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We introduce the rudiments of fractional calculus and the consequent applications of the Sumudu transform on fractional
derivatives. Once this connection is 
rmly established in the general setting, we turn to the application of the Sumudu transform
method (STM) to some interesting nonhomogeneous fractional ordinary di�erential equations (FODEs). Finally, we use the
solutions to form two-dimensional (2D) graphs, by using the symbolic algebra package Mathematica Program 7.

1. Introduction

�e Sumudu transform was 
rst de
ned in its current
shape by Watugala as early as 1993, which he used to solve
engineering control problems. Although he might have had
ideas for it sooner than that (1989) as some conference
proceedings showed, he used it to control engineering prob-
lems [1, 2]. Later, Watugala extended in 2002 the Sumudu
transform to two variables [3]. �e 
rst applications to
di�erential equations and inversion formulae were done by
Weerakoon in two papers in 1994 and 1998 [4, 5]. �e
Sumudu transform was also 
rst defended by Weerakoon
against Deakin’s de
nition who claimed that there is no
di�erence between the Sumudu and the Laplace and who
remindedWeerakoon that the Sumudu transform is really the
Carson or the S-multiplied transform disguised [6, 7]. �e
applications followed in three consecutive papers by Asiru
dealing with the convolution-type integral equations and the
discrete dynamic systems [8, 9]. At this point, Belgacem et
al. using previous references and connections to the Laplace
transform extended the theory and the applications of the
Sumudu transform in [10–17] to various applications. In
the meantime, subsequent to exchanges between Belgacem
and other scholars, the following papers sprang up in the
last decade [18–22]. Moreover, the Sumudu transform was

also used to solve many ordinary di�erential equations with
integer order [23–29]. �e application of STM turns out to
be pragmatic in getting analytical solution of the fractional
ordinary di�erential equations fast. Notably, implementa-
tions of di�erence methods such as in the di�erential trans-
form method (DTM), the Adomian decomposition method
(ADM) [30–33], the variational iteration method (VIM)
[34–40] empowered us to achieve approximate solutions of
various ordinary di�erential equations. STM [41–44] which
is newly submitted to the literature is a suitable technique for
solving various kinds of ordinary di�erential equations with
fractional order (FODEs). In this sense, it is estimated that
this novel approach that is used to solve homogeneous and
nonhomogeneous problems will be particularly valuable as a
tool for scientists and applied mathematicians.

2. Fundamental Properties of Fractional
Calculus and STM

2.1. Fundamental Facts of the Fractional Calculus. Firstly, we
mention some of the fundamental properties of the fractional
calculus. Fractional derivatives (and integrals as well) de
-
nitions may di�er, but the most widely used de
nitions are
those of Abel-Riemann (A-R). Following the nomenclature
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in [45], a derivative of fractional order in the A-R sense is
de
ned by

�� [� (�)]

= {{{{{{{

1Γ [� − ] ����∫�
0

� (�)
(� − �)�−�+1 ��, � − 1 <  ≤ �,

������ (�) ,  = �,
(1)

where � ∈ Z
+ and  ∈ �+. �� is a derivative operator here,

and

�−� [� (�)] = 1Γ [] ∫�
0

(� − �)�−1� (�) ��, 0 <  ≤ 1. (2)

On the other hand, according to A-R, an integral of
fractional order is de
ned by implementing the integration
operator �� in the following manner:

�� [� (�)] = 1Γ [] ∫�
0

(� − �)�−1� (�) ��, � > 0,  > 0. (3)

When it comes to some of the fundamental properties
of fractional integration and fractional di�erentiation, these
have been introduced to the literature by Podlubny [46].
Among these, we mention

�� [��] = Γ [1 + �]Γ [1 + � + ] ��+�,
�� [��] = Γ [1 + �]Γ [1 + � − ] ��−�.

(4)

Anothermain de
nition of the fractional derivative is that
of Caputo [46, 47] who de
ned it by

��� [� (�)]

=
{{{{{{{{{

1Γ [� − ]∫�
0

�(�) (�)
(� − �)�−�+1 ��, � − 1 <  < �,

������ (�) ,  = �.
(5)

A fundamental feature of the Caputo fractional derivative
is that [17]

�� [���� (�)] = � (�) − ∞∑
�=0

�(�) (0+) ���! . (6)

2.2. Fundamental Facts of the Sumudu Transform Method.
�e Sumudu transform is de
ned in [1, 2] as follows. Over
the set of functions

� = {� (�) | ∃�, �1, �2 > 0,
    � (�)    < �"|�|/	� , if � ∈ (−1)
 × [0, ∞)} , (7)

the Sumudu transform of �(�) is de
ned as

% (&) = ' [� (�)] = ∫∞
0

� (&�) "−���, & ∈ (−�1, �2) . (8)

�eorem1. If%(&)is the Sumudu transformof�(�), one knows
that the Sumudu transform of the derivatives with integer order
is given as follows [46–49]:

' [�� (�)�� ] = 1& [% (&) − � (0)] . (9)

Proof. Let us take the Sumudu transform [46–49] of ��(�) =��(�)/�� as follows:
' [�� (�)�� ] = ∫∞

0
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[− 1&� (0) + 1& ( 1& ∫�
0

"−(�/�)� (�) ��)]
= − 1&� (0) + 1&% (&) .

(10)

Equation (10) gives us the proof of �eorem 1. When we
continue in the same manner, we get the Sumudu transform
of the second-order derivative as follows [46–49]:

' [�2� (�)��2 ] = 1&2 [% (&) − � (0) − & �� (�)��
        �=0] . (11)

If we go on the same way, we get the Sumudu transform
of the �-order derivative as follows:

' [��� (�)��� ] = &−� [% (&) − �−1∑
�=0

&� ��� (�)���
        �=0] . (12)

�eorem 2. If %(&) is the Sumudu transform of �(�), one can
take into consideration the Sumudu transform of the Riemann-
Liouville fractional derivative as follows [17]:

' [��� (�)] = &−� [% (&) − �∑
�=1

&�−�[��−� (� (�))]�=0] ,
− 1 < � − 1 ≤  < �.

(13)

Proof. Let us take the Laplace transform of ��(�) = ��(�)/��
as follows:

8 [��� (�)] = 9�% (9) − �−1∑
�=0

9�[��−�−1 (� (�))]�=0
= 9�% (9) − �∑

�=0
9�−1[��−� (� (�))]�=0.

(14)
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�erefore, when we substitute 1/& for 9, we get the
Sumudu transform of fractional order of �(�) as follows:

' [��� (�)] = &−� [% (&) − �∑
�=1

&�−�[��−� (� (�))]�=0] . (15)

Now, we will introduce the improvement form of STM
for solving FODEs. We take into consideration a general
linear ordinary di�erential equation with fractional order as
follows: :�; (�):�� = :2; (�):�2 + :; (�):� + ; (�) + ?, (16)

being subject to the initial condition

; (0) = � (0) . (17)

�en, we will obtain the analytical solutions of some of
the fractional ordinary di�erential equations by using STM.
When we take the Sumudu transform of (16) under the terms
of (12) and (15), we obtain the Sumudu transform of (16) as
follows:

' [:�; (�):�� ] = ' [:2; (�):�2 ] + ' [:; (�):� ] + ' [; (�)] + ' [?] ,
&−� [% (&) − �∑

�=1
&�−�[��−� (; (�))]�=0]

= 1&2 [% (&) − � (0) − & :� (�):�
        �=0]

+ 1& [% (&) − � (0)] + % (&) + ?,
% (&) − �∑

�=1
&�−�[��−� (; (�))]�=0

= &�−2 [% (&) − � (0) − & :; (�):�
        �=0]+ &�−1 [% (&) − � (0)]

+ &�% (&) + ?&�,
% (&) = &�−2% (&) − &�−2; (0)

+ �∑
�=1

&�−�[��−� (; (�))]�=0 − &�−1 :; (�):�
        �=0

+ &�−1% (&) − &�−1� (0)
+ &�% (&) + ?&�,

% (&) − &�−2% (&) − &�−1% (&) − &�% (&)
= −&�−2� (0)

+ �∑
�=1

&�−�[��−� (; (�))]�=0 − &�−1 :; (�):�
        �=0

− &�−1; (0) + ?&�,
% (&) = 11 − &�−2 − &�−1 − &�

× [@ (&) − &�−1; (0) − &�−2; (0) + ?&�] ,
(18)

where @(&) is de
ned by ∑��=1 &�−�[��−�(;(�))]�=0 −&�−1(:;(�)/:�)|�=0. When we take the inverse Sumudu
transform of (18) by using the inverse transform table in
[11, 17], we get the solution of (16) by using STM as follows:

; (�) = '−1 [ 11 − &�−2 − &�−1 − &�
× [@ (&) − &�−1; (0) − &�−2; (0) + ?&�] ] .

(19)

3. Applications of STM to Nonhomogeneous
Fractional Ordinary Differential Equations

In this section, we have applied STM to the nonhomogeneous
fractional ordinary di�erential equations as follows.

Example 3. Firstly, we consider the nonhomogeneous frac-
tional ordinary di�erential equation as follows [50]:

�� [; (�)] = −; (�) + 2Γ [3 − ] �2−� − 1Γ [2 − ] �1−�
+ �2 − �, � > 0, 0 <  ≤ 1,

(20)

With the initial condition being

; (0) = 0. (21)

In order to solve (20) by using STM, when we take the
Sumudu transform of both sides of (20), we get the Sumudu
transform of (20) as follows:

' [��; (�)] + ' [; (�)]
= ' [ 2Γ [3 − ] �2−� − 1Γ [2 − ] �1−� + �2 − �] ,

' [��; (�)] + % (&) = ' [ 2Γ [3 − ] �2−�]
− ' [ 1Γ [2 − ] �1−�] + ' [�2] − ' [�] ,

% (&)&� − ��−1 [; (�)]&
         �=0 + % (&) = 2Γ [3 − ]' [�2−�]

− 1Γ [2 − ]' [�1−�]
+ ' [�2] − ' [�] ,

% (&)&� + % (&) = 2Γ [3 − ]&2−�Γ [3 − ]
− 1Γ [2 − ]&1−�Γ [2 − ] + 2&2 − &,

(1 + 1&� ) % (&) = 2&2−� − &1−� + 2&2 − &,
(1 + &�) % (&) = 2&2 − & + 2&2+� − &1+�,

(1 + &�) % (&) = & (2& − 1) + &�& (2& − 1) ,
% (&) = (2& − 1) &,
% (&) = 2&2 − &.

(22)
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When we take the inverse Sumudu transform of (22) by
using the inverse transform table in [11], we get the analytical
solution of (20) by STM as follows:

; (�) = �2 − �. (23)

Remark 4. If we take the corresponding values for some
parameters into consideration, then the solution of (20) is in
full agreement with the solution of (30) mentioned in [50].
To our knowledge, the analytical solution of FODEs that we

nd in this paper has been newly submitted to the literature.

Example 5. Secondly, we consider the nonhomogeneous
fractional ordinary di�erential equation as follows [51]:

�0.5; (�) + ; (�) = �2 + Γ [3]Γ [2.5] �1.5, � > 0, (24)

With the initial condition being

; (0) = 0. (25)

In order to solve (24) by using STM, when we take the
Sumudu transform of both sides of (24), we get the Sumudu
transform of (24) as follows:

' [�0.5; (�)] + ' [; (�)] = ' [�2] + Γ [3]Γ [2.5]' [�1.5] ,
' [�0.5; (�)] + ' [; (�)] = ' [�2] + 1.50451' [�1.5] ,

% (&)&0.5 − ��−1 [; (�)]&
         �=0 + % (&)

= 2&2 + 2&1.5
J⇒ % (&)&0.5 + % (&) = 2&2 + 2&1.5,

(1 + &0.5&0.5 ) % (&) = 2&2 + 2&1.5
J⇒ (1 + &0.5) % (&) = 2&2 + 2&1.5,

% (&) = 2&2.51 + &0.5 + 2&21 + &0.5 = 2&2 (1 + &0.5)
1 + &0.5 = 2&2.

(26)

When we take the inverse Sumudu transform of (26) by
using the inverse transform table in [48], we get the analytical
solution of (24) by using STM as follows:

; (�) = �2. (27)

Remark 6. �e solution (27) obtained by using the Sumudu
transform method for (24) has been checked by the Mathe-
matica Program 7. To our knowledge, the analytical solution
that we 
nd in this paper has been newly submitted to the
literature.

4. Conclusion and Future Work

Prior to this study, various approaches have been performed
to obtain approximate solutions of some fractional di�er-
ential equations [50, 51]. In this paper, nonhomogeneous
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Figure 1:�e 2D surfaces of the obtained solution bymeans of STM
for (23) when 0 < � < 3.
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Figure 2:�e 2D surfaces of the obtained solution bymeans of STM
for (27) when 0 < � < 3.

fractional ordinary di�erential equations have been solved
by using the Sumudu transform a�er giving the related
formulae for the fractional integrals, the derivatives, and the
Sumudu transform of FODEs.�e Sumudu technique can be
used to solve many types such as initial-value problems and
boundary-value problems in applied sciences, engineering

elds, aerospace sciences, and mathematical physics. �e
Sumudu transform method has been used for �e discrete
fractional calculus in [43]. �is technique has been inves-
tigated in terms of the double Sumudu transform in [44].
Consequently, this new approach has been implemented
with success on interesting fractional ordinary di�erential
equations. As such and pragmatically so, it enriches the
library of integral transform approaches. Without a doubt,
and based on our 
ndings such as Figures 1 and 2, the STM
technique remains direct, robust and valuable tool for solving
same fractional di�erential equations.
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