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Abstract—The estimation of large motions without prior knowledge is an important problem in image registration. In this paper, we

present the angular difference function (ADF) and demonstrate its applicability to rotation estimation. The ADF of two functions is

defined as the integral of their spectral difference along the radial direction. It is efficiently computed using the pseudopolar Fourier

transform, which computes the discrete Fourier transform of an image on a near spherical grid. Unlike other Fourier-based registration

schemes, the suggested approach does not require any interpolation. Thus, it is more accurate and significantly faster.

Index Terms—Global motion estimation, Fourier domain, pseudopolar FFT, image alignment.
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1 INTRODUCTION

IMAGE registration plays a major role in many image
processing applications such as video compression [1],

[2], video enhancement [3], and scene representation [4], [5],
[6]. The main approaches that are being used to study this
problem are pixel domain Gradient methods [1], [4], [5],
spatial correlation techniques [7], and discrete Fourier
transform (DFT) based algorithms [8], [9]. Gradient meth-
ods are considered as the state-of-the-art. However, they
work well only when applied to images that have small
misalignment. In [7], the image is interpolated on a log-
polar grid and the rotations and scalings are reduced to
translations recovered by spatial correlation. As this
representation is not translation invariant, the interpolation
is recomputed for each possible translation, resulting in
high computational complexity.

Fourier-based schemes, which are able to estimate large
rotations, scalings, and translations, are rather crude and
often used to bootstrap the more accurate gradient
methods. Most of the DFT-based approaches utilize the
shift property [10] of the Fourier transform, which enables
robust estimation of translations using normalized phase-
correlation [8], [11], [12], [13], [14]. To handle rotations and
scalings, the image is transformed into a uniform polar or
log-polar Fourier representation, where rotations and
scalings are reduced to translations. The rotations and
scalings are then estimated by using phase-correlation.

In this paper, we present the angular difference function
(ADF) and demonstrate its applicability to estimation of
relative rotation of images. Generally, given two images I1
and I2, we compute the magnitude of the pseudopolar
Fourier transform (PPFT) [15] of each of the images,
denoted M1 and M2. We then compute the absolute value

of the difference of M1 and M2 and use this difference to
numerically compute the ADF of I1 and I2. The relative
rotation of I1 and I2 induces a cross pattern on the Fourier
transform of I1 � I2. This cross pattern is robustly and
accurately detected using the ADF.

A notion similar to the ADF was first introduced in [16],
[17], [18], [19] for rotation estimation and symmetry
detection. The main idea of [16] and [17] is to use the
multiscale Hough transform to detect the aforementioned
cross patterns. This method incurs inaccuracies as it
necessarily requires some sort of interpolation.

The Fourier domain-based schemes mentioned above [9],
[16], [17], use a uniform polar FFT representation. There is
no fast and accurate algorithm for the computation of the
polar FFT. Thus, such schemes use interpolation in the
Fourier magnitude domain. Due to the oscillatory nature of
the Fourier magnitude, its interpolation results in signifi-
cant errors. The proposed method does not require a
uniform polar representation and uses the Fourier com-
puted on the pseudopolar grid. This computation is
algebraically accurate and fast (O n2 lognð Þ).

The paper is organized as follows: In Section 2,we give the
mathematical background relevant to Fourier-based image
registration. In Section 3, we describe the pseudopolar
Fourier transform. In Section 4, we derive a 1D shift
estimation algorithm,which is based on difference functions.
This algorithm is a simplified 1D implementation of the ideas
presented in Section 5, where we define the ADF for the
2D case and derive a fast and accurate algorithm for its
computation. We then use this algorithm in Section 6 for
rotation estimation. We conclude the paper with experimen-
tal results and some concluding remarks in Sections 6 and 7,
respectively.

2 MATHEMATICAL PRELIMINARIES

2.1 Translation Estimation

We denote the Fourier transform of the function fðx; yÞ by
Fffðx; yÞg or bffð!x; !yÞ. The shift property of the Fourier
transform [10] is then given by

Fffðxþ�x; yþ�yÞg ¼ bffð!x; !yÞe
{ð!x�xþ!y�yÞ: ð2:1Þ
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Equation (2.1) is the basis of the Fourier-based translation
estimation algorithms [8], [14]. Assume that I1 x; yð Þ and
I2 x; yð Þ are two images that satisfy

I1 xþ�x; yþ�yð Þ ¼ I2 x; yð Þ: ð2:2Þ

By applying the Fourier transform on both sides of (2.2),
we get

bII1 !x; !y

� �
e{ !x�xþ!y�yð Þ ¼ bII2 !x; !y

� �
ð2:3Þ

or, equivalently,

Corr !x; !y

� �
¼
4

bII2 !x; !y

� �

bII1 !x; !y

� � ¼ e{ !x�xþ!y�yð Þ: ð2:4Þ

Taking the inverse Fourier transform of both sides of (2.4),
we get

Corr x; yð Þ ¼
4
F�1 Corr !x; !y

� �� �

¼ � xþ�x; yþ�yð Þ;
ð2:5Þ

which means that Corrðx; yÞ is nonzero only at ð�x;�yÞ. For
discrete images, we replace the Fourier transform in the
computations above with the FFT, and � xþ�x; yþ�yð Þ is
replaced by a function that has a dominant maximum at
ð�x;�yÞ. We then find ð�x;�yÞ as

�x;�yð Þ ¼ argmax
x;yð Þ

Corr x; yð Þf g: ð2:6Þ

We make the procedure above more robust by using
normalized phase correlation gCorrCorrð!x; !yÞ [8], [20]. Formally,

gCorrCorr !x; !y

� �
¼
4

bII2 !x; !y

� �

bII1 !x; !y

� �
bII1 !x; !y

� ����
���

bII2 !x; !y

� ����
���

¼
bII2 !x; !y

� �bII�1 !x; !y

� �

bII2 !x; !y

� ����
��� bII�1 !x; !y

� ����
���
¼ e{ !x�xþ!y�yð Þ;

ð2:7Þ

where � denotes the complex conjugate and gCorrCorr !x; !y

� �

replaces Corr !x; !y

� �
to (2.5). This scheme was proven to

robustly estimate large translations [14]. There are no
smoothness assumptions on the registered functions and,
therefore,nonsmoothandnoisy functions (suchas the2DDFT
coefficients) can be accurately registered. Foroosh et al. [20]
extended the phase-correlation-based algorithm to subpixel
accuracybyanalyzing theshapeof gCorrCorr !x; !y

� �
, given in (2.7),

around its maximum.
A different approach for phase correlation-based transla-

tion estimation is given in [13], [14], [21]. From (2.7), we get
that �x and �y satisfy the equation

� { log gCorrCorr !x; !y

� �� �
¼ !x�xþ !y�y;

which can be solved using linear regression. This approach
may be inaccurate ([20]) due to aliasing and phase
wrapping of the spectra around 2�. To solve these
problems, [13] suggests an iterative solution to phase
unwrapping and [14] presents two approaches for model-
ing aliasing effects and improving registration accuracy.

2.2 Polar Fourier Representations

The polar Fourier representation (Fourier-Mellin transform)
is used to register images that have both translational and

rotational misalignments [9], [22]. Let I1 and I2 be two
images such that

I2ðx; yÞ ¼

I1ðx cos �0 þ y sin �0 þ�x;�x sin �0 þ y cos �0 þ�yÞ;

ð2:8Þ

where �0 and �x;�yð Þ are the relative rotation and
translation of I1 and I2, respectively. The Fourier Transform
of (2.8) in polar coordinates is

bII2 r; �ð Þ ¼ e{ !x�xþ!y�yð ÞbII1ðr; �þ �0Þ: ð2:9Þ

If we denote by M1 and M2 the magnitudes of bII1 and bII2, i.e.,

M1 ¼ jbII1j; M2 ¼ jbII2j; ð2:10Þ

then we get that M1 and M2 are related by

M1 r; �ð Þ ¼ M2 r; �þ �0ð Þ: ð2:11Þ

Equation (2.11) states that we can recover the relative
rotation of I1 and I2 regardless of their relative translation.
Using a polar Fourier transform, rotations are reduced to
translations, which can be recovered by phase-correlation
techniques. Using (2.11) to estimate the rotation angle �0
results in an ambiguity of � [9]. We resolve this ambiguity
by rotating I2 by the two possible angles � and �þ �, and
then recovering the relative translation �x;�yð Þ for each
angle. We then compute the correlation peak for each of the
angles and choose the rotation and translation parameters
that correspond to the highest correlation peak. The flow of
the algorithm is given in Fig. 1.

Two common methods for evaluating the polar Fourier
transform are image domain warping [7] followed by a
2D FFT [19], and interpolation of the 2D DFT of the image in
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Fig. 1. The flow of a FFT-based image registration: 1) The magnitudes of
the polar DFTs are approximated by interpolating the magnitudes of the
2D FFTs. 2) The rotation angle �� is recovered using 1D phase-
correlation on the � axis. 3) One of the input images is rotated by the
angle��. 4) The translation is recovered and the � ambiguity is resolved
by applying a 2D phase-correlation twice: once on � and once on �þ �.



theFourierdomain [9], [22]. Since the resamplingofCartesian
frequency values on a polar grid is very sensitive to
interpolation, the accuracy of motion estimation algorithms
is severelydegradedby the approximation errors inherited in
the computation of thepolar and log-polarDFT. In this paper,
we present an approach that does not suffer from such
approximation errors.

3 THE PSEUDOPOLAR FOURIER TRANSFORM

Given an image I of size N �N , its 2D Fourier transform,
denoted bIIð!x; !yÞ, is given by

bIIð!x; !yÞ ¼

XN=2�1

u;v¼�N=2

Iðu; vÞe�
2�{
M ðu!xþv!yÞ; !x; !y 2 IR:

ð3:1Þ

We assume for simplicity that the image I has equal
dimensions in the x and y directions and that N is even. For
!x and !y sampled on the Cartesian grid ð!x; !yÞ ¼ ðk; lÞ,
k; l ¼ �M=2; . . . ;M=2� 1, M ¼ 2N þ 1, the Fourier trans-
form in (3.1) has the form

bIICartðk; lÞ ¼
� bIIðk; lÞ ¼

XN=2�1

u;v¼�N=2

Iðu; vÞe�
2�{
M ðukþvlÞ; ð3:2Þ

k; l ¼ �M
2
; . . . ;M

2
� 1, which is usually referred to as the

2D DFT of the image I. The parameter M (M > N) sets
the frequency resolution of the DFT. It is well-known that
the DFT of I, given by (3.2), can be computed in
OðM2 logMÞ operations.

For some applications, it is desirable to compute the
Fourier transform of I on a polar grid. Formally, we want to
sample the Fourier transform in (3.1) on the grid

!x ¼ rk cos �l; !y ¼ rk sin �l;
rk ¼ k; �l ¼ 2�l=L;

k ¼ 0; . . . ;M � 1; l ¼ 0; . . . ; L� 1;
ð3:3Þ

where M and L are the numbers of samples on the redial
and angular axes, respectively. For such a grid, the Fourier
transform in (3.1) has the form

bIIpolarðk; lÞ ¼� bIIðrk cos �l; rk sin �lÞ

¼
XN=2�1

u;v¼�N=2

Iðu; vÞe�
2�{k
M ðu cos �lþv sin �lÞ:

ð3:4Þ

The grid that is given by (3.3) is equally spaced both in the
radial and angular directions

�rpðkÞ ¼
�
rkþ1 � rk ¼ 1 ð3:5Þ

��pðlÞ ¼
�
�lþ1 � �l ¼

2�

L
: ð3:6Þ

Unfortunately, there is no fast algorithm for computing the
Fourier transform of the image I in polar coordinates, as
images are given on Cartesian grids.

In Section 3.1, we give the definition of the pseudopolar
Fourier transform (PPFT). In Section 3.2, we present the
fractional Fourier transform, which is the primary numerical
tool used in the PPFT algorithm. We conclude the presenta-
tion of the PPFT in Section 3.3 by describing an efficient
algorithm for computing the PPFT.

3.1 Definition of the Pseudopolar Fourier Transform

The pseudopolar Fourier transform (PPFT) evaluates the 2D
Fourier transform of an image on the pseudopolar grid,
which is an approximation to the polar grid. Formally, the
pseudopolar grid is given by the set of samples

P ¼
�
P1 [ P2; ð3:7Þ

where

P1 ¼
�

�
2l

N
k; k

� �
j �

N

2
� l �

N

2
; �N � k � N

� 	
ð3:8Þ

P2 ¼
�

k;�
2l

N
k

� �
j �

N

2
� l �

N

2
; �N � k � N

� 	
: ð3:9Þ

See Figs. 2a and 2b for an illustration of the sets P1 and P2.
The pseudopolar grid P is illustrated in Fig. 2c. As can be
seen from Figs. 2a and 2b, k serves as a “pseudoradius” and
l serves as a “pseudoangle.” The resolution of the
pseudopolar grid is N þ 1 in the angular direction and M ¼
2N þ 1 in the radial direction. Using ðr; �Þ representation,
the pseudopolar grid is given by

P1ðk; lÞ ¼ ðr1k; �
1
l Þ; P2ðk; lÞ ¼ ðr2k; �

2
l Þ; ð3:10Þ

r1k ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
l

N

� �2

þ1

s

; r2k ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
l

N

� �2

þ1

s

; ð3:11Þ

�1l ¼ �=2� arctan
2l

N

� �
; �2l ¼ arctan

2l

N

� �
; ð3:12Þ

where k ¼ �N; . . . ; N and l ¼ �N=2; . . . ; N=2. We define
the pseudopolar Fourier transform as the samples of the
Fourier transform bII, given in (3.1), on the pseudopolar grid
P , given in (3.7). Formally, the pseudopolar Fourier trans-
form bIIjPP (j ¼ 1; 2) is a linear transformation, which is
defined for k ¼ �N; . . . ; N and l ¼ �N=2; . . . ; N=2, as

bII1PP ðk; lÞ ¼
� bII �

2l

N
k; k

� �
ð3:13Þ

¼
XN=2�1

u;v¼�N=2

Iðu; vÞe�
2�{
M ð�2l

NkuþkvÞ;

bII2PP ðk; lÞ ¼
� bII k;�

2l

N
k

� �
ð3:14Þ

¼
XN=2�1

u;v¼�N=2

Iðu; vÞe�
2�{
M ðku�2l

NkvÞ;

where bII is given by (3.1).
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Fig. 2. The pseudopolar grid. (a) and (b) are the pseudopolar sectors P1

and P2, respectively. (c) The pseudopolar grid P ¼ P1 [ P2.



As we can see in Fig. 2c, for each fixed angle l, the
samples of the pseudopolar grid are equally spaced in the
radial direction. However, this spacing is different for
different angles. Also, the grid is not equally spaced in the
angular direction, but has equally spaced slopes. Formally,

�tan �1ppðlÞ ¼
�
cot �1lþ1 � cot �1l ¼

2

N
; ð3:15Þ

�tan �2ppðlÞ ¼
�
tan �2lþ1 � tan �2l ¼

2

N
; ð3:16Þ

where �1l and �2l are given in (3.12).
Two important properties of the pseudopolar Fourier

transform are that it is invertible and that both the forward
and inverse pseudopolar Fourier transforms can be im-
plemented using fast algorithms. Moreover, their imple-
mentations require only the application of 1D equispaced
FFTs. In particular, the algorithms do not require regrid-
ding or interpolation.

3.2 The Fractional Fourier Transform

The algorithm for computing the pseudopolar Fourier
transform is based on the fractional Fourier transform
(FRFT). The fractional Fourier transform [23], with its
generalization given by the Chirp Z-transform [24], is a
fast OðN logNÞ algorithm that evaluates the Fourier
transform of a sequence X on any equally spaced set of
N points on the unit circle. Specifically, given a vector X
of length N , X ¼ ðXðjÞ; j ¼ �N=2; . . . ; N=2� 1Þ, and an
arbitrary � 2 IR, the fractional Fourier transform is
defined as

ðF�XÞðlÞ ¼

XN=2�1

u¼�N=2

XðuÞe�2�{�lu=N ; l ¼ �N=2; . . . ; N=2:
ð3:17Þ

The fractional Fourier transform samples the spectrum of X
at the frequencies

!k ¼ �l=N; l ¼ �N=2; . . . ; N=2: ð3:18Þ

The fractional Fourier transform of a given vector X of
length N can be computed in OðN logNÞ operations for
any � 2 IR.

3.3 Computing the Pseudopolar Fourier Transform

By using the fractional Fourier transform we compute the
pseudopolar Fourier transform bII1PP , given in (3.13) as follows:

1. Zero pad the image I to size N � ð2N þ 1Þ (along the
y direction).

2. Apply the 1D Fourier transform to each column of I
(along the y direction).

3. Apply the fractional Fourier transform to each row
(in the x direction) with � ¼ 2k=N , where k is the
index of the row.

This procedure is illustrated in Fig. 3. The algorithm for
computing bII2PP is similar. The complexity of computing bII1PP

for an N �N image is OðN2 logNÞ. Since the complexity of
computing bII2PP is also OðN2 logNÞ; the total complexity of
computing thepseudopolarFourier transformisOðN2 logNÞ.

4 DIFFERENCE FUNCTIONS

We begin the derivation of 2D difference functions (DF) with
a1Dexample.Difference functions enableus toderive anaive
algorithm for 1D shift estimation. Let f1 xð Þ and f2 xð Þ,
x 2 0; N½ �, be two shifted versions of the same function.
Specifically, f1 xð Þ ¼ f2 xþ�xð Þ (see Fig. 4a) and denote by
g2 xð Þ the flipped and shifted version of f2 xð Þ (see Fig. 4b)

g2 xð Þ ¼ f2 �xþNð Þ: ð4:1Þ

We define the difference function (DF) �f by

�f xð Þ ¼ f1 xð Þ � g2 xð Þ

¼ f1 xð Þ � f2 �xþNð Þ

¼ f2 xþ�xð Þ � f2 �xþNð Þ

ð4:2Þ

and consider its zeros �f xð Þ ¼ 0. One of its zeros
necessarily satisfies

x0 þ�x ¼ �x0 þN;

�x ¼ N � 2x0;
ð4:3Þ

which means that we can estimate the relative translation
from the location of the zero of �f . Equation (4.3) holds for
arbitrarily sampled functions f1ðxÞ and f2ðxÞ. Since f1ðxÞ
and f2ðxÞ are discrete functions, we search for the minimum
of j�fj, instead of searching for the zero of �f . In general,
the equation �fðxÞ ¼ 0 does not have a unique solution.
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Fig. 3. Computing I1PP .

Fig. 4. Translation estimation using the difference function. Given
relatively translated functions f1 xð Þ and f2 xð Þ (a), the translation is
estimated (b) by flipping f2 xð Þ, and computing the difference function
�f, whose zero corresponds to twice the shift.



5 ROTATION ESTIMATION USING THE ANGULAR

DIFFERENCE FUNCTION

Inthissection,wederivethedifferencefunctionfor2Dimages.
GiventwoimagesI1 andI2,wedenotebyM1 r; �ð ÞandM2 r; �ð Þ
the magnitudes of their Fourier transforms in polar coordi-
nates. If I2 is a rotated and translated version of I1, i.e.,

I2ðx; yÞ¼

I1ðx cos��þ y sin��þ�x;�x sin��þy cos��þ�yÞ;
ð5:1Þ

then

M1 r; �ð Þ ¼ M2 r; �þ��ð Þ: ð5:2Þ

We define the difference function of M1 r; �ð Þ and M2 r; �ð Þ in
the angular direction as

�M �ð Þ ¼

Z1

0

M1 r; �ð Þ �M2 r;��ð Þj jdr; � 2 0; �½ �: ð5:3Þ

The value of �M �0ð Þ is zero if

�0 þ�� ¼ ��0 or �0 þ�� ¼ ��0 þ �; ð5:4Þ

where the second zero is due to the conjugate symmetry of
M1 and M2. Thus, we get that the two zeros of �M �ð Þ,
obtained at �10 and �20, are related to the relative rotation�� by

�10 ¼ �
��

2
; �20 ¼ �

��

2
þ
�

2
: ð5:5Þ

We see from (5.5) that the zeros �10 and �20 are �=2 radians
apart. This property is true for all zeros of�M: If �0 is a zero
of �M, then �0 þ

�
2
is also a zero. Therefore, we define the

angular difference function �ð�Þ by

� �ð Þ ¼
�
�M �ð Þ þ�M �þ

�

2

� �
; � 2 0;

�

2

h i
: ð5:6Þ

The zero �0 of � �ð Þ is related to the rotation angle �� by

�10 ¼ �
��

2
: ð5:7Þ

Note that since we compute �ð�Þ using the magnitude of
the Fourier transform, it is invariant to translations of the
input images.

5.1 Computing the Angular Difference Function for
Discrete Images

An important property of � is that it can be discretized
using very general sampling grids. The only requirement
from the sampling grid is that, if � is a sampling point, then,
�þ �

2
is also a sampling point. Therefore, to compute �

accurately we do not need a true polar representation of the
Fourier transforms of I1 and I2.

The reversal of the angular axis, indicated by (5.3), is
accurately implemented by flipping the input image along
the x or y axes. Mathematically,

eII rj; �i
� �

¼ I rj;��i
� �

, eII i; jð Þ ¼ I �i; jð Þ: ð5:8Þ

The PPFT, presented in Section 3, is used to derive an
algorithm for computing �. The PPFT evaluates the DFT of
a given image on the pseudopolar grid. For each angle � in
the pseudopolar grid, the grid contains also the angle �þ �

2
.

Thus, we use the PPFT algorithm to compute � as follows:

Given input images I1 and I2, defined on a Cartesian grid,

1. Flip I1 in the left ! right direction.
2. Compute the PPFT of I1 and I2.
3. Compute Md

1 and Md
2 , where Md

1 and Md
2 are the

magnitudes of the PPFT of I1 and I2, respectively.
4. Evaluate (5.3) using numerical integration

�Md �ið Þ ¼X

0�rj�1

Md
1 rj; �i
� �

�Md
2 rj; �i
� ��� ���ri 6; �i 2 0; �½ �: ð5:9Þ

Note that the integration in (5.9) is computed over

rays of the same length, where �ri is the radial

sampling interval.
5. Compute � by

� �ið Þ ¼ �Md �ið Þ þ�Md �iþKð Þ; ð5:10Þ

whereK ¼ 2N þ 1 is the size of the pseudopolar grid

(the input image is of size N �NÞ. Equation (5.10) is

the discrete equivalent of (5.6). Two samples of�Md,

given in (5.9), that areK samples apart correspond to

frequencies that are �
2
apart.

5.1.1 The Normalized Angular Difference Function

In order to improve the robustness of the algorithm to

image noise and intensity changes, we replace the L1 norm

in (5.9) with the normalized correlation [25]

�Md
N �ið Þ ¼

P
0�rj�1

Md
1 rj; �i
� �

�Md
2 rj; �i
� �� �2

�r Md
1

� �
�r Md

2

� � ; �i 2 0; �½ �;

ð5:11Þ

where

Md
k rj; �i
� �

¼

Md
k rj; �i
� �

�
1

jmax

X

0�rl�1

Md
k rl; �ið Þ; k ¼ 1; 2

and jmax is the index of the maximal radial sample of each

ray i, such that r jmaxð Þ ¼ 1. The standard deviation is then

given by

�r Md
k

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jmax

X

0�rl�1

Md
k rl; �ið Þ �Md

k rl; �ið Þ
� �2

s
; k ¼ 1; 2:

Similar to (5.10), �N , the normalized angular difference

function, is given by

�N �ið Þ ¼ �Md
N �ið Þ þ�Md

N �iþKð Þ: ð5:12Þ

Fig. 5 shows an example of � and �M for the F16 image

pair, where the minima of � is clearly visible. �N is

significantly smoother than � and it is experimentally

shown (see Section 6) to improve registration accuracy and

robustness to noise.
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5.2 Rotation Estimation Algorithm

For two input images I1 and I2, where I2 is a rotated and
translated version of I1, the rotation estimation algorithm is
as follows:

1. Compute � (or �N ) of I1 and I2 as described in
Section 5.1.

2. Compute the rotation angle �� as

�� ¼ 2� i0ð Þ; ð5:13Þ

where

i0 ¼ argi minf� � ið Þð Þg; ð5:14Þ

and � ið Þ is given by (3.12).
3. For�� found in Step 2, the true rotation angle is either

�� or��þ �. Check each of these angles and recover
the translationparametersbyusingphase-correlation.

The main computational advantage of the algorithm is
that the computation of � and �N as well as the estimation
of �� do not require any interpolations or approximations.
The complexity of the algorithm is OðN2 logNÞ, which is the
same as applying a single 2D FFT on the image. Most of the
complexity is due to the computation of the PPFT, which
requires OðN2 logNÞ operations [15]. Once the PPFT is
computed, the complexity of computing � and �N is
negligible. The complexity of other registration schemes [9],
[22] is related to the interpolation of the Cartesian frequency
grid into the polar grid. In any case, this complexity is at
least OðN2 logNÞ since the algorithm must compute the FFT
of the input images at least once.

6 EXPERIMENTAL RESULTS

We tested the registration algorithm on four images (see
Fig. 6) with different rotation angles and noise levels. These
images are rotated at angles 0� � � � 175� with increment
�� ¼ 5�, and translated randomly in the range ½�20; 20� �
½�20; 20� pixels. The results are given in Table 1, where we
present both the average and maximal angular error. Note
that the accuracy of the proposed algorithm is of the order

of the angular sampling resolution and the mean and
average errors are of the same order. The mean error is
similar for � and �N , while there is an improvement in the
maximal error.

The robustness to noise was tested using the F16 and Lena
images, given in Figs. 5a and 8c. The images were manually
segmented to avoid boundary problems due to the synthetic
rotation. Each image was rotated at all angles 0� � � � 175�

with increment �� ¼ 5�. The images were randomly trans-
lated with �x;�yð Þ in the range ½�20; 20� � ½�20; 20� pixels.
The rotated and translated images were then registered with
the original image. This set of tests was repeated when
additive white noise in the range 0 � �n � 400 with incre-
ments ��n ¼ 20 was added. The noise was added to each
image after the completion of its rotation. To assure the
statistical validity of the results, each test set was repeated
10 times. Translations were estimated by a standard
implementation of the phase correlation algorithm [8], [9].

Figs. 7a and 8a present �� and �N� , which are the standard
deviation (STD) of the registration error, computed using �,
and �N , respectively, as a function of the noise �n. It follows
that for nonnoisy input images the registration error of the
proposed algorithm is less than 1 degree, which corre-
sponds to twice the average angular resolution of the PPFT,
which is approximately 0.7 degree. The accuracy of the
registration slightly degrades as the noise power increases.
In particular, for SNRs above 9dB, the estimation errors
remain within 0.1 degree; below that threshold and down to
about 0dB, the errors become of the order of 0.5 degree. At
about �10dB, the error is around 2 degree. Below this SNR
and down to about �15dB, the errors become larger. The
noisy images at SNR ¼ �8dB are depicted in Figs. 7c and
8d, where the F16 and Lena are hardly visible. �N
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Fig. 5. The difference function and the angular difference function of
rotated sample images. (a) and (b) The input images. (c) The difference
function�Md and the normalized difference function�Md

N of (a) and (b).
Twominimawith an offset of �

2
can be observed in�Md and�Md

N . (d) The
angular difference functions � and �N are computed using �Md and
�Md

N . �N is smoother than � and has a lower minimum.

Fig. 6. Images used for registration accuracy estimation.

TABLE 1
Registration Results for the Images in Fig. 6

The errors are estimated over a range of rotations and translations. The
mean error is similar for � and �N , while there is an improvement in the
maximal error.



outperforms � for low SNR values, while for high SNR they
achieve comparable results.

The images were also registered using the interpolation-
based scheme given in [9]. As expected, due to interpolation
errors, this scheme is highly sensitive to noise. Moreover,
even for noise-free images, significant estimation errors were
obtained for rotation angles larger than 45 degrees. To
conclude, the algorithm we propose successfully registers
extremely noisy images, where feature-based techniques
usually fail.

Thedependencebetween the registration accuracyand the
rotation angle is studied in Figs. 7b and 8b. The STD of the
registration errorwith respect to the rotation angle �, denoted
�� and�N

� ,were computedover the rangeof all noise levels.��

and �N
� for the Lena image (Fig. 8b) are unrelated to �, while

for the F16 image (Fig. 7b), the largest error is observed
around � ¼ 90. This is attributed to the difference in the
spectral content of the images (see Fig. 9). The spectral energy
of the F16 image is limited to 0; �

2

� �
, while the spectral energy

of the Lena image is evenly spread over 0; �½ �.

Fig. 10 shows an example of registering images with

noncorresponding parts. This often happens when large

motions are estimated. As the proposed scheme is robust, it

can better handle such cases.
A typical application of the proposed scheme is given in

Fig. 11, where we register fMRI images. Due to their

acquisition process, such images (and medical imagery, in

general) are often noisy and different images of the same

object might have different intensities due to the calibrations

of the imaging devices and postprocessing. Note the high

accuracy of alignment although the images have some not

common parts.
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Fig. 7. Registration accuracy for the F16 image. (a) The standard deviation (STD) of the registration error (in degrees) as a function of the noise. ��
and �N� are the STD of � and �N , respectively. �

B
� is the STD of the bilinear interpolation-based scheme given in [9]. For high SNR, the performance

of � and �N is comparable, while for low SNR �N is significantly superior. (b) The STD of the registration error as a function of the rotation angle.
The error of �N is lower for any rotation angle. (c) A noisy F16 image (SNR=�2dB). The algorithm achieves an accuracy of 3 degrees.

Fig. 8. Registration accuracy for the Lena image. (a) The STD of the
registration error (in degrees) as a function of the noise. �� and �N� are the
STD of � and �N , respectively. �

B
� is the STD of the bilinear interpolation

based scheme given in [9]. For high SNR, the performance of� and�N is
comparable, while for low SNR �N is significantly superior. (b) The STD
of the registration error as a function of the rotation angle. The error of�N

is lower for any rotation angle. (c) A noisy F16 image (SNR=�2dB). The
algorithm achieves an accuracy of 3 degrees.

Fig. 9. The spectral content of the F16 and Lena images. The spectral
energy of F16 is concentrated in 0; �

2

� �
, while the spectral energy of Lena

is evenly spread over ½0; ��.

Fig. 10. Registration of images with noncorresponding parts. Image (a)
is aligned to image (b). (c) is created by aligning (a) to (b). The edges in
(b) are detected and overlayed on the aligned image (a).

Fig. 11. Registration of fMRI images. The image (a) is aligned to image
(b). (c) is created by aligning (a) to (b). The edges in (b) are detected and
overlayed on the aligned image (a).



The algorithm was implemented in C++ and the
execution time for registering 256� 256 images was
approximately 1 second for each pair of images, using a
2.8GHz PC. Profiling shows that 95 percent of the execution
time is spent on the computation of the PPFT, and there
were no timing differences between using either � or �N .

7 CONCLUSIONS

We introduced the angular difference function and its
application to image registration.Weshowed that theangular
difference function can be used to derive a robust registration
algorithm,whichhas the samecomplexity as the FFT.Thekey
point in the implementation of the algorithm is that it is
possible to accurately compute the angular difference
function by using the pseudopolar Fourier transform. Due
to the low complexity of the proposed algorithm, it can be
extended to real-time applications. It can also be extended to
applications such as symmetry detection and 3D image
registration (using a 3D extensions of the PPFT and theADF),
which are currently being investigated.
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