Page 1 of 24

1 2	The Ancient Britons: Groundwater fauna survived extreme climate changes over tens of millions of years across NW Europe					
3 4 5	Caitríona E. McInerney ^{1,2,3} , Louise Maurice ⁴ , Anne L. Robertson ⁵ , Lee R.F.D. Knight ⁶ , Jörg Arnscheidt ¹ , Chris Venditti ^{3,7} , James S.G. Dooley ² , Thomas Mathers ³ , Severine Matthijs ^{8,9} , Karin Erikkson ¹ , Graham S. Proudlove ¹⁰ & Bernd Hänfling ^{3*}					
6	¹ Environmental Sciences Research Institute, University of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland.					
6 7 8 9 10	² Biomedical Sciences Research Institute, University of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland.					
10	³ Department of Biological Sciences, Evolutional Biology Group, The University of Hull, Hull HU6 7RX, UK.					
11 12	⁴ British Geological Survey, Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB, UK.					
13 14 15	⁵ Department of Life Sciences, Roehampton University, Holybourne Avenue, London SW15 4JD, UK.					
15 16 17	⁶ No. 1, The Linhay, North Kenwood Farm, Oxton, Near Kenton, Devon EX6 8EX, UK.					
17 18 19	⁷ School of Biological Sciences, University of Reading, Reading RG6 6BX, UK.					
20	⁸ Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium					
21 22	⁹ Vrije Universiteit Brussel, Biology Department - Amphibian Evolution Lab, Pleinlaan 2, 1050 Brussels, Belgium					
23 24 25	¹⁰ Department of Entomology, The Manchester Museum, University of Manchester, Manchester M13 9PL, UK.					
26	*Corresponding author: b.haenfling@hull.ac.uk					
27						
28	*Corresponding author: b.haenfling@hull.ac.uk					
29						
30						
31 32	Keywords: Phylogeography, Ancestral state reconstruction, Bayesian dating analysis, cave, subterranean					

33 Abstract

Global climate changes during the Cenozoic (65.5 - 0 Ma) caused major biological range 34 35 shifts and extinctions. In Northern Europe, for example, a pattern of few endemics and the 36 dominance of wide-ranging species is thought to have been determined by the Pleistocene 37 (2.59 - 0.01 Ma) glaciations. This study, in contrast, reveals an ancient subsurface fauna 38 endemic to Britain and Ireland. Using a Bayesian phylogenetic approach we found that two 39 species of stygobitic invertebrates (genus Niphargus) have not only survived the entire 40 Pleistocene in refugia but have persisted for at least 19.5 million years. Other Niphargus 41 species form distinct cryptic taxa that diverged from their nearest continental relative between 42 5.6 and 1.0 Ma. The study also reveals an unusual biogeographical pattern in the *Niphargus* 43 genus. It originated in Northwest Europe ~88 Ma and underwent a gradual range expansion. 44 Phylogenetic diversity and species age are highest in Northwest Europe suggesting resilience 45 to extreme climate change, and strongly contrasting the patterns seen in surface fauna. 46 However, species diversity is highest in Southeast Europe indicating that once the genus 47 spread to these areas (~ 25 Ma), geomorphological and climatic conditions enabled much 48 higher diversification. Our study highlights that groundwater ecosystems provide an 49 important contribution to biodiversity and offer insight into the interactions between 50 biological and climatic processes.

51

52

53 INTRODUCTION

54 Global climate has changed significantly throughout the Cenozoic (65.5-0 Ma) with glacial 55 cycles during the Miocene, Pliocene and Pleistocene (Louwye et al. 2008; Zachos et al. 56 2001a; Zachos et al. 2008). Precipitation also fluctuated from extended arid (13.2 - 11.5 Ma) 57 to very wet conditions (10.2-9.8 Ma; Bohme et al. 2008). Fauna, for example ectothermic 58 vertebrates and freshwater Crustacea, experienced major range shifts or extinctions, and 59 ecosystems were dramatically modified (Bohme 2003, Klaus and Grosse 2010). During the 60 Pleistocene glaciations (2.59 - 0.01 Ma), large areas of the northern hemisphere were covered 61 by glaciers or permafrost and were uninhabitable (reviewed in Provan & Bennett 2008), with 62 particularly marked biogeographic impact in northern Europe.

63 Britain and Ireland are a prime example illustrating this ecological impact, with repeated 64 covering by glaciers and permafrost greatly limiting the persistence of terrestrial species. 65 These islands are likely to have been isolated during interglacials, at least since the formation 66 of the English Channel ~ 0.45 Ma (Gupta *et al.* 2007), preventing dispersal of terrestrial 67 fauna from the continent. Strong palaeontological and genetic evidence indicates that the 68 majority of the current fauna of Britain and Ireland arrived from mainland Europe following 69 the Pleistocene glaciations, dispersing across a land bridge with continental Europe during 70 the short period after ice retreat and before the bridge was submerged by rising sea levels 71 (Hewitt 2004; Yalden 1982). Consequently Britain and Ireland have always been thought to 72 have limited endemic biodiversity. However, the biodiversity of groundwater ecosystems 73 may challenge this orthodoxy, with evidence from North America (Holsinger et al. 1983) and 74 Iceland (Kornobis et al. 2010), suggesting that groundwater ecosystems may occur under 75 glaciated areas. Moreover species are present in formerly glaciated areas, indicating that they 76 must either have survived in refugia or dispersed there since glaciations (Galassi et al. 2009; 77 Martin et al. 2009). As with recent advances in our understanding of deep ocean vent 78 ecosystems (Dubilier et al. 2008; Lopez-Garcia et al. 2003; Van Dover et al. 2002), 79 groundwater ecosystems may offer novel insights into fundamental ecological and 80 evolutionary processes. In this study we use a Bayesian phylogenetic approach, which shows 81 that groundwater fauna must have persisted through glacial periods in Britain and Ireland 82 within refugia. Furthermore, we show how groundwater ecosystems may have developed 83 across Europe in response to changing climatic and geomorphological conditions. Finally we 84 demonstrate that the biogeographical pattern of diversity across Europe is unexpected, with increasing phylogenetic diversity at higher latitudes. 85

Our study focuses on amphipod crustacea, which are a major component of subterranean 86 87 ecosystems, and offer a tractable model for investigating ecological and evolutionary 88 processes within this challenging environment. The largest genus among them is *Niphargus* 89 (Amphipoda: Niphargidae) with over 300 described species distributed across most of Europe (Vainola *et al.* 2008). *Niphargus* are stygobites (obligate groundwater inhabitants), ~ 0.3 -3.0 90 cm in length, which are adapted to live in subterranean environments. They are blind, lack 91 92 pigmentation and have elongated appendages (Figure 2a). Previous phylogeographic studies 93 of *Niphargus* have demonstrated high levels of endemism and cryptic diversity at small 94 geographic scales (Fišer et al. 2008; Trontelj et al. 2009), suggesting limited dispersal and 95 long-term persistence of local populations, as well as morphological convergence for 96 adaptations to the subterranean environment (Trontelj et al. 2012). Only six taxa of 97 Niphargus are currently known from Britain and Ireland (Robertson et al. 2009). Here we 98 show that two species endemic to Britain and Ireland (N. glenniei and N. irlandicus) are far older than previously thought, suggesting persistence through extreme climatic and 99 100 geomorpological changes over at least 19 million years. Furthermore, those species thought 101 to have been wide ranging European species (N. aquilex, N. fontanus, N. kochianus) are in 102 fact also ancient British endemics.

103 MATERIAL AND METHODS

104 Sampling

105 A modified Cvetkov net sampler, notenboom sampler, or baited traps were used to collect 106 samples from boreholes, springs and wells. 454 Niphargus specimens were preserved in >70% ethanol (Figure 1, Table S1), comprising samples from 63 populations (222) 107 108 individuals) in Britain and Ireland including five of the six species present. We were unable 109 to obtain sufficient samples for DNA extraction of the rare N. wexfordensis. Additionally, 110 224 individuals from 47 populations and 5 species were collected from Belgium, the 111 Netherlands, Germany and France (Figure 1, Table S1) including all species known to co-112 occur in Britain and continental Europe (N. aquilex, N. fontanus, N. kochianus). Furthermore, 113 samples were obtained from two species which occur in the vicinity of Britain located in 114 France, but for which no DNA sequence data existed (N. pachypus, 1 population, 2 115 individuals; N. forelli, 2 populations, 4 individuals). Samples from published data sets (see 116 below) covered largely the central and south-eastern part of the distribution and included data 117 of 185 populations from 74 described species (Figure 1, Table S1).

118 De novo sequencing and data sets for phylogenetic analysis

119 Genetic variation of *Niphargus* was assessed at two mitochondrial genes, cytochrome oxidase 120 subunit I (COI) and 16s rRNA (16S) and the nuclear small subunit 28s rRNA (28S; for 121 details see Supplementary materials). Our analysis combined these new DNA sequence data 122 with all published Niphargus sequence data for 28S, COI and 16S available on GenBank on June 1st, 2012 (Fišer et al. 2008; Flot 2010; Flot et al. 2010; Hänfling et al. 2008; Hartke et 123 124 al. 2011; Lefébure et al. 2006; Lefébure et al. 2007; Trontelj et al. 2009). Also included were 125 published sequence data of the mitochondrial 12s rRNA region (12S) and the large subunit 126 18s rRNA (18S) for the taxa covered in the combined data set. In total, data were included 127 from 78 described species, and several putative cryptic species, from 170 locations across the 128 genus' European range (Figure 1, Tables S1, S3). This included eight of the nine species (the 129 ninth, N. boulangei, was too rare) that occur within 200 km of Britain (Table S1). The 130 combined data set provided phylogeographic information (more than 10 populations) for 8 of 131 the 78 described species (Table S2, N. aquilex, N. fontanus, N. glenniei, N. kochianus, N. 132 irlandicus, N. rhenorhodanensis, N. virei, N. schellenbergi). A further 11 species were 133 covered by more than 1 specimen from 1 - 3 locations.

134 A total of 36 taxa from 9 amphipod families were used as outgroups to root the *Niphargus* phylogeny, and provide calibration points for a molecular dating analysis (see Table S4), The 135 136 outgroup taxa include previously identified sister groups to Niphargidae (Englisch et al. 137 2003, Fiser et al. 2008) and representatives of clades from a dated phylogeny of gammarid amphipods (Hou et al. 2011). We used the genes 28S, COI, 18S and elongation factor 1 alpha 138 139 (EF-1a). The alignment of COI and EF-1a sequences was carried out using MUSCLE (Edgar 140 2004) in combination with MEGA version 5.05 (Tamura et al. 2011). Ribosomal genes were 141 aligned with the software MAFFT version 6 (Katoh et al. 2002) using the alignment 142 strategies Q-INS-i or E-INS-i.

143 Delineation of OTUs, multi-locus alignments and phylogenies

Cryptic diversity and taxonomic misclassification are common in *Niphargus*. We therefore used a DNA barcoding approach based on the two genes with the largest coverage (COI and 28S) to identify cryptic lineages within species and to delineate operational taxonomic units (OTUs) with independent evolutionary histories (for details see Supplementary materials). Many of these OTU's are likely to fulfil the criteria for separate species depending on the definition applied, but a discussion of species status is outside the scope of this paper. A 150 multi-locus alignment was created using representatives of OTU's of *Niphargus* and selected 151 outgroups. One representative of each OTU was chosen at random for inclusion in the 152 supermatrix (Table S1). Amphipod outgroups included three representatives selected for each 153 of the 4 Gammarus freshwater clades, 6 representatives of the marine Gammarus group, 3 154 representatives of the Baikalian Gammarids and all outgroups used in Hou et al. (2011), providing 13 time-calibrated nodes. For each gene, all sequences of the selected taxa were 155 156 aligned. Phylogenetic analysis of the multi-gene matrix was carried out using Bayesian 157 analysis as implemented in MrBayes v3.2 (Ronquist et al. 2012). Genes were used as 158 partitions and model parameters between partitions were unlinked. Two independent Markov 159 chain Monte-Carlo (MCMC) chains were run for 10,000,000 iterations each, sampling every 160 1,000 iterations. The first 25 % of each run was discarded as burnin with the remaining 161 samples pooled and used to create a maximum clade credibility tree.

162 Molecular dating using a Bayesian analysis

163 BEAST (Bayesian Evolutionary Analysis Sampling Trees) version 1.7.4 (Drummond et al. 164 2012) was used to generate an ultrametric phylogeny and estimate the time of the most recent 165 common ancestor (TMRCA) for each node using a Bayesian MCMC analysis. Tree topology 166 was constrained to that obtained from the MrBayes phylogenetic analysis. Genes were used 167 as partitions and substitution rates and clocks were unlinked in the analysis. An uncorrelated 168 lognormal relaxed clock (Drummond et al. 2006) and a Yule speciation prior were used. A 169 time calibrated phylogeny of the amphipod group Gammaridae (Hou et al. 2011) was used to 170 provide 11 external calibration points (for details see Supplementary materials).

171 Ancestral longitude and latitude reconstructions

172 We used the Bayesian MCMC phylogenetic ancestral state reconstruction method introduced 173 by Organ *et al.* (2007) to infer the geographical location of the MRCA for each node. The 174 method was chosen because of its superior performance with phylogenetic trees that span 175 millions of years (Montgomery et al. 2010). Similar methods have been used to infer 176 ancestral longitudes and latitudes in a phylogenetic context (Bouckaert et al. 2012; Lemey et 177 al. 2009). With exact geographical ranges mostly unknown it was not possible to calculate 178 range centroids. The range size of most *Niphargus* is small, however, usually <100km in 179 diameter. (Trontelj et al. 2009). The few taxa with a larger range such as N. virei and N. 180 *rhenorhodanensis* consist of a number of cryptic taxa or distinct phylogeographic units with a

181 much smaller range (Lefébure et al. 2006; Lefébure et al. 2007). This cryptic diversity is 182 reflected in the OTUs used for the phylogenetic analysis. We therefore used the geographical 183 coordinate of the individual chosen at random for the phylogenetic analysis as a proxy for the 184 taxon's geographic location. We estimated a phylogenetic model of evolution for the 185 *Niphargus* ingroup species where longitude and latitude were correlated using the computer 186 program BayesTraits (Pagel et al. 2004). We ran the MCMC chain for one million iterations 187 after apparent convergence sampling every 1,000 iterations from the chain and repeated the 188 analysis multiple times. We also simultaneously estimated the phylogenetic signal parameter 189 λ (Pagel 1999). The parameter λ varies between 0 and 1, where 1 is interpreted as having the 190 traits covary and zero means that the traits evolve independently of the phylogenetic 191 relationships among species. Repeated analyses produced almost identical results, thus we 192 provide results from a single chain only.

193 Geographic variation in species diversity and diversification rates

194 To quantify geographic patterns in the distribution of species, we used the checklist of 195 *Niphargus* species publically available at <u>http://niphargus.info/</u> (Cene Fišer, unpublished) and 196 created presence/absence data for 9 geographic regions in Europe based on the biogeographic 197 areas for European freshwater fauna described in Illies (1978). Some regions were pooled to 198 reduce the effect of uncertainty in geographic distribution (see Table S1). Species richness 199 and species richness standardised for area (species/100,000 km²) were calculated using area 200 sizes from Hof et al. (2008). To test the hypothesis that species richness differed between the 201 Western and the Eastern parts of the genus' distribution, biogeographic areas were grouped 202 into West (Spain, British Isles, West Europe, Central Europe) or East (Italy, Balkans, Ponto-203 Danubian, Caucasus) and their mean species richness standardised for area compared using a 204 Mann-Whitney U-test. We tested a geographic association of net-diversification rates accounting for shared ancestry as implied by our phylogeny. We implemented the 'simple 205 206 test' described in Freckleton et al. (2008) to relate traits to net-speciation rate (as determined 207 by root-to-tip node count) in a Bayesian analytical framework. In order to explicitly test a 208 hypothesis of an increase in diversification rate towards the south-east, a spatial rotation was 209 applied to the coordinates of the samples to produce axes aligned at 15 degrees from the 210 original. The most north-westerly point within the dataset was used as a new origin for the x 211 axis, and the distance between this origin and the other points along the axis was calculated to 212 provide a measure of how far towards the southeast the each point lies.

213

214 **RESULTS**

215 Data overview

In all 43 OTUs were identified based on the COI phylogeny including 19 previously described cryptic lineages and 9 newly identified OTUs (Figure S1). Eighty nine additional taxa were identified based on 28S sequences (Figure S2), most corresponding to described or previously reported cryptic species (Table S1). In total 132 OTUs were identified using DNA barcoding.

221 *Phylogenetic analysis*

222 Results from multigene phylogenies revealed that the island endemics, N. irlandicus and N. 223 glenniei are sister taxa with no close relative in Continental Europe (Figure 2b, S1, S2). The 224 remaining taxa fall into eleven divergent lineages. These show strong geographical 225 associations demonstrating poor dispersal within the genus even at large scales and over long 226 geological time scales (Figure 2c). Phylogenetic diversity of Niphargus in Ireland and Britain 227 is very high given the low species diversity, with the six species representing four different 228 major lineages. This high phylogenetic diversity is apparent in other northern parts of the 229 genus distribution. Nine lineages occur north-west of the Alps, with only three lineages 230 south-east of the Alps. The overall pattern is a decrease in phylogenetic diversity from 231 northwest to southeast Europe.

232 Outgroup rooting revealed that the split between the *N. irlandicus / N. glenniei* group and the 233 remaining species represents the most basal node in the phylogenetic tree (Figure 2b). Our 234 results also show that the three species which co-occur in Britain and Continental Europe (N. 235 *aquilex*, N. *fontanus* and N. *kochianus*) are in fact phylogenetic clades comprising 7, 4 and 4 236 highly divergent lineages respectively which met our criteria for OTU's (Figure 3a-d) Each 237 complex contains endemic British OTU's. (Table 1). Three cryptic N. aquilex OTU's occur in 238 Britain, two of which (N. aquilex A1 and B) have not been found in continental Europe and 239 have evolved independently. The two other non-endemic British taxa N. kochianus and N. 240 fontanus are also represented by genetically distinct British lineages that diverged from their continental European counterparts after separate isolation events. 241

242 Whilst it is possible that there are additional OTUs not included in this analysis that are more 243 closely related to the UK OTUs, this is unlikely because of the comprehensive sampling 244 coverage in this study. Importantly we have (i) sampled 8 of the 9 species which occur in the 245 vicinity of 200 km from the British coast line. The only unsampled species from this group 246 (*N. boulangei*) is extremely rare and has only been described once from a single location; (ii) 247 all taxa occurring in Britain and Ireland have been sampled on a phylogeographic scale 248 covering most of their range; (iii) there has been extensive groundwater sampling in France 249 and Belgium, for example during the recent large EU funded Pascalis project (Dole-Olivier et 250 al. 2009). Therefore it is unlikely that there are additional undescribed Niphargus species in 251 the countries adjacent to the UK; (iv) long distance colonisation is extremely unlikely and 252 any additional undescribed species in more distant areas are unlikely to impact on the 253 conclusions of this study. Furthermore, our findings are strengthened by the fact that we 254 found a consistent pattern across all taxa. Bayesian dating analysis and ancestral longitude 255 and latitude reconstructions of MRCAs

256 Estimates of divergence times for all nodes separating British and Irish taxa from their 257 nearest relatives are shown in Table 1. The ultrametric tree generated from the analysis is 258 shown in Figure 4a. The Bayesian dating analysis and ancestral state reconstruction of the 259 geographic origin of the MRCA for each node revealed that the MRCA of the two endemic 260 British taxa was estimated to have lived in south-west England around 19.5 million years ago 261 (95% HDP, 38.1 - 6.7Ma, Figure 4b, 4f, Table 1). Thus, Niphargus must have persisted in 262 Britain and Ireland at least since the Miocene making it the oldest known fauna by at least 263 two orders of magnitude. This common ancestor must have existed at a time when the British 264 and Irish landmasses were joined. The two sister taxa may subsequently have become 265 isolated during an Oligocene marine inundation of the Irish Sea Basin (Cope 1997).

266 Three cryptic N. aquilex taxa occur in Britain, two of which (N. aquilex A1 and B) have not 267 been found in continental Europe and have evolved independently for 1.0 and 5.6 Ma 268 respectively (Table 1). The two other non-endemic British taxa N. kochianus and N. fontanus 269 are also represented by genetically distinct British lineages that diverged from their 270 continental European counterparts after separate isolation events 2.9 and 0.8 Ma respectively. 271 Collectively these data suggest that almost the entire *Niphargus* fauna of Britain and Ireland 272 is comprised of endemic lineages of Miocene or late-Pliocene to mid-Pleistocene origin. 273 Final isolation of these taxa from continental populations may have resulted from the 274 formation of the English Channel at 0.45 Ma (Gupta et al. 2007).

The geographic distribution of MRCAs for nodes of different ages identified central France
in northwestern Europe as the origin of the *Niphargus* genus in the late Cretaceous (88 Ma).
From there the ancestral locations move with decreasing node age towards the southeast
(Figure 4b).

279 Geographic variation in species diversity and diversification rates

Investigation of the geographic variation in species diversity revealed that the number of 280 281 *Niphargus* species varies greatly across different geographic areas from 1 species in Spain to 282 136 in the Balkans (Figure S5). In contrast to phylogenetic diversity the species richness of 283 the Western region is significantly lower than that of the Eastern region (P < 0.05). 284 Investigation of the geographic variation in diversification rates shows that the number of 285 nodes along each root-to-tip path in the *Niphargus* species level phylogeny correlates 286 significantly with distance towards the southeast (correlation coefficient [SD] = 0.18 [0.014], 287 log Bayes Factor = 9.8). A log Bayes Factor value of between 6 and 10 provides strong 288 support for the hypothesis tested. Net-diversification rate in Niphargus therefore increases in a south-easterly direction. 289

290

291 **DISCUSSION**

292 Phylogenetic evidence for long-term persistence of Niphargus in NW Europe

Paleontological and genetic evidence suggests that the majority of surface fauna that 293 294 currently live in Britain and Ireland originated from late Pleistocene/Holocene dispersal from 295 Continental Europe (Hewitt 2004; Wheeler 1977; Yalden 1982). Endemic fauna are therefore 296 rare (Pimm et al. 1995), and are restricted to a few surface invertebrate and vertebrate sub-297 species (e.g. the Irish hare, Reid 2011); and the Shelly freshwater whitefish, Kottelat & 298 Freyhof 2007; and the avian Scottish crossbill, which is sometimes considered a species, 299 Summers et al. 2007, see Table S7 for more examples). Critically these fauna have only been 300 present for a few tens of thousands of years. In contrast our data indicate that groundwater 301 contains by far the oldest endemic fauna, which have persisted for millions of years and 302 represent a significant contribution to biodiversity.

Furthermore, this ancient groundwater fauna has survived the extreme geological and climate changes that have occurred over the past 20 million years. Groundwater temperatures are

305 influenced by air temperature (Figuera et al. 2011) and can range from 0 and 6°C in glacial and periglacial climates (Parsons 1970; Williams 1970) to $> 25^{\circ}$ C in areas with warm 306 307 climates (Eberhard et al. 2009; Weyhenmeyer et al. 2000). Niphargids must therefore have 308 survived a wide range of groundwater temperature conditions as climate changed between 309 glacial and warm conditions. However, temperature and chemistry change much more 310 slowly in groundwater than surface waters, and hence groundwaters are buffered from 311 temperature extremes and rapid hydrological and biological change (MacDonald et al. 2012), 312 and the relative stability of the subsurface environment may explain the persistence of 313 groundwater invertebrates through changing climates. N. glenniei and N. irlandicus persisted 314 in NW Europe throughout the Miocene surviving both glacial and extreme wet periods 315 (Zachos et al. 2001a; Zachos et al. 2001b) which were associated with range shifts and local 316 extinctions in other fauna (Zachos et al. 2001a; Zachos et al. 2008). Together with N. aquilex 317 B they also persisted in Britain throughout the Pliocene when temperatures and sea levels 318 were higher than today (Dwyer & Chandler 2009), and groundwaters would have been 319 substantially warmer than they are now.

320 All the *Niphargus* lineages in Britain and Ireland have persisted throughout the multiple 321 glaciations of the Quaternary. Our findings are congruent with those of Kornobis et al. (2010) who presented molecular evidence showing that the endemic subterranean amphipod 322 323 Crangonyx islandicus has been present in Iceland for around 5 million years, surviving 324 repeated glaciations. On the basis of the molecular analysis and the species distribution, 325 Kornobis et al. (2010) suggest that *Crangonyx islandicus* may have survived in geothermally 326 heated groundwaters associated with volcanic fissures. Our data demonstrate that some 327 *Niphargus* populations have been resilient to climate changes that occur above ground in a 328 region that is much less geothermally active. This suggests that groundwater ecosystems in 329 general may have mechanisms that reduce the impacts of surface climate change, but our 330 current understanding of these mechanisms is limited. During glaciations, groundwater taxa 331 may have survived in caves or aquifers that were actively recharged by warm-based glaciers 332 or pro-glacial rivers. Groundwater recharge from glaciers is well documented (Boulton et al. 333 1995; Hutchinson & Thomasbetts 1990), and provides a source of oxygen and nutrients. 334 However, these groundwaters would have been cooler than today and therefore surviving 335 species must be resilient to these long term variations in groundwater temperatures. 336 Geothermal heating may have maintained some groundwaters at higher temperatures during 337 glacial periods. For example it has been suggested that areas of southwest England remained

338 permafrost free in the last glaciation due to a high heat-flux (Hutchinson & Thomasbetts 1990) and there are small geothermal heat anomalies (~2 to 6° C) within 100 m of the surface 339 340 in southern and eastern England (Busby et al. 2011). However, there is little relation between 341 modern day distributions of *Niphargus* in the British Isles and geothermally heated waters. 342 For example, *Niphargus* are not recorded in Derbyshire in Northern England where there are 343 extensive geothermal springs and suitable geological habitats for invertebrates, and are 344 present in areas of southern England where there is no evidence of geothermal warming of 345 groundwater. Given the poor dispersal capabilities of *Niphargus* it therefore seems unlikely 346 that geothermal heating of groundwater was the only factor enabling their survival during 347 glacial periods. A geothermal gradient of about 1°C per 20 to 40 m (Anderson 2005) results 348 in warmer waters at depth, which may have provided some protection against cold 349 groundwaters if Niphargids were able to migrate to warmer, deeper waters. However, 350 permeability and fracturing generally decrease substantially with depth (Jiang et al. 2010; 351 Williams A et al. 2006), resulting in limited groundwater circulation and low oxygen, and 352 therefore the deep groundwater environment (> 100 m) may not always provide a suitable 353 habitat for invertebrates. Overall it seems probable that surviving *Niphargus* species have 354 some mechanism of adapting to changing groundwater temperatures. Modern day occurrence 355 of groundwater crustacea in sub-glacial refugia has been documented in Castleguard Cave, 356 Canada, ca. 500 km north of the glacial limit, where groundwater temperatures are around 357 2°C (Holsinger et al. 1983) and in lava caves beneath ice in Iceland (Kornobis et al. 2010). 358 Nevertheless, other evidence indicates that the Pleistocene had a considerable negative 359 impact on the distribution and survival of Niphargus. The British Niphargus species (Figure 360 4) and N. virei in France (Foulquier et al. 2008) are largely found to the south of the 361 maximum extent of the Anglian and Devensian glaciers, and species diversity in 362 northwestern Europe is relatively low, suggesting that some populations were eradicated 363 during glacial or periglacial conditions.

364 *Geographic origin of Niphargus and spread during the Cenozoic*

The geographic distribution of MRCAs for nodes of different ages showed a second, unexpected pattern (Figure 4). The origin of *Niphargus* is in northwestern Europe with the MRCA of all *Niphargus* in what is now central France in the late Cretaceous (88Ma), when Europe consisted of a number of islands (Hay *et al.* 1999; Rogl 1999). The genus therefore predates (and must have survived) the Cretaceous-Palaeogene mass extinctions of 65 Ma possibly facilitated by a subterranean life-style. The schematic maps in Figures 4c-4f depict

371 some of the major palaeogeographical changes that occurred between 100 and 25 Ma, 372 although there were smaller scale fluctuations in sea level and uplift superimposed on these 373 broad patterns (Jarvis et al. 2002; Voigt et al. 2006). The ancestor of Niphargus probably 374 colonised a central island (Figure 4c) which was subsequently further inundated by the 375 Tethys Sea (Figure 4d). From there the ancestral locations move with decreasing node age 376 towards the southeast. During the Eocene the retreating Tethys Sea provided the opportunity 377 for *Niphargus* to spread in emerging freshwater aquifers (Figure 4e). This is consistent with 378 palaeogeographic models but is contrary to a previous hypothesis, which suggested that the 379 enhanced species diversity in the northern parts of the Balkan Peninsula indicated an origin in 380 southeast Europe (Karaman & Ruffo 1986). Our phylogenetically controlled analysis of 381 diversification rates shows an increase in diversification in a south-easterly direction thereby 382 providing an alternative explanation for the enhanced species diversity in the Balkans. The 383 timing of this diversification (around 25 Ma) coincides with the closing of the Tethys Sea that 384 had previously separated the Balkans and Central Europe (Hrbek & Meyer 2003; Rogl 1999) 385 and provided an opportunity for further dispersion towards the south-east (Figure 4f). 386 Available niche space in the geomorphologically complex Balkans may have enabled the 387 high diversification rate; a mechanism which has also been suggested to explain 388 diversification in other fauna (Hrbek & Meyer 2003).

389 Conclusions

390 This study reveals the presence of an ancient endemic groundwater fauna in the British Isles, 391 where endemism is otherwise rare. The unusually high levels of endemism in groundwater 392 fauna in northern latitudes identified by the study highlights the need to recognise this unique 393 ecosystem and its ancient organisms' contribution to our understanding of climatic and 394 palaeogeographic controls on global biodiversity. The extent to which *Niphargus* may be 395 resilient to recent anthropogenic perturbations of groundwater ecosystems is unknown. 396 However, the small ranges of these taxa shown in this study and others (Foulquier *et al.* 2008; 397 Holsinger et al. 1983), and their smaller clutch sizes, delayed maturity, slower growth and 398 lower population numbers compared to epigean relatives (Gibert et al. 1994), suggest that 399 despite their ancient resilience, the European Niphargus fauna could now be vulnerable. 400 Conservation policy measures to protect groundwater ecosystems in Europe lag far behind 401 countries such as Australia. N. glenniei has been designated as a UK Biodiversity Action Plan 402 (BAP) species but other *Niphargus* species have no such recognition and current European 403 groundwater monitoring programmes do not consider groundwater ecosystems.

The study also reveals an unusual biogeographical pattern within the *Niphargus* genus. The oldest and most phylogenetically diverse species occur in northern Europe where endemism is low in surface fauna, which are dominated by large range species and post-glacial colonisers. In contrast the species diversity is highest in Southern Europe indicating that once the genus dispersed to these areas, climatic and geomorphological conditions enabled a much higher diversification rate than has occurred in Northern Europe.

410 These groundwater organisms provide an unusual opportunity to improve our understanding 411 of biological processes such as speciation, adaptation and convergence, and as narrow range 412 endemics they allow further exploration of island biogeographical processes. Furthermore, 413 our discovery that these groundwater species are the oldest known inhabitants of Britain and 414 Ireland, persisting through millions of years of changing climate may cast significant light on 415 one of the major challenges facing the scientific community today; that of predicting the 416 resilience of ecosystems to climate change (Chapin et al. 2000). Our findings show that 417 groundwater fauna (or their habitats) are likely to have a highly variable response to the 418 extinguishing effects of climate change. A more detailed knowledge of the mechanisms 419 behind this variation could help us to understand the likely impacts of the current 420 anthropogenically induced challenges to the biosphere.

421

422 Acknowledgements For financial support we thank: the EPA Ireland (STRIVE grant, project 2007-423 W-MS-1-S1), the Belgian Science Policy Department (BELSPO), the Linnean Society Systematics 424 Association, the University of Hull, the British Cave Research Association, the British Geological 425 Survey, Roehampton University, and the Esmée Fairbairn Foundation. We thank Thierry Backeljau 426 and Frank Fiers at RBINS, and Bernie Doherty, Ian Anderson, Marlene Jahnke, G.Michel and 427 A.J.Matthijs for technical support. At BGS we thank Andrew Newell for geological advice, Andrew 428 McKenzie for assisting with geographical analyses, Debbie Allen and James Sorensen for sampling. 429 We thank Tim Johns (Environment Agency) and MarieJo Dole-Olivier (Lyon University) for 430 sampling; and Joanna Baker for assistance with the ancestral state reconstruction. We thank Tim 431 Guilford, Mark Pagel, David Lunt and Cock van Oosterhout for useful comments on the manuscript.

432

Author contributions B.H., G.S.P. A.L.R., and L.M., conceived the study; B.H., C.V., T.M.
and A.L.R conducted analyses; C.E.M., B.H. and S.M., carried out laboratory work and
assembled the data; C.E.M., S.M, L.R.F.D.K., L.M., A.L.R., J.A., J.S.G.D and K.E collected

- 436 the samples and contributed data; B.H., L.M., A.L.R., G.S.P. and C.E.M. wrote the paper; all
- 437 authors commented on the final draft.
- 438
- 439

- 441 Anderson MP (2005) Heat as a Ground Water Tracer. *Groundwater* 43, 951-968.
- Bohme M (2003) The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central
 Europe. Palaeogeography Palaeoclimatology Palaeoecology 195, 389-401.
- 444 Bohme M, Ilg A, Winklhofer M (2008) Late Miocene "washhouse" climate in Europe. *Earth and* 445 *Planetary Science Letters* **275**, 393-401.
- 446 Bouckaert R, Lemey P, Dunn M, *et al.* (2012) Mapping the Origins and Expansion of the Indo-447 European Language Family. *Science* **337**, 957-960.
- 448 Boulton GS, Caban PE, Vangijssel K (1995) Groundwater-flow beneth ice sheets. 1. Large-scale 449 patterns. *Quaternary Science Reviews* **14**, 545-562.
- Busby J, Kingdon A, Williams J (2011) The measured shallow temperature field in Britain. *Quarterly* Journal of Engineering Geology and Hydrogeology 44, 373-387.
- 452 Chapin FS, Zavaleta ES, Eviner VT, et al. (2000) Consequences of changing biodiversity. Nature 405,
 453 234-242.
- 454 Cope JCW (1997) The Mesozoic and Tertiary history of the Irish Sea. In: *Petroleum Geology of the*455 *Irish Sea and Adjacent Areas* (eds. Meadows NS, Trueblood SP, Hardman M, Cowan G), pp.
 456 47-59.
- 457 Dole-Olivier M, Castellarini JF, Coineau N, Galassi DMP, Martin P, Mori N, Valdecasas A, Gibert J
 458 (2009) Towards an optimal sampling strategy to assess groundwater biodiversity:
 459 comparison across six European regions. *Freshwater Biology* 54, 777-796
- Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with
 confidence. *Plos Biology* 4, 699-710.
- Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the
 BEAST 1.7. *Molecular Biology and Evolution* 29, 1969-1973.
- 464 Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing 465 chemosynthesis. *Nature Reviews Microbiology* **6**, 725-740.
- 466 Dwyer GS, Chandler MA (2009) Mid-Pliocene sea level and continental ice volume based on coupled
 467 benthic Mg/Ca palaeotemperatures and oxygen isotopes. *Philosophical Transactions of the* 468 *Royal Society a-Mathematical Physical and Engineering Sciences* 367, 157-168.
- 469 Eberhard SM, Halse SA, Williams MR, *et al.* (2009) Exploring the relationship between sampling
 470 efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western
 471 Australia. *Freshwater Biology* 54, 885-901.
- 472 Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.
 473 *Nucleic Acids Research* 32, 1792-1797.
- 474 Englisch U, Coleman CO, Wagele JW (2003) First observations on the phylogeny of the families
 475 Gammaridae, Crangonyctidae, Melitidae, Niphargidae, Megaluropidae and Oedicerotidae
 476 (Amphipoda, Crustacea), using small subunit rDNA gene sequences. Journal of Natural
 477 History 37, 2461-2486.
- Figuera S, Livingstone DM, Hoehn E, Kipfer R (2011) Regime shift in groundwater temperature
 triggered by Arctic Oscillation. *Geophysical Research Letters* 38, L23401.
- Fišer C, Sket B, Trontelj P (2008) A phylogenetic perspective on 160 years of troubled taxonomy of
 Niphargus (Crustacea: Amphipoda). *Zoologica Scripta* **37**, 665-680.

 DNA sequences for species identification. <i>Bull Soc Sci Nat Ouest Fr</i> 32, 62-68. Flot JF, Worheide G, Dattagupta S (2010) Unsuspected diversity of <i>Niphargus</i> amphipods in the chemoautotrophic cave ecosystem of Frassasi, central 149. <i>Bmc Evolutionary Biology</i> 10. Foulquier A, Malard F, Lefebure T, Gibert J, Douady CJ (2008) The imprint of Quaternary Biology 10. Freckleton RP, Phillimore AB, Pagel M (2008) Relating traits to diversification: A simple test. <i>American Naturalis</i> 112, 102-115. Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. <i>Freshwater Biology</i> 54, 830-847. Gibert J, Stanford JA, Dole-Olivier M-J, Ward JV (1994) Basic attributes of groundwater ecosystems and prospects for research. <i>In:</i> Gibert J, Danielopol DL & Standford JA (eds) <i>Groundwater Ecology</i>. Academic Press, San Diego, CA, 8-42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 448, 342-U345. Hanfing B, Doutrelo-Soler J, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and Karst Science</i> 35, 35-40. Harkte TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus Niphargus (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of the Cryolas Colery of America. Boulder, Colorado.</i> Howitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophicol Transactions of the Royal Society of America. Boulder, Colorado.</i> Hoy KE, Stee K, Fiser C, Li SQ (2011) Isocene habitat shift from saline to freshwater promoted		
 Flot JF, Worheide G, Dattagupta S (2010) Unsuspected diversity of <i>Niphargus</i> amplipods in the chemoautotrophic cave ecosystem of Frasasi, central Italy. <i>Bmc Evolutionary Biology</i> 10. Fouldquer A, Malard F, Lefebure T, Gibert J, Douady CJ (2008) The imprint of Quaternary glaciers on the present-day distribution of the obligate groundwater amphipod <i>Niphargus virei</i> (Niphargidae). <i>Journal of Biogeography</i> 35, 552-564. Freckleton RP, Phillimore AB, Pagel M (2008) Relating traits to diversification: A simple test. <i>American Naturalist</i> 172, 102-115. Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. <i>Freshwater Biology</i> 54, 830-847. Gibert J, Stanford JA, Dole-Olivier M-J, Ward JV (1994) Basic attributes of groundwater ecosystems and prospects for research. <i>In:</i> Gibert J, Danielopol DL & Stanford JA (eds) <i>Groundwater Ecology</i>. Academic Press, San Diego, CA, 8-42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 488, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and Karst Science</i> 35, 55-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of the Cretaceous Ocean-Clinate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical Transactions of the Royal S</i>	482	
 chemoautotrophic cave ecosystem of Frasassi, central Italy. <i>Bmc Evolutionary Biology</i> 10. Foulquier A, Malard F, Lefebure T, Gibert J, Douady CI (2008) The imprint of Quaternary glaciers on the present-day distribution of the obligate groundwater amphipod <i>Niphargus virei</i> (Niphargidae). <i>Journal of Biogeography</i> 35, 552-564. Freckleton RP, Phillimore AB, Pagel M (2008) Relating traits to diversification: A simple test. <i>American Naturalist</i> 172, 102-115. Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massi of northern Italy. <i>Freshwater Biology</i> 54, 830-847. Gibert J, Stanford JA, Dole-Olivier M-J, Ward JV (1994) Basic attributes of groundwater ecosystems and prospects for research. <i>In:</i> Gibert J, Danielopol DL & Stanford JA (ed) <i>Groundwater Ecology</i>. Academic Press, San Diego, CA, 84-32. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 448, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and Karst Sciene</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (admphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeograph In: <i>Evolution of the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophiol Transactions of the Royal Society of London Series Philosopical Sciences</i> 35, 93-549. Hot C, Brandle M, Brandl R (
 Foulquier A, Malard F, Lefebure T, Gibert J, Douady CJ (2008) The imprint of Quaternary glaciers on the present-day distribution of the obligate groundwater amphipod Niphargus virei (Niphargues). Journal of Biogeography 35, 552-564. Freckleton RP, Phillimore AB, Pagel M (2008) Relating traits to diversification: A simple test. American Naturalist 172, 102-115. Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshwater Biology 54, 830-847. Gibert J, Stanford JA, Dole-Olivier M-J, Ward JV (1994) Basic attributes of groundwater ecosystems and prospects for research. In: Gibert J, Danielopol DL & Standford JA (eds) Groundwater Ecology. Academic Press, San Diego, CA, 8–42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the Niphargus bochianus group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. Cave and Karst Science 35, 35-40. Hartke TR, Fišer C, Hohagen J, et al. (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus Niphargus (Amphipoda). Journal of Crustacean Biology 31, 701-709. Hay WH, DeConto RM, et al. (1999) Alternative global Cretaceous paleogeography In: Evolution of the Cretaceous Ocean-Climate System Pages (eds. Barrera E, Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of folobal Ecology and Biogeography 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia Icefields, Alberta, Canada, and its zogeography 17, 539-546. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eccene habitat shift from saline to freshwater p		
 the present-day distribution of the obligate groundwater amphipod Niphargus virei (Niphargidae). Journal of Biogeography 35, 552-564. Freckleton RP, Phillimore AB, Pagel M (2008) Relating traits to diversification: A simple test. American Naturalist 172, 102-115. Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshwater Biology 54, 830-847. Gibert J, Stanford JA, Dole-Olivier M-J, Ward JV (1994) Basic attributes of groundwater ecosystems and prospects for research. In: Gibert J, Danielopol DL & Standford JA (eds) Groundwater Ecology. Academic Press, San Diego, CA, 8-42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448, 342-U345. Hähfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the Niphargus kochianus group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. Cave and Karst Science 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus Niphargus (Amphipoda). Journal of Crustacean Biology 31, 701-709. Hay WH, DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: Evolution of the Cretaceous Ocean-Climate System Pages (eds. Barrera E, Johnson CC), pp. 1-47. Geological Society of Jondon Series B-Biological Sciences 359, 183-195. Hof C, Brandle K, Maral R (2008) Laittudinal viraitation of diversity in European freshwater animals is not concordant across habitat types. Global Ecology and Biogeography 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. Arctic and Alpine Research 15, 543-549. Hou ZE, Sket B, F		
 (Niphargidae). <i>Journal of Biogeography</i> 35, 552-564. Freckleton RP, Phillimore AB, Pagel M (2008) Relating traits to diversification: A simple test. <i>American Naturalist</i> 172, 102-115. Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. <i>Freshwater Biology</i> 54, 830-847. Gibert J, Stanford JA, Dole-Olivier M-J, Ward JV (1994) Basic attributes of groundwater ecosystems and prospects for research. <i>In:</i> Gibert J, Danielopol DL & Standford JA (eds) <i>Groundwater</i> <i>Ecology</i>. Academic Press, San Diego, CA, 8–42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 448, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus</i> <i>Kochianus</i> group (Crustacea: amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and</i> <i>Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, , DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of</i> <i>the Cretocaso Ocean-Climate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical</i> <i>Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icef		
 Freckleton RP, Phillimore AB, Pagel M (2008) Relating traits to diversification: A simple test. <i>American Naturalis</i> 172, 102-115. Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. <i>Freshwater Biology</i> 54, 830-847. Giber J, Stanford JA, Dole-Olivier M-J, Ward JV (1994) Basic attributes of groundwater ecosystems and prospects for research. <i>In:</i> Gibert J, Danielopol DL & Standford JA (eds) <i>Groundwater</i> <i>Ecology</i>. Academic Press, San Diego, CA, 8-42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 48, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus</i> <i>kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and</i> <i>Korst Science</i> 35, 53-60. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, Jo Conto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of</i> <i>the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical</i> <i>Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle R, Jons J (1993) The subterranean crustacean fauna of Castleguard Cave, Colombia teffelds, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 583-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted <i>Tethyan amphipod diversification. Proceedings of the Nati</i>		
 American Naturalist 172, 102-115. Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. <i>Freshwater Biology</i> 54, 830-847. Gibert J, Stanford JA, Dole-Olivier M-J, Ward JV (1994) Basic attributes of groundwater ecosystems and prospects for research. <i>In:</i> Gibert J, Danielopol DL & Standford JA (eds) <i>Groundwater Ecology</i>. Academic Press, San Diego, CA, 8–42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 448, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus Kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, , DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Lattudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Houz E, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys		
 Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. <i>Freshwater Biology</i> 54, 830-847. Gibert J, Stanford JA, Dole-Oliver M-J, Ward JV (1994) Basic astributes of groundwater ecosystems and prospects for research. <i>In:</i> Gibert J, Danielopol DL & Standford JA (eds) <i>Groundwater</i> <i>Ecology</i>. Academic Press, San Diego, CA, 8–42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 448, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus</i> <i>kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and</i> <i>Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus. <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, , DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of</i> <i>the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical</i> <i>Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subternanean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwate		
 the Lessinian Massif of northern Italy. <i>Freshwater Biology</i> 54, 830-847. Gibert J, Stanford JA, Dole-Olivier M-J, Ward JV (1994) Basic attributes of groundwater ecosystems and prospects for research. <i>In:</i> Gibert J, Danielopol DL & Standford JA (eds) <i>Groundwater</i> <i>Ecology</i>. Academic Press, San Diego, CA, 8–42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 448, 342-1345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus</i> <i>kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and</i> <i>Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of</i> <i>the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of Global Ccoly and Biogography 17, 539-546. Hol C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys and Boreal rea		
 Gibert J, Stanford JA, Dole-Olivier M-J, Ward JV (1994) Basic attributes of groundwater ecosystems and prospects for research. In: Gibert J, Danielopol DL & Standford JA (eds) <i>Groundwater</i> <i>Ecology</i>. Academic Press, San Diego, CA, 8–42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 448, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus</i> <i>kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and</i> <i>Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus. <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of</i> <i>the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical</i> <i>Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Te		
 and prospects for research. <i>In:</i> Gibert J, Danielopol DL & Standford JA (eds) <i>Groundwater</i> <i>Ecology.</i> Academic Press, San Diego, CA, 8–42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 448, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus</i> <i>kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and</i> <i>Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus. <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, , DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of</i> <i>the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical</i> <i>Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Ecoene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprindontiformes: Cyprinodontidae). <i>Journ</i>		
 <i>Ecology</i>. Academic Press, San Diego, CA, 8–42. Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 448, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus</i> <i>kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and</i> <i>Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of</i> <i>the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical</i> <i>Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eccene habitat shift from saline to freshwater promoted United States of America 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontida). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineer</i>		
 Gupta S, Collier JS, Palmer-Felgate A, Potter G (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. <i>Nature</i> 448, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, , DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeograph</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quart</i>		
 systems in the English Channel. <i>Nature</i> 448, 342-U345. Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus. <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, , DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 108, 14533-1453. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verla		
 Hänfling B, Douterelo-Soler I, Knight L, Proudlove G (2008) Molecular studies on the <i>Niphargus</i> <i>kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and</i> <i>Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, , DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of</i> <i>the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical</i> <i>Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hov ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of perimafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea</i>, <i>2nd edn</i>. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cab		
 <i>kochianus</i> group (Crustacea: Amphipoda: Niphargidae) in Great Britain and Ireland. <i>Cave and</i> <i>Karst Science</i> 35, 35-40. Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, , DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of</i> <i>the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical</i> <i>Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea</i>, <i>2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campania		
 Karst Science 35, 35-40. Hartke TR, Fišer C, Hohagen J, et al. (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus Niphargus (Amphipoda). Journal of Crustacean Biology 31, 701-709. Hay WH, , DeConto RM, et al. (1999) Alternative global Cretaceous paleogeography In: Evolution of the Cretaceous Ocean-Climate System Pages (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Global Ecology and Biogeography 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. Arctic and Alpine Research 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the United States of America 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). Journal of Evolutionary Biology 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. Quarterly Journal of Engineering Geology 23, 387-390. Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography Palaeoclimatology Palaeoccingy 188, 21		
 Hartke TR, Fišer C, Hohagen J, <i>et al.</i> (2011) Morphological and molecular analyses of closely related species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, , DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontide). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea</i>, <i>2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTI, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X		
 species in the stygobiontic genus <i>Niphargus</i> (Amphipoda). <i>Journal of Crustacean Biology</i> 31, 701-709. Hay WH, , DeConto RM, et al. (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvs I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured me		
 701-709. Hay WH, , DeConto RM, et al. (1999) Alternative global Cretaceous paleogeography In: Evolution of the Cretaceous Ocean-Climate System Pages (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Global Ecology and Biogeography 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. Arctic and Alpine Research 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the United States of America 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). Journal of Evolutionary Biology 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. Quarterly Journal of Engineering Geology 23, 387-390. Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2020) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography Palaeoclimatology Palaeoecology 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : Hydrogeology Journal 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In		
 Hay WH, , DeConto RM, <i>et al.</i> (1999) Alternative global Cretaceous paleogeography In: <i>Evolution of</i> <i>the Cretaceous Ocean-Climate System Pages</i> (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical</i> <i>Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : Hydrogeology Journal 18, 839- 850. Karaman GS, Ruffo S (1986) A		
 the Cretaceous Ocean-Climate System Pages (eds. Barrera E, , Johnson CC), pp. 1-47. Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Global Ecology and Biogeography 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. Arctic and Alpine Research 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the United States of America 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). Journal of Evolutionary Biology 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. Quarterly Journal of Engineering Geology 23, 387-390. Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography Palaeoclimatology Palaeoecology 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : Hydrogeology Journal 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: Stygofauna mundi (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata		
 Geological Society of America, Boulder, Colorado. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839-850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple s		
 Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. <i>Philosophical</i> <i>Transactions of the Royal Society of London Series B-Biological Sciences</i> 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea</i>, 2nd edn. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Transactions of the Royal Society of London Series B-Biological Sciences 359, 183-195. Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Hof C, Brandle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 not concordant across habitat types. <i>Global Ecology and Biogeography</i> 17, 539-546. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. <i>Arctic and Alpine</i> <i>Research</i> 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave, Colombia icefields, Alberta, Canada, and its zoogeographic significance. Arctic and Alpine Research 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the United States of America 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). Journal of Evolutionary Biology 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. Quarterly Journal of Engineering Geology 23, 387-390. Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography Palaeoclimatology Palaeoecology 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . Hydrogeology Journal 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: Stygofauna mundi (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Colombia icefields, Alberta, Canada, and its zoogeographic significance. Arctic and Alpine Research 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the United States of America 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). Journal of Evolutionary Biology 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. Quarterly Journal of Engineering Geology 23, 387-390. Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography Palaeoclimatology Palaeoecology 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . Hydrogeology Journal 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: Stygofauna mundi (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Research 15, 543-549. Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Hou ZE, Sket B, Fišer C, Li SQ (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Tethyan amphipod diversification. <i>Proceedings of the National Academy of Sciences of the</i> <i>United States of America</i> 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). <i>Journal of Evolutionary Biology</i> 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 United States of America 108, 14533-14538. Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). Journal of Evolutionary Biology 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. Quarterly Journal of Engineering Geology 23, 387-390. Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography Palaeoclimatology Palaeoecology 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . Hydrogeology Journal 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: Stygofauna mundi (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 	514	
 Hrbek T, Meyer A (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes : Cyprinodontidae). Journal of Evolutionary Biology 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. Quarterly Journal of Engineering Geology 23, 387-390. Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography Palaeoclimatology Palaeoecology 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . Hydrogeology Journal 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: Stygofauna mundi (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 (Cyprinodontiformes : Cyprinodontidae). Journal of Evolutionary Biology 16, 17-36. Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. Quarterly Journal of Engineering Geology 23, 387-390. Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography Palaeoclimatology Palaeoecology 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . Hydrogeology Journal 18, 839-850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: Stygofauna mundi (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Hutchinson JN, Thomasbetts A (1990) Extent of permafrost in southern Britain in relation to geothermal flux. <i>Quarterly Journal of Engineering Geology</i> 23, 387-390. Illies J (1978) <i>Limnofauna Europaea, 2nd edn</i>. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 geothermal flux. Quarterly Journal of Engineering Geology 23, 387-390. Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography Palaeoclimatology Palaeoecology 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . Hydrogeology Journal 18, 839-850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: Stygofauna mundi (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Illies J (1978) <i>Limnofauna Europaea, 2nd edn.</i> Gustav Fischer Verlag, Stuttgart. Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 events, sea-level change and correlation of the Tethyan and Boreal realms. <i>Palaeogeography</i> <i>Palaeoclimatology Palaeoecology</i> 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839- 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Palaeoclimatology Palaeoecology 188, 215-248. Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839-850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 Jiang X-W, Wang X-S, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839-850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 		
 permeability with depth in porous and fractured media. : . <i>Hydrogeology Journal</i> 18, 839-850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 	524	
 850. Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 	525	
 Karaman GS, Ruffo S (1986) Amphipoda: Niphargus group. In: <i>Stygofauna mundi</i> (ed. Botosaneanu L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 	526	
 L), pp. 514-534. E.J. Brill, Leiden. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence 	527	
530 Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence	528	
	529	
alignment based on fast Fourier transform. <i>Nucleic Acids Research</i> 30 , 3059-3066.	530	
	531	alignment based on fast Fourier transform. Nucleic Acids Research 30 , 3059-3066.

532 533	Klaus S, Gross M (2010) Synopsis of the fossil freshwater crabs of Europe (Brachyura: Potamoidea: Potamidae). <i>Neues Jahrbuch Fur Geologie Und Palaontologie-Abhandlungen</i> 256 , 39-59.
535 534	Kornobis E, Palsson S, Kristjansson BK, Svavarsson J (2010) Molecular evidence of the survival of
	•
535	subterranean amphipods (Arthropoda) during Ice Age underneath glaciers in Iceland.
536	Molecular Ecology 19 , 2516-2530.
537	Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Publications Kottelat.
538	Lefébure T, Douady CJ, Gouy M, et al. (2006) Phylogeography of a subterranean amphipod reveals
539	cryptic diversity and dynamic evolution in extreme environments. <i>Molecular Ecology</i> 15,
540	1797-1806.
541	Lefébure T, Douady CJ, Malard F, Gibert J (2007) Testing dispersal and cryptic diversity in a widely
542	distributed groundwater amphipod (Niphargus rhenorhodanensis). Molecular Phylogenetics
543	and Evolution 42 , 676-686.
544	Lemey P, Rambaut A, Drummond AJ, Suchard MA (2009) Bayesian Phylogeography Finds Its Roots.
545	Plos Computational Biology 5 .
546	Lopez-Garcia P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in
547	hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge.
548	Proceedings of th <mark>e Natio</mark> nal Academy of Sciences of the United States of America 100 , 697-
549	702.
550	Louwye S, Foubert A, Mertens K, Van Rooij D, Party IES (2008) Integrated stratigraphy and
551	palaeoecology of the lower and Middle Miocene of the Porcupine Basin. Geological
552	Magazine 145 , 321-344.
553	MacDonald AM, Bonsor HC, Ó Dochartaigh BE, Taylor RG (2012) Quantitative maps of groundwater
554	resources in Africa. Environmental Research Letters 7, 024009.
555	Martin P, De Broyer C, Fiers F, et al. (2009) Biodiversity of Belgian groundwater fauna in relation to
556	environmental conditions. Freshwater Biology 54, 814-829.
557	Montgomery SH, Capellini I, Barton RA, Mundy NI (2010) Reconstructing the ups and downs of
558	primate brain evolution: implications for adaptive hypotheses and Homo floresiensis. Bmc
559	Biology 8.
560	Organ CL, Shedlock AM, Meade A, Pagel M, Edwards SV (2007) Origin of avian genome size and
561	structure in non-avian dinosaurs. Nature 446, 180-184.
562	Pagel M (1999) Inferring the historical patterns of biological evolution. <i>Nature</i> 401 , 877-884.
563	Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies.
564	Systematic Biology 53, 673-684.
565	Parsons ML (1970) Groundwater Thermal Regime in a glacial complex. Water Resources Research 6,
566	1701-1720.
567	Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269, 347-350.
568	Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends in Ecology &
569	Evolution 23 , 564-571.
570	Reid N (2011) European hare (Lepus europaeus) invasion ecology: implication for the conservation of
571	the endemic Irish hare (<i>Lepus timidus hibernicus</i>). <i>Biological Invasions</i> 13 , 559-569.
572	Robertson AL, Smith JWN, Johns T, Proudlove GS (2009) The distribution and diversity of stygobites
573	in Great Britain: an analysis to inform groundwater management. Quarterly Journal of
574	Engineering Geology and Hydrogeology 42 , 359-368.
575	Rogl F (1999) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene
576	paleogeography (short overview). <i>Geologica Carpathica</i> 50 , 339-349.
577	Ronquist F, Teslenko M, van der Mark P, <i>et al.</i> (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic
578	Inference and Model Choice Across a Large Model Space. Systematic Biology 61, 539-542.
579	Summers RW, Dawson RJG, Phillips RE (2007) Assortative mating and patterns of inheritance
580	indicate that the three crossbill taxa in Scotland are species. Journal of Avian Biology 38 ,
580 581	153-162.
501	

- Tamura K, Peterson D, Peterson N, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis
 Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods.
 Molecular Biology and Evolution 28, 2731-2739.
- Trontelj P, Blejec A, Fišer C (2012) Ecomorphological convergence pf cave comunities. *Evolution* 66, 3852-3865.
- 587 Trontelj P, Douady CJ, Fišer C, *et al.* (2009) A molecular test for cryptic diversity in ground water: 588 how large are the ranges of macro-stygobionts? *Freshwater Biology* **54**, 727-744.
- Vainola R, Witt JDS, Grabowski M, et al. (2008) Global diversity of amphipods (Amphipoda;
 Crustacea) in freshwater. Hydrobiologia 595, 241-255.
- 591 Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Marine biology Evolution 592 and biogeography of deep-sea vent and seep invertebrates. *Science* **295**, 1253-1257.
- Voigt S, Gale AS, Voigt T (2006) Sea-level change, carbon cycling and palaeoclimate during the Late
 Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis. *Cretaceous Research* 27, 836-858.
- 596 Weyhenmeyer CE, Burns SJ, Waber HN, *et al.* (2000) Cool Glacial Temperatures and Changes in 597 Moisture Source Recorded in Oman Groundwaters. *Science* **287**, 842-845.
- 598 Wheeler A (1977) The origin and distribution of the freshwater fishes of the British Isles. *Journal of* 599 *Biogeography* **4**, 1-24.
- 600 Williams A, Bloomfield J, Griffiths K, A B (2006) Characterising the vertical variations in hydraulic 601 conductivity within the Chalk aquifer. *Journal of Hydrology* **330**, 53-62.
- Williams JR (1970) Ground water in the permafrost regions of Alaska, p. 83. U.S. Geological Survey,
 Professional Paper 696.
- 404 Yalden DW (1982) When did the mammal fauna of the British Isles arrive. *Mammal Review* **12**, 1-57.
- Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001a) Trends, rhythms, and aberrations in global
 climate 65 Ma to present. *Science* 292, 686-693.
- 607Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and608carbon-cycle dynamics. Nature 451, 279-283.
- Zachos JC, Shackleton NJ, Revenaugh JS, Palike H, Flower BP (2001b) Climate response to orbital
 forcing across the Oligocene-Miocene boundary. *Science* 292, 274-278.
- 611
- 612 **Supplementary information** is available in the online version of the paper.
- 613

614	Tables:
615	
616	Table 1. A) Estimates of the time of the most recent common ancestor (TMRCA) between
617	British and Irish Niphargus taxa and their closest relatives based on a BEAST analysis. The
618	prior used and mean and median estimates in millions of years (Ma) are given, including the
619	upper and lower bounds of the highest posterior density (HPD) intervals. B) Details of the
620	external calibration points estimated from a subset of representative data from Hou et al.

621 (2011) are given.

622 623

)	Node	prior	Mean (Ma)	Median (Ma)	95% HPD lower	95% HPD upper
	<i>N. aquilex</i> E/F	Tree prior	6.69	6.22	2.15	12.32
	N. aquilex (A1,A2)/B	Tree prior	5.93	5.57	2.02	10.35
	N. aquilex A1/A2	Tree prior	1.06	0.95	0.23	2.12
	N. fontanus A1/A2	Tree prior	0.89	0.77	0.17	1.90
	N. irlandicus/N. glenniei	Tree prior	21.05	19.48	6.74	38.09
	N. kochianus A/(B,C)	Tree prior	3.06	2.89	1.26	5.21
	Niphargus root	Uniform [45-558]	88.16	87.14	65.38	113.94

B) External calibration points from [4]

,	1 1				
node 1	Normal [5.0; 1]	5.89	5.87	4.26	7.53
node 2	Normal [30.0; 1]	29.75	29.76	27.84	31.70
node 3	Normal [44.9; 8]	47.62	47.49	35.83	59.31
node a	Normal [80.3; 15]	78.52	78.19	64.87	93.26
node b	Normal [61.3; 9]	59.34	59.22	51.20	67.86
node c	Normal [42.8; 6]	44.85	44.78	39.83	50.22
node d	Normal [36; 6]	32.24	32.28	26.50	37.89
node f	Normal [25.6; 5]	21.67	21.79	14.14	28.93
node g	Normal [28.2; 5]	23.16	23.15	16.91	29.86
node h	Normal [32.9; 5]	33.17	33.30	25.29	40.41
node i	Normal [36.6; 5]	32.61	32.71	26.48	38.71

624

625

626 Figure captions:

627

Figure 1: Distribution of sampling locations from this study and published data included inthe analysis

630 Figure 2: Image of the ancient British endemic *Niphargus glenniei*, photo credit Chris Proctor

631 (a); multi-gene phylogeny of *Niphargus* based on a Bayesian analysis (outgroup not shown),

posterior probabilities (PP) > 0.5 of nodes above the clade level are show above branches.

633 See Fig. 3 for PP of nodes within important clades. British and Irish taxa are marked with a

red circle and branches leading to them are highlighted red; number in brackets refer to clade

numbers in Fig. 3(b) and geographic distribution of major phylogenetic lineages; the exact

636 location of the *N. liasi* sample is not known, but the species occurs in France (c).

Figure 3: Geographic distribution of British and Irish OTU's and European sister taxa. The

638 green and pink lines represent the maximum extent of the glacial ice sheets during the

639 Devensian and Anglian glacial periods respectively. Small black dots are sites of known

640 distribution for each group; coloured dots represent sampled populations for each OTU.

641 Partial ultrametric phylogenies from the BEAST analysis for each species complex are shown

642 above maps. *N irlandicus/ N glenniei group* (a); *N. aquilex/ N. schellenbergi group* (b); *N.*

643 *kochianus* (c), *N fontanus* (d).

644 Figure 4: Time calibrated phylogeny of *Niphargus* generated with BEAST (outgroup not

shown), black dots indicate nodes with a posterior probability (PP) > 0.5; British and Irish

646 OTUs are marked in red; clade numbers refer to clade numbers in Fig. 2(a); geographic

location of the common ancestor for each node with a PP > 0.5 based on Bayesian model

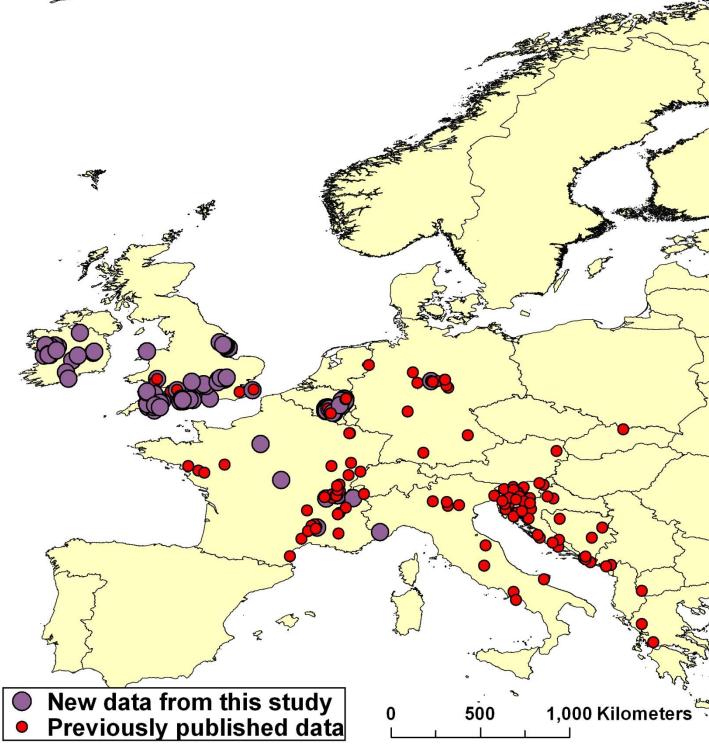
based ancestral state reconstruction; Cricle sizes are proportional to the age of nodes (b);

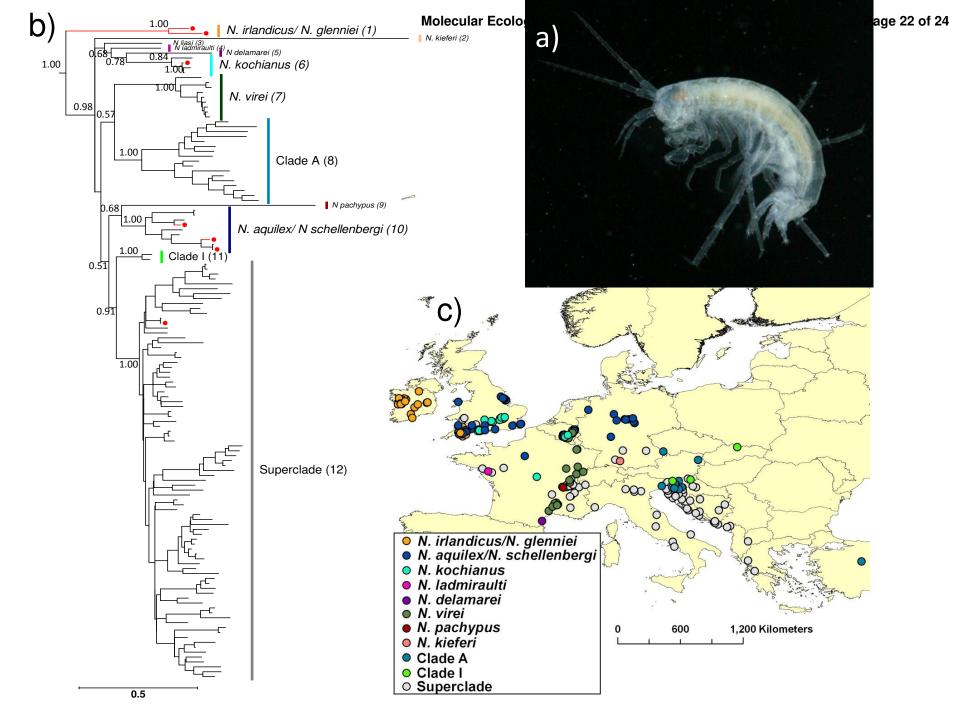
schematic maps depicting some of the major palaeogeographical changes that occurred in

Europe between 100 and 25 Ma; modified from Ron Blakey, NAU Geology

651 (http://jan.ucc.nau.edu/rcb7/): 100 Ma, circle indicates putative location of *Niphargus*

ancestor (c), 75Ma isolation of *Niphargus* on a central European island and within the Tethys


653 Sea; the question mark indicates the possibility that the *N. glenniei/ N. irlandicus* lineage


became first isolated during this time on a north-western European island (d) 50Ma spread of

Niphargus across Central Europe (e) 25Ma spread of Niphargus to the Balkan and Italian

656 Penisulas, circle indicates the location of the common ancestor of *N. irlandicus* and *N.*

657 glenniei (f).

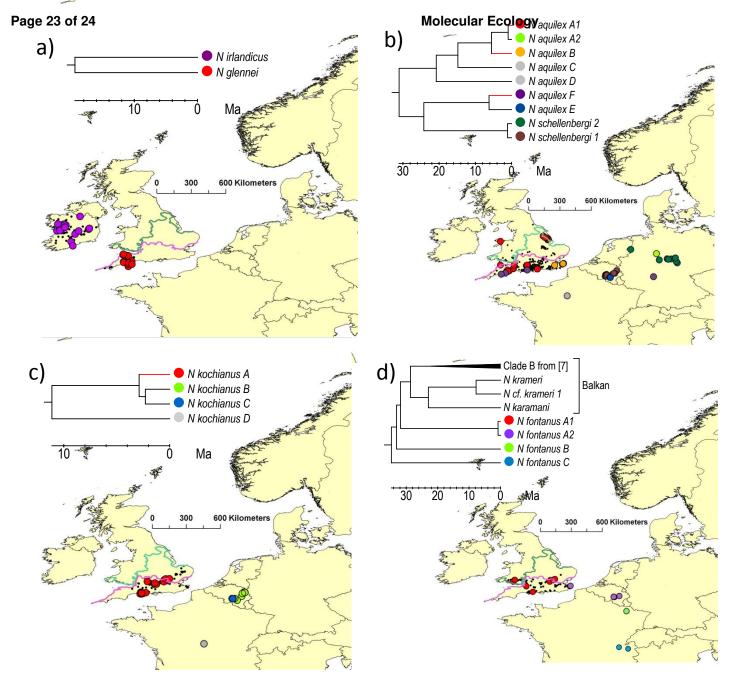


Table 1. A) Estimates of the time of the most recent common ancestor (TMRCA) between British and Irish *Niphargus* taxa and their closest relatives based on a BEAST analysis. The prior used and mean and median estimates in millions of years (Ma) are given, including the upper and lower bounds of the highest posterior density (HPD) intervals. B) Details of the external calibration points estimated from a subset of representative data from Hou *et al.* (2011) are given.

A)	Node	prior	Mean (Ma)	Median (Ma)	95% HPD lower	95% HPD upper
	<i>N. aquilex</i> E/F	Tree prior	6.69	6.22	2.15	12.32
	N. aquilex (A1,A2)/B	Tree prior	5.93	5.57	2.02	10.35
	N. aquilex A1/A2	Tree prior	1.06	0.95	0.23	2.12
	N. fontanus A1/A2	Tree prior	0.89	0.77	0.17	1.90
	N. irlandicus/N. glenniei	Tree prior	21.05	19.48	6.74	38.09
	N. kochianus A/(B,C)	Tree prior	3.06	2.89	1.26	5.21
	Niphargus root	Uniform [45-558]	88.16	87.14	65.38	113.94
B) External calibration points from [4]						
	node 1	Normal [5.0; 1]	5.89	5.87	4.26	7.53
	node 2	Normal [30.0; 1]	29.75	29.76	27.84	31.70
	node 3	Normal [44.9; 8]	47.62	47.49	35.83	59.31
	node a	Normal [80.3; 15]	78.52	78.19	64.87	93.26
	node b	Normal [61.3; 9]	59.34	59.22	51.20	67.86
	node c	Normal [42.8; 6]	44.85	44.78	39.83	50.22
	node d	Normal [36; 6]	32.24	32.28	26.50	37.89
	node f	Normal [25.6; 5]	21.67	21.79	14.14	28.93
	node g	Normal [28.2; 5]	23.16	23.15	16.91	29.86
	node h	Normal [32.9; 5]	33.17	33.30	25.29	40.41
	node i	Normal [36.6; 5]	32.61	32.71	26.48	38.71

0,1