(t), (2.13)

∫

ex
α(t)

(dx)α(t) = ex
α(t)

, (2.14)

∫

(dx)α(t)

xα(t)
= lnxα(t). (2.15)

Remark 1 The main tool that we use to prove the theorem is the extension of “the frac-

tional characteristic method” from constant-order to arbitrary-order, introduced by Guo-

cheng Wu [48].

3 Existence and uniqueness

Let us consider the IC AOF NHSCL in one dimension which is defined by

⎧

⎨

⎩

∂
α(τ )
t u(x, t) +CL(u(x, t))∂

β(τ )
x u(x, t) = 0, x < 0, t > 0,

∂
γ (τ )
t u(x, t) +CR(u(x, t))∂

λ(τ )
x u(x, t) = 0, x > 0, t > 0,

(3.1)

0 < α(τ ),β(τ ),γ (τ ),λ(τ )≤ 1, τǫR.

Let CR :R →R and CL :R →R be two “smooth” functions.
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The modified Riemann–Liouville derivative of AOF with parameters α(τ ) and β(τ ) is

0D
γ (τ )
y M(y) =

1

Γ (1 – γ (τ ))

d

dy

∫ y

0

(y – ξ )–γ (τ )
(

M(ξ ) –M(0)
)

dξ ,

0 < γ (τ ) ≤ 1, γ (τ ) := α(τ ),β(τ ), y := x, t.

(3.2)

In equation (3.1), we use the notations ∂
α(τ )
t u(x, t) := 0D

α(τ )
t u(x, t) for 0 < α(τ ) ≤ 1, and

similarly ∂
β(τ )
x u(x, t) := 0D

β(τ )
x u(x, t) for 0 < β(τ )≤ 1.

Theorem 1 Let us consider

⎧

⎨

⎩

∂
α(τ )
t u(x, t) +CL(u(x, t))∂

β(τ )
x u(x, t) = 0, x < 0, t > 0,

∂
γ (τ )
t u(x, t) +CR(u(x, t))∂

λ(τ )
x u(x, t) = 0, x > 0, t > 0,

(3.3)

0 < α(τ ),β(τ ),γ (τ ),λ(τ )≤ 1

u(x, 0) = f (x), x ∈R,

with an initial condition u(x, 0) :R→R, and a suitable “continuity” condition or “coupling

condition” at the interface x = 0, namely

(i) f ,CL,CR ∈ C1(R),

(ii) F and f are differentiable with respect to ξ and ζ ,

(iii) ξ and ζ are fractionally differentiable with respect to x and t,

(iv) μ(τ )tα(τ )Fξ (ξ ) + β(τ )ξβ(τ )–1 �= 0 for x < 0 and η(τ )tγ (τ )Fζ (ζ ) + λ(τ )ξλ(τ )–1 �= 0 for

x > 0, are satisfied.

Then there exists a unique solution u : (x, t) ∈ R × R+ → u(x, t) ∈ R of (3.3) for 0 <

α(τ ),β(τ ),γ (τ ),λ(τ )≤ 1.

Proof (i) The existence of the solution for (3.3). We implement the method of arbitrary-

order fractional characteristics. To construct the continuous solutions, we consider the

total differential “du” given by

⎧

⎨

⎩

du = 1
Γ (1+α(τ ))

∂α(τ )u

∂tα(τ )
(dt)α(τ ) + 1

Γ (1+β(τ ))
∂β(τ )u

∂xβ(τ ) (dx)
β(τ ), x < 0,

du = 1
Γ (1+γ (τ ))

∂γ (τ )u

∂tγ (τ )
(dt)γ (τ ) + 1

Γ (1+λ(τ ))
∂λ(τ )u

∂xλ(τ ) (dx)
λ(τ ), x > 0,

(3.4)

0 < α(τ ),β(τ ),γ (τ ),λ(τ )≤ 1,

so that the points (x, t) are assumed to lie on a curve Υ (upsilon). Then (3.4) can be written

as:

⎧

⎨

⎩

du

(dt)α(τ )
= ∂α(τ )u

∂tα(τ )
+ Γ (1+α(τ ))

Γ (1+β(τ ))
∂β(τ )u

∂xβ(τ )
(dx)β(τ )

(dt)α(τ )
, x < 0,

du

(dt)γ (τ )
= ∂γ (τ )u

∂tγ (τ )
+ Γ (1+γ (τ ))

Γ (1+λ(τ ))
∂λ(τ )u

∂xλ(τ )
(dx)λ(τ )

(dt)γ (τ )
, x > 0.

(3.5)

Comparing (3.3) with (3.5), we deduce the following FODEs:

⎧

⎨

⎩

du

(dt)α(τ )
= 0, x < 0,

du

(dt)γ (τ )
= 0, x > 0,

(3.6)
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Figure 1 Characteristics curves in the (x, t)-plane

and

⎧

⎨

⎩

(dx)β(τ )

(dt)α(τ )
= Γ (1+β(τ ))

Γ (1+α(τ ))
CL(u), x < 0,

(dx)λ(τ )

(dt)γ (τ )
= Γ (1+λ(τ ))

Γ (1+γ (τ ))
CR(u), x > 0.

(3.7)

The solutions of (3.7) are called the fractional characteristic curves of equation (3.3). Thus

the solution of (3.3) is reduced to finding the solution of a quadruple of simultaneous

ordinary differential equations (3.6) and (3.7).

From (3.6), u is constant along each characteristic curve and eachCL(u) orCR(u) remains

constant on Υ . Hence (3.7) gives the characteristic curves of (3.3), which form a family of

curves in the (x, t)-plane. It means that if the Υ family of curves can be obtained, then

the general solution of (3.3) is obtained. If we assume that the initial condition on the

characteristic curve Υ is given by ξ if x < 0 and ζ if x > 0, then Υ intersects t = 0 when

x < 0 at x = ξ , infering u(ξ , 0) = f (ξ ) whilst if x > 0 at x = ζ then u(ζ , 0) = f (ζ ) on the entire

curve of Υ as shown in Fig. 1.

Thus, the family of the fractional characteristic curves of Υ is the solution of (3.7). Then

⎧

⎨

⎩

∫

du = 0, x < 0, u(ξ , 0) = f (ξ ),
∫

du = 0, x > 0, u(ζ , 0) = f (ζ ),
(3.8)

and

⎧

⎨

⎩

(dx)β(τ )

(dt)α(τ )
= μ(τ )CL(u), x < 0,

(dx)λ(τ )

(dt)γ (τ )
= η(τ )CR(u), x > 0,

(3.9)

whereμ(τ ) = Γ (1+β(τ ))
Γ (1+α(τ ))

and η(τ ) = Γ (1+λ(τ ))
Γ (1+γ (τ ))

. Equations (3.8) and (3.9) indicate a quadruple of

FODEs on Υ . However, equation (3.9) cannot be solved because CL and CR are functions

of u, but (3.8) can easily be solved to obtain u = constant, so u(ξ , 0) = f (ξ ) for x < 0 and
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u(ζ , 0) = f (ζ ) for x > 0 on the entire curves of Υ . Hence (3.8) leads to

⎧

⎨

⎩

u(x, t) = f (ξ ), for x < 0,

u(x, t) = f (ζ ), for x > 0,
(3.10)

and the integration of (3.9) gives

⎧

⎨

⎩

∫

(dx)β(τ ) = μ(τ )F(ξ )
∫

(dt)α(τ ), x(0) = ξ , x < 0,
∫

(dx)λ(τ ) = η(τ )F(ζ )
∫

(dt)γ (τ ), x(0) = ζ , x > 0,
(3.11)

where

⎧

⎨

⎩

F(ξ ) = CL(f (ξ )), x < 0,

F(ζ ) = CR(f (ζ )), x > 0.
(3.12)

Using formula (2.13), from (3.11) we obtain the following result:

⎧

⎨

⎩

xβ(τ ) = μ(τ )tα(τ )F(ξ ) + ξβ(τ ), x < 0,

xλ(τ ) = η(τ )tγ (τ )F(ζ ) + ζ λ(τ ), x > 0,
(3.13)

which are the characteristic curves of (3.3) (they are straight lines when α = β = γ = λ = 1).

The values of u on the curves (3.13) are constant, and it depends on ξ for x < 0 and ζ for

x > 0. Therefore (3.10) and (3.13) are the solution of the initial-value problem (3.3), which

can be presented in parametric form as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x, t) = f (ξ ), x < 0,

u(x, t) = f (ζ ), x > 0,

xβ(τ ) = μ(τ )tα(τ )F(ξ ) + ξβ(τ ), x < 0,

xλ(τ ) = η(τ )tγ (τ )F(ζ ) + ζ λ(τ ), x > 0,

(3.14)

where

⎧

⎨

⎩

F(ξ ) = CL(f (ξ )), x < 0,

F(ζ ) = CR(f (ζ )), x > 0.

(ii) Demonstrating (3.14) is a solution of (3.3). We show that (3.14) satisfies (3.3). Differ-

entiating the first and second equations of (3.14) with respect to x with an order of β(τ )

and γ (τ ), and with respect to t with an order of α(τ ) and λ(τ ) yields

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

D
β(τ )
x u(x, t) =D

β(τ )
x f (ξ ), x < 0,

D
α(τ )
t u(x, t) =D

α(τ )
t f (ξ ), x < 0,

D
λ(τ )
x u(x, t) =D

λ(τ )
x f (ξ ), x > 0,

D
γ (τ )
t u(x, t) =D

γ (τ )
t f (ξ ), x > 0,

(3.15)
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leading to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂β(τ )u

∂xβ(τ ) = fξ (ξ )ξ
[β(τ )]
x , x < 0,

∂α(τ )u

∂tα(τ )
= fξ (ξ )ξ

[α(τ )]
t , x < 0,

∂λ(τ )u

∂xλ(τ ) = fζ (ζ )ζ
[λ(τ )]
x , x > 0,

∂γ (τ )u

∂tγ (τ )
= fζ (ζ )ζ

[γ (τ )]
t , x > 0,

(3.16)

where fξ (ξ ) =Dξ f (ξ ), ξ
[β(τ )]
x = D

β(τ )
x ξ and ξ

[α(τ )]
t = D

α(τ )
t ξ (similar for ζ ). Also, we differen-

tiate the third and fourth equation of (3.14) with respect to x with an order of β(τ ) and

γ (τ ), and with respect to t with an order of α(τ ) and λ(τ ) to get

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

D
β(τ )
x xβ(τ ) =D

β(τ )
x [μ(τ )tα(τ )F(ξ ) + ξβ(τ )], x < 0,

D
α(τ )
t xβ(τ ) =D

α(τ )
t [μ(τ )tα(τ )F(ξ ) + ξβ(τ )], x < 0,

D
λ(τ )
x xλ(τ ) =D

λ(τ )
x [η(τ )tγ (τ )F(ζ ) + ζ λ(τ )], x > 0,

D
γ (τ )
t xλ(τ ) =D

γ (τ )
t [η(τ )tγ (τ )F(ζ ) + ζ λ(τ )], x > 0,

(3.17)

where using formula (2.10) leads to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Γ (1 + β(τ )) = [μ(τ )tα(τ )Fξ (ξ ) + βξβ(τ )–1]ξ
[β(τ )]
x , x < 0,

0 = [μ(τ )tα(τ )Fξ (ξ ) + β(τ )ξβ(τ )–1]ξ
[α(τ )]
t + Γ (1 + β(τ ))F(ξ ), x < 0,

Γ (1 + λ(τ )) = [η(τ )tγ (τ )Fζ (ζ ) + λζ λ(τ )–1]ζ
[λ(τ )]
x , x > 0,

0 = [η(τ )tγ (τ )Fζ (ζ ) + λ(τ )ζ λ(τ )–1]ζ
[γ (τ )]
t + Γ (1 + λ(τ ))F(ζ ), x > 0.

(3.18)

Obtaining ξ
[β(τ )]
x , ξ

[α(τ )]
t , ζ

[λ(τ )]
x and ζ

[γ (τ )]
t from (3.18), and substituting into (3.16), we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂β(τ )u

∂xβ(τ ) =
Γ (1+β(τ ))fξ (ξ )

μ(τ )tα(τ )Fξ (ξ )+β(τ )ξβ(τ )–1 , x < 0,

∂α(τ )u

∂tα(τ )
= –

Γ (1+β(τ ))fξ (ξ )F(ξ )

μ(τ )tα(τ )Fξ (ξ )+β(τ )ξβ(τ )–1 , x < 0,

∂λ(τ )u

∂xλ(τ ) =
Γ (1+λ(τ ))fζ (ζ )

η(τ )tγ (τ )Fζ (ζ )+λ(τ )ξλ(τ )–1 , x > 0,

∂γ (τ )u

∂tγ (τ )
= –

Γ (1+λ(τ ))fζ (ζ )F(ξ )

η(τ )tγ (τ )Fζ (ζ )+λ(τ )ξλ(τ )–1 , x > 0.

(3.19)

Substituting (3.19) into (3.3), we have

⎧

⎨

⎩

–
Γ (1+β(τ ))fξ (ξ )F(ξ )

μ(τ )tα(τ )Fξ (ξ )+β(τ )ξβ(τ )–1 +CL(u(x, t))
Γ (1+β(τ ))fξ (ξ )

μ(τ )tα(τ )Fξ (ξ )+β(τ )ξβ(τ )–1 = 0, x < 0, t > 0,

–
Γ (1+λ(τ ))fζ (ζ )F(ξ )

η(τ )tγ (τ )Fζ (ζ )+λ(τ )ξλ(τ )–1 +CR(u(x, t))
Γ (1+λ(τ ))fζ (ζ )

η(τ )tγ (τ )Fζ (ζ )+λ(τ )ξλ(τ )–1 = 0, x > 0, t > 0,

since F(ξ ) = CL(f (ξ )) for x < 0 and F(ζ ) = CR(f (ζ )) for x > 0, equation (3.3) is satisfied

provided

⎧

⎨

⎩

μ(τ )tα(τ )Fξ (ξ ) + β(τ )ξβ(τ )–1 �= 0, x < 0,

η(τ )tγ (τ )Fζ (ζ ) + λ(τ )ξλ(τ )–1 �= 0, x > 0.

The solution (3.14) also satisfies the initial condition at t = 0, since x = ξ for x < 0 and x = ζ

for x > 0.
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(iii) Showing the uniqueness. Assume that u(x, t) and v(x, t) are two solutions of (3.3).

Then they should satisfy (3.14), that is,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x, t) = f (ξ ), x < 0,

u(x, t) = f (ζ ), x > 0,

xβ(τ ) = μ(τ )tα(τ )F(ξ ) + ξβ(τ ), x < 0,

xλ(τ ) = η(τ )tγ (τ )F(ζ ) + ξλ(τ ), x > 0,

(3.20)

and

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

v(x, t) = f (ξ ), x < 0,

v(x, t) = f (ζ ), x > 0,

xβ(τ ) = μ(τ )tα(τ )F(ξ ) + ξβ(τ ), x < 0,

xλ(τ ) = η(τ )tγ (τ )F(ζ ) + ζ λ(τ ), x > 0.

(3.21)

Therefore from (3.20) and (3.21), we obtain

⎧

⎨

⎩

u(x, t) = f (ξ ) = v(x, t), x < 0,

u(x, t) = f (ζ ) = v(x, t), x > 0.
(3.22)

Alternatively,

⎧

⎨

⎩

xβ(τ ) = μ(τ )tα(τ )F(ξ ) + ξβ(τ ), x < 0,

xλ(τ ) = η(τ )tγ (τ )F(ζ ) + ζ λ(τ ), x > 0.

Hence (3.22) implies that

⎧

⎨

⎩

u(x, t) = u(ξ , 0) = f (ξ ) = v(x, t), x < 0,

u(x, t) = u(ζ , 0) = f (ζ ) = v(x, t), x > 0,
(3.23)

so uniqueness is proved. �

4 Application

Consider the arbitrary-order fractional interface coupling of two nonlinear hyperbolic

equations

⎧

⎨

⎩

∂
α(τ )
t u(x, t) +CL(u(x, t))∂

β(τ )
x u(x, t) = 0, x < 0, t > 0,

∂
γ (τ )
t u(x, t) +CR(u(x, t))∂

λ(τ )
x u(x, t) = 0, x > 0, t > 0,

(4.1)

0 < α(τ ),β(τ ),γ (τ ),λ(τ )≤ 1,

u(x, 0) = f (x), xǫR,

with an initial condition u(x, 0) :R →R and also a suitable “continuity” condition or “cou-

pling condition” at the interface x = 0.
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To make this coupling condition more explicit, we begin by considering the simplest

possible case where CL(u) and CR(u) are nonzero constants. For the classic case, where

α(τ ) = β(τ ) = γ (τ ) = λ(τ ) = 1 E. Godlewski [49] has given the following results; the distin-

guished cases depend on the directions of the characteristic lines:

(1) CL(u) > 0, CR(u) > 0 or CL(u) < 0, CR(u) < 0: we can impose the continuity of u at

x = 0;

(2) CL(u) > 0, CR(u) < 0: no continuity condition is required at x = 0;

(3) CL(u) < 0, CR(u) > 0: we need to specify u(0, t) at x = 0, otherwise the solution u is

not defined in the fan CLt < x < CRt.

Let us examine the above result by the following example.

Example 1 We obtain the analytical solution for interface coupling space-time fractional

arbitrary-order equations of fluid mechanics that are dealing with two different complex

systems of equations on each side of the interface, which in this case areCL(u) = constant =

k and CR(u) = constant = h. The system is

⎧

⎨

⎩

∂α(τ )u

∂tα(τ )
+ k ∂β(τ )u

∂xβ(τ ) = 0, x < 0,

∂γ (τ )u

∂tγ (τ )
+ h ∂λ(τ )u

∂xλ(τ ) = 0, x > 0,
(4.2)

0 < α(τ ),β(τ ),γ (τ ),λ(τ )≤ 1,

u(x, 0) = f (x) = sin2x + 5 cosx.
(4.3)

Solution According to Theorem 1, we can write the following FPDEs:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

du

(dt)α(τ )
= 0, u(ξ , 0) = f (ξ ), x < 0,

du

(dt)γ (τ )
= 0, u(ζ , 0) = f (ζ ), x > 0,

(dx)β(τ )

(dt)α(τ )
= μ(τ )k, x(0) = ξ , x < 0,

(dx)λ(τ )

(dt)γ (τ )
= η(τ )h, x(0) = ζ , x > 0,

(4.4)

where μ(τ ) = Γ (1+β(τ ))
Γ (1+α(τ ))

and η(τ ) = Γ (1+λ(τ ))
Γ (1+γ (τ ))

. Integrating (4.4), we have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∫

du = 0, u(ξ , 0) = f (ξ ), x < 0,
∫

du = 0, u(ζ , 0) = f (ζ ), x > 0,
∫

(dx)β(τ ) = μ(τ )k
∫

(dt)α(τ ), x(0) = ξ , x < 0,
∫

(dx)λ(τ ) = η(τ )h
∫

(dt)γ (τ ), x(0) = ζ , x > 0,

(4.5)

then, implementing formula (2.13), we obtain the parametric solution

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x, t) = f (ξ ), x < 0,

u(x, t) = f (ζ ), x > 0,

xβ(τ ) = μ(τ )ktα(τ ) + ξβ(τ ), x < 0,

xλ(τ ) = η(τ )htγ (τ ) + ξλ(τ ), x > 0,

(4.6)
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since

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x, t) = f (ξ ), x < 0,

u(x, t) = f (ζ ), x > 0,

ξ = (xβ(τ ) –μ(τ )ktα(τ ))1/β(τ ), x < 0,

ζ = (xλ(τ ) – η(τ )htγ (τ ))1/λ(τ ), x > 0,

(4.7)

and therefore the solution can be written as

⎧

⎨

⎩

u(x, t) = f (ξ ) = f ((xβ(τ ) –μ(τ )ktα(τ ))1/β(τ )), x < 0,

u(x, t) = f (ζ ) = f ((xλ(τ ) – η(τ )htγ (τ ))1/λ(τ )), x > 0.
(4.8)

The general solution for Example 1, assuming the initial condition u(x, 0) = f (x) = sin2x +

5 cosx, is

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x, t) = sin2(xβ(τ ) –μ(τ )ktα(τ ))1/β(τ ) + 5 cos(xβ(τ ) –μ(τ )ktα(τ ))1/β(τ ),

x < 0,

u(x, t) = sin2(xλ(τ ) – η(τ )htγ (τ ))1/λ(τ ) + 5 cos(xλ(τ ) – η(τ )htγ (τ ))1/λ(τ ),

x > 0.

(4.9)

Benchmark 1 (For Example 1) We make sure that (4.6) is the solution, and satisfies (4.2).

Differentiating the first and second equation of (4.6) with respect to x with an order of

β(τ ) and γ (τ ), and with respec to t with an order of α(τ ) and λ(τ ) gives

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

D
β(τ )
x u(x, t) =D

β(τ )
x f (ξ ), x < 0,

D
α(τ )
t u(x, t) =D

α(τ )
t f (ξ ), x < 0,

D
λ(τ )
x u(x, t) =D

λ(τ )
x f (ξ ), x > 0,

D
γ (τ )
t u(x, t) =D

γ (τ )
t f (ξ ), x > 0,

(4.10)

leading to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂β(τ )u

∂xβ(τ ) = fξ (ξ )ξ
[β(τ )]
x , x < 0,

∂α(τ )u

∂tα(τ )
= fξ (ξ )ξ

[α(τ )]
t , x < 0,

∂λ(τ )u

∂xλ(τ ) = fζ (ζ )ζ
[λ(τ )]
x , x > 0,

∂γ (τ )u

∂tγ (τ )
= fζ (ζ )ζ

[γ (τ )]
t , x > 0.

(4.11)

Also, we differentiate the third and fourth equation of (4.6) with respect to xwith an order

of β(τ ) and γ (τ ), and with respect to t with an order of α(τ ) and λ(τ ) to get

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

D
β(τ )
x xβ(τ ) =D

β(τ )
x [μ(τ )ktα(τ ) + ξβ(τ )], x < 0,

D
α(τ )
t xβ(τ ) =D

α(τ )
t [μ(τ )ktα(τ ) + ξβ(τ )], x < 0,

D
λ(τ )
x xλ(τ ) =D

λ(τ )
x [η(τ )htγ (τ ) + ζ λ(τ )], x > 0,

D
γ (τ )
t xλ(τ ) =D

γ (τ )
t [η(τ )htγ (τ ) + ζ λ(τ )], x > 0,

(4.12)
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which, using formula (2.10), leads to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Γ (1 + β(τ )) = β(τ )ξβ(τ )–1ξ
[β(τ )]
x , x < 0,

0 = Γ (1 + β(τ ))k + β(τ )ξβ(τ )–1ξ
[α(τ )]
t , x < 0,

Γ (1 + λ(τ )) = λ(τ )ζ λ(τ )–1ζ
[λ(τ )]
x , x > 0,

0 = Γ (1 + λ(τ ))h + λ(τ )ζ λ(τ )–1ζ
[γ (τ )]
t , x > 0.

(4.13)

Obtaining ξ
[β(τ )]
x , ξ

[α(τ )]
t , ζ

[λ(τ )]
x and ζ

[γ (τ )]
t from (4.13),

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ
[β(τ )]
x = Γ (1+β(τ ))

β(τ )ξβ(τ )–1 , x < 0,

ξ
[α(τ )]
t = – Γ (1+β(τ ))k

β(τ )ξβ(τ )–1 , x < 0,

ζ
[λ(τ )]
x = Γ (1+λ(τ ))

λ(τ )ζλ(τ )–1 , x > 0,

ζ
[γ (τ )]
t = –Γ (1+λ(τ ))h

λ(τ )ζλ(τ )–1 , x > 0,

(4.14)

and substituting into (4.11), we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂β(τ )u

∂xβ(τ ) = fξ (ξ )
Γ (1+β(τ ))

β(τ )ξβ(τ )–1 , x < 0,

∂α(τ )u

∂tα(τ )
= –fξ (ξ )

Γ (1+β(τ ))k

β(τ )ξβ(τ )–1 , x < 0,

∂λ(τ )u

∂xλ(τ ) = fζ (ζ )
Γ (1+λ(τ ))

λ(τ )ζλ(τ )–1 , x > 0,

∂γ (τ )u

∂tγ (τ )
= –fζ (ζ )

Γ (1+λ(τ ))h

λ(τ )ζλ(τ )–1 , x > 0.

(4.15)

Substituting (4.15) into (4.2), we have

⎧

⎨

⎩

–fξ (ξ )
Γ (1+β(τ ))k

β(τ )ξβ(τ )–1 + kfξ (ξ )
Γ (1+β(τ ))

β(τ )ξβ(τ )–1 = 0, x < 0,

–fζ (ζ )
Γ (1+λ(τ ))h

λ(τ )ζλ(τ )–1 + hfζ (ζ )
Γ (1+λ(τ ))

λ(τ )ζλ(τ )–1 = 0, x > 0,

therefore (4.6) is the solution of (4.2). The answer (4.6) also satisfies the initial condition

at t = 0, since x = ξ for x < 0 and x = ζ for x > 0.

Remark 2 We consider the classic case of Example 1, where α(τ ) = β(τ ) = γ (τ ) = λ(τ ) = 1:

⎧

⎨

⎩

∂u
∂t

+ k ∂u
∂x

= 0, x < 0,

∂u
∂t

+ h ∂u
∂x

= 0, x > 0,
(4.16)

with the initial condition

u(x, 0) = f (x) = sin2x + 5 cosx.

The solution u is

⎧

⎨

⎩

u(x, t) = sin2(x – kt) + 5 cos(x – kt), x < 0,

u(x, t) = sin2(x – ht) + 5 cos(x – ht), x > 0.
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The graphs of the solution u for different values of k and h are given in Fig. 2. Each graph

of the solution u for various values of h and k has only real part that is shown in segments

(a), in which time is continuous, and in segments (b) when time is t = 0, 1, 2, 3, 4, and 5.

Figure 2 The graph of the solution u in the classic case in Example 1 for different values of k and h
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Also, we consider Example 1 with other values for α(τ ), β(τ ), γ (τ ), and λ(τ ) and the

graphs of u are given in Fig. 3. In these cases, the solution u has real and imaginary parts.

Remark 3 We can conclude from the analysis of results in Example 1 that the solution u at

the interface x = 0 is continuous when CL(u) = k = h = CR(u) both in classic and fractional

cases, which matches the result by E. Godlewski. But when CL(u) = k �= h = CR(u), the

continuity does not hold; therefore, it does not match with the result by E. Godlewski.

Example 2 Here we investigating the solution of a more complicated form of the interface

coupling of the space-time fractional arbitrary-order, which is given by

⎧

⎨

⎩

et
α(τ ) ∂α(τ )u

∂tα(τ )
+ ex

β(τ ) ∂β(τ )u

∂xβ(τ ) = 0, x < 0,

ex
γ (τ ) ∂γ (τ )u

∂tγ (τ )
+ ex

λ(τ ) ∂λ(τ )u

∂xλ(τ ) = 0, x > 0,
(4.17)

0 < α(τ ),β(τ ),γ (τ ),λ(τ )≤ 1,

u(x, 0) = f (x) = e2x + cos2x.

Solution According to Theorem 1, for x < 0, we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

du

(dt)α(τ )
= 0,

u(x, 0) = f (ξ ),

(dx)β(τ )

(dt)α(τ )
= Γ (1+β(τ ))

Γ (1+α(τ ))
ex

β(τ )

et
α(τ ) ,

x(0) = ξ ,

(4.18)

and for x > 0, we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

du

(dt)γ (τ )
= 0,

u(x, 0) = f (ζ ),

(dx)λ(τ )

(dt)γ (τ )
= Γ (1+λ(τ ))

Γ (1+γ (τ ))
ex

λ(τ )

et
γ (τ ) ,

x(0) = ζ .

(4.19)

Then the integration of (4.18) gives

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∫

du = 0,

u(x, 0) = f (ξ ),
∫

e–x
β(τ )

(dx)β(τ ) = μ(τ )
∫

et
α(τ )

(dt)α(τ ),

x(0) = ξ ,

(4.20)

where μ(τ ) = Γ (1+β(τ ))
Γ (1+α(τ ))

. By formula (2.14) the integration of (4.20) for x > 0 yields

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u = C1,

u(x, 0) = f (ξ ),

e–x
β(τ )

= μ(τ )e–t
α(τ )

+C2,

x(0) = ξ ,

(4.21)
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Figure 3 The graph of u in Example 1 with different values for α(τ ), β(τ ), γ (τ ), λ(τ ), k, and h
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and leads to

⎧

⎨

⎩

u(x, t) = f (ξ ), x < 0,

e–x
β(τ )

= μ(τ )e–t
α(τ )

+ e–ξβ(τ )
, x < 0.

(4.22)

Similar to the above, from (4.19), we obtain

⎧

⎨

⎩

u(x, t) = f (ζ ), x > 0,

e–x
λ(τ )

= η(τ )e–t
γ (τ )

+ e–ζλ(τ )
, x > 0,

(4.23)

where η(τ ) = Γ (1+λ(τ ))
Γ (1+γ (τ ))

. Therefore, (4.22) and (4.23) give the parametric solution below for

(4.17) as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x, t) = f (ξ ), x < 0,

u(x, t) = f (ζ ), x > 0,

e–x
β(τ )

= μ(τ )e–t
α(τ )

+ e–ξβ(τ )
, x < 0,

e–x
λ(τ )

= η(τ )e–t
γ (τ )

+ e–ζλ(τ )
, x > 0,

(4.24)

and (4.24) can be written in the following form:

⎧

⎨

⎩

u(x, t) = f (ξ ) = f (ln((μ(τ )e–t
α(τ )

– e–x
β(τ )

)1/β(τ ))), x < 0,

u(x, t) = f (ξ ) = f (ln((η(τ )e–t
γ (τ )

– e–x
λ(τ )

)1/λ(τ ))), x > 0.
(4.25)

Considering the initial condition

u(x, 0) = f (x) = e2x + cos2x

and (4.25), we have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x, t) = e2 ln((μ(τ )e–t
α(τ )

–e–x
β(τ )

)1/β(τ ))

+ cos(5 ln((μ(τ )e–t
α(τ )

– e–x
β(τ )

)1/β(τ ))), x < 0,

u(x, t) = e2 ln((η(τ )e–t
γ (τ )

–e–x
λ(τ )

)1/λ(τ ))

+ cos(5 ln((η(τ )e–t
γ (τ )

– e–x
λ(τ )

)1/λ(τ ))), x > 0,

(4.26)

which leads to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x, t) = (μ(τ )e–t
α(τ )

– e–x
β(τ )

)2/β(τ )

+ cos(5 ln(μ(τ )e–t
α(τ )

– e–x
β(τ )

)1/β(τ )), x < 0,

u(x, t) = (η(τ )e–t
γ (τ )

– e–x
λ(τ )

)2/λ(τ )

+ cos(5 ln(η(τ )e–t
γ (τ )

– e–x
λ(τ )

)1/λ(τ )), x > 0.

(4.27)

Benchmark 2 (For Example 2) We make sure that (4.24) is the solution, and satisfies

(4.17). Differentiating the first and second equation of (4.24) with respect to x with an
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order of β(τ ) and γ (τ ), and with respect to t with an order of α(τ ) and λ(τ ) gives

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

D
β(τ )
x u(x, t) =D

β(τ )
x f (ξ ), x < 0,

D
α(τ )
t u(x, t) =D

α(τ )
t f (ξ ), x < 0,

D
λ(τ )
x u(x, t) =D

λ(τ )
x f (ξ ), x > 0,

D
γ (τ )
t u(x, t) =D

γ (τ )
t f (ξ ), x > 0,

(4.28)

leading to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂β(τ )u

∂xβ(τ ) = fξ (ξ )ξ
[β(τ )]
x , x < 0,

∂α(τ )u

∂tα(τ )
= fξ (ξ )ξ

[α(τ )]
t , x < 0,

∂λ(τ )u

∂xλ(τ ) = fζ (ζ )ζ
[λ(τ )]
x , x > 0,

∂γ (τ )u

∂tγ (τ )
= fζ (ζ )ζ

[γ (τ )]
t , x > 0.

(4.29)

Also, we differentiate the third and fourth equation of (4.24) with respect to x with an

order of β(τ ) and γ (τ ), and with respect to t with an order of α(τ ) and λ(τ ) to get

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

D
β(τ )
x e–x

β(τ )
=D

β(τ )
x [μ(τ )e–t

α(τ )
+ e–ξβ(τ )

, ], x < 0,

D
α(τ )
t e–x

β(τ )
=D

α(τ )
t [μ(τ )e–t

α(τ )
+ e–ξβ(τ )

], x < 0,

D
λ(τ )
x e–x

λ(τ )
=D

λ(τ )
x [η(τ )e–t

γ (τ )
+ e–ζλ(τ )

], x > 0,

D
γ (τ )
t e–x

λ(τ )
=D

γ (τ )
t [η(τ )e–t

γ (τ )
+ e–ζλ(τ )

], x > 0,

(4.30)

which, using formula (2.10), leads to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Γ (1 + β(τ ))e–x
β(τ )

= β(τ )ξβ(τ )–1e–ξβ(τ )
ξ
[β(τ )]
x , x < 0,

0 = Γ (1 + β(τ ))e–t
α(τ )

+ β(τ )ξβ(τ )–1e–ξβ(τ )
ξ
[α(τ )]
t , x < 0,

Γ (1 + λ(τ ))e–x
λ(τ )

= λ(τ )ζ λ(τ )–1e–ζλ(τ )
ζ
[λ(τ )]
x , x > 0,

0 = Γ (1 + λ(τ ))e–t
γ (τ )

+ λ(τ )ζ λ(τ )–1e–ζλ(τ )
ζ
[γ (τ )]
t , x > 0.

(4.31)

Obtaining ξ
[β(τ )]
x , ξ

[α(τ )]
t , ζ

[λ(τ )]
x , and ζ

[γ (τ )]
t from (4.31), namely

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ
[β(τ )]
x = Γ (1+β(τ ))e–x

β(τ )

β(τ )ξβ(τ )–1e–ξβ(τ ) , x < 0,

ξ
[α(τ )]
t = – Γ (1+β(τ ))e–t

α(τ )

β(τ )ξβ(τ )–1e–ξβ(τ ) , x < 0,

ζ
[λ(τ )]
x = Γ (1+λ(τ ))e–x

λ(τ )

λ(τ )ζλ(τ )–1e–ζλ(τ ) , x > 0,

ζ
[γ (τ )]
t = – Γ (1+λ(τ ))h

λ(τ )ζλ(τ )–1e–ζλ(τ ) , x > 0,

(4.32)

and substituting (4.32) into (4.17), we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂β(τ )u

∂xβ(τ ) = fξ (ξ )
Γ (1+β(τ ))e–x

β(τ )

β(τ )ξβ(τ )–1e–ξβ(τ ) , x < 0,

∂α(τ )u

∂tα(τ )
= –fξ (ξ )

Γ (1+β(τ ))e–t
α(τ )

β(τ )ξβ(τ )–1e–ξβ(τ ) , x < 0,

∂λ(τ )u

∂xλ(τ ) = fζ (ζ )
Γ (1+λ(τ ))e–x

λ(τ )

λ(τ )ζλ(τ )–1e–ζλ(τ ) , x > 0,

∂γ (τ )u

∂tγ (τ )
= –fζ (ζ )

Γ (1+λ(τ ))h

λ(τ )ζλ(τ )–1e–ζλ(τ ) , x > 0.

(4.33)
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And substituting (4.15) into (4.2), we have

⎧

⎪

⎨

⎪

⎩

–et
α(τ )

fξ (ξ )
Γ (1+β(τ ))e–t

α(τ )

β(τ )ξβ(τ )–1e–ξβ(τ ) + ex
β(τ )

fξ (ξ )
Γ (1+β(τ ))e–x

β(τ )

β(τ )ξβ(τ )–1e–ξβ(τ ) = 0, x < 0,

–ex
γ (τ )

fζ (ζ )
Γ (1+λ(τ ))h

λ(τ )ζλ(τ )–1e–ζλ(τ ) + ex
λ(τ )

fζ (ζ )
Γ (1+λ(τ ))e–x

λ(τ )

λ(τ )ζλ(τ )–1e–ζλ(τ ) = 0, x > 0,

therefore (4.6) is the solution of (4.2). The answer (4.6) also satisfies the initial condition

at t = 0, since x = ξ for x < 0 and x = ζ for x > 0.

Remark 4 Consider the classic case of Example 2 where α(τ ) = β(τ ) = γ (τ ) = λ(τ ) = 1,

therefore the solution is

⎧

⎨

⎩

u(x, t) = f (ξ ) = f (ln(e–t – e–x)), x < 0,

u(x, t) = f (ζ ) = f (ln(e–t – e–x)), x > 0.
(4.34)

With initial condition u(x, 0) = f (x) = e2x + cos5x the solution can be written as

⎧

⎨

⎩

u(x, t) = f (ξ ) = e2 ln(e–t–e–x) + cos(5 ln(e–t – e–x)), x < 0,

u(x, t) = f (ζ ) = e2 ln(e–t–e–x) + cos(5 ln(e–t – e–x)), x > 0,
(4.35)

and its graph is given in Fig. 4.

The graphs of the solution u in Example 2 for different values of α(τ ), β(τ ), γ (τ ), and

λ(τ ) are given in Fig. 5, where (a) and (c) are the graphs of the real and imaginary part

Figure 4 The graphs of the classic case of Example 2 where α(τ ) = β(τ ) = γ (τ ) = λ(τ ) = 1



Shirkhorshidi et al. Advances in Difference Equations        ( 2020)  2020:650 Page 20 of 27

Figure 5 The graphs of the solution u in Example 2 with different values for α(τ ), β(τ ), γ (τ ), and λ(τ )

of the solutions u where time is continuous, and (b) and (d) are the graphs the real and

imaginary part of the solution u with the different values for the time at t = 0, 1, 2, 3, 4,

and 5.
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Example 3 Here we find the analytical solution of a couple interface fractional arbitrary-

order differential equation

⎧

⎨

⎩

tα(τ )

Γ (1+α(τ ))
∂α(τ )u

∂tα(τ )
+ 3xβ(τ )

Γ (1+β(τ ))
∂β(τ )u

∂xβ(τ ) = 0, x < 0,

tγ (τ )

Γ (1+γ (τ ))
∂γ (τ )u

∂tγ (τ )
+ 5xλ(τ )

Γ (1+λ(τ ))
∂λ(τ )u

∂xλ(τ ) = 0, x > 0,
(4.36)

0 < α(τ ),β(τ ),γ (τ ),λ(τ )≤ 1,

u(x, 1) = f (x) = cosx + 3 sinx.

Solution Based on the method introduced in Theorem 1, for x < 0,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

du

(dt)α(τ )
= 0,

u(x, 1) = f (ξ ),

Γ (1+α(τ ))
Γ (1+β(τ ))

(dx)β(τ )

(dt)α(τ )
= 3Γ (1+α(τ ))

Γ (1+β(τ ))
xβ(τ )

tα(τ )
,

x(1) = ξ ,

(4.37)

and for x > 0,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

du

(dt)γ (τ )
= 0,

u(x, 1) = f (ζ ),

Γ (1+γ (τ ))
Γ (1+λ(τ ))

(dx)λ(τ )

(dt)γ (τ )
= 5Γ (1+γ (τ ))

Γ (1+λ(τ ))
xλ(τ )

tγ (τ )
,

x(1) = ζ .

(4.38)

The integration of (4.37) and (4.38) is given below: for x < 0, we have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∫

du = 0,

u(x, 1) = f (ξ ),
∫

1

xβ(τ ) (dx)
β(τ ) = 3

∫

1

tα(τ )
(dt)α(τ ),

x(1) = ξ ,

(4.39)

and for x > 0, we obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∫

du = 0,

u(x, 1) = f (ζ ),
∫

1

xλ(τ ) (dx)
λ(τ ) = 5

∫

1

tγ (τ )
(dt)γ (τ ),

x(1) = ζ .

(4.40)

The integration of (4.39) and (4.40), by formula (2.15), for x < 0 leads to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u = C1,

u(x, 1) = f (ξ ),

lnxβ(τ ) = 3 ln tα(τ ) +C2,

x(1) = ξ ,

(4.41)
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and for x > 0, it leads to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u = C3,

u(x, 1) = f (ζ ),

lnxλ(τ ) = 5 ln tγ (τ ) +C4,

x(1) = ζ .

(4.42)

From equations (4.41) and (4.42), we obtain the following parametric solution:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u = f (ξ ), x < 0,

u = f (ζ ), x > 0,

lnxβ(τ ) = 3 ln tα(τ ) + ln ξβ(τ ), x < 0,

lnxλ(τ ) = 5 ln tγ (τ ) + ln ζ λ(τ ), x > 0,

(4.43)

which simplifies to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u = f (ξ ), x < 0,

u = f (ζ ), x > 0,

xβ(τ ) = ξβ(τ )t3α(τ ), x < 0,

xλ(τ ) = ζ λ(τ )t5γ (τ ), x > 0.

(4.44)

Let us assume the initial condition f (x) = cosx + 3 sinx, then the solution is

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u(x, t) = f ((xβ(τ )t–3α(τ ))1/β(τ ))

= cos(xβ(τ )t–3α(τ ))3/β(τ ) + 3 sin(xβ(τ )t–3α(τ ))1/β(τ ), x < 0,

u(x, t) = f ((xλ(τ )t–5γ (τ ))1/β(τ ))

= cos(xλ(τ )t–5γ (τ ))3/λ(τ ) + 3 sin(xλ(τ )t–5γ (τ ))1/λ(τ ), x > 0.

(4.45)

Benchmark 3 (For Example 3) We make sure that (4.44) is the solution, and satisfies

(4.36). Differentiating the first and second equation of (4.44) with respect to x with an

order of β(τ ) and γ (τ ), and with respect to t with an order of α(τ ) and λ(τ ) gives

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

D
β(τ )
x u(x, t) =D

β(τ )
x f (ξ ), x < 0,

D
α(τ )
t u(x, t) =D

α(τ )
t f (ξ ), x < 0,

D
λ(τ )
x u(x, t) =D

λ(τ )
x f (ξ ), x > 0,

D
γ (τ )
t u(x, t) =D

γ (τ )
t f (ξ ), x > 0,

(4.46)

leading to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂β(τ )u

∂xβ(τ ) = fξ (ξ )ξ
[β(τ )]
x , x < 0,

∂α(τ )u

∂tα(τ )
= fξ (ξ )ξ

[α(τ )]
t , x < 0,

∂λ(τ )u

∂xλ(τ ) = fζ (ζ )ζ
[λ(τ )]
x , x > 0,

∂γ (τ )u

∂tγ (τ )
= fζ (ζ )ζ

[γ (τ )]
t , x > 0.

(4.47)
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Also, we differentiate the thirdand fourth equation of (4.6) with respect to x with an order

of β(τ ) and γ (τ ), and with respect to t with an order of α(τ ) and λ(τ ) to get

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

D
β(τ )
x lnxβ(τ ) =D

β(τ )
x [3 ln tα(τ ) + ln ξβ(τ )], x < 0,

D
α(τ )
t lnxβ(τ ) =D

α(τ )
t [3 ln tα(τ ) + ln ξβ(τ )], x < 0,

D
λ(τ )
x lnxλ(τ ) =D

λ(τ )
x [5 ln tγ (τ ) + ln ζ λ(τ )], x > 0,

D
γ (τ )
t lnxλ(τ ) =D

γ (τ )
t [5 ln tγ (τ ) + ln ζ λ(τ )], x > 0,

(4.48)

which, using formula (2.10), leads to

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Γ (1+β(τ ))

xβ(τ ) = β(τ )ξβ(τ )–1

ξβ(τ ) ξ
[α(τ )]
x , x < 0,

0 = 3Γ (1+α(τ ))

tα(τ )
+ β(τ )ξβ(τ )–1

ξβ(τ ) ξ
[α(τ )]
t , x < 0,

Γ (1+λ(τ ))

xλ(τ ) = λ(τ )ζλ(τ )–1

ζλ(τ ) ζ
[λ(τ )]
x , x > 0,

0 = 5Γ (1+γ (τ ))

tγ (τ )
+ λ(τ )ζλ(τ )–1

ζλ(τ ) ζ
[γ (τ )]
t , x > 0.

(4.49)

Obtaining ξ
[β(τ )]
x , ξ

[α(τ )]
t , ζ

[λ(τ )]
x , and ζ

[γ (τ )]
t from (4.13), namely

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ
[β(τ )]
x = Γ (1+β(τ ))ξ

xβ(τ )β(τ )
, x < 0

ξ
[α(τ )]
t = – 3Γ (1+α(τ ))ξ

tα(τ )β(τ )
, x < 0

ζ
[λ(τ )]
x = Γ (1+λ(τ ))ζ

tγ (τ )λ(τ )
, x > 0,

ζ
[γ (τ )]
t = – 5Γ (1+γ (τ ))ζ

tγ (τ )λ(τ )
, x > 0,

(4.50)

and substituting (4.50) into (4.47), we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂β(τ )u

∂xβ(τ ) = fξ (ξ )
Γ (1+β(τ ))ξ

xβ(τ )β(τ )
, x < 0,

∂α(τ )u

∂tα(τ )
= –fξ (ξ )

3Γ (1+α(τ ))ξ

tα(τ )β(τ )
, x < 0,

∂λ(τ )u

∂xλ(τ ) = fζ (ζ )
Γ (1+λ(τ ))ζ

tγ (τ )λ(τ )
, x > 0,

∂γ (τ )u

∂tγ (τ )
= –fζ (ζ )

5Γ (1+γ (τ ))ζ

tγ (τ )λ(τ )
, x > 0.

(4.51)

Substituting (4.51) into (4.36), we have

⎧

⎨

⎩

– tα(τ )

Γ (1+α(τ ))
fξ (ξ )

3Γ (1+α(τ ))ξ

tα(τ )β(τ )
+ 3xβ(τ )

Γ (1+β(τ ))
fξ (ξ )

Γ (1+β(τ ))ξ

xβ(τ )β(τ )
= 0, x < 0,

– tγ (τ )

Γ (1+γ (τ ))
fζ (ζ )

5Γ (1+γ (τ ))ζ

tγ (τ )λ(τ )
+ 5xλ(τ )

Γ (1+λ(τ ))
fζ (ζ )

Γ (1+λ(τ ))ζ

tγ (τ )λ(τ )
= 0, x > 0.

Therefore (4.6) is the solution of (4.2). The answer (4.6) also satisfies the initial condition

at t = 0, since x = ξ for x < 0 and x = ζ for x > 0.

Remark 5 The classic form of Example 3 where α(τ ) = β(τ ) = γ (τ ) = λ(τ ) = 1 is

⎧

⎨

⎩

t ∂u
∂t

+ 3x ∂u
∂x

= 0, x < 0,

t ∂u
∂t

+ 5x ∂u
∂x

= 0, x > 0,
, u(x, 0) = f (x) = cosx + 3 sinx, (4.52)
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Figure 6 The graph of the solution u in Example 3 where α(τ ) = β(τ ) = γ (τ ) = λ(τ ) = 1

Figure 7 The graphs the solution in Example 3 with different values for α(τ ), β(τ ), γ (τ ), and λ(τ )

therefore, the solution is

⎧

⎨

⎩

u(x, t) = f (xt–3) = cos(xt–3)3 + 3 sinxt–3, x < 0,

u(x, t) = f (xt–3) = cos(xt–3)3 + 3 sinxt–5, x > 0.
(4.53)

Its graph is given in Fig. 6.

The graphs of solution u with different values for α(τ ), β(τ ), γ (τ ) and λ(τ ) are given in

Fig. 7.

5 Summary

We have proved the existence and uniqueness of the interface coupled arbitrary-order

fractional hyperbolic nonlinear scalar conservation law under some conditions. We have
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Figure 7 Continued

used the generalization of the classical characteristic method that is extended to the frac-

tional characteristic method. Further, we used the generalization of some formulae from

the integer-order calculus to the constant-order and arbitrary-order fractional calculus.

In the process of proving the existence and the uniqueness of IC AOF HNSCL, we have

developed an analytical method that can be used to solve FPDE problems. The feature of

this technique is the ability to show that the obtained solutions satisfy the FPDE, so it can

be used as a benchmark in the problems to ensure that the results are correct and exact.

And finally, we’ve shown the application of this approach by presenting a few physical ex-

amples. In addition, we’ve also shown the graphs for the different values of α(τ ), β(τ ), γ (τ )

and λ(τ ) in each problem and also provided the benchmark as well.
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