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This paper considers agency in the setting of embodied or active inference. In brief,

we associate a sense of agency with prior beliefs about action and ask what sorts

of beliefs underlie optimal behavior. In particular, we consider prior beliefs that action

minimizes the Kullback–Leibler (KL) divergence between desired states and attainable

states in the future. This allows one to formulate bounded rationality as approximate

Bayesian inference that optimizes a free energy bound on model evidence. We show

that constructs like expected utility, exploration bonuses, softmax choice rules and

optimism bias emerge as natural consequences of this formulation. Previous accounts

of active inference have focused on predictive coding and Bayesian filtering schemes

for minimizing free energy. Here, we consider variational Bayes as an alternative

scheme that provides formal constraints on the computational anatomy of inference and

action—constraints that are remarkably consistent with neuroanatomy. Furthermore, this

scheme contextualizes optimal decision theory and economic (utilitarian) formulations as

pure inference problems. For example, expected utility theory emerges as a special case

of free energy minimization, where the sensitivity or inverse temperature (of softmax

functions and quantal response equilibria) has a unique and Bayes-optimal solution—that

minimizes free energy. This sensitivity corresponds to the precision of beliefs about

behavior, such that attainable goals are afforded a higher precision or confidence. In turn,

this means that optimal behavior entails a representation of confidence about outcomes

that are under an agent’s control.

Keywords: active inference, agency, Bayesian, bounded rationality, embodied cognition, free energy, inference,

utility theory

INTRODUCTION

This paper addresses the nature of probabilistic beliefs about

control that constitute a sense of agency. By separating beliefs

about control from action per se, one can formulate behavior as a

pure inference problem. This allows one to describe goal-directed

behavior and decision-making in terms of prior beliefs about how

one should behave. It is these beliefs about controlled behavior

that we associate with a representation or sense of agency. Here,

we take a somewhat formal approach and illustrate the ideas using

game theory and Markov decision processes. Our aim is to under-

stand behavior in terms of approximate Bayesian inference and

ask whether standard variational schemes can shed light on the

functional anatomy of decision-making in the brain.

Our wider aim is to place heuristics in decision theory (in psy-

chology) and expected utility theory (in economics) within the

setting of embodied cognition or inference. In brief, we treat the

problem of selecting a sequence of behaviors—to optimize some

outcome—as a pure inference problem. We assume that policies

are selected under the prior belief 1 they minimize the diver-

gence (relative entropy) between a probability distribution over

states that can be reached and states agents believe they should

1In this paper, beliefs about states refer to a probability distribution over

states.

occupy—states or goals that agents believe, a priori, have high

utility. By formulating the problem in this way, three important

aspects of optimal decision-making emerge:

• First, because relative entropy can always be decomposed into

entropy and expected utility, the ensuing policies maximize

expected utility and the entropy over final states. Entropy is a

measure of average uncertainty (e.g., the entropy of a coin toss

is much greater than the entropy of an unsurprising outcome,

like the sun rising tomorrow). This decomposition is closely

related to the distinction between extrinsic and intrinsic reward

in embodied cognition and artificial intelligence. In this set-

ting, utility or extrinsic reward is supplemented with intrinsic

reward to ensure some efficient information gain, exploratory

behavior or control over outcomes. Important examples here

include artificial curiosity (Schmidhuber, 1991), empower-

ment (Klyubin et al., 2005), information to go (Tishby and

Polani, 2011) and computational complexity (Ortega and

Braun, 2011, 2013). Indeed, the causal generation of entropic

forces in nonequilibrium systems has been proposed recently as

a general mechanism for adaptive behavior (Wissner-Gross and

Freer, 2013). In the present context, an intrinsically rewarding

policy maximizes the opportunity to explore (or the entropy

of) future states.
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• Second, because policies are inferred, they are associated with a

confidence or precision that is itself optimized. This furnishes a

unique and Bayes-optimal sensitivity or inverse temperature—

of the sort associated with softmax choice rules and quantal

response equilibria (McKelvey and Palfrey, 1995).

• Third, because policy optimization is absorbed into the more

general problem of inferring hidden states of the world, infer-

ences about policies depend upon inferences about hidden

states and vice versa. This means that beliefs about hidden

states depend upon the confidence in policies—leading to an

optimism bias (Sharot et al., 2012), in which inferences about

ambiguous states are biased toward those that support an

optimal policy.

In what follows, we motivate the premises that underlie this for-

mulation and unpack its implications using formal arguments

and simulations. The basic idea is that behavior can be cast as

inference: in other words, action, and perception are integral

parts of the same inferential process and one only makes sense

in light of the other. It is fairly straightforward to show that self-

organizing systems are necessarily inferential in nature (Friston,

2012). This notion dates back to the writings of Helmholtz and

Ashby, who emphasized modeling and inference as necessary

attributes of systems—like ourselves—that endure in a changing

world (Helmholtz, 1866/1962; Ashby, 1947; Conant and Ashby,

1970). This idea has been formalized recently as minimizing a

variational free energy bound on Bayesian model evidence—to

provide a seamless link between occupying a limited number of

attracting states and Bayesian inference about the causes of sen-

sory input (Dayan et al., 1995; Friston, 2010). In the context of

behavior, we suppose that inference underlies a sense of agency.

A corollary of this perspective is that agents must perform

some form of active Bayesian inference. Bayesian inference can be

approximate or exact, where exact inference is rendered tractable

by making plausible assumptions about the approximate form

of probabilistic representations—representations that are used

to predict responses to changes in the sensorium. In general,

exact inference is intractable and cannot be realized biophysically.

This is because—for non-trivial models—the posterior distribu-

tions over unknown quantities do not have an analytic form.

This means the challenge is to understand how agents perform

approximate Bayesian inference. Conversely, in classical (nor-

mative) formulations, it is assumed that agents optimize some

expected value or utility function of their states. The question

then reduces to how the brain maximizes value (Camerer, 2003;

Daw and Doya, 2006; Dayan and Daw, 2008).

Normative approaches assume that perfectly rational agents

maximize value, without considering the cost of optimization

(Von Neumann and Morgenstern, 1944). In contrast, bounded

rational agents are subject to information processing costs and do

not necessarily choose the most valuable option (Simon, 1956).

Several attempts to formalize bounded rationality, in probabilis-

tic terms, have focused on the Boltzmann distribution, where

optimal behavior corresponds to picking states with a high value

or low energy. In this setting, perfect rationality corresponds to

choosing states from a low temperature distribution, whose prob-

ability mass is concentrated over the state with the highest value

(Ortega and Braun, 2011). In particular, quantal response equi-

librium (QRE) models of bounded rationality assume that choice

probabilities are prescribed by a Boltzmann distribution and that

rationality is determined by a temperature parameter (McKelvey

and Palfrey, 1995; Haile et al., 2008). Boltzmann-like stochastic

choice rules have a long history in the psychology and eco-

nomics literature, particularly in the form of logit choice models

(Luce, 1959; Fudenberg and Kreps, 1993). These choice rules

are known as softmax rules and are used to describe stochastic

sampling of actions, especially in the context of the exploration-

exploitation dilemma (Sutton and Barto, 1998; Cohen et al.,

2007). In this setting, the temperature parameter models the sen-

sitivity of stochastic choices to value. This paper suggests that

sensitivity can itself be optimized and corresponds to the confi-

dence or precision associated with beliefs about the consequences

of choices.

So what does active inference bring to the table? In active

inference, there is no value function: free energy is the only

quantity that is optimized. This means that bounded rational-

ity must emerge from free energy minimization and the value of

a state (or action) is a consequence of behavior, as opposed to

its cause. In other words, the consequences of minimizing free

energy are that some states are occupied more frequently than

others—and these states can be labeled as valuable. We will see

later that the frequency with which states are visited depends on

prior beliefs—suggesting an intimate relationship between value

and prior beliefs. Crucially, in active inference, parameters like

sensitivity or inverse temperature must themselves minimize free

energy. This means that sensitivity ceases to be a free parame-

ter that is adjusted to describe observed behavior and becomes

diagnostic of the underlying (approximate) Bayesian inference

(that can be disclosed by observed choices). We will see later

that sensitivity corresponds to the precision of beliefs about future

states and behaves in a way that is remarkably similar to the

firing of dopaminergic cells in the brain. Furthermore, QRE,

logit choice models and softmax rules can be derived as for-

mal consequences of free energy minimization, using variational

Bayes.

Variational Bayes or ensemble learning is a ubiquitous scheme

for approximate Bayesian inference (Beal, 2003). Variational

Bayes rests on a partition or separation of probabilistic repre-

sentations (approximate posterior probability distributions) that

renders Bayesian inference tractable. A simple example would be

estimating the mean and precision (inverse variance) of some

data, under the assumption that uncertainty about the mean

does not depend upon uncertainty about the variance and vice

versa. This simple assumption enables a straightforward compu-

tation of descriptive statistics that would otherwise be extremely

difficult: see (MacKay, 2003, p. 422) for details. In biological

terms, a partition into conditionally independent representa-

tions is nothing more or less than functional segregation in the

brain—in which specialized neuronal systems can be regarded

as performing variational Bayesian updates by passing mes-

sages to each other. These messages ensure that posterior beliefs

about states of (and actions on) the world are internally con-

sistent. We will try to relate variational Bayes to the functional

anatomy of inference and action selection in the brain. This
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provides a functional account of both neuronal representations

and functional integration (message passing) among different

systems.

Previous accounts of free energy minimization in the brain

have focused on continuous time formulations and predictive

coding as a neurobiologically plausible variational scheme. In

this paper, we take a slightly more abstract approach and con-

sider discrete time representations using variational Bayes. This

necessarily implies a loss of biological realism; however, it pro-

vides an explicit model of discrete behaviors or choices. In

particular, the resulting scheme converges, almost exactly, on

the free energy formulation of decision-making under infor-

mational costs proposed by (Braun et al., 2011; Ortega and

Braun, 2011). These authors accommodate nearly all optimal

control, expected utility and evidence accumulation schemes

under a single utility-based free energy minimization frame-

work. The free energy minimization considered in this paper

can be regarded as a special case of their general formula-

tion, where the utility function is the log-likelihood of out-

comes and their causes, under a generative model. This is

important, because it connects utility-based schemes to varia-

tional Bayes and, more generally, inferential schemes that may

underwrite biological self-organization (Ashby, 1947; Friston,

2012).

Although variational Bayes relies upon discrete updates, vari-

ational updates still possess a dynamics that can be compared

to neuronal responses, particularly dopaminergic responses. In

a companion paper (Friston et al., under review), we focus on

this, because understanding the computational role of dopamine

is important for understanding the psychopathology and patho-

physiology of conditions like Parkinson’s disease, schizophrenia

and autism. In this paper, we focus on the functional anatomy

implied by variational message passing in the brain and try

to relate this to behavior from a psychological and economic

perspective.

This paper comprises six sections: The first introduces active

inference and sets up the basic ideas and notation. The second

describes a fairly generic model of control or agency, in which

purposeful behavior rests on prior beliefs that agents will mini-

mize the (relative) entropy of their final states. We will see that

this leads naturally to expected utility theory and exploration

bonuses. The third section considers the inversion of this gen-

erative model using variational Bayes, with a special focus on

mean field assumptions and implicit message passing. The fourth

section considers the implications for the functional anatomy

of inference and decision-making; namely, reciprocal message

passing between systems supporting perceptual inference, action

selection and evaluating precision. This section shows how key

aspects of classical theory emerge; such as the distinction between

perceptual inference about states of the world and action selec-

tion, quantal response equilibria, sensitivity and softmax choice

rules. The fifth section uses simulations of a particular game

(a waiting game with time sensitive contingencies) to illus-

trate the basic phenomenology of decision-making under active

inference. The final section considers the cognitive anatomy of

decision-making in terms of temporal discounting and marginal

utility.

ACTIVE INFERENCE

In active inference, beliefs about (hidden or fictive) states of

the world maximize model evidence or the marginal likeli-

hood of observations. In contrast to classic formulations, active

inference makes a distinction between action as a physical

state of the real world and beliefs about (future) action that

we will refer to as control states—it is these that constitute

a sense of agency. This changes the problem fundamentally

from selecting an optimal action (a real variable) to mak-

ing optimal inferences about control (a random variable). In

other words, under the assumption that action is sampled from

posterior beliefs about control, we can treat decision-making

and action selection as a pure inference problem that neces-

sarily entails optimizing beliefs about behavior and its conse-

quences. This optimization appeals to the principle of free energy

minimization.

THE FREE-ENERGY PRINCIPLE AND ACTIVE INFERENCE

The free-energy principle (Friston et al., 2006) tries to explain

how agents restrict themselves to a small number of attracting

states. This behavior is equivalent to minimizing the Shannon

entropy of the distribution over the outcomes they experience.

Under ergodic assumptions, this entropy is (almost surely) the

long-term time average of self-information or surprise (Birkhoff,

1931). Negative surprise ln P(õ|m) is the log likelihood of out-

comes õ = (o0, . . . , ot), marginalized over their causes—also

known as the Bayesian model evidence of model m. It is there-

fore sufficient to minimize surprise—at each point in time—to

minimize its time average or Shannon entropy.

However, to evaluate surprise it is necessary to marginalize

over the hidden causes of outcomes. This is the difficult prob-

lem of exact Bayesian inference. This problem can be finessed

by using a proxy for surprise that does not depend on knowing

the causes of observations. The proxy is variational free energy

that, by construction, is an upper bound on surprise (Feynman,

1972; Hinton and van Camp, 1993). This means that if agents

minimize free energy they minimize surprise (approximately).

Coincidentally, they maximize model evidence (approximately)

and implicitly engage in approximate Bayesian inference (Dayan

et al., 1995; Friston, 2010). Put simply, although agents can never

know the causes of their observations, the causes can be inferred.

Crucially, the free energy that underpins this inference needs a

generative model of how observations were caused—a model that

can itself be optimized with respect to free energy (cf. Bayesian

model selection in statistics).

These arguments suggest that action must minimize varia-

tional free energy, because outcomes can only be changed by

action. This is active inference (Friston et al., 2010), which extends

the minimization of free energy implicit in approximate Bayesian

inference to include action. This means that behavior mini-

mizes surprise or maximizes model evidence; either exactly—to

produce perfectly rational behavior, or approximately—to mini-

mize a variational bound to produce bounded rational behavior.

There is a fairly developed literature on variational free energy

minimization and active inference; covering things from per-

ceptual categorization of bird songs, through to action observa-

tion (Friston, 2010). Most of this work uses generative models
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based upon differential equations. In this paper, we consider

generative models based upon Markovian processes and revisit

some of the key results in the context of decision-making and

uncertainty.

In what follows, we use the usual conventions of uppercase

to denote matrices and lowercase for vectors. In addition, we

use bold typeface to indicate true variables in the world and

italic typeface for hidden or fictive variables. The sufficient statis-

tics (event probabilities) of categorical distributions over discrete

states {1, . . . , J} are denoted by J × 1 vectors
⌢
s ∈ [0, 1]. The ∼

notation denotes collections of variables over time.

Definition

Active inference rests on the tuple (�, S, A, P, Q, R, S, U):

• A finite set of observations �

• A finite set of true states and actions S × A

• A finite set of fictive or hidden states S × U

• A generative process over observations, states and action

R (õ, s̃, a) = Pr ({o0, . . . , ot} = õ, {s0, . . . , st} = s̃, A = a)

• A generative model over observations and hidden states

P(õ, s̃, ũ|m) = Pr ({o0, . . . , ot} = õ, {s0, . . . , st} = s̃,

{u0, . . . , uT} = ũ)

• An approximate posterior probability over hidden states with

sufficient statistics µ ∈ Rd such that

Q(s̃, ũ|µ) = Pr({s0, . . . , st} = s̃, {u0, . . . , uT} = ũ),

Remarks

Here, m denotes the form of a generative model or probability

distribution entailed by an agent. For clarity, we will omit the

conditioning on m unless necessary. In this setup, the genera-

tive process describes transitions among real states of the world

that depend upon action and generate outcomes. The agent is

equipped with a generative model of this process, where action

is replaced by a subset of hidden states called control states

U . Although we allow for any action (control) from any state,

only a subset may be allowable from any given state. Finally,

the sufficient statistics of the approximate posterior encode a

probability distribution over hidden states S × U at times t ∈

{0, . . . , T}. In other words, the sufficient statistics—or param-

eters of the distribution—represent the probability of hidden

states.

As it stands, the above definition does not describe a process.

This is because the dependencies among real states and sufficient

statistics are not specified. In other words, the agent’s generative

model of observations P(õ, s̃, ũ|m) and its approximate posterior

distribution over their causes Q(s̃, ũ|µ) does not refer to the pro-

cess of eliciting outcomes through action R(õ, s̃, a). To couple the

agent to its environment, we have to specify how its sufficient

statistics depend upon observations and how its action depends

upon sufficient statistics. In active inference, the sufficient statis-

tics minimize free energy and the ensuing beliefs about control

states prescribe action:

µt = arg min µF (õ,µ)

Pr (at = ut) = Q (ut |µt) (1)

This is usually portrayed in terms of perception (inference

about hidden states) and action (a choice model in which

action is a function of inferred states). Usually, sufficient statis-

tics are associated with the internal states of an agent (such

as neuronal activity or connection strengths) and action is

associated with the state of its effectors. In more general for-

mulations, action would select outcomes with the lowest free

energy (Friston et al., 2012a). However, for simplicity, we have

assumed that actions are sampled from posterior beliefs about

control states—noting that the actions which minimize free

energy produce outcomes that are the most likely under poste-

rior beliefs. In short, sufficient statistics and implicit posterior

beliefs about the state of the world minimize free energy, while

action is selected from posterior beliefs about control states.

We will see later that these posterior beliefs depend crucially

upon prior beliefs about states that will be occupied in the

future.

Figure 1 provides a schematic of the resulting cycle of action

and perception, where posterior expectations (sufficient statis-

tics) minimize free energy and prescribe action (left panel). In this

setting, free energy is defined in relation to the generative model

(right panel). Notice that the generative model does not need to

know about action: from its point of view, the world contains

(fictive) control states that determine transitions among hidden

states generating outcomes. In other words, optimizing poste-

rior beliefs about control states produces action automatically but

the agent does not know this—in the sense we are aware of the

to

ta A

ts S

ts

tu

Pr ( | )
t t t t
a u Q u

argmin ( , )t F o

action

perception

world    agent

Active inference (Markovian) generative model

to

ts S

tu U

( | , )t tP o s

Likelihood model

Prior beliefs

1 1( , | , , )t t t tP s u s u

FIGURE 1 | Left panel: this is a schematic of the dependencies among

variables underlying active inference. Here, a generative process

representing state transitions in the real world generates observations or

outcomes that are used to update the internal states of an agent. These

internal states encode the sufficient statistics of an approximate posterior

distribution over variables defined by a generative model (right panel).

Particular sufficient statistics, encoding beliefs about choices or control

states are reflexively transcribed into action, which affects real state

transitions—thereby closing the action–perception cycle. Right panel:

notice that the generative model, which defines free energy has a much

simpler form. It simply supposes that there are mutually dependent hidden

and control states that conspire to produce observations.
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sensory consequences of our motor reflexes but not the reflexes

per se.

One can express free energy in a number of ways:

F (õ,µ) = EQ [−ln P (õ, s̃, ũ|m)] − H [Q (s̃, ũ|µ)]

= DKL [Q (s̃, ũ|µ)||P (s̃, ũ|õ)] − ln P (õ|m)

= DKL[Q(s̃, ũ|µ)||P(s̃, ũ|m)] + EQ[− ln P (õ|s̃, ũ)](2)

The first equality expresses free energy as a Gibbs energy

(expected under the approximate posterior) minus the entropy

of the approximate posterior. This speaks to why it is called a

free energy. The second equality shows that free energy is an

upper bound on surprise, because the first relative entropy or

Kullback–Leibler (KL) divergence term is non-negative by Gibbs

inequality (Beal, 2003). This means minimizing free energy cor-

responds to minimizing the divergence between the approximate

and true posterior. This formalizes the notion of unconscious

inference in perception (Helmholtz, 1866/1962; Dayan et al.,

1995; Dayan and Hinton, 1997) and—under some simplifying

assumptions—reduces to predictive coding (Rao and Ballard,

1999). The third equality shows that minimizing free energy is

the same as maximizing the expected log likelihood of observa-

tions or accuracy, while minimizing the divergence between the

approximate posterior and prior beliefs about hidden variables.

This divergence is known as model complexity (Spiegelhalter et al.,

2002; Penny et al., 2004), ensuring that inference is both accurate

and parsimonious (cf. Occam’s razor).

In summary, if agents resist a natural tendency to disor-

der (occupy a limited number of characteristic states), then

they become implicit Bayesian modelers of their environment.

This is consistent with the good regulator hypothesis (Conant

and Ashby, 1970) and accounts of (unconscious) inference and

perception in the brain (Helmholtz, 1866/1962; Gregory, 1968;

Dayan et al., 1995). Crucially, this requires agents to entertain

beliefs about the control of state transitions producing outcomes.

This means we have moved beyond classic formulations—in

which deterministic actions are selected—and have to consider

posterior beliefs about putative choices. These beliefs determine

the states that are eventually sampled. In the next section, we con-

sider the optimization of posterior beliefs; both in terms of their

content and the confidence or precision with which they are held.

A GENERATIVE MODEL OF AGENCY

We have seen that a generative model is necessary to furnish a

free energy bound on surprise or Bayesian model evidence. This

model comprises prior beliefs that determine the states an agent

or model will frequent. These beliefs specify the attracting states

(goals) that action will seek out. In this section, we consider the

form of these beliefs and how they can be understood in terms of

expected utility.

THE GENERATIVE MODEL

The Markovian models considered here rest on transitions among

hidden states that are coupled to transitions among control

states. This is illustrated in terms of a hidden Markov model

or finite state (epsilon) machine (Ellison et al., 2011) in the

upper panel of Figure 2. In the general forms of these models,

control states modify the transition probabilities among hidden

states, while hidden states modify the transitions among control

states (as denoted by the connections with circles). This sort of

model allows context-sensitive transitions among states generat-

ing outcomes—that themselves can induce changes in the control

states providing the context. The lower panels of Figure 2 illus-

trate a particular example that we will use later—in which there

are two states that control transitions among five hidden states

(see figure legend for details).

The generative model used to model these (irreversible

Markovian) processes can be expressed in terms of future control

states ũ = (ut, . . . , uT) as follows:

P(õ, s̃, ũ, γ| ˜a, m) = P (õ|s̃) P (s̃, ũ|γ, ã) P (γ|m)

P(o0, . . . , ot |s0, . . . , st) =
∏t

i = 0
P(oi|si) (3)

P(s0, . . . , st, ũ|γ, a0, . . . , at − 1) = P(ũ|st)P(s0|m)
∏t

i = 1

P(si|si − 1, ai − 1)

ln P(ũ|st) = −γ · DKL[P(sT |st, ũ)||P(sT |m)]

Remarks

The first equality expresses the model in terms of the like-

lihood of observations given the hidden and control states

(first term) and empirical prior beliefs (subsequent terms).

Empirical priors are probability distributions over unknown vari-

ables that depend on other unknown variables—and are an

inherent part of any hierarchical model. The likelihood (sec-

ond equality) says that observations depend on, and only on,

concurrent hidden states. The third equality expresses beliefs

about state transitions that embody Markovian dependen-

cies among successive hidden states. For simplicity, we have

assumed that the agent knows its past actions by observing

them.

The important part of this model lies in the last equality.

This describes prior beliefs about control sequences or poli-

cies that determine which actions are selected. These beliefs

take the form of a Boltzmann distribution, where the pol-

icy with the largest prior probability minimizes the relative

entropy or divergence between the distribution over final states,

given the current state and policy, and the marginal distribu-

tion over final states. This marginal distribution encodes goals

in terms of (desired) states the agent believes it should visit

from current state. Crucially, the precision of beliefs about

policies is determined by a hidden variable γ ∈ R
+ that has

to be inferred. In essence, this model represents past hid-

den states and future choices, under the belief that control

from the current state will minimize the divergence between

the distribution over final states and a prior distribution or

goal.

PRIOR BELIEFS, ENTROPY AND EXPECTED UTILITY

Basing beliefs about future choices on relative entropy is for-

mally related to optimization schemes based on KL control;

particularly risk sensitive control; e.g., (van den Broek et al.,
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FIGURE 2 | Upper panel: this is an example of a generative model, based on

a hierarchical hidden Markov model. The key feature of this model is that

there are two sets of states; hidden states and control states. The transitions

among one set of states depend upon the state occupied in the other set.

Lower panels: this provides an example of a particular generative model in

which there are two control states; reject (stay) or accept (shift). The control

state determines the transitions amongst the hidden states which, in this

example, comprise a low offer (first state), a high offer (second state), a

no-offer state (third state), and absorbing states that are entered whenever a

low (fourth state) or high (fifth state) offer is accepted. The probability of

moving from one state to another is one, unless specified by the values of

the (control dependent) transition probabilities shown in the middle row. For

example, the parameter r controls the rate of offer withdrawal (cf. a hazard

rate). Note that absorbing states—that re-enter themselves with unit

probability—render this Markovian process irreversible. We will use this

example in simulations of choice behavior.

2010). This is also a cornerstone of utility-based free energy

treatments of bounded rationality (Ortega and Braun, 2011).

These schemes consider optimal agents to minimize the KL

divergence between controlled and desired outcomes. All we

have done here is to equip agents with a sense of agency

or prior beliefs that they are KL optimal. These beliefs are

then enacted through active inference. The advantage of this

is that the precision of beliefs about control can now be

optimized—because we have effectively cast the optimal con-

trol problem as an inference problem. These arguments may

seem a bit abstract but, happily, concrete notions like explo-

ration, exploitation and expected utility emerge as straightfor-

ward consequences:

The relative entropy or divergence can be thought of as

a prediction error that is nuanced in an important way: it

reports the mismatch—not between expected and observed

outcomes—but between the final outcomes expected with and

without considering the current state: in other words, the

difference between what can be attained from the current

state and the goals encoded by prior beliefs. Unlike clas-

sic reward prediction errors, this probabilistic prediction error

is a difference between probability distributions over states.

Mathematically, this divergence can be decomposed into two

terms that have important implications for behavior. From

Equation 3:

ln P (ũ|st) = γ · Q

Q (ũ|st) = −DKL [P (sT |st, ũ)||P (sT |m)]

=
∑

sT

P (sT |st, ũ) ln
P (sT |m)

P (sT |st, ũ)

= H [P (sT |st, ũ)]
︸ ︷︷ ︸

exploration bonus

+
∑

sT

P (sT |st, ũ) c (sT |m)
︸ ︷︷ ︸

expected utility

(4)

This expresses the log likelihood of a policy as a precision

weighted value Q (ũ|st). This value is an attribute of policies

available from the current state, where the value of a pol-

icy is the negative divergence between the states entailed by

the policy and goal states. In other words, a valuable pol-

icy (or state) minimizes relative entropy. We use Q (ũ|st) to

emphasize the analogous role of action value in Q-learning

(Watkins and Dayan, 1992). Equation 4 shows that value can

be decomposed into terms. The first is the entropy (intrinsic

reward) of the distribution over final states, given the current

state and policy. The second is the expected utility of the final
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state, where utility (extrinsic reward) or negative cost is the log

probability of the final state, under the prior goals c (sT |m) =

ln P (sT |m).

These definitions help us connect to classic formulations and

highlight an important difference between the value of choices

and the utility of states. Utility is a fixed attribute of states that

agents are attracted to. In contrast, the value of a policy is con-

text sensitive and depends upon the current state. Because utility

is defined in terms of a probability distribution—which sums

to one—the utility (log probability) of any state is negative and

can be at most zero (i.e., cost is non-negative). This setup high-

lights the relative nature of utility (Tobler et al., 2005; Jocham

et al., 2012), because the value of a policy is determined by the

difference among the utilities of outcomes.

EXPLORATION, EXPLOITATION AND NOVELTY

This decomposition of value means that agents (believe they)

will maximize the entropy of their final states while maximiz-

ing expected utility. The relative contribution of entropy and

expected utility depends upon the precision of prior beliefs

about the final state or, equivalently, the relative utility of dif-

ferent states. If these beliefs are very precise (informative), they

will dominate and the agent will (believe it will) maximize

expected utility. Conversely, with imprecise (flat) prior beliefs

that all final states are equally valuable, the agent will try to

keep its options open and maximize the entropy over those

states: in other words, it will explore according to the maximum

entropy principle (Jaynes, 1957). This provides a simple account

of exploration-exploitation that is consistent with expected util-

ity theory. The entropy term implies that (beliefs about) choices

are driven not just to maximize expected value but to explore

all options in a way that confers an exploratory aspect on

behavior. In the absence of (or change in) beliefs about ulti-

mate states, there will be a bias toward visiting all (low cost)

states with equal probability. Similarly, the novelty bonus (Kakade

and Dayan, 2002) of a new state is, in this formulation, con-

ferred by the opportunity to access states that were previously

unavailable—thereby increasing the entropy over final states.

As indicated in Equation (4), this means that the value of a

choice comprises an exploration bonus and an expected utility,

where the former depends upon the current state and the latter

does not.

In summary, if agents occupy a limited set of attracting states,

it follows that their generative models must be equipped with

prior beliefs that controlled state transitions will minimize the

divergence between a distribution over attainable states and a dis-

tribution that specifies states as attractive. These prior beliefs can

be expressed in terms of relative entropy that defines the value

of policies. This value has exactly the same form as the objective

functions in KL control schemes that grandfather conventional

utility-based schemes (Kappen et al., 2012; Ortega and Braun,

2011). The value of a policy can be decomposed into its expected

utility and an exploration or novelty bonus that corresponds to

the entropy over final states. In this setting, notions like value,

expected utility and exploration bonus are consequences of the

underlying imperative to minimize (relative) entropy, entailed by

the priors of an agent’s generative model.

The balance between exploration (entropy) and exploitation

(expected value) is uniquely determined by the relative utility of

future states and not by the temperature parameter—the pre-

cision or inverse temperature applies to both exploratory and

utilitarian behavior (see Equation 4). In other words, explorative

behavior is not just a random version of exploitative behavior

but can itself be very precise, with a clearly defined objective

(to maximize the entropy of final outcomes). In fact, precision

plays a fundamental role in moderating an optimism bias when

forming beliefs about hidden states of the world (Sharot et al.,

2012). To see this clearly, we need to consider the nature of model

inversion.

VARIATIONAL BAYESIAN INVERSION

This section illustrates active inference using variational Bayesian

inversion of the generative model above. To simplify notation,

we will represent allowable policies with π ∈ {1, . . . , K}, were

each policy prescribes a sequence of control states (ũ|π) =

(ut, . . . , uT |π). The model considered in the remainder of this

paper is parameterized as follows:

P
(

ot = i|st = j, A
)

= Aij

P
(

st + 1 = i|st = j, π, B
)

= B(ut |π)ij

ln P
(

π = i|st = j, γ, Q
)

= Qij · γ − ln Zπ

P (sT = i|c) = ci

P
(

s0 = i|d
)

= di

P (γ|m) = Ŵ(α, β) (5)

P
(

sT = i|st = j, π, c
)

= T(π)ij

T(π) = B(ut |π)B(ut + 1|π) . . . B(uT |π)

Qij = ln cT · T(π = i)j − ln T(π = i)T
j · T(π = i)j

∑

i
Aij = 1,

∑

i
B(ut)ij = 1,

∑

i
ci = 1,

∑

i
di = 1

Categorical distributions over observations, given the hidden

states, are parameterized by the matrix A that maps, proba-

bilistically, from hidden states to outcomes. Similarly, the tran-

sition matrices B(ut) encode transition probabilities from one

state to the next, under the current control state of a pol-

icy. The vectors c and d encode the prior distribution over

the last and first states, respectively. The former parame-

ters specify the priors on control, where utility is c(sT |m) =

ln P(sT |m) = ln c. The prior over precision has a gamma distri-

bution with shape and rate parameters (in this paper) α = 8 and

β = 1.

The K × J matrix Q contains the values of allowable poli-

cies from current states, where the normalization constant Zπ

ensures that the probabilities over policies sum to one. Finally,

the matrices T(π) encode the probability of transition from the

current state to a final state, under a particular policy. This is

the composition of transition matrices from the present time
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until the end of the game. Transition probabilities to the final

state determine the entropy and expected utility that comprise

value (last equality). Here, T(π = i)j is a column vector of prob-

abilities over final states, under the i-th policy and j-th current

state.

APPROXIMATE BAYESIAN INFERENCE

Having specified the exact form of the generative model, we now

need to find the sufficient statistics of the approximate posterior

density that minimizes free energy. This is equivalent to approx-

imate Bayesian inference about hidden variables ψ = (s̃, ũ, γ).

Variational Bayes now provides a generic and relatively simple

scheme for approximate Bayesian inference that finesses the com-

binatoric and analytic intractability of exact inference (Beal, 2003;

Fox and Roberts, 2012).

The efficiency of variational Bayes rests on replacing posterior

dependencies among hidden variables with dependencies among

the sufficient statistics of marginal probabilities over subsets. This

allows one to factorize the (approximate) posterior distribution

into marginal distributions, which greatly reduces the size of the

state space that has to be represented. This is because one does

not have to represent the joint distribution over different subsets.

To illustrate this, consider a distribution over all combinations

of J hidden states and K control states at every point in time:

Q(s̃, ũ). The underlying state space S1 × U1 × . . . × ST × UT

would require an untenable number (J × K)T of sufficient statis-

tics or probabilities—the example below would require (5 × 2)16

sufficient statistics, which is more than the number of synapses in

the brain.

However, if we exploit the Markovian dependencies among

successive states, we can use a mean field assumption to

reduce the number of sufficient statistics dramatically. The

particular mean field assumption we will use is (see also

Figure 3):

Q
(

s̃, ũ, γ|µ
)

= Q
(

s0|
⌢
s 0

)

. . . Q
(

st |
⌢
s t

)

Q
(

ũ|
⌢
π

)

Q
(

γ|
⌢

β
)

Q
(

st = j|
⌢
s t

)

=
⌢
stj :

∑

j

⌢
s tj = 1

Q
(

ũ = k|
⌢
π

)

=
⌢
πk:

∑

k

⌢
πk = 1

Q
(

γ|
⌢

β
)

= Ŵ

(

α,
⌢

β
)

(6)

Here, we have assumed a factorization over (past) hidden states,

(future) control states and precision. Furthermore, we have fac-

torized successive states over time, which means we only have

to represent the current state explicitly. These particular mean

field assumptions are not approximations, because the true gen-

erative process is Markovian. Conversely, the factorization with

respect to precision is an approximation, because the true poste-

rior will show (mild) conditional dependencies between precision

and hidden states.

The marginal over control states has not been factorized

because the final outcome depends, in general, on the particu-

lar history of choices. In other words, generally speaking, any

outcome depends upon the sequence of choices in the past.

However, there are potentially a vast number of control sequences

or policies that could require an enormous number of sufficient

statistics. This problem can be finessed by only considering allow-

able or a priori plausible policies. In the example below, there

is no point in accepting an offer more than once. Therefore, we

The generative model

Hidden states ts

to

0 1, , ta a

Action

, ,t Tu u
Control states

c

,

B

A
Full priors

Empirical priors – control states

Empirical priors – hidden states

Likelihood

1ts1ts

1to

( ) ( ) ( ) ( ), , , | , | , | , |P o s u a m P o s P s u a P mɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶγ γ γ=

( )| ,t t ijP o i s j A A= = =

( )
0

| ( | )
t

i ii
P o s P o sɶ ɶ

=
= ∏

( )

( )
( )

0

|

|

| ( , )

T i

i

P s i

P s i

P m

c c

d d

γ α β

= =

= =

= Γ

( )
( )

ln | [ ( | , ) || ( | )]

ln | , ,

t KL T t T

t ij

P u s D P s s u P s m

P u i s j Q Q

ɶ ɶ

ɶ

γ

γ

= − ⋅

= = = ⋅

( )

ln

| , , ( )T t ij

Z

P s i s j u uc Tɶ ɶ

πγ −

= = =

( )

( )

1

10

1

, | , ( | ) ( | , )

| , , ( | )

t

t i i ii

t t t ij

P s u a P u s P s s a

P s i s j u u uB B

ɶ ɶ ɶ ɶ

ɶ ɶ

γ
−

+=

+

=

= = =

∏

FIGURE 3 | This figure illustrates the temporal dependencies

among hidden states and control states in the generative model

considered in this paper. This Bayesian graph illustrates the

dependencies among successive hidden states and how they depend

upon action in the past and control states in the future. Note that

future control states depend upon the current state because it

depends upon the relative entropy or divergence between

distributions over the final state that are, and are not, conditioned

on the current state. The resulting choices depend upon the

precision of beliefs about control states, which, in turn depend upon

the parameters of the model. Observed outcomes depend on, and

only on, the hidden states at any given time.
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only need to consider policies in which an offer is accepted once

during the game. There is nothing lawful about this restriction;

however, it is particularly appropriate for irreversible Markovian

processes that have absorbing states (that render further action

pointless). These processes are ubiquitous in game theory where,

having made a choice, there is no going back. This allows one to

reduce the number of sufficient statistics for policies from KT to

(K − 1) × T by only allowing policies in which a choice uτ > 1 is

made at t = τ and ut = 1 otherwise.

The details of the mean field assumption above are not ter-

ribly important. The main point here is that the formalism

of variational Bayes allows one to specify constraints on the

form of the approximate posterior that makes prior assump-

tions or beliefs about allowable choices explicit. For example, in

(Friston et al., 2012a) we used a mean field assumption where

every choice could be made at every time point. Equation (6)

assumes the approximate marginal over precision is, like its con-

jugate prior, a gamma distribution; where the shape parameter

is the same as the prior α = 8 and the rate parameter is opti-

mized. This rate parameter corresponds to temperature in classic

formulations. Crucially, it is no longer a free parameter but

a sufficient statistic of the unknown precision of beliefs about

policies.

VARIATIONAL UPDATES

Variational Bayes optimizes the sufficient statistics µ ∈ R
+ with

a series of variational updates. It is straightforward to show (Beal,

2003) that the marginal distributions Q(ψi|µi) that minimize free

energy can be expressed in terms of the variational energies V(ψi)

of each subset:

ln Q (ψi|µi) = V (ψi) + ln Zi ⇒
∂F (õ,µ)

∂µi
= 0

V (ψi) = EQ (ψ\i) [ln P(õ, ψ|m)]

ψ =
(

s0, . . . , st, ũ, γ
)

µ =
(

⌢
s 0, . . . ,

⌢
s t,

⌢
π,

⌢

β
)

(7)

The variational energies are just the (negative) Gibbs energies

in Equation (2), expected under the Markov blanket Q(ψ\i) of

each subset. Loosely speaking, the Markov blanket contains all

subsets, apart from the subset in question. The important thing

about this result is that it expresses the optimal sufficient statistics

of one subset in terms of the others. This allows one to itera-

tively re-evaluate each subset, given the others, until convergence.

This is, in essence, variational Bayes. Given the generative model

in Equation (5) and the mean field assumption in Equation (6),

Equation (7) furnishes the following remarkably simple updates

(starting from prior beliefs):

⌢
s t = σ

(

ln AT ·
⌢
o t + ln B (at − 1) ·

⌢
s t − 1 +

⌢
γ · QT ·

⌢
π

)

⌢
π = σ

(⌢
γ · Q ·

⌢
s t

)

⌢

β = β−
⌢
π

T
· Q ·

⌢
s t

⌢
γ =

α
⌢

β

σ (V) =
exp(V)

∑

i, j exp
(

Vij

) (8)

These expressions follow in a straightforward way from the varia-

tional energies in Equation (7): see the Appendix and (Beal, 2003)

for details. These updates assume the parameters of the model

are known. If they are not, then it is relatively straightforward to

extend the variational Bayesian scheme above to include varia-

tional updates for learning unknown parameters, as described in

Chapter 3 of (Beal, 2003). The only special consideration is the

use of conjugate (Dirichlet) priors over the parameters.

In summary, variational Bayes involves iterating updates to

find the sufficient statistics that minimize free energy and, implic-

itly, provide Bayesian estimates of the hidden variables. This

means the sufficient statistics change over two timescales—a

fast timescale that updates posterior beliefs given the current

observations—and a slow timescale that updates posterior beliefs

as new observations become available and action is taken. We have

previously speculated (Friston et al., 2012a) that this separation

of temporal dynamics may be related to nested electrophysi-

ological oscillations, such as phase coupling between gamma

and theta oscillations in prefrontal–hippocampal interactions

(Canolty et al., 2006). This speaks to biological implementations

of variational Bayes, which we now consider in terms of neuronal

and cognitive processing.

THE FUNCTIONAL ANATOMY OF DECISION-MAKING

The variational scheme above has a computational form that

resembles many aspects of neuronal processing in the brain.

If we assume that neuronal activity encodes sufficient statis-

tics, then the variational update scheme could provide a

metaphor for functional segregation—the segregation of repre-

sentations corresponding to the mean field assumption, and

functional integration—the recursive (reciprocal) exchange of

sufficient statistics during approximate Bayesian inference. In

terms of the updates themselves, the expectations of hidden

states and policies are softmax functions of mixtures of the

other expectations. This is remarkable because these updates

are derived from basic variational principles and yet they have

exactly the form of neural networks that use integrate and

fire neurons—and are not dissimilar to real neurons with

sigmoid activation functions. Furthermore, the softmax func-

tions are of linear mixtures of sufficient statistics (neuronal

activity) with one key exception; namely, the modulation by

precision when updating beliefs about the current state of

the world and selecting the next action. It is tempting to

equate this modulation with the neuromodulation by ascend-

ing neurotransmitter systems such as dopamine that send pro-

jections to (prefrontal) systems involved in working memory

(Goldman-Rakic, 1997; Moran et al., 2011) and striatal systems

involved in action selection (O’Doherty et al., 2004; Surmeier

et al., 2009). We now consider each of the variational updates

from a cognitive and neuroanatomical perspective (see Figure 4

for a summary):
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FIGURE 4 | This figure illustrates the cognitive and functional anatomy

implied by the variational scheme—or more precisely, the mean field

assumption implicit in variational updates. Here, we have associated the

variational updates of expected states with perception, of future control

states (policies) within action selection and, finally, expected precision with

evaluation. The forms of these updates suggest the sufficient statistics from

each subset are passed among each other until convergence to an internally

consistent (Bayes optimal) solution. In terms of neuronal implementation, this

might be likened to the exchange of neuronal signals via extrinsic connections

among functionally specialized brain systems. In this (purely iconic)

schematic, we have associated perception (inference about the current state

of the world) with the prefrontal cortex, while assigning action selection to

the basal ganglia. Crucially, precision has been associated with dopaminergic

projections from the ventral tegmental area and substantia nigra that,

necessarily, project to both cortical (perceptual) and subcortical (action

selection) systems. See main text for a full description of the equations.

PERCEPTION

The first variational step updates beliefs about the current state

of the world using observed outcomes and representations of the

preceding state. This confers a temporal contiguity on inference,

where empirical prior beliefs about the current state conspire with

sensory evidence to produce posterior beliefs. However, there is

a third term that corresponds to expected value of each state,

averaged over policies. This term can be thought of as an opti-

mism bias in the sense that, when precision is high, perception is

biased toward the state that has the greatest potential to realize the

agent’s goal. We can now see why precision moderates this bias,

much like dopamine (Sharot et al., 2012). Figure 4 ascribes these

updates to the frontal cortex—under the assumption that neu-

ronal populations here encode working memory for the current

state of the world (Goldman-Rakic et al., 1992). The functional

anatomy in Figure 4 should not be taken too seriously—it is

just used to illustrate the segregation and reciprocal message

passing that follows from the computational logic of variational

Bayes.

ACTION SELECTION

The second variational update is a softmax function of the

expected value of competing choices under the current state.

Figure 4 places this update in the striatum, where the expected

value of a policy requires posterior beliefs about the current state

from prefrontal cortex and expected precision from the ventral

tegmental area. Crucially, this is exactly the softmax choice rule

that predominates in QRE theory and other normative models

(Haile et al., 2008). Again, it is remarkable that this rule follows

directly from basic variational principles. However, utilitarian

formulations overlook the symmetry between the expected value

over states—that provides the value of a choice, and the expected

value over choices—that provides the value of a state. In other

words, there are two expected values, one for action Q ·
⌢
s and

one for perception QT ·
⌢
π. Furthermore, the expected value over

choices and states
⌢
π

T
· Q ·

⌢
s t specifies the optimal precision or

inverse temperature, which is overlooked in classic treatments.

Neurobiologically, the softmax policy updates would correspond

to a winner-take-all or biased competition among competing

choices or policies, where competition is modulated by precision.

This is the second key role of precision; namely, to modulate the

selection of competing representations of future action: cf. (Cisek,

2007; Frank et al., 2007; Jocham et al., 2012).

EVALUATING PRECISION

The final variational step estimates the precision of prior

beliefs about policies, using posterior expectations about hidden

states and choices. We have associated expected precision with

dopaminergic projections from the ventral tegmental area (and

substantia nigra), which must be in receipt of messages from the

prefrontal cortex and striatum. One of the key insights, afforded

by the variational scheme, is that precision has to be optimized. So

what would happen if (estimated) precision was too high or too

low? If precision was zero, then perception would be unbiased and

represent a veridical representation of worldly states. However,

there would be a failure of action selection in the sense that the

value of all choices would be the same. One might plausibly asso-

ciate this with the pathophysiology of Parkinson’s disease—that

involves a loss of dopaminergic cells and a poverty of action
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selection. Conversely, if precision was too high, precise choices

are made but there would be a predisposition to false percep-

tual inference—through the augmentation of optimism bias. This

might be a metaphor for the positive symptoms of schizophrenia,

putatively associated with hyper-dopaminergic states (Fletcher

and Frith, 2009). In short, there is an optimal precision for any

context and the expected precision has to be evaluated carefully

on the basis of current beliefs about the state of the world.

Inspection of the update for expected precision shows that it is

an increasing asymptotic function of value, expected under cur-

rent beliefs about states and choices (see Figure 5). This means

that the optimal precision depends upon the attainability of

goals: if a goal cannot be obtained from the current state, then

precision will be small—reflecting a reduced confidence in pre-

dictions about behavior. Conversely, if there is a clear and precise

path from the current state to a goal, then precision will be

high. This means that precision reports the attainability of goals

in terms of value. Mathematically, value can never be greater

than zero (because the KL divergence is always non-negative).

This means that precision increases to its upper bound of α,

when value increases to zero (see Figure 5). In short, precision

reports the expected value over states and policies and plays a

dual role in biasing perceptual inference and action selection: on

the one hand, it biases perceptual inference toward prior beliefs

about future (choice dependent) outcomes. On the other hand, it

encodes the confidence that a goal can be attained and increases

the precision of action selection.

In summary, this section has considered the implications

of variational Bayes for cognitive architectures and functional

anatomy. The mean field assumption, enforced by the combi-

natorics and intractability of exact Bayesian inference, implies a

segregation of inference into separable cognitive processes and
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FIGURE 5 | The strictly increasing, monotonic relationship between

expected precision and expected value. Note that value never exceeds

zero. This is because a Kullback–Leibler divergence can never be less than

zero; by Gibbs inequality.

their neuronal substrates (functional segregation). The particu-

lar mean field assumption used here implies distinct perceptual,

choice and evaluation processes that can be associated with dis-

tributed cortical and subcortical systems in the brain. Crucially,

every system (encoding the sufficient statistics of a marginal dis-

tribution) must receive signals from every system to which it

sends signals. We will now look more closely at this reciprocal

message passing.

DECISION-MAKING UNDER UNCERTAINTY

This section looks at simulated decision-making using the scheme

above. The focus here will be on the circular dependencies

between representations of hidden states and precision. This cir-

cular causality is one of the most important features of the

variational scheme and means that one can consider not just the

computational role of precision but also how it is controlled by

the representations (posterior expectations) it optimizes.

Figure 2 (lower panels) provides an example of a simple “lim-

ited offer” game in which the agent has to choose between a low

offer—that might be withdrawn at any time—and a high offer—

that may replace the low offer with some fixed probability. The

problem the agent has to solve is how long to wait. If it waits

too long the low offer may be withdrawn and it will end up with

nothing. Conversely, if it chooses too soon, it may miss the oppor-

tunity to accept a high offer. The probabilistic contingencies are

shown in Figure 2 in terms of control dependent transition prob-

abilities B(ut), where there are two control states (reject or accept)

and five hidden states (low offer, high offer, no offer, accepted low

offer, and accepted high offer). We can specify prior goals over the

final states with a softmax function of utilities. Unless otherwise

stated we will use:

P(sT |θ) = c = σ
(

[1, 1, 1, 2, 4]T
)

(9)

This means the agent believes it will accept the high offer

exp(4 − 2) = 7.39 times more than the low offer, which, in turn

is exp(2 − 1) = 2.718 times more likely than having accepted

neither. To make things more interesting, we increased the prob-

ability of offer withdrawal with time such that the hazard rate:

r = 1 − (1 − 1
16 )t . This also illustrates time-dependent transition

probabilities that the variational scheme can handle with ease.

Finally, the probability that a low offer changes into a high offer

(provided it is not withdrawn) was fixed so that the probability of

receiving a high offer over T = 16 trials was a half. This means the

hazard rate in Figure 2 becomes q = (1 − r) · (1 − (1 − 1
2 )1/ T).

For simplicity, we assumed the sensory mapping was the identity

matrix such that A = I.

Figure 6, shows the results of a single game after iterating the

variational updates of the previous section. In this example, the

low offer was replaced with a high offer on the eleventh trial,

which the agent accepted. It accepts because this is most prob-

able choice—in the face of a high offer—under its prior beliefs

that it is most likely to have accepted the higher offer at the end

of the game. The expected probabilities of staying (rejecting) or

shifting (accepting) are shown in the upper right panel (in green

and blue, respectively), as a function of time for each trial (dotted

lines) and the final beliefs (full lines). The interesting thing here
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is that prior to the high offer, the agent believes that it will accept

the low offer three or four trials in the future. Furthermore, the

propensity to accept (in the future) increases as time goes on (see

dotted lines). This means that it waits, patiently, because it thinks

it is more likely to accept an offer in the future than to accept the

current offer.

The expected precision of these posterior beliefs is shown in

the lower left panel and declines gently until the high offer is

made. At this point the expected precision increases markedly,

and then remains constant until the end of the game (at its

maximum value of eight). This reflects the fact that the final

outcome is assured with a high degree of confidence, once the

high offer has been made and subsequently accepted. These

precisions are the expected precisions after convergence of the

variational iterations. The equivalent dynamics in the lower

right panel show the expected precision over all updates in

terms of simulated dopamine responses. These responses are

a least squares deconvolution of the variational updates using

an exponentially decaying kernel with a time constant of eight

iterations. In other words, convolving the simulated dopamine

responses with an exponential decay function would reproduce

the Bayes optimal updates. This (de)convolution accounts for

the postsynaptic effects of dopamine that, we imagine, decay

exponentially after its release. The resulting updates are quite

revealing and show phasic responses to the arrival of new sensory
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FIGURE 6 | This figure shows the results of a simulation of 16 trials,

where a low offer was replaced by high offer on the 11th trial, which

was accepted on the subsequent trial. The upper left panel shows the

expected states as a function of trials or time, where the states are defined

in Figure 2. The upper right panel shows the corresponding expectations

about control in the future, where the dotted lines are expectations during

earlier trials and the full lines correspond to expectations during the final

trial. Blue corresponds to reject (stay) and green to accept (shift). The lower

panels show the time-dependent changes in expected precision, after

convergence on each trial (lower left) and deconvolved updates after each

iteration of the variational updates (lower right).

information that converge to tonic values, which minimize free

energy.

This pattern of precision encoding can be compared with

another realization, in which the low offer was withdrawn after

the fourth trial: Figure 7 shows the results of this simulation,

where the expected control states and precision are exactly the

same as in the previous simulation, until the offer is withdrawn.

At this point, the agent moves to the no-offer state and remains

there until the end of the game. Notice that there is still an

increasing propensity to accept, even though the agent knows that

accepting is futile. This is because all allowable policies entail a

choice but with no preference for when that choice is made. This

is because neither the entropy nor the expected utility of the final

state is affected by subsequent choices. In this instance, precision

falls at the point the offer is withdrawn and remains low until the

last trial. Interestingly, at the point the offer is withdrawn, there

is a profound suppression of simulated dopamine firing, followed

by phasic bursts on subsequent cues that gently increase with the

increasing probability of choosing—despite the fact that nothing

can be changed. This illustrates the interdependency of expec-

tations about precision and hidden states of the world—which

change after the offer has been withdrawn. Many readers will have

noticed a similarity between the dynamics of precision and the

firing of dopaminergic cells in reinforcement learning paradigms,

which we discuss further in (Friston et al., under review).

For people familiar with previous discussions of dopamine

in the context of active inference, the correspondence between

precision and dopaminergic neurotransmission will come as no
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FIGURE 7 | This figure uses the same format as the previous figure;

however, here, the low offer was withdrawn on the fifth trial, leading

to a decrease in expected precision. Note the difference (divergence)

between the expected states on the 15th (penultimate) and 16 (final) trial.

It is this large divergence (or more exactly the divergence between

distributions over the final state) that leads to a small value and associated

precision.
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surprise—exactly the same conclusions have been reached when

examining predictive coding schemes (Friston et al., 2012b)

and hierarchical inference using volatility models (Mathys et al.,

2011). “In brief, the emergent role of dopamine is to report the

precision or salience of perceptual cues that portend a predictable

sequence of sensorimotor events. In this sense, it mediates the

affordance of cues that elicit motor behavior (Cisek, 2007); in

much the same way that attention mediates the salience of cues

in the perceptual domain.” (Friston et al., 2012b, p. 2).

TEMPORAL DISCOUNTING AND MARGINAL UTILITY

This section considers the relative contribution of entropy (explo-

ration) and expected utility to choice behavior and how these

contribution change with context and time. Generally, when rela-

tive utilities are large, they will dominate value (overshadowing

entropy) and behavior will conform to expected utility theory.

Figure 8 shows this numerically in terms of the probability of

accepting over successive trials with, and without, the entropy

term. Here, we precluded withdrawal of the low offer (and its

acceptance) and increased the utility of the low offer from zero to

eight. Inspection of the upper panels shows that the choice proba-

bilities are essentially the same—with a tendency to wait until the

last trial until the low offer becomes more attractive than the high

offer (at a utility of four). However, there are subtle differences

that are revealed in the lower panels.

These panels show the equivalent results but now in terms of

the probability distribution over the latency or number of trials
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FIGURE 8 | The upper panels show the probability of accepting with

(left) and without (right) the entropy or novelty part of value, where

the low offer remained available and action was precluded. These

probabilities are shown as a function of trial number and the relative utility

of the low offer (white corresponds to high probabilities). The lower panels

show the same results but in terms of the probability distribution over the

latency or time to choice. Note that including the entropy in value slightly

delays the time to choice—to ensure a greater latitude of options. This is

particularly noticeable in the ambiguous situation when the low offer has

the same utility as the high offer (of four).

until an offer is accepted. This is simply the cumulative proba-

bility of waiting until a particular latency, times the probability

of accepting at the latency in question. Here, one sees a slight

increase in the latency when value includes the entropy term. This

reflects the fact that accepting an offer precludes other outcomes

and therefore reduces the entropy of the distribution over final

states. Intuitively, there is value in keeping ones options open: cf.

a novelty bonus (Krebs et al., 2009).

Figure 9 shows the underlying changes in entropy and expec-

tations as a function of trial number (with a low offer utility of

two). The upper left panel shows the probability of staying or

accepting and the associated uncertainty or entropy of beliefs

about the policy. One can see that this uncertainty increases

as the propensity to accept increases. When the agent has in

mind a 50–50 probability of accepting, the entropy peaks, shortly

before the last offer. The entropy (red) and expected utility

(blue) underlying these choices are shown in the right panel and

demonstrate—in this example—a complementary dependency

on time. As time progresses, the expected utility first falls and then

increases, while the entropy does the converse. This suggests that
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FIGURE 9 | Upper left panel: the probability of accepting an offer as a

function of time or trials. Note that the probability of accepting (green)

increases over time to approach and surpass the probability of rejection.

This produces an increase in the uncertainty about action—shown in red.

Upper right panel: these are the expected utility and entropy components

of expected value as a function of trial number. The key result here is the

time-dependent change in expected utility, which corresponds to temporal

discounting of the expected utility: i.e., the expected utility of the final state

is greater when there are fewer intervening trials. Lower panel: the

marginal utility of the high offer (green) and low offer (blue) as a function of

the relative utility of the high offer. Marginal utility is defined here as

expected utility times expected precision. The multiple curves correspond

to the marginal utilities as a function of trial number (and do not differ

greatly because expected precision changes more slowly over time—for a

given utility—than it changes over utility—for a given time).
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the agent believes it is more likely to secure an offer later in the

game, because it now knows the offer has not been withdrawn;

in other words, the possibility of an early withdrawal cannot be

discounted at the beginning of the game.

This dynamic speaks directly to temporal discounting in inter-

temporal choice: consider the expected utility on the eighth trial.

This is the utility of a final outcome eight trials in the future.

Notice that this is substantially less than the expected utility of the

final outcome two trials in the future. In other words, the expected

utility of the outcome decreases, the further it recedes into the

future. This is the essence of temporal discounting, which—in

this example—can be explained simply by prior beliefs that the

offer will be withdrawn before the final outcome is reached. This

withdrawal probability is known as a hazard function, whose rate

changes with time in our example (the parameter r in Figure 2).

TEMPORAL DISCOUNTING

Temporal discounting is an emergent property of Bayes optimal

inference about choice behavior that depends upon the gener-

ative model and, implicitly, prior beliefs about time sensitive

contingencies—or at least it can be formulated as such (Sozou,

1998). The form of temporal discounting depends upon the gen-

erative model and can be quite complicated. This is because the

discounting of expected utility depends upon inference about the

current state, future choices and precision—all of which change

with time in an interdependent fashion. Having said this (eco-

nomic) hyperbolic discounting can be derived under a simple

generative model of losing a reward, given exponential priors on

the hazard rate (Sozou, 1998). Although hyperbolic (or expo-

nential) discounting may be sufficient for descriptive purposes,

simply optimizing a temporal discounting parameter (Daw and

Touretzky, 2002), in light of observed behavior, cannot disam-

biguate among the prior beliefs an agent may entertain. To under-

stand the nature of temporal discounting, one has to understand

the generative model upon which that discounting is based—and

use observed choice behaviors to select among competing models

or hypotheses.

MARGINAL UTILITY AND PRECISION

We have been careful to distinguish between utility ln P (sT |θ) =

c (sT)—an attribute of the final state and value Q(ũ|st)—an

attribute of choices available from the current state. This means

that the value of the current state depends upon how easy it is

to access the final state. Furthermore, the ensuing choice depends

upon precision, suggesting that the effect of value on choice can

be expressed in terms of an effective utility γ · c(sT) that we

will call marginal utility (for consistency with economic theory).

Assuming the entropy term in Equation (4) small enough to be

ignored, it is easy to see that expected marginal utility directly

informs choices:

ln P (ũ|st) =
∑

sT

P(sT |st, ũ)(γ · c(sT))
︸ ︷︷ ︸

expected marginal utility

(10)

Generally, as the utility of a particular final state increases, pre-

cision increases more slowly—because the implicit distribution

over final states is less likely to be realized. Intuitively, the marginal

utility depends on the confidence that a goal can be reached. This

leads to a convex relationship between marginal utility and util-

ity: cf. the law of diminishing marginal utility (Kauder, 1953).

The lower panel of Figure 9 illustrates this relationship. Here,

we increased the relative utility of the high offer from two to

eight and evaluated the marginal utility of accepting the low

and high offers (by precluding offer withdrawal and action). The

result is a characteristic convex relationship, in which marginal

utility decreases more slowly with the utility of the high offer—

reaching its maximum at zero. Conversely, the marginal utility

of the low offer decreases more slowly as the utility of the low

offer falls. In the current setup, this asymmetry results from the

nature of utility and its dependency upon precision. However,

there may be interesting connections here with Prospect Theory

(Kahneman and Tversky, 1979) that appeal to a reference point

for utility—defined here in terms of equiprobable outcomes.

In summary, many classic phenomena in utilitarian and eco-

nomic theory resurface here as natural consequences of Bayes

optimal (active) inference under a relatively simple generative

model. This is potentially important, because choice behavior

can, in principle, be used to adjudicate among alternative models

used by subjects.

CONCLUSION

This paper has considered agency from a rather elementary and

formal perspective; namely, that a sense of agency rests upon

prior beliefs about how one will behave. Irrespective of how these

beliefs are described, they must—in some sense—entail the belief

that our behavior will converge on outcomes that define who we

are—in terms of our characteristic states. This can be formalized

in terms of prior beliefs that controlled state transitions minimize

a relative entropy or KL divergence—endowing behavior with a

purpose that can be characterized by the states we believe should

be occupied. The ensuing scheme appears to have construct

validity in relation to normative accounts in psychology and eco-

nomics. Furthermore, the computational anatomy afforded by

variational Bayes fits comfortably with neuronal message passing

in the brain.

In reinforcement learning, there is an important distinction

between model-free and model-based systems (Daw et al., 2005).

In contrast, active inference is quintessentially model-based—so

does this preclude model-free schemes? Active inference accom-

modates the distinction between model-free and model-based

by placing model-free schemes at the lower levels of hierarchi-

cal generative models. This enables higher levels to contextualize

lower level (reflexive or habitual) inference and consequent action

selection. We have not addressed this issue in this paper; largely

because our focus has been on inference about hidden states,

while learning corresponds to optimizing the parameters of the

generative model—such as the probability transition matrices

that encode environmental contingencies and which hidden states

can and cannot be controlled.

The arguments in this paper are based upon—and lead to—a

number of points, which we now briefly rehearse:

• Optimal behavior can be cast as a pure inference problem, in

which valuable outcomes are defined in terms of prior beliefs
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about future states. However, exact Bayesian inference (per-

fect rationality) cannot be realized physically, which means

that optimal behavior rests on approximate Bayesian inference

(bounded rationality).

• Variational free energy provides a bound on Bayesian model

evidence (marginal likelihood) that is optimized by bounded

rational behavior. This requires (approximate Bayesian) infer-

ence on both hidden states of the world and (future) control

states. This mandates beliefs about action (control) that are

distinct from action per se—beliefs that entail a precision.

• These beliefs can be cast in terms of minimizing the relative

entropy or divergence between prior goals—over final states—

and conditional distributions, given the current state of the

world and future choices.

• Value can be equated with negative divergence and comprises

entropy (exploration or novelty bonus) and expected utility

(utilitarian) terms that account for exploratory and exploitative

behavior respectively.

• Beliefs about the state of the world depend upon expected value

over choices, while beliefs about choices depend upon expected

value over states. Beliefs about precision depend upon expected

value under both states and choices.

• Precision has to be optimized to balance prior beliefs about

choices and sensory evidence for hidden states. In other words,

precision has to nuance an inherent optimism bias when infer-

ring the current state of the world.

• Variational Bayes provides a formal account of how posterior

expectations about hidden states of the world, control states

and precision depend upon each other; and may provide a

metaphor for message passing in the brain.

• Variational Bayes induces distinct probabilistic representations

(functional segregation) of hidden states, control states and

precision—and highlights the role of reciprocal message pass-

ing. This may be particularly important for expected precision

that is required for optimal inference about hidden states

(perception) and control states (action selection).

One might ask why these conclusions do not follow from norma-

tive accounts of optimal behavior. One reason is that normative

accounts do not distinguish between action and beliefs about

action (control). These beliefs entail both content (expectations)

and uncertainty (precision). This means that both expectations

about behavior and the precision of these beliefs have to be opti-

mized. It is the optimization of precision that provides a complete

account of bounded rationality (approximate Bayesian inference)

and a putative account of the control of dopaminergic firing; cf.

(Gurney et al., 2001).

This account considers dopamine to report the precision of

divergence or prediction errors (in their nuanced or non-classical

sense) and partly resolves the dialectic between dopamine as

reporting reward prediction errors (Schultz et al., 1997) and

the predictability of rewards (Fiorillo et al., 2003; Redgrave and

Gurney, 2006; Schultz et al., 2008). The notion that dopamine

encodes precision is now receiving support from several lines

of evidence; from purely theoretical treatments of hierarchical

Bayesian inference (Mathys et al., 2011), from theoretical neu-

robiology (Frank et al., 2007; Fletcher and Frith, 2009; Friston

et al., 2012b; Pellicano and Burr, 2012) and from empirical stud-

ies (Fiorillo et al., 2008; Coull et al., 2011; Galea et al., 2012;

Zokaei et al., 2012). Having said this, a proper validation of active

inference will require careful model comparison using empirical

choice behaviors and a detailed mapping between putative model

variables and their neuronal correlates.

Indeed, the aim of this work was to provide a comprehensive

but formal model of choice behavior that contextualizes deci-

sions in the more general setting of embodied or active inference

about states of the world; e.g., (Pezzulo and Castelfranchi, 2009).

In this setting, the ability to compare different formulations of

approximate Bayesian inference (in terms of different mean field

approximations and prior beliefs) becomes crucial—because dif-

ferent formulations correspond to different hypotheses about

how subjects optimize their behavior. We hope to use Bayesian

model selection to characterize individual subjects, in terms of

their prior beliefs using generative models of the sort introduced

in this paper. This may be useful in the study of intersubject vari-

ability or indeed differences between normal subjects and those

with psychiatric syndromes or addictive behaviors. The advantage

of having a variational scheme with dynamics (that can be applied

to these models) is that, in principle, one can localize the neu-

ronal correlates of implicit Bayesian updates with neuroimaging.

More generally, the theoretical approach adopted in this paper

highlights the necessarily intimate relationship between inferring

states of the world and optimal behavior (Toussaint and Storkey,

2006; Gläscher et al., 2010), the confidence or precision of that

inference (De Martino et al., 2012), and the functional plurality

of dopaminergic neuromodulation (Schultz, 2007).

In terms of leveraging active inference to further understand

the neurobiology of decision-making, there are several predic-

tions that could be explored—using either choice behavior or

functional neuroimaging. One key prediction is that choices will

systematically maximize the entropy over outcomes that have the

same (relative) utility. In principle, it should be possible to design

behavioral experiments that manipulate entropy and expected

utility in an orthogonal fashion, to establish whether entropy rep-

resents an intrinsic drive. Furthermore, transcribing this sort of

paradigm to fMRI should establish the validity of the putative

functional segregation implied by the variational message pass-

ing scheme considered above. Indeed, we have used the game

described in this paper as the basis of an fMRI experiment—and

will be reporting the results in the near future. The neurobiologi-

cal plausibility of variational message passing remains something

of an open question. However, there is one comforting point of

convergence between variational Bayes and more neurobiologi-

cally plausible predictive coding schemes (Bastos et al., 2012): this

is the fact that the solution for both is exactly the same. In other

words, it may be possible to formulate variational Bayes using

neuronal dynamics that implement a gradient descent on varia-

tional free energy. Interestingly, this is precisely the (Variational

Laplace) scheme used routinely in data analysis (Friston et al.,

2007).
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APPENDIX

The variational energies associated with each subset of hidden

variables are derived by isolating terms in the generative model

that depend upon the subset in question and evaluating their

expectation, under their Markov blanket:

V (st) = EQ(ψ\st)

[

ln P (ot |st) + ln P
(

st |d
)

+ ln P (st |st − 1, at − 1)

+ ln P (ũ|st, γ)]

= ln AT ·
⌢
ot + [t = 0] · ln d + [t > 0] · ln B (at − 1) ·

⌢
s t − 1

+
⌢
γ · QT ·

⌢
π

V (ũ) = EQ(ψ\ũ) [ln P (ũ|st, γ)]

=
⌢
γ · Q ·

⌢
s t

V (γ) = EQ(ψ\γ) [ln P (ũ|st, γ) + ln P (γ|β)]

= γ ·
⌢
π

T
· Q ·

⌢
s t + (α − 1) ln γ − βγ

= ln Q (γ) = (α − 1) ln (γ) −
⌢

βγ − ln Zγ

The Iverson brackets [t = 0] return a value of one when the

expression is true and zero otherwise.
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